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Measurements of the cosmic microwave background (CMB) temperature anisotropies on large angular
scales have uncovered a number of anomalous features of marginal statistical significance, such as a
hemispherical power asymmetry, a lack of power on large angular scales, and features in the power
spectrum. Because the primary CMB temperature, the power spectrum has been measured at the cosmic
variance limit; determining if these anomalies are hints of new physics as opposed to foregrounds,
systematics, or simply statistical flukes requires new observables. In this paper, we highlight the potential
contribution that future measurements of the kinetic Sunyaev-Zel’dovich effect (kSZ) and the polarized
Sunyaev-Zel’dovich effect (pSZ) could make in determining the physical nature of several CMB
anomalies. The kSZ and pSZ effects, temperature, and polarization anisotropies induced by scattering
from free electrons in the reionized Universe are the dominant blackbody contribution to the CMB on small
angular scales. Using the technique of SZ tomography, measurements of kSZ and pSZ effects can be
combined with galaxy surveys to reconstruct the remote CMB dipole and quadrupole fields, providing a
three-dimensional probe of large scale modes inside our Hubble volume. Building on previous work, we
forecast the additional constraining power that these observables might offer for a representative set of
anomaly models in the scenario of idealized next-generation CMB experiments and galaxy surveys. We
find that the remote CMB dipole and quadrupole can yield constraints on anomalies models significantly
beyond what can be done with CMB temperature and polarization on large scales, and comparable to what
is possible with a large photometric galaxy survey. The best constraints are obtained from a multitracer
analysis including the primary CMB, remote fields and galaxy survey.
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I. INTRODUCTION

Anisotropies in the cosmic microwave background
(CMB) are a powerful probe of early Universe physics.
On large angular scales, these anisotropies encode pri-
mordial density fluctuations, which may ultimately have
been produced at energy scales far beyond the reach of any
terrestrial particle accelerator. Interestingly, a series of
anomalous large angular scale features in the microwave
sky have been reported by the WMAP and Planck [1,2]
satellite missions, offering what could be hints of physics
beyond the standard model of cosmology, ΛCDM (Λ cold
dark matter). Several notable anomalies include: a hemi-
spherical power asymmetry, a lack of correlations on large
angular scales, features in the angular power spectrum, and
an alignment of multipoles; see [3] for a recent review. As
the statistical significance of each of these anomalies is
rather modest, the most conservative position is to attribute

them to statistical flukes, given the a posteriori nature
of their discovery, systematics, or foregrounds.
Unfortunately, as a stand-alone probe, the CMB temper-
ature has already reached the limit imposed by cosmic
variance on large angular scales, so new information can
only come from alternative or complementary probes of
the largest scales in the Universe.
Several observables have been identified as potential

probes of physical models of the CMB anomalies, including
CMB polarization (see, e.g., Refs. [4–11]), CMB lensing
(see, e.g., [12,13]), the integrated Sachs-Wolfe (ISW) effect
(see, e.g., [14–16]), and probes of large scale structure in the
late Universe (see, e.g., [17–20]). Each of these observables
has both advantages and disadvantages. CMB polarization
can access scales comparable to those in the CMB temper-
ature. On the largest angular scales, however, the mapping
between the observed polarization anisotropies and physical
scales is dependent on the (relatively poorly constrained)
history of reionization. In addition, on large scales, galactic
foregrounds are challenging (though not impossible) to
remove [21]. The lensing potential can be reconstructed
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with high fidelity using future CMB data sets (e.g., the
Simons Observatory [22] or CMB-S4 [23]); however, there
is limited support from the physical scales associated with
many of the CMB anomalies (see [13]). If the (late time)
ISW contribution to the CMB temperature can be isolated
(e.g., using the technique of [16]), this could contribute a
modest number of modes probing large scales. Finally,
future galaxy surveys (e.g., LSST [24], Euclid [25], Spherex
[26]) or 21 cmexperiments (e.g., CHIME [27],HIRAX [28];
see also [29]) can reach large enough volumes to offer new
information on some of the CMB anomalies. While pro-
mising the measurement of a huge number of modes on
linear scales, therewill be limited support on physical scales
responsible for the lowest multipoles of the CMB tempe-
rature, and measurement of the largest modes will be noisy
and plagued by various systematics (see, e.g., [30]).
The goal of this paper is to explore a new set of

observables that may become important tools in the study
of the physical nature of CMB anomalies: the remote dipole
and quadrupole fields, i.e., the l ¼ 1, 2 moments of the
microwave sky measured throughout our observable
Universe. The remote dipole manifests itself through the
kinetic Sunyaev-Zel’dovich (kSZ) effect [31]: the dominant
blackbody temperature contribution to our CMB sky on
angular scales corresponding to multipoles l≳ 4000 orig-
inates from free electrons on our past light cone scattering
their locally observed CMB dipole. Similarly, in the
presence of a local CMB quadrupole, the scattered photons
are endowed with a polarization. The polarized component
of the CMB arising after reionization, primarily from
collapsed structures, is known as the polarized Sunyaev-
Zel’dovich (pSZ) effect (as opposed to the component
sourced near decoupling and at reionization, which is
simply CMB polarization). The remote dipole and quadru-
pole can be reconstructed using the techniques of kinetic
Sunyaev-Zel’dovich (kSZ) tomography [32–46] and polar-
ized Sunyaev-Zel’dovich (pSZ) tomography [43,47–55].
Below, we refer to these two cases more generally as SZ
tomography. In basic terms, this technique provides a
three-dimensional reconstruction of the remote dipole and
quadrupole fields by using the statistical anisotropy of the
correlation between a tracer of LSS (e.g., a galaxy redshift
survey) and the small-angular scale CMB temperature and
polarization anisotropies. A set of quadratic estimators for
the remote dipole and quadrupole fields were derived in
Refs. [43,44,50], and a series of forecasts, including a
demonstration with simulations in Ref. [56], has established
detectability with future data sets [42–44,52].
Being primarily sensitive to inhomogeneities on large

physical scales, these new observables that will become
accessible with the next generation of CMB and galaxy
surveys stand as potential candidates to further extend our
understanding of the CMB anomalies. The remote quadru-
pole field receives support from the same scales contrib-
uting to the low-l moments of the CMB temperature.

Although at low redshift and on large angular scales, the
remote quadrupole field is strongly correlated with the
primary CMB temperature quadrupole [47,48]; there is
significant new information on moderate angular scales and
at high redshift [43,52,53,55]. The remote dipole field is
dominated by the coarse-grained line-of-sight peculiar
velocity field and is therefore sensitive to somewhat smaller
scales than the remote quadrupole. However, it can be
reconstructed at a far higher signal to noise and carries a
significant amount of information on scales relevant to a
variety of CMB anomalies. As general probes of physics on
large scales, the remote dipole and quadrupole fields can
yield improved constraints on primordial non-Gaussianity
[45], primordial gravitational waves [50,55], and preinfla-
tionary relics [41].
The central question we wish to address in this work is

whether or not the remote dipole and quadrupole fields
could serve as alternative and complementary probes of the
CMB anomalies to more traditionally considered tracers:
the large scale E-mode CMB polarization and three-
dimensional galaxy maps on our past light cone. An
important fact to highlight is that measurements of these
observables significantly differ in their nature: a key
feature of SZ tomography is that it reconstructs large-
scale inhomogeneities from anisotropies on the smallest
angular scales. The fidelity of the reconstruction improves
with the sensitivity and resolution of the CMB experiment
and the depth and redshift errors of the galaxy survey.
Therefore, the information accessible using SZ tomogra-
phy will improve greatly with time, while direct probes of
the largest scales are already close to the cosmic variance
limit. Apart from offering an alternative way of measuring
the large scale properties of the Universe, the remote
dipole and quadrupole fields may also capture new
independent information to that already available through
the traditional probes.
Our methodology to estimate how informative the remote

dipole and quadrupole fields could be for the study of the
CMB anomalies consists of forecasting parameter con-
straints for physical models of the anomalies under the
experimental conditions of idealized next-generation CMB
experiments and galaxy surveys. We compare the perfor-
mance of different combinations of the primary CMB
temperature, CMB polarization, galaxy clustering, and
the remote dipole and quadrupole fields. We assume that
foreground-cleaned data are accessible for the CMB polari-
zation on large scales, for the galaxy survey, and also for the
kSZ and pSZ effects on small angular scales. The limiting
experimental factors that we do take into account are CMB
noise levels as expected for stage-4 CMB experiments and
LSST like specifications for the galaxy survey, as well as
calibration errors on large scales for the latter. We perform
our forecast using a Fisher matrix formalism on a series of
physical models for three representative CMB anomalies:
the power asymmetry, the lack of power on large angular
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scales, and a feature in the temperature power spectrum at
multipoles around l ∼ 20–30.
The plan of the paper is as follows. In Sec. II, we review

SZ tomography and describe the properties of the remote
dipole and quadrupole fields. In Sec. III, we describe the
details of our forecast and introduce a figure of merit which
is used to quantify the potential constraining power with
different combinations of observables. In Sec. IV, we
present the results of our forecast, and we conclude
in Sec. V.

II. SZ TOMOGRAPHY: RECONSTRUCTING THE
REMOTE DIPOLE AND QUADRUPOLE FIELDS

SZ tomography allows us to reconstruct the line-of-sight
components of the CMB dipole and quadrupole moments
as observed by free electrons on our past light cone. Here,
we review the basic features of SZ tomography and the
remote dipole/quadrupole fields; further details can be
found in Refs. [43,44,56]. Contributions to the CMB
temperature and polarization generated via the kinetic
and polarized SZ effects can be expressed through the line
of sight integrals,

ΔT
T

����
kSZ

ðn̂eÞ ¼
Z

dχe_τðn̂e; χeÞveffðn̂e; χeÞ;

veffðn̂e; χeÞ≡
X1
m¼−1

Θm
1 ðn̂e; χeÞY1mðn̂eÞ ð1Þ

ðQ� iUÞpSZðn̂eÞ ¼
ffiffiffi
6

p

10

Z
dχe_τðn̂e; χeÞq�effðn̂e; χeÞ;

q�effðn̂e; χeÞ≡
X2
m¼−2

Θm
2 ðn̂e; χeÞ ∓2 Y2mðn̂eÞ; ð2Þ

where n̂e denotes the line of sight direction, χe the
comoving distance to the scatterer, Θm

l ðn̂e; χeÞ are the
moments of the CMB temperature at the scatterer, and
_τðn̂e; χeÞ is the differential optical depth defined as

_τðn̂e; χeÞ≡ −σTaðχeÞn̄eðχeÞ½1þ δeðn̂e; χeÞ�; ð3Þ

with aeðχeÞ the scale factor, σT the Thompson cross
section, and δeðn̂e; χeÞ the perturbations about the average
electron number density n̄eðχeÞ.
Figure 1 depicts the basic spacetime geometry of the SZ

effect. The remote dipole field veffðn̂e; χeÞ is a projection of
the CMB dipoleΘm

1 ðn̂e; χeÞ as observed along the past light
cone. The dominant contribution is from the line-of-sight
component of the peculiar velocity field (as it is for our own
observed CMB dipole), although there are subdominant
contributions that come from the Sachs-Wolfe (SW),
integrated Sachs-Wolfe (ISW), and primordial Doppler
(velocities of the plasma at last-scattering) effects. These
dominant and subdominant contributions are often referred

in the literature as the kinematic and intrinsic CMB dipole,
respectively. The remote quadrupole field q�effðn̂e; χeÞ is a
projection of the CMB quadrupole Θm

2 ðn̂e; χeÞ as observed
along the past light cone. The remote quadrupole receives
contributions from both scalar and tensor fluctuations,
although we consider only scalar modes in the present
context. In this case, qþeff ¼ q−eff , and the remote quadrupole
is curlfree. As such, we will denote the pure scalar remote
quadrupole field as “qE”. The remote quadrupole is
sourced by the SW, ISW, and primordial Doppler effects.
For further description of the contributions to the remote
dipole and quadrupole fields, we refer the reader to
Refs. [41–43,52,55,57].
SZ tomography works by first inferring the fluctuations

in the optical depth in a set of redshift bins labeled by α
from a tracer of structure such as a galaxy survey. A
quadratic estimator for the bin-averaged dipole and quadru-
pole fields is then constructed from the CMB temperature
or polarization and each redshift bin of the galaxy survey.
We work in harmonic space for the reconstructed fields,
denoting the moments of the dipole or quadrupole fields in
each bin as av;αLM and aqE;αLM , respectively. The reconstruction
noise on the remote dipole and quadrupole fields depends
on the specifications of the CMB experiment and the
volume and shot noise of the galaxy survey. We discuss
our assumptions for the reconstruction noise in detail in the
following section, which corresponds to the choices made
in Ref. [43]. An additional consideration is the so-called
“optical depth degeneracy” (see, e.g., [51,58]), which is a
consequence of the necessarily imperfect inference of the
fluctuations in the optical depth from the galaxy survey.
This manifests itself as an overall multiplicative bias on the
remote dipole and quadrupole fields in each redshift bin
that must be marginalized over [44]. Direct measurements

FIG. 1. Photons traveling from the last scattering surface can be
rescattered by free electrons once the Universe is reionized. The
small scale CMB signal generated through this process can be
combined with a redshift dependent tracer of the electron density
to reconstruct the moments av;αLM and aqE;αLM of the dipole and
quadrupole field.
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of the distribution of free electrons, for example, using fast
radio bursts as proposed in Ref. [59], can mitigate the
optical depth degeneracy.
The remote dipole and quadrupole fields provide new

information about the Universe on large scales. The
primary CMB photons, traveling to us directly from the
last scattering surface, probe the largest accessible scales.
The information they provide, however, is somewhat
obscured due to the fact that we observe the projection of
three-dimensional inhomogeneities onto a two-dimensional
surface. As illustrated in Fig. 1, the remote dipole and
quadrupole fields accessed through SZ tomography
provide additional information in a number of ways.
First, due to the tomographic nature of the reconstruction,
we obtain coarse-grained three-dimensional information.
Furthermore, the remote dipole and quadrupole fields are
sensitive to inhomogeneities inside our past light cone,
implying that they can access different information than
what is encoded in the primary CMB temperature. In the
case of the remote dipole field, which is dominated by the
local peculiar velocity, it is possible to study bulk motion
on scales comparable to the size of the observable Universe
using long-range correlations.
To go beyond these qualitative remarks, we inspect the

scales probed by the remote dipole and quadrupole fields
using linear theory, which is a good approximation for the
scales under consideration. The various observables under
consideration can be related to primordial gravitational
potential in Newtonian gauge ΨiðkÞ using a set of (bin-
averaged) transfer functions ΔX;α

l ðkÞ,

aX;αlm ¼
Z

d3k
ð2πÞ3Δ

X;α
l ðkÞΨiðkÞY�

lmðk̂Þ; ð4Þ

where X ¼ T; E; v; qE;G for the observables we consider
in this work (primary CMB temperature, E-mode polari-
zation, remote dipole, remote quadrupole, and redshift
galaxy distribution, respectively); for X ¼ T, E, the index
α is superfluous. Expressions for the remote dipole and
quadrupole transfer functions, which capture the contribu-
tions coming from the SW, ISW, and Doppler effects, can
be found in [60,61].
The transfer functions reveal to us which scales the

remote dipole and quadrupole are sensitive to. As an
example, we show in Fig. 2 the ΛCDM transfer functions
(e.g., using parameters from Planck 2018 [21]) in the ðl; kÞ
plane for the primary CMB temperature, E-mode polari-
zation and the remote fields at a few different redshifts.
For the CMB temperature and remote dipole field, we plot
the range 1 ≤ l ≤ 30, which roughly encompasses the
range of scales relevant to the CMB anomalies we consider.
For the CMB E-mode polarization and remote quadrupole,
we restrict the range to 1 ≤ l ≤ 10, as this is the range over
which the remote quadrupole receives significant support.
There are a few things to note from this figure. Comparing

with the CMB temperature transfer function, we see that the
remote dipole and quadrupole fields have good support
over a comparable range of wave numbers. Because it is
sourced mostly by fluctuations near the time of last
scattering, the remote quadrupole is relatively more sensi-
tive to large scales than the remote dipole. However, the
amplitude of the remote quadrupole falls sharply with l,
implying (correctly) that there will be a limited number of
measurable modes. It can also be noted that the remote
dipole field probes larger scales at higher redshift; this is
due to the larger physical distances in the peculiar velocity
field which are sampled.
Based on these observations, the observables returned by

SZ tomography appear to have the potential to add
statistical power into the analysis of CMB anomalies
due to their sensitivity to large scale inhomogeneities.
However, the amount of new information that can be added
will depend on the correlations that exist amongst all the
observables we consider. Indeed, some correlations are
expected to be there by construction. For example, at low
redshift, the l ¼ 2moments of the remote quadrupole field
are perfectly correlated with the CMB temperature quadru-
pole [47,48,52].
In Fig. 3, we plot the correlation coefficient between the

remote fields and the primary CMB, defined by

rX;Yαβ;ll0;mm0 ¼
CX;Y
αβ;ll0;mm0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CX;X
αα;ll;mmC

Y;Y
ββ;l0l0;m0m0

q ; ð5Þ

where

CX;Y
αβ;ll0;mm0 ¼

Z
d3k
ð2πÞ3

Z
d3k0

ð2πÞ3Δ
�X;α
l ðkÞΔY;β

l0 ðk0Þ

× hΨ�
i ðk⃗ÞΨiðk⃗0ÞiYlmðk̂ÞY�

l0m0 ðk̂0Þ ð6Þ

are the elements of the covariance matrix. In the top
panel, we show the correlations between the CMB temper-
ature and remote fields at a few values of l. For l ¼ 1, the
CMB temperature is the aberration-free dipole (see, e.g.,
Refs. [62–65] for a summary of the various frames for the
CMB dipole), not the dipole observed in the Earth’s rest
frame. There is ≲10%–20% correlation between the CMB
temperature and the remote dipole field over a range of
redshifts and multipoles. There is a far higher correlation
between the CMB temperature and the remote quadrupole
field. As expected, there is a nearly perfect correlation
between the CMB quadrupole and the l ¼ 2moment of the
remote quadrupole field, except at the highest redshifts.
The remote dipole field has little correlation with the
CMB E-mode polarization. However, at the highest red-
shift, there is a near-perfect correlation between the E-mode
polarization and the remote quadrupole field. This is
expected, since at high redshift, the CMB polarization is
sourced by the same remote quadrupole field that is being
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reconstructed by SZ tomography (see Ref. [55] for further
discussion). Significant correlations will also exist between
the galaxy redshift distribution and the reconstructed dipole
field, as the latter is dominated by the line of sight peculiar
velocity field, which certainly has a tight relationship with
the density field itself.
In conclusion, including the full covariance between the

various observables can be important in a joint analysis,
such as the one we present below. This is particularly
important at low-multipoles/low-redshift for the CMB

temperature, at high-redshift for the CMB E-mode polari-
zation, and in general, for the galaxy-velocity correlations.
Conversely, we see that over a wide range of multipoles and
redshifts, the remote dipole and quadrupole fields carry
significant independent information beyond the primary
CMB temperature and polarization. For the case of the
remote dipole, velocities are sensitive to the gradient of
the gravitational potential and thus, can probe inhomoge-
neities on slightly larger scales than the directly observed
densities.

FIG. 2. On the top panels, the transfer functions for the primary CMB temperature (l ¼ 1 is not plotted here) and E-mode polarization.
On the middle and bottom, the bin averaged transfer functions for the remote dipole (left) and quadrupole (right) for bins centered on
redshifts z ¼ 0.1 and z ¼ 2.5. The binning scheme used for this figure consisted on 60 bins of equal comoving size between
0.1 ≤ z ≤ 6.
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III. FORECAST SETUP

The reconstruction of the remote dipole and quadrupole
fields using SZ tomography opens the possibility of
bringing new information into the study of the large scale
CMB anomalies. Determining how informative a data set is
will depend, of course, on the type of questions we are
trying to answer. From the Bayesian perspective, we might
strive for model selection: how would adding a new
observable change the odds ratio between the anomaly
model and ΛCDM in a future experiment (see, e.g., [66])?
Such an approach requires a motivated set of theoretical
priors, as well as an understanding of the full likelihood
function over model parameters. Due to the lack of
strongly motivated models and the computational com-
plexity of evaluating the full likelihood function, we do not
pursue this approach here. Another possibility (less com-
putationally expensive than model selection) for predicting
how informative a data set can be is to determine its
constraining power on the parameters of a model using a
Fisher matrix-based approach. In general, such results are
not sufficient to decide if a future experiment could choose
among competing theoretical models. However, this
approach does offer a way of quantifying the additional
constraining power a new observable might add. We will
adopt this methodology in order to study the information
content of the remote dipole and quadrupole field on a

series of models for CMB anomalies and compare it to
what is achievable using the primary CMB temperature,
E-mode polarization, and galaxy clustering on large
angular scales. We now proceed to describe our definitions
for information content and modeling for the signal and
noise covariance.

A. Fisher analysis, figure of merit,
and parameter space

Given a cosmological model with parameters fλig, one
can forecast how well these parameters can be constrained
using a different set of observables by implementing a
Fisher matrix analysis. The elements of the Fisher matrix
are given by the following expression:

Fij ¼
1

2
Tr½ðCþ NÞ−1C;λiðCþNÞ−1C;λj �; ð7Þ

where C is the signal covariance matrix [whose elements
are defined by Eq. (6)],C;λj denotes its derivative respect to
λj, and N is the noise covariance matrix. The Fisher matrix
encodes information about the curvature of the likelihood
function around its maximum in parameter space, and this
information can be turned into fully marginalized con-
straints on the model parameters,

FIG. 3. Correlation coefficient between the primary CMB fields and the remote dipole an quadrupole fields. As expected, the l ¼ 2
moment of the primary CMB temperature is perfectly correlated with the very low redshift remote quadrupole (top panel, black dashed
line) and the remote dipole captures the primordial contributions to the l ¼ 1 aberration-free CMB dipole measured at z ¼ 0 (top panel,
black solid line). The remote quadrupole exhibits longer range correlations with the primary CMB than the remote dipole does
(bottom panel).
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σλi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þii

q
: ð8Þ

A good way of comparing the results of the Fisher
matrix analysis among models with a different number
of parameters is to define a single quantity that condenses
the information of how well the model parameters
are constrained. For a forecast using a set fXg of observ-
ables, we define the figure of merit (FoM) for a subset
of N parameters,

FoMðXÞ ¼

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðF−1
N Þ

q
1
CA

1
N

; ð9Þ

where F−1
N is the part of the inverse Fisher matrix contain-

ing information about the fully marginalized constraints on
the subset of parameters. Furthermore, since we want to
highlight the relative performance respect to the primary
CMB, we will express our results in terms of a figure of
merit ratio, defined by

FoMrðXÞ ¼ FoMðXÞ
FoMðTÞ : ð10Þ

The figure of merit ratio encodes the geometrical mean
improvement on model parameter constraints. Similar
figure of merit ratios have been used in previous literature,
e.g., as a measure of improvement in constraints on CMB
anomalies parameters when comparing current to future
missions [67].
Apart from the standard ΛCDM parameters and the

extra parameters ai present in any of its extensions, it is
important to marginalize over other “nuisance” parameters
that can be introduced depending on our set of observables
fXg. For the case of the remote fields, we need to include a
bias parameter bdα multiplying the multipole coefficients
av;αLM and aqE;αLM in each bin α due to the optical depth
degeneracy in kSZ/pSZ: having incomplete inference of the
electron-galaxy cross spectrum, we can only reconstruct the
remote dipole and quadrupole inside each redshift bin up to
an overall amplitude. We refer the reader to [44] for a more
detailed discussion of the optical depth degeneracy.
Modeling of galaxy clustering also involves the introduc-
tion of other nuisance parameters: galaxies are biased
tracers of the dark matter distribution, so its necessary to
include a galaxy bias bGðzÞ, which will depend on the
details of the galaxy survey and can also be marginalized
over. On large scales, there are as well contributions to the
observed galaxy number counts which come from redshift
spatial distortions, lensing, and GR effects on very large
scales. These contributions have their own internal biases
(intrinsic alignment bias, evolution bias, magnification
bias) for which we provide references in the following
section. The fiducial values for the ΛCDM cosmology we

take are Ωb ¼ 0.049, Ωc ¼ 0.263, h ¼ 0.675, τ ¼ 0.054,
109As ¼ 2.096, and ns ¼ 0.965. Fiducial values for each of
the anomalies model parameters are presented together
with the models in the next section and the Appendix A.
The bias parameters bdα are assigned fiducial values of
unity. Priors on bdα can come from other astrophysical
probes [59], but for the anomaly models under consider-
ation, we find that the constraints are relatively insensitive
to the addition of such a prior. Parameters bGα are obtained
by averaging the galaxy bias bGðzÞ over the survey redshift
bins. The fiducial values we use for this bias are bGðzÞ ≃
0.95þ 0.67z as quoted in the LSST science book [24].

B. Modeling of the signal

The signal covariance matrix C we construct is split into
two pieces: Clow and Chigh. For multipoles l ≤ 60, corre-
sponding to Clow, we investigate different combinations
of all observables under consideration, accounting for the
auto and cross-correlations between the primary CMB
temperature and E-mode polarization, remote dipole/
quadrupole fields and galaxy number counts. For multi-
poles 60 < l < lhigh, where the reconstruction of the
remote dipole and quadrupole fields is poor, and where
correlations with the primary CMB are vanishingly small,
we include only the CMB temperature and polarization
(and their covariance) in Chigh. We choose lhigh ¼ 3000

since for higher multipoles the primary CMB becomes a
subdominant contribution to the measured microwave sky.
With these assumptions, the Fisher matrix factorizes into
the sum of a low-l and high-l piece, Flow and Fhigh,
respectively. The main effect of Fhigh is to constrain the
ΛCDM parameters. We further assume that Fhigh is zero for
the entries corresponding to the anomaly model parameters
ai, since the anomaly models under consideration will have
little to no effect on these scales. The elements of the
covariance matrix are computed using Eq. (6). We obtain
the primary CMB temperature and polarization transfer
functions using the publicly available code for anisotropies
in the microwave background (CAMB) [68]. We use
the same conventions and definitions for the remote
fields transfer functions as in [43] (Appendixes A and
C), and for the galaxy number counts, we follow what is
done in related work [69] (Appendix A), where dipole
reconstruction is put together with galaxy number counts to
determine if large scale general relativistic effects could be
detected with near future surveys.

C. Modeling of the noise

The noise covariance matrices for the primary CMB
fields and for galaxy number counts are constructed under
the assumption of idealized next generation CMB experi-
ments and galaxy surveys. We assume CMB temperature
and polarization data on the full sky with noise
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NCMB
l ¼ η2 exp

�
θ2FWHM

8 log 2
lðlþ 1Þ

�
: ð11Þ

We choose fiducial values of η ¼ 1 μK-arcmin and
θFWHM ¼ 1 arcmin, representative of stage-4 CMB-like
experiments, and explore how constraints vary for
larger (5 μK-arcmin), smaller (0.1 μK-arcmin) noise and
increased beam size (θFWHM ¼ 5 arcmin). To determine
the galaxy survey shot noise, we assume an LSST-like
number density per arc-minute square given by

nðzÞ ¼ ngal
1

2z0

�
z
z0

�
2

exp ð−z=z0Þ; ð12Þ

where z0 ¼ 0.3 and ngal ¼ 40 arcmin−2. In addition to the
shot noise, we also account for photometric calibration
errors, which introduce additional biases to the large
galaxy power spectrum, and we base our parametrization
on previous studies on the impact of these systematics in
the reconstruction of the ISW effect from galaxy surveys
[70,71]. Calibration errors introduce extra power Ccal

l ,
which can be modeled by

Ccal
l ¼ Acale−ðl=10Þ

2 ð13Þ

for multipoles l < 30 and zero otherwise, where Acal is a
normalization constant chosen such that the variance of
the calibration error field defined on the sky is equal to a
desired value. We choose this variance to be equal to 10−4,
which corresponds to a level of calibration of ≈0.01
magnitudes and is a rather conservative value for what is
expected from future surveys. We do not marginalize over
the calibration error parameters.
For the remote fields, the reconstruction noise is com-

puted as in Ref. [43]. The instrumental CMB noise
discussed above is one of the necessary pieces to calculate
the reconstruction noise for the dipole and quadrupole
correlations appearing in Clow. Multipoles up to l ¼ 9000
(assumed to be accessible with next generation experi-
ments) are used to calculate the reconstruction noise, and
thus, different choices of the CMB noise level η and beam
size θFWHM will have an impact on the signal to noise for
the low-l dipole and quadrupole fields. The galaxy shot
noise enters into the calculation in a similar way, but we
have kept the parameters appearing in Eq. (12) fixed in
order to focus on improvements on constraints due to the
reconstructed fields and their dependence on CMB noise
parameters.
The construction of both the signal and noise covariance

matrices also involves a choice of redshift binning for the
galaxy survey, which determines how coarse-grained the
reconstructed remote dipole and quadrupole fields are.
The thinner the binning is, the more information can be
collected. Clearly, all independent information would be
captured in the limit of having infinitely small redshift bins,

but the redshift resolution of the (photometric redshift)
surveys used in the reconstruction process imposes a limit
on how many redshift bins can be used. We use 45 redshift
bins of equal comoving radial width between Z ¼ ½0.1; 3�,
which, translating to redshfit, is roughly consistent with the
expected photometric redshift errors for LSST [24].

IV. INFORMATION CONTENT FORECAST

In what follows, we present the Fisher forecast for
constraints on models of the large scale CMB anomalies
using different subsets of observables: X ¼ ðT; EÞ,
X ¼ ðT; E; RÞ, X ¼ ðT; E;GÞ, and X ¼ ðT; E; R;GÞ. We
first introduce two general classes of physical models:
models that break statistical isotropy, which could be
responsible for the power asymmetry, and models that
deviate from a nearly scale-invariant primordial power
spectrum, which could be responsible for a lack of power
on large scales and a feature in the power spectrum at
l ∼ 20–30. While this is a small subset of physical models
considered to explain only a subset of the CMB anomalies,
we hope that the cases we do consider are illustrative of the
potential utility of SZ tomography for providing further
insight into the nature of the CMB anomalies. Following
this, we present the figure of merit ratio FoMr given by
Eq. (10) for each model, which provides a quantitative
measure of the overall improvement on parameter con-
straints relative to what is achievable with measurements of
the primary CMB temperature only. The fully marginalized
parameter constraints for each model can be found in
Appendix A.

A. Statistical isotropy breaking

A subset of the observed CMB anomalies suggests the
existence of statistical anisotropies [72]: unexpected align-
ment between the low multipole moments, a hemispherical
power asymmetry, parity asymmetry of the CMB etc. It is
still not known whether or not these features are due to
foregrounds, local cosmic structure, or possible statistical
flukes present in our observed realization of ΛCDM.
However, if due to true physical departures from ΛCDM,
the underlying model must break statistical isotropy.
We consider phenomenological models of spontaneous

isotropy breaking [73] (see also, e.g., [74–77]), in which
local observers would detect statistical anisotropy, while
the Universe as a whole is globally, statistically homo-
geneous and isotropic. Following Ref. [4], we include a
field hðx⃗Þ with super horizon fluctuations that modulates
the potential g1ðx⃗Þ only on large scales, leaving small scale
fluctuations described by g2ðx⃗Þ unaffected

Ψiðx⃗Þ ¼ g1ðx⃗Þð1þ hðx⃗ÞÞ þ g2ðx⃗Þ: ð14Þ

Here, g1ðx⃗Þ and g2ðx⃗Þ are random Gaussian fields, while
hðx⃗Þ is deterministic within our Hubble volume. It is the
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slow variation of hðx⃗Þ inside our Hubble volume that is
responsible for the existence of statistical anisotropy in the
CMB. Such a modulation can occur, for example, in
inflation models with more than one field contributing to
the primordial curvature perturbations. Here, rather than
focusing in a particular early Universe mechanism for
generating the modulation, we are interested in determining
how the imprints of a preferred direction on the remote
dipole and quadrupole fields can help to constrain the
amplitude of the modulation.
The effect on the primordial power spectrum is given by

hΨ�
i ðk⃗ÞΨiðk⃗0Þi¼ ð2πÞ3δðk⃗− k⃗0ÞðPg1ðkÞþPg2ðk0ÞÞ

þðPg1ðkÞþPg1ðk0ÞÞhðk⃗− k⃗0Þ

þ
Z

d3k̃
ð2πÞ3Pg1ðk̃Þhðk⃗− ⃗̃kÞhðk⃗0− ⃗̃kÞ; ð15Þ

where Pg1ðkÞ and Pg2ðkÞ are the power spectra for
g1ðx⃗Þ and g2ðx⃗Þ. We will fix these power spectra to
that Pg1ðkÞ þ Pg2ðkÞ ¼ PΛCDMðkÞ, when hðx⃗Þ ¼ 0. The
second and third term will induce couplings between
different ðl; mÞ multipoles, and this manifests the breaking
of statistical isotropy for local observers.
For this work, consider a dipolar modulation given

by a superhorizon scale mode varying in the direction of
the z axis,

hðx⃗Þ ¼ A
sin ðk⃗0 · x⃗Þ
k0χdec

≈ A
z

χdec
: ð16Þ

This physical model could explain the observed power
asymmetry [4] (see also, e.g., [9,13,78]); we do not
consider other modulation models here, which could be
responsible for the observed alignment of low-lmultipoles
(see, e.g., [4]) or other observed CMB anomalies. For the
modulating field Eq. (16), expressions for elements
of the covariance matrix up to second order in A can be
obtained analytically and are presented in Appendix B.
Analysis of temperature data by Planck [72] suggests a
phenomenological dipole modulation up to l ∼ 60 with a
value for the amplitude parameter of approximately [72]
A ¼ 0.07� 0.02. An open question is to what scales the
asymmetry might persist, e.g., where the crossover occurs
from the observed fluctuations being sourced by g1 to being
sourced by g2. There is a hard upper bound implied by the
low hemispherical asymmetry of the distribution of high
redshift quasars [79] of k≲ 1 Mpc−1. In the following, we
treat the crossover to statistical homogeneity as in Ref. [13],
where a new set of parameters describing the crossover is
introduced,

Pg1ðkÞ ¼
1

2
PΛCDMðkÞ

�
1 − tanh

�
ln k − ln kc

Δ ln k

��
; ð17Þ

with kc a cutoff scalewith fiducial value 7.83 × 10−3 Mpc−1

and Δ ln k ¼ 0.5 a parameter controlling the steepness
of the crossover.

B. Deviations from ΛCDM power law

The other class of models we consider involves possible
deviations from the ΛCDM power law primordial power
spectrum. On large angular scales, it has been observed by
WMAP and Planck that the CMB temperature shows an
unexpected lack of variance compared to ΛCDM. Features
in the temperature power spectrum have also been iden-
tified, remarkable ones being a low quadrupole and a lack
of power at multipoles l ∼ 20–30. One simple and theo-
retically interesting possibility is that these CMB anomalies
are due to corresponding features in the primordial power
spectrum of curvature fluctuations. Such features can arise
as a signature of: the onset of inflation (e.g., [80–82]),
oscillations [83,84] or sharp steps [85] in the inflaton
potential, steps in the sound speed [86], or DBI inflation
warp factor [87], among other scenarios. In this section, we
determine the additional constraining power offered by SZ
tomography for a subset of these feature models, choosing
a few representative examples that have previously been
investigated by Planck [88].

1. Phenomenological models for
large scale power suppression

Following Ref. [88], we consider a set of two-parameter
phenomenological models for the suppression of power on
large angular scales in the primary CMB temperature. The
first model we consider [82] implements an exponential
suppression of power below a wave number kc,

Ps1ðkÞ ¼ PΛCDMðkÞ
�
1 − exp

�
−
�
k
kc

�
λ
��

; ð18Þ

wherePΛCDMðkÞ ¼ Asð kk�Þns−1 and the best-fit model param-

eters from Planck 2015 [88] are kc ¼ 3.74 × 10−4 Mpc−1

and λ ¼ 0.53. The second model has a break in the power
law at a scale kb,

Ps2ðkÞ ¼

8>>><
>>>:

As

�
kb
k�

�
−δ
�
k
k�

�
ns−1þδ

if k ≤ kb;

As

�
k
k�

�
ns−1

if k ≥ kb:

ð19Þ

The best-fit model parameters from Planck 2015 [88] are
kb ¼ 5.26 × 10−4 Mpc−1 and δ ¼ 1.14. In both cases, we
choose the central values for the model parameters as the
best-fit Planck values, and we fix the pivot scale to
k� ¼ 0.05 Mpc−1. We plot the two fiducial models in Fig. 4.
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2. Features in the power spectrum

We now review two physical scenarios that give rise to
features in the primordial power spectrum. In the first
model, we consider a period of kinetic domination preced-
ing slow-roll inflation. This gives rise to a suppression of
power on large scales, as well as oscillations in the power
spectrum on intermediate scales [82]. The one parameter in
this model is a scale kc, roughly corresponding to the
comoving size of the horizon when slow-roll begins.
Clearly, we are able to constrain this model only when
there are a minimal number of e-folds of inflation, in which
case kc is on observable scales. The full form of the power
spectrum is given by

lnPcðkÞ ¼ lnP0ðkÞ þ ln

�
π

16

k
kc

jCc −Dcj2
�
; ð20Þ

where

Cc¼ exp
�
−ik
kc

��
Hð2Þ

0

�
k
2kc

�
−
�
kc
k
þ i

�
Hð2Þ

1

�
k
2kc

��
;

Dc¼ exp

�
ik
kc

��
Hð2Þ

0

�
k
2kc

�
−
�
kc
k
− i

�
Hð2Þ

1

�
k
2kc

��
; ð21Þ

and Hð2Þ
n denotes the Hankel function of the second

kind. We assume the best-fit value from Planck 2015
[88] of kc ¼ 3.63 × 10−4 Mpc−1 as the central values in
our analysis below. The second model we consider arises
when there is a tanh-shaped step in the inflaton potential
as in Ref. [89], which gives rise to oscillations in the
primordial power spectrum. This is a three-parameter
model, which, at the level of the inflaton potential,
corresponds to the location, height, and width of the step.
The resulting power spectrum is given by

lnPsðkÞ ¼ exp ½lnP0ðkÞ þ I0ðkÞ þ ln ð1þ I21ðkÞÞ�; ð22Þ

where

I0ðkÞ¼
As

2x3
½ð18x−6x3Þcos2xþð15x2−9Þsin2x�jx¼ðk=ksÞ

×D
�
k=ks
xs

�
ð23Þ

I1ðkÞ¼
1ffiffiffi
2

p
�
π

2
ð1−nsÞ−

As

x3
f3ðxcosx− sinxÞ

× ½3xcosxþð2x2−3Þsinx�gjx¼ðk=ksÞ×D
�
k=ks
xs

��
:

ð24Þ

DðxÞ ¼ x
sinh x

ð25Þ

We assume the best-fit value from Planck 2015 [88] of
As ¼ 0.374, ks ¼ 7.94 × 10−4 Mpc−1, and xs ¼ 1.41. We
plot the power spectra for the two models in Fig. 5. As
commented on in Ref. [88], for these choices of parameters
both of these models give rise to a deficit in the CMB
temperature power spectrum at l ∼ 20–30, similar to what
is observed.

C. Results

In Table I, we present the results of our multitracer
analysis. For each model, we show the FoMr that captures
how constraints on model parameters improve when the
observable set is extended beyond the primary CMB
temperature T. For those cells that correspond to a set
including the remote fields R, we have included two values:
the FoMr when the small scale CMB noise has beam size
θFWHM equal to 5 arcmin and 1 arcmin. This further
emphasizes the dependence of the reconstruction signal
to noise ratio on the instrumental noise of the high
resolution CMB experiment.
The results displayed on Table I tell us a consistent

story across the different models. The inclusion of the E
mode polarization into the analysis of CMB anomalies

FIG. 4. Primordial power spectrum for the exponential sup-
pression model and the broken power lawmodel together with the
standard ΛCDM spectrum. The first model shows suppression
starting at scales of several hundred Mpc, while the second one
deviates from the standard power law on scales of several Gpc.

FIG. 5. Primordial power spectrum for the cutoff model and the
step model together with the standard ΛCDM spectrum.
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brings substantial constraining power, here represented
by a FoMr ranging from 1.5 to 3.0. Beyond this, the
following two questions are important to address: how
do constraints improve if we add the remote dipole and
quadrupole fields, and how does this improvement relate
to what can be done by instead choosing galaxy
clustering on large scales as the additional observable?
We can see that depending on the noise conditions for
the small scale CMB experiment, the remote fields
compete with the large scale galaxy clustering in
improving the FoMr beyond the ðT; EÞ combination,
with a tendency of the galaxies to be superior than the
dipole and quadrupole except for very sensitive CMB
experiments. However, the remote fields contain a
significant amount of new information, as evidenced
by the last column of Table I. Adding the dipole and
quadrupole fields on top of ðT; E;GÞ can increase the
FoMr by ∼10%. Given that observations of the large
scale polarization or galaxy clustering can be limited by
different systematics and foregrounds than the high
angular resolution measurements necessary for SZ
tomography and vice versa,the remote dipole and
quadrupole are an “extra handle” to work with when
other tracers fall short, and which has prospects of
becoming increasingly informative as detector technol-
ogy keeps developing.
The FoMr gives us a general idea of how constraints

improve for different data sets, but its also useful to look
directly at parameter constraints (Appendix A) to see
how helpful these combinations of observables can be in
the task of determining the physical nature of the CMB
anomalies. Keeping in mind that ultimately only a full
likelihood analysis will reveal if departures of ΛCDM are
favored by data, we can see that the full set of
observables here considered can push marginal 1σ–3σ

constraints to tighter ones. For the dipolar modulation
model, constraints on the amplitude of modulation can be
pushed from 3σ to 8σ and for the crossover scale
constraints can be pushed from the 1σ to the 3σ level.
For the generic suppression models, constraints on the
characteristic scale of suppression can be pushed from
the 1σ to 2σ level and in the case of the step model, the
amplitude As of the step and the parameter xs controlling
its shape; see constraints jumping from marginality to
above the 4σ level. These results indicate a much more
optimistic possibility of studying the CMB anomalies
beyond what the primary CMB temperature allows for.
The reconstructed dipole and quadrupole will therefore
form part of a set of observables that can provide
stronger evidence to favor or rule out new early
Universe physics.

V. CONCLUSIONS

Determining whether or not the observed large angular
scale anomalies in the CMB are indications of physics
beyond ΛCDM is a matter of great interest and intense
debate. Faced with the obstacle imposed by cosmic variance
on our study of the largest scales in the Universe, we are
driven to analyze data sets that incorporate additional
observables on top of the primary CMB temperature in
order to favor or rule out the different hypotheses for the
origin of the anomalies.
In this paper, we explored the constraining power on

CMB anomalies models provided by a new set of
observables: the remote CMB dipole and quadrupole
fields. These fields, which correspond to the projected
l ¼ 1, 2 moments of the microwave sky as measured at
different locations in the Universe, can be reconstructed
using SZ tomography. The remote dipole and quadrupole

TABLE I. Figure of merit ratios for the anomaly models under study.

Model Noise [μ-Karcmin] FoMr(T,E) FoMr(T,E,R) FoMr(T,E,G) FoMr(T,E,R,G)

Dipolar modulation 5.0 1.48 1.60–2.37 2.90 2.90–3.02
1.0 1.48 1.87–2.67 2.90 2.93–3.13
0.1 1.48 2.27–2.72 2.90 3.00–3.17

Exponential suppression 5.0 1.46 1.48–1.63 1.69 1.69–1.75
1.0 1.46 1.55–1.70 1.69 1.72–1.81
0.1 1.46 1.63–1.78 1.69 1.76–1.86

Broken power law 5.0 1.69 1.76–1.79 1.90 1.94–1.98
1.0 1.69 1.78–1.83 1.90 1.97–1.99
0.1 1.69 1.82–1.92 1.90 1.99–2.02

Cutoff 5.0 2.05 2.14–2.46 2.60 2.63–2.74
1.0 2.05 2.27–2.63 2.60 2.68–2.82
0.1 2.05 2.46–2.77 2.60 2.75–2.92

Step in inflaton potential 5.0 3.09 3.25–3.81 3.88 3.89–4.08
1.0 3.09 3.50–4.07 3.88 3.98–4.24
0.1 3.09 3.78–4.18 3.88 4.09–4.31
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fields carry three-dimensional information about large
scale fluctuations in the Universe, and a significant
number of independent modes can in principle be recon-
structed from next-generation CMB and galaxy surveys.
This additional information is largely independent of the
primary CMB and can therefore offer more statistical
power for the analysis of physical models of large scale
CMB anomalies.
Our methodology consisted of deriving forecasted

constraints on a series of anomalies models using different
combinations of observables probing the largest scales,
including the primary CMB temperature (T), E-model
polarization (E), galaxy clustering on large scales (G),
and the remote dipole and quadrupole fields (R). The
improvement on constraints relative to what is achievable
with the primary CMB temperature serves as a measure of
how informative additional observables can be, and this
was expressed in terms of appropriate figure of merit
ratios (FoMr); see Eq. (10). We assumed access to data on
the full sky, with no systematics (aside from CMB
instrumental noise, photometric redshift errors, and photo-
metric calibration errors) or foregrounds, in each of our
forecasts.
We considered a series of representative models for

CMB anomalies, capturing departures from statistical
isotropy and the standard inflationary ΛCDM primordial
power spectrum. These modifications have been consid-
ered as possible explanations for the statistically marginal
power asymmetry on the CMB sky, as well as features
and lack of power in the temperature power spectrum on
large angular scales. Based on our analysis, we can make
a number of general statements about the utility of SZ
tomography for addressing the possible physical nature of
the CMB anomalies. As many previous analyses have
shown [4–11], E-mode polarization has been identified as
a powerful discriminator for physical models of CMB
anomalies. We found that one can go beyond the ðT; EÞ
combination by adding the reconstructed remote dipole
and quadrupole field, as it was expected due to their
three-dimensional nature. A comparable amount of infor-
mation can also be accessed using a more commonly
considered three-dimensional probe: galaxy clustering on
our past light cone. Because of this, we explored the
ability of the remote fields to improve over the (T, E, G)
constraints, finding that typically one can achieve higher
FoMrs up to 10%, with better results for more sensitive
CMB experiments. This means that there is new infor-
mation on the large scale Universe that becomes available
through SZ tomography. Overall, our results suggest that
the remote dipole/quadrupole fields could play the role of
an alternative and complementary probe of the CMB
anomalies, affected by different systematics or fore-
grounds that make difficult a cosmic variance limited
measurement of large scale E-mode polarization or

galaxy clustering. SZ tomography also offers the pos-
sibility to systematically improve constraints on CMB
anomaly models in the current era of rapidly evolving
high-resolution, low-noise CMB experiments. All
together, the observable set that we considered here
was able to push several marginal parameter constraints
on anomaly models to above the 3σ level and even
higher. This indicates that next-generation CMB experi-
ments and galaxy surveys will allow for an enhanced
testing of the nature of the large scale CMB anomalies.
Our analysis has a number of shortcomings. First, our

Fisher-based analysis is insensitive to the shape of the
likelihood function, which can deviate significantly from a
Gaussian for many of the models considered here. A
future investigation could improve upon this by sampling
the full likelihood function; however, given the size of the
covariance matrix including all observables and the
dimensionality of the parameter space, there will be
computational challenges for doing so. Future analyses
should also incorporate realistic foregrounds and system-
atics in the CMB and galaxy surveys and investigate their
impact on the reconstruction of the remote dipole and
quadrupole fields. In addition, the effects of masking
should be taken into account, which will degrade the
information available on the largest angular scales. Despite
these limitations, our analysis highlights there is useful
information on the physical nature of the observed CMB
anomalies that is in principle accessible using SZ tomog-
raphy. This provides a useful target for future analyses and
observations.

ACKNOWLEDGMENTS

We would like to thank Dagoberto Contreras, James
Mertens, and Moritz Münchmeyer for helpful discussions.
This research was supported in part by Perimeter Institute
for Theoretical Physics. Research at Perimeter Institute
is supported by the Government of Canada through the
Department of Innovation, Science and Economic
Development Canada and by the Province of Ontario
through the Ministry of Research, Innovation, and
Science. M. C. J. was supported by the National
Science and Engineering Research Council through a
Discovery grant.

APPENDIX A: CONSTRAINTS ON MODEL
PARAMETERS

We present here the constraints on model parameters
derived using Fisher analysis of different combinations of
primary CMB and remote dipole and quadrupole fields. We
include the constraint using only the primary CMB temper-
ature as well. Characteristic scale parameters kc, kb, and ks
are in units of Mpc−1.
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Dipolar modulation model.

Parameter Noise [μ Karcmin] σ(T) σ(T, E) σ(T, E, R) σ(T, E, G) σ(All)

102A ≔ 7.00 5.0 1.93 1.04 1.03–0.92 0.85 0.85–0.85
1.0 1.93 1.04 0.98–0.87 0.85 0.84–0.83
0.1 1.93 1.04 0.92–0.86 0.85 0.84–0.83

103kc ≔ 7.83 5.0 6.36 4.50 4.40–3.46 2.76 2.76–2.73
1.0 6.36 4.50 4.08–3.05 2.76 2.74–2.69
0.1 6.36 4.50 3.58–2.97 2.76 2.73–2.67

10Δlnk≔5.00 5.0 0.17 0.12 0.10–0.05 0.04 0.04–0.04
1.0 0.17 0.12 0.08–0.04 0.04 0.04–0.03
0.1 0.17 0.12 0.05–0.04 0.04 0.04–0.03

Exponential suppression model.

Parameter Noise [μ Karcmin] σ(T) σ(T, E) σ(T, E, R) σ(T, E, G) σ(All)

104kc ¼ 3.74 5.0 3.05 2.33 2.23–2.21 2.04 2.03–1.94
1.0 3.05 2.33 2.19–2.03 2.04 1.98–1.88
0.1 3.05 2.33 2.09–1.90 2.04 1.92–1.80

λ ¼ 0.53 5.0 0.25 0.18 0.17–0.15 0.15 0.14–0.14
1.0 0.25 0.18 0.16–0.15 0.15 0.14–0.13
0.1 0,25 0.18 0.15–0.14 0.15 0.14–0.13

Broken power law model.

Parameter Noise [μ Karcmin] σ(T) σ(T, E) σ(T, E, R) σ(T, E, G) σ(All)

104kb ¼ 5.26 5.0 5.03 2.89 2.79–2.74 2.60 2.55–2.51
1.0 5.03 2.89 2.75–2.68 2.60 2.52–2.47
0.1 5.03 2.89 2.70–2.54 2.60 2.49–2.45

δ ¼ 1.14 5.0 2.85 1.59 1.50–1.47 1.36 1.32–1.29
1.0 2.85 1.59 1.48–1.43 1.36 1.30–1.28
0.1 2.85 1.59 1.44–1.34 1.36 1.28–1.26

Cutoff model.

Parameter Noise [μ Karcmin] σ(T) σ(T, E) σ(T, E, R) σ(T, E, G) σ(All)

104kc ¼ 3.63 5.0 0.78 0.38 0.37–0.32 0.30 0.30–0.29
1.0 0.78 0.38 0.34–0.30 0.30 0.29–0.28
0.1 0.78 0.38 0.32–0.28 0.30 0.28–0.27

Step model.

Parameter Noise [μ Karcmin] σ(T) σ(T, E) σ(T, E, R) σ(T, E, G) σ(All)

10As ¼ 3.74 5.0 2.80 1.11 1.05–0.91 0.93 0.91–0.85
1.0 2.80 1.11 0.97–0.85 0.93 0.88–0.81
0.1 2.80 1.11 0.90–0.82 0.93 0.85–0.80

104ks ¼ 7.94 5.0 0.72 0.18 0.17–0.14 0.14 0.14–0.13
1.0 0.72 0.18 0.16–0.13 0.14 0.14–0.13
0.1 0.72 0.18 0.14–0.13 0.14 0.13–0.13

xs ¼ 1.41 5.0 0.60 0.25 0.24–0.20 0.19 0.19–0.18
1.0 0.60 0.25 0.22–0.18 0.19 0.19–0.17
0.1 0.60 0.25 0.20–0.18 0.19 0.18–0.17
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APPENDIX B: MODE COUPLING

The superhorizon modulating field hðx⃗Þ introduced in
the spontaneous isotropy breaking mechanism here studied
leads to couplings between different multipole moments.

The modified primordial spectrum Eq. (15) is used to
compute the covariance matrix, which differs from the
ΛCDM covariance matrix by terms linear and quadratic in
the modulation amplitude A,

CX;Y
αβ;ll0;mm0 ¼ CX;Y;ðΛCDMÞ

αβ;ll0;mm0 þ CX;Y;ðAÞ
αβ;ll0;mm0 þ CX;Y;ðA2Þ

αβ;ll0;mm0

CX;Y;ðAÞ
αβ;ll0;mm0 ¼ δmm0

ffiffiffiffiffiffi
4π

3

r
A

iχdec

Z
dkk2

ð2πÞ3 PψðkÞ
�
Δ�X;α

l ðkÞ∂kΔ
Y;β
l0 ðkÞ − ∂kΔ�X;α

l ðkÞΔY;β
l0 ðkÞ

−
2Δ�X;α

l ðkÞΔY;β
l0 ðkÞ

k
ðlδl0;l−1 − ðlþ 1Þδl0;lþ1Þ

�
R1l0
lm

CX;Y;ðA2Þ
αβ;ll0;mm0 ¼ δmm0

4π

3

A2

χ2dec

Z
dkk2

ð2πÞ3 Pψ ðkÞ
X
L

R1L
lmR

1L
l0m

�
∂kΔ�X;α

l ðkÞ∂kΔ
�Y;β
l0 ðkÞ

þ ∂kΔ�X;α
l ðkÞΔY;β

l0 ðkÞ
k

ðð1þ l0ÞδL;l0−1 − l0δL;l0þ1Þ þ
Δ�X;α

l ðkÞ∂kΔ
Y;β
l0 ðkÞ

k
ðð1þ lÞδL;l−1 − lδL;lþ1Þ

þ Δ�X;α
l ðkÞΔY;β

l0 ðkÞ
k2

ðð1þ lÞ2δL;l−1δl0;l þ l2δL;lþ1δl0;l

− ð1þ lÞðl − 2ÞδL;l−1δl0;l−2 − lðlþ 3ÞδL;lþ1δl0;lþ2Þ
�
;

where the couplings Rl1l2
lm are defined through the 3-j Wigner symbols,

Rl1l2
lm ¼ ð−1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l1 þ 1Þð2l2 þ 1Þ

4π

r �
l1 l2 l

0 0 0

��
l1 l2 l

0 m −m

�
: ðB1Þ

The term linear in A induces couplings between multi-
poles l and l� 1, while the quadratic term adds couplings
between l and l� 2 as well as the same multipole
corrections to the covariance matrix. For the particular
case of temperature transfer functions in the Sachs-Wolfe
approximation, i.e., ΔT

lðkÞ ∝ jlðkχdecÞ, the above expres-
sions can be reduced to those presented in [4,73] using

appropriate recursion relations for the derivatives of the
spherical Bessel functions. A similar approach to compute
the multipole couplings in terms of derivatives of the
transfer functions was taken in Ref. [90], although the
assumptions on the modulation of the primordial spectrum
are not the same as ours, and the OðA2Þ term was not
computed.
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