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New physics in the neutrino sector might be necessary to address anomalies between different neutrino
oscillation experiments. Intriguingly, it also offers a possible solution to the discrepant cosmological
measurements of H0 and σ8. We show here that delaying the onset of neutrino free streaming until close to
the epoch of matter-radiation equality can naturally accommodate a larger value for the Hubble constant
H0 ¼ 72.3� 1.4 km s−1 Mpc−1 and a lower value of the matter fluctuations σ8 ¼ 0.786� 0.020, while
not degrading the fit to the cosmic microwave background (CMB) damping tail. We achieve this by
introducing neutrino self-interactions in the presence of a nonvanishing sum of neutrino masses. Without
explicitly incorporating additional neutrino species, this strongly interacting neutrino cosmology prefers
Neff ¼ 4.02� 0.29, which has interesting implications for particle model building and neutrino oscillation
anomalies. We show that the absence of the neutrino free-streaming phase shift on the CMB can be
compensated for by shifting the values of several cosmological parameters, hence providing an important
caveat to the detections made in the literature. Due to their impact on the evolution of the gravitational
potential at early times, self-interacting neutrinos and their subsequent decoupling leave a rich structure on
the matter power spectrum. In particular, we point out the existence of a novel localized feature appearing
on scales entering the horizon at the onset of neutrino free streaming. While the interacting neutrino
cosmology provides a better global fit to current cosmological data, we find that traditional Bayesian
analyses penalize the model as compared to the standard cosmological scenario due to the relatively narrow
range of neutrino interaction strengths that is favored by the data. The model we present illustrates desirable
cosmological impacts to simultaneously resolve the Hubble constant and matter clustering tensions rather
than proposing a viable particle model. Our analysis shows that it is possible to find radically different
cosmological models that nonetheless provide excellent fits to the data, hence providing an impetus to
thoroughly explore alternate cosmological scenarios.
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I. INTRODUCTION

The neutrino sector of the Standard Model (SM) of
particle physics is a promising area to search for new
phenomena that could help pinpoint the ultraviolet com-
pletion of the SM. Indeed, terrestrial neutrino experiments
have identified several anomalies that could potentially
indicate the presence of new physics in the neutrino sector
(see, e.g., Ref. [1] for a recent review). Of particular
significance are the νμ → νe appearance results from the
MiniBooNE [2] and LSND [3] Collaborations, which, if
interpreted within a neutrino oscillation framework that
includes an extra sterile neutrino, would indicate the
presence of such a sterile neutrino at very high statistical

significance. Within this “3þ 1” neutrino oscillation
framework, these results are, however, very difficult to
reconcile with the absence of anomalies in the νμ → νμ
disappearance as probed by recent atmospheric [4,5] and
short-baseline [6,7] experiments. If these results are con-
firmed by future analyses, it is likely that new physics
beyond the sterileþ active oscillation models would be
necessary to resolve the tension between neutrino appear-
ance and disappearance data.
Astrophysical and cosmological observations provide

complementary means of probing the properties of neutri-
nos. This is perhaps best illustrated by the cosmological
constraints on the sum of neutrino masses

P
mν < 0.12 eV

[8] obtained by combining cosmic microwave background
(CMB) data from the Planck satellite with baryon acoustic
oscillation (BAO) measurements. Cosmological observ-
ables such as the CMB and large-scale structure (LSS)
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are also sensitive to the presence of new interactions
(see, e.g., Refs. [9–43]) in the neutrino sector that would
modify their standard free-streaming behavior during the
radiation-dominated epoch following their weak decou-
pling. In the literature, a phenomenological description
based on the ceff and cvis parametrization [44] has often
been used to test the free-streaming nature of neutrinos
in the early Universe [45–55]. While these analyses
generally find results consistent with the standard neu-
trino cosmology, they are difficult to interpret in terms of
possible new interactions among neutrinos, as empha-
sized in Refs. [56,57]. Other works [56–68] have used
more physical parametrizations that make the connection
to the underlying particle nature of the neutrino inter-
action more transparent.
In particular, Ref. [57] has developed a rigorous treat-

ment of the evolution of cosmological neutrino fluctuations
in the presence of neutrino self-interactions mediated by
either a massive or massless new scalar particle. Using this
framework, Ref. [67] used CMB data to put constraints on
the strength of neutrino self-interactions in the early
Universe for the case of a massive mediator. These results
largely confirmed earlier constraints from Refs. [56,63,66]
obtained using an approximate (but nonetheless accurate)
form of the neutrino Boltzmann hierarchy. Interestingly,
these studies, which focused on four-neutrino interactions
parametrized by a Fermi-like coupling constant Geff , found
a bimodal posterior distribution for this latter parameter.
While the first (and statistically dominant) posterior mode
is consistent with the onset of neutrino free streaming being
in the very early Universe, the second posterior mode
corresponds to a much delayed onset of free streaming to
zν;dec ∼ 8300. In Ref. [66], a previously unknown multi-
parameter degeneracy involving the amplitude of scalar
fluctuations, the scalar spectral index, the Hubble constant,
and the neutrino self-interacting strength was identified as
being responsible for the existence of this second posterior
mode. While intriguing, the neutrino interaction strength
favored by this mode is nearly 10 orders of magnitude
above the standard weak interaction. Taken at face value,
this likely constitutes a very serious challenge from a
model-building perspective.
Nevertheless, given the current tensions among terres-

trial and atmospheric neutrino experiments described
above, is the “interacting” neutrino mode hinting at the
presence of new physics beyond the SM? The simplified
interaction models used in Refs. [56,66–68] are likely
capturing parts of a more realistic neutrino interaction
scenario, hence leading to a somewhat suboptimal fit to the
cosmological data. One aspect that has been neglected in
studies of self-interacting neutrinos so far is the presence of
neutrino mass. The impact of massive neutrinos on the
CMB and matter clustering has been studied extensively in
the literature (see, e.g., Refs. [69–73]). One of the aims of
this paper is to understand how the effects of massive

neutrinos on cosmological observables are modified when
self-interactions are present in the early Universe.
Tensions are also growing between different late-time

measurements of the Hubble constant H0 [74–77] and
those based on CMB data [8]. Measurements of the
amplitude of matter fluctuations at low redshifts (often
parametrized using σ8) from weak gravitational lensing and
cluster counts are all consistently lower than that inferred
from the CMB [78–80]. While the statistical significance of
the deviation of each individual measurement is less than
3σ, all recent measurements of the amplitude fluctuations in
the local universe are below the Planck value. Physics
beyond ΛCDM has been proposed to reconcile these
tensions, such as early dark energy [81–84], dark matter
interactions [85,86], decaying dark matter [87–90], modi-
fied gravity [91,92], and new relativistic species [93],
among others. However, these propositions often struggle
to remedy both tensions simultaneously.
In this paper, we study how the presence of self-

interacting massive neutrinos in the early Universe affect
cosmological observables such as the CMB, with an eye on
how these new effects could help relieve the current
tensions among different datasets. In Sec. II, we describe
the simplified neutrino interaction model used in this
work. In Sec. III, we present the cosmological perturbation
equations for massive self-interacting neutrinos. In Sec. IV,
we describe the physical impacts that massive self-
interacting neutrinos have on the CMB and the matter
power spectrum. In Sec. V, we outline the data and method
used in our cosmological analyses of self-interacting. The
results from these analyses are presented in Sec. VI and
discussed in Sec. VIII. We conclude and highlight future
directions in Sec. IX.

II. NEUTRINO INTERACTION MODEL

In this work, we focus on a simple framework that
captures the most important cosmological aspects of
realistic neutrino interaction models. Our main purpose
is to explore how suppressing the free streaming of non-
photon radiation impacts the CMB, LSS, and current
observational tensions. By maintaining a general model,
we highlight the important cosmological features that must
be present in a viable model and provide possible evidence
of the need for such a model. While we do not aim to
present a viable model in this work, we note that building a
successful model of neutrino self-interaction respecting the
gauge and flavor structure of the SM might require the
introduction of a light sterile species which mass-mixes
with the active neutrinos and is itself coupled to a massive
scalar or vector mediator (see, e.g., Refs. [32,94–101]). The
presence of these new interactions in the sterile sector
suppresses the effective mixing angle between the active
and sterile species at early times, ensuring that big bang
nucleosynthesis (BBN) constraints are respected. At later
times, once the active-sterile oscillation rate becomes
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comparable to the finite temperature effective potential
resulting from the new interaction, the mixing angle is no
longer suppressed, hence allowing the active and sterile
sectors to partially thermalize with each other [30,33,35].
Diagonalizing the mass matrix of such a model leads to

an effective interaction Lagrangian between the different
neutrino mass eigenstates of the generic form

Lint ¼ gijν̄iνjφ; ð1Þ

where gij is a (generally complex) coupling matrix, νi is a
left-handed neutrino Majorana spinor, and the indices i, j
label the neutrino mass eigenstates. Here we have assumed
a Yukawa-type interaction with a massive scalar φ, but note
that the results presented in this work also apply if a
massive vector is assumed instead. The Lagrangian given in
Eq. (1) could also arise in models where neutrinos couple to
a Majoron [11,102,103].
In models where the new interaction arises through

active-sterile mixing, the structure of the coupling matrix
gij would generally depend on the flavor content of
each mass eigenstate. For instance, a mass eigenstate made
of mostly active flavors will couple very weakly to the
massive scalar φ, while an eigenstate being largely com-
posed of the sterile species would couple more strongly to
the mediator. In other models of neutrino interaction, the
structure of the coupling matrix could be more arbitrary.
In all cases, though, gij is subject to important flavor-
dependent bounds [104–106] arising from meson, tritium,
and gauge boson decay kinematics.
In this work, we consider the simple case of a universal

coupling gν between every neutrino mass eigenstate:

gij ≡ gνδij; ð2Þ

where δij is the Kronecker delta. While the universal
coupling case is likely unrealistic for the reason outlined
above, it does provide a simple benchmark to test the
sensitivity of cosmological data to new neutrino physics.
We work in the contact-interaction limit, in which the

mass of the φ mediator is much larger than the typical
energy of the scattering event. In this case, one can integrate
out this massive mediator and write the interaction as a
four-fermion contact interaction. This is an excellent
approximation at the energy scale probed by the CMB
for mφ ≳ 1 keV. In this limit, the squared scattering
amplitude for a neutrino νi to interact with any other
neutrino in the thermal bath is

jMj2νi ¼
X
spins

jMj2νiþνj→νkþνl

¼ 2G2
effðs2 þ t2 þ u2Þ; ð3Þ

where we have defined the dimensionful coupling constant
Geff ≡ jgνj2=m2

φ. Here, s, t, and u are the standard

Mandelstam variables. While our phenomenological model
described by Geff is unlikely to accurately capture all the
complexity of novel neutrino interactions, it is nonetheless
a useful framework to identify the interesting parameter
space, as described in Ref. [31].
Introducing new neutrino interactions has an

impact beyond cosmology. For a low-mass mediator
(<10 MeV), SN 1987A [15], big bang nucleosynthesis
(BBN) [107,108], and the detection of ultrahigh-energy
neutrinos at IceCube [31,34,109] provide some of the
strongest constraints, with the latter bound having the
potential of being the most stringent in the near future.
Other limits [10,110,111] coming from Z-boson decay
do not directly apply at the energy scale probed by the
CMB. Also, elastic collisions caused by the new
interaction do not affect the time it takes for neutrinos
to escape supernovae [112,113], although they could
lead to interesting phenomena (see, e.g., Refs. [114–
119]). Finally, supernova cooling puts bounds on the
coupling of majorons to SM neutrinos [120–123], but
the applicability of these likely depends on the details of
the exact coupling matrix used.

III. COSMOLOGICAL PERTURBATIONS

In this section, we summarize the key ingredients
and simplifications entering our derivation of the
Boltzmann equation governing the evolution of massive
and self-interacting neutrino fluctuations, at first order in
perturbation theory. Our computation uses two main
approximations:
(1) Based on previous studies [56,66], we assume that

neutrinos decouple while still in the relativistic
regime. We thus neglect the presence of the small
neutrino mass in the computation of collision in-
tegrals. As we shall see, our final results are
consistent with this approximation.

(2) We assume that the neutrino distribution function
remains exactly thermal throughout the epoch at
which neutrinos decouple and start free-streaming.
This thermal approximation (also called relaxation
time approximation) implies that the only possible
neutrino perturbations are local temperature fluctua-
tions. This approximation was shown to be very
accurate in Ref. [67] for the type of interaction we
consider here.

A conformal Newtonian gauge is used throughout this
section.

A. Neutrino distribution function and
perturbation variables

We present a detailed derivation of the left-hand
side of the Boltzmann equation for massive neutrino in
Appendix C (see also Ref. [124]). Our starting point is to
expand the neutrino distribution function as
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fνðx;p; τÞ ¼ fð0Þν ðp; τÞ½1þ Θνðx;p; τÞ�; ð4Þ

where x denotes the spatial coordinates, τ is conformal
time, and p is the proper momentum. The background
(spatially uniform) neutrino distribution function is taken to
be of a Fermi-Dirac shape:

fð0Þν ðp; τÞ ¼ 1

ep=Tν þ 1
; ð5Þ

where p ¼ jpj. In the ultrarelativistic regime, for which the
thermal approximation implies that the only possible
neutrino perturbations are local temperature fluctuations,
the perturbation variable Θν admits the form

Θνðx;p; τÞ ¼ −
d ln fð0Þν

d lnp
δTνðx; τÞ
T̄νðτÞ

; ð6Þ

where T̄ν is the background neutrino temperature, and δTν

is its perturbation. It is therefore convenient to introduce the
temperature fluctuation variable Ξν:

Ξνðx;p; τÞ≡ −4Θνðx;p; τÞ
d ln fð0Þν
d lnp

; ð7Þ

which is independent of p in the thermal approximation for
massless neutrinos. However, the presence of a nonvanish-
ing neutrino mass and the non-negligible momentum
transferred in a typical neutrino-neutrino collision would
in general introduce some extra p dependence to Ξν [124].
This turns the Boltzmann equation of self-interacting
neutrinos into a differentio-integral equation that is particu-
larly difficult to solve exactly [57]. In practice, though, the
absence of energy sources or sinks coupled to the neutrino
sector implies that the momentum dependence of the right-
hand side of Eq. (7) should be vanishingly small at early
times, when neutrinos form a highly relativistic, tightly
coupled fluid. This allows us to neglect the momentum
dependence of Ξν in the computation of the collision
integrals, an approximation that was found to be accurate
in Ref. [67]. We do retain, however, the momentum
dependence of Ξν in the left-hand side of the Boltzmann
equation.
In this work, we only consider scalar perturbations, and

thus expand the angular dependence of the Ξ̃ν variable (the
Fourier transform on Ξν) in Legendre polynomials PlðμÞ:

Ξ̃νðk;p; τÞ ¼
X∞
l¼0

ð−iÞlð2lþ 1Þνlðk; p; τÞPlðμÞ; ð8Þ

where μ is the cosine of the angle between k and p. Before
presenting the equation of motion for the neutrino multi-
pole moments νl, we discuss the structure of the collision
integrals.

B. Collision term

The details of the collision term calculation for the
νν → νν process are given in Appendix D. As explained
above, the main simplification entering this calculation is
the use of the thermal approximation in which we neglect
the momentum dependence of the νl variables. Under this
assumption, the collision term at first order in perturbation

theory Cð1Þ
ν can be written as

Cð1Þ
ν ½p� ¼G2

effT
6
ν

4

∂ lnfð0Þν

∂ lnp
X∞
l¼0

ð−iÞlð2lþ1ÞνlPlðμÞ
�
A
�
p
Tν

�

þBl

�
p
Tν

�
−2Dl

�
p
Tν

��
; ð9Þ

where the functions AðxÞ, BlðxÞ, and DlðxÞ are given in
Eqs. (D52), (D53), and (D54), respectively. Here, we have
adopted the notation Tν ≡ T̄ν to avoid clutter.

C. Boltzmann equation for self-interacting neutrinos

Substituting the collision term from Eq. (9) into
Eq. (C10) and performing the μ integral yields the equation
of motion for the different neutrino multipoles νl. They can
be summarized in the following compact form:

∂νl
∂τ þk

q
ϵ

�
lþ1

2lþ1
νlþ1−

l
2lþ1

νl−1

�
−4

�∂ϕ
∂τ δl0þ

k
3

ϵ

q
ψδl1

�

¼−a
G2

effT
5
ννl

fð0Þν ðqÞ

�
Tν;0

q

��
A

�
q

Tν;0

�

þBl

�
q

Tν;0

�
−2Dl

�
q

Tν;0

��
; ð10Þ

where we have introduced the comoving momentum
q≡ ap, q ¼ jqj, ϵ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ a2m2

ν

p
, a is the scale factor

normalized to a ¼ 1 today, δmn is the Kronecker delta
function, and Tν;0 is the current (a ¼ 1) temperature of the
neutrinos. The fact that the collision term is directly
proportional to νl is a consequence of our use of the
thermal approximation. We note that energy and momen-
tum conservation ensure that Aþ B0 − 2D0 ¼ 0 and
Aþ B1 − 2D1 ¼ 0, respectively.
As is standard in analyses of massive neutrino

cosmologies, we shall consider our neutrino sector to be
composed of a mix of massive and massless neutrinos. In
the massless case (q ¼ ϵ), one can integrate Eq. (10) over
the comoving momentum to yield a simpler neutrino
multipole hierarchy [56,66]

∂Fl

∂τ þ k

�
lþ 1

2lþ 1
Flþ1 −

l
2lþ 1

Fl−1

�

− 4

�∂ϕ
∂τ δl0 þ

k
3
ψδl1

�
¼ −aG2

effT
5
ναlFl; ð11Þ
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where

αl ¼
120

7π4

Z
∞

0

dx x2½AðxÞ þ BlðxÞ − 2DlðxÞ�; ð12Þ

and where we denote the massless perturbations as Fl to
distinguish them from the massive neutrino variables νl.
We implement these modified Boltzmann equations in

the cosmological code CAMB [125]. For computational
speed, we precompute the functions A, Bl, and Dl on a grid
of q=Tν;0 values and use an interpolation routine to access
them when solving the cosmological perturbation equa-
tions. As in standard CAMB, we use a sparse three-point grid
of q=Tν;0 values to evaluate the integrals required to
compute the energy density and momentum flux of massive
neutrinos. We have checked convergence of our scheme
against a five-point momentum grid and found negligible
difference in the CMB and matter power spectrum in the
parameter space of interest. We also precompute the
coefficient αl and tabulate them. We emphasize that energy
and momentum conservation ensures that α0 ¼ α1 ¼ 0,
which we have checked with high accuracy.
For simplicity, we assume throughout this paper that

the neutrino sector contains one massive neutrino, with the
remaining neutrino species being massless. This can be
thought of as a 3þ 1 model, in which the majority of the
mass is in the additional, i.e., sterile, neutrino. All neutrinos
are assumed to interact with the same coupling strength
Geff . We find that varying the number of massive neutrinos
and number of mass eigenstates, while holding Neff andP

mν constant, has a very small impact on the CMB and
matter power spectra for all values of Geff consistent with
the data used here. This technique, however, does not
capture the three-degenerate-neutrino case accurately for
high neutrino masses. It is possible that future data might be
sensitive to the way

P
mν is spread among different mass

eigenstates, as well, and for these reasons the degenerate
limit should be considered in future work.
At early times, the large self-interaction rate of neutrinos

renders the equations of motion for multipoles l ≥ 2
extremely stiff. To handle this, we employ a tight coupling
scheme [126] in which multipole moments with l ≥ 2 are
set to zero at early times. Once the neutrino self-interaction
rate falls to about 1000 times the Hubble expansion rate, we
turn off this tight coupling approximation and allow power
to flow to the higher multipoles. We have checked that this
switch happens early enough as to not affect the accuracy of
our results. After neutrino decoupling, once they become
nonrelativistic, we revert to the standard velocity-integrated
truncated Boltzmann hierarchy as described in Ref. [127].
We also modify the adiabatic initial conditions for the
cosmological perturbations to take into account the absence
of free-streaming neutrinos at early times. Finally, through-
out this work, we use the standard BBN predictions to

compute the helium abundance given the abundance of
relativistic species and the baryon-to-photon ratio.

IV. EFFECT ON COSMOLOGICAL
OBSERVABLES

A. Cosmic microwave background

In the standard cosmological paradigm, free-streaming
neutrinos travel supersonically through the photon-baryon
plasma at early times, hence gravitationally pulling photon-
baryon wave fronts slightly ahead of where they would be
in the absence of neutrinos [42,128,129]. As a result, the
free-streaming neutrinos imprint a net phase shift in the
CMB power spectra towards larger scales (smaller l), as
well as a slight suppression of its amplitude. Free-streaming
neutrinos thus lead to a physical size of the photon sound
horizon at last scattering r� that is slightly larger than it
would otherwise be. This phase shift is thought to be a
robust signature of the presence of free-streaming radiation
in the early Universe [42,130,131].
The neutrino self-interactions mediated by the coupling

constant Geff delay the time at which neutrinos begin to
free-stream. Fourier modes entering the causal horizon
while neutrinos are still tightly coupled will not experience
the gravitational tug of supersonic neutrinos and will
therefore not receive the associated phase shift and ampli-
tude reduction. Compared to the standard ΛCDM model,
neutrino self-interactions thus shift the CMB power spectra
peaks towards smaller scales (larger l) and boost their
fluctuation amplitude. This leads to a net reduction of the
physical size of the photon sound horizon at last scattering
r�. As we shall see, this is the key feature of our model that
helps reconcile CMB and late-time measurements of the
Hubble constant H0.
The left panels of Fig. 1 show the temperature CMB

power spectra and their relative difference to a ΛCDM
model for different values of Geff ,

P
mν, and Neff to

illustrate the effects of neutrino self-scattering in the
presence of a nonvanishing mass term. Here, we keep
Ωm fixed as

P
mν changes, and use the best-fit Planck

TTþ lowPþ lensing ΛCDM values as our fiducial cos-
mology [132]. The middle-left panel of Fig. 1 displays the
combined effect of changing both Geff and

P
mν. For the

minimal sum of neutrinos masses
P

mν ¼ 0.06 eV, an
interaction strength of Geff ¼ 10−4 MeV−2 (solid blue line)
has for its only effect a slight increase of power at large
multipoles. On the other hand, increasing the neutrino
coupling strength to Geff ¼ 10−2 MeV−2 (solid red line)
significantly boosts the amplitude of the TT spectrum and
introduces a clear phase shift (identifiable from the oscil-
latory pattern of the residuals), which are the two telltale
signatures of self-scattering neutrinos, as described above.
Increasing the sum of neutrino masses to

P
mν ¼

0.23 eV (at fixed Ωm) delays the time of matter-radiation
equality. The delay slightly increases the amplitude of the
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TT spectrum near the first few acoustic peaks and dampens
the spectrum at smaller scales (see dashed black line in
Fig. 1). The resulting changes to the photon-baryon sound
horizon at recombination and to the angular diameter
distance to the surface of last scattering create a net phase
shift towards low l [70]—that is, in the opposite direction
to that caused by increasing Geff . This opens the door for
possible cancellations between the relative phase shift (as
compared toΛCDM) caused by neutrino self-scattering and
that resulting from a large sum of neutrino masses. Such
cancellation partially occurs in the middle-left panel of
Fig. 1 for Geff ¼ 10−2 MeV−2 as

P
mν is increased from

0.06 to 0.23 eV (dashed red line). Similarly, the boost in
amplitude from Geff can also compensate for the damping
effects of increasing

P
mν at small scales (see, e.g., the

dashed blue line). Overall, we see that the effects of
massive neutrinos and increased interaction strength are
nearly additive,1 reflecting the fact that the physical
processes associated with each of these properties take
place at different times in the cosmological evolution.
The lower-left panel of Fig. 1 displays the impact of

increasing the energy density of the neutrino fluid, which
we parametrize here through the standard parameter Neff,
defined via the relation

FIG. 1. Effects of
P

mν, Geff , and Neff on the phase and amplitude of the TT and EE power spectra. Colors denote different values of
Geff . Solid spectra correspond to

P
mν ¼ 0.06 eV, and dashed spectra correspond to

P
mν ¼ 0.23 eV. Measurements from the Planck

2015 data release are included [133].

1Indeed, combining the spectrum for fGeff ¼ 10−2 MeV−2;
Σmν ¼ 0.06 eVg (solid red line) with that of the Σmν ¼ 0.23 eV
ΛCDM model (dashed black line) yields a spectrum similar
to the model with fGeff ¼ 10−2 MeV−2; Σmν ¼ 0.23 eVg (dashed
red line).
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ρR ¼
�
1þ Neff

7

8

�
4

11

�
4=3

�
ργ; ð13Þ

where ρR and ργ are the total energy density in radiation and
in photons, respectively. The effects on the CMB of
increasing Neff have been well studied in the literature
(see, e.g., Ref. [134]) for the case of free-streaming neu-
trinos. For fixed values of the angular scale of the sound
horizon, the epoch of matter-radiation equality, and the
physical baryon abundance, it was found that the most
important net impact of increasing Neff was to damp the
high-l tail of the TT spectrum and to induce a phase shift
towards larger scales (low-l). Interestingly, self-interacting
neutrinos can partially compensate for these effects, hence
pointing to a possible degeneracy betweenGeff andNeff . An
example of this can be seen in the dotted red line in the lower-
left panel of Fig. 1, where the excess of damping caused by
Neff ¼ 4.046 (dotted black line) is compensated by sup-
pressing neutrino free streaming with Geff ¼ 10−2 MeV−2.
Geff affects the EE polarization power spectrum in a

similar manner as the temperature spectrum. The right
panel of Fig. 1 shows that the phase shift between the
standard ΛCDM model and that with self-interacting
neutrinos is more visible in this case due to the sharp,
well-defined peaks of the polarization spectrum [129]. This
allows us to directly see in which direction the spectrum is
shifted compared to ΛCDM, since the oscillations in the
residuals lean in the direction of the phase shift—that is,
there is a sharper drop off in the residuals in the direction
that the spectrum is shifted. Once again, we clearly see that
the absence of phase shift caused by a large value of Geff
can be partially canceled by increasing

P
mν, in a nearly

additive fashion. For the EE polarization spectrum, sup-
pressing neutrino free streaming can somewhat compensate
the extra damping caused by a large Neff (at fixed θ�, zeq,
and Ωbh2; see the lower-right panel of Fig. 1).

B. Matter power spectrum

The growth of matter fluctuations is sensitive to the
presence of self-interacting neutrinos through the neutri-
nos’ impact on the two gravitational potentials ϕ and ψ .
Indeed, neutrino self-interactions suppress the anisotropic
stress of the Universe, leading to ϕ − ψ ¼ 0 before the
onset of neutrino free streaming. This contrasts with the
ΛCDM case, for which ϕ ¼ ð1þ 2Rν=5Þψ on large scales
at early times for the adiabatic mode [124], where Rν is the
radiation free-streaming fraction. This difference in the
evolution of the potentials modifies the gravitational source
term driving the growth of matter fluctuations. The equa-
tion describing the evolution of dark matter fluctuations can
be written in Fourier space as [128]

d̈c þ
_a
a
_dc ¼ −k2ψ ; ð14Þ

where

dc ≡ δc − 3ϕ; ð15Þ

and where δc ¼ δρc=ρc is the standard dark matter
energy density contrast in the Newtonian gauge. Here,
an overhead dot denotes a derivative with respect to
conformal time τ. The gauge-invariant variable dc repre-
sents the fractional dark matter number density perturbation
by unit coordinate volume. At late times, dc is nearly equal
to δc, and it is thus a useful quantity to understand the
structure of the matter power spectrum at z ¼ 0. In the
radiation-dominated epoch where _a=a ¼ τ−1, the solution
to Eq. (14) can be written [135]

dcðk; τÞ ¼ −
9

2
ϕp þ k2

Z
τ

0

dτ0τ0ψðk; τ0Þ ln ðτ0=τÞ; ð16Þ

where ϕp is the primordial value of ϕ on large scales. The
integral appearing in Eq. (16) obtains most of its contri-
bution when kτ ∼ 1. The changes to the growth of dark
matter fluctuations can thus be understood by examining
the behavior of the ψ potential at horizon entry.
We compare the evolution of ψ in the presence of

self-interacting neutrinos with Geff ¼ 10−2 MeV−2 to that
of standard ΛCDM in the left panel of Fig. 2. There, we
track the evolution of three different Fourier modes:
k ¼ 10h=Mpc, which enters the horizon during the radi-
ation-dominated era while neutrinos are still tightly coupled
to each other, k ¼ 0.3h=Mpc, which roughly corresponds
to the scale entering the horizon when neutrinos begin to
free-stream, and k ¼ 10−3h=Mpc, which does not enter the
horizon until far after neutrino decoupling. We use here the
same cosmological parameters as in Fig. 1. The resulting
evolution of dark matter fluctuations for these three modes
is shown in the right panel of Fig. 2.
When modes enter the horizon during the radiation-

dominated era, the gravitational potential ψ decays in an
oscillatory fashion [135]. The absence of anisotropic stress
implies that ψ starts its oscillatory decaying behavior from
a larger amplitude. This boosts the amplitude of the
envelope of the decaying oscillations as compared to
ΛCDM, leading to an overall slower decay. While this
at first increases the amplitude of dark matter fluctuations at
horizon entry as compared to ΛCDM (see bottom-right
panel of Fig. 2), the subsequent oscillations of the integrand
appearing in Eq. (16) lead to a net damping of the dark
matter perturbation amplitude. Another way to think about
this is that the slower decay of the potential ψ in the
presence of self-interacting neutrinos reduces the horizon-
entry boost that dark matter fluctuations experience as
compared to ΛCDM.
For modes entering the horizon at the time of neutrino

decoupling, the potential ψ begins decaying from its larger
value with Rν ¼ 0 but rapidly locks into its standard
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ΛCDM evolution due to the onset of neutrino free stream-
ing. This case thus displays the quickest damping of the ψ
potential after horizon entry, which leads to a net boost of
dark matter fluctuations as compared to ΛCDM. Indeed,
these modes receive a positive contribution near horizon
entry from the integral in Eq. (16), but without the
subsequent extra damping due to the ψ potential quickly
converging to its ΛCDM behavior. The evolution of the
k ¼ 0.3h=Mpc mode in Fig. 2 displays this behavior.
Finally, modes entering the horizon well after the onset

of neutrino free streaming behave exactly like their ΛCDM
counterparts, as illustrated by the k ¼ 10−3h−1 Mpc mode
in Fig. 2. Taking together the evolution of the different
Fourier modes entering before, during, and after neutrino
decoupling, we expect the matter power spectrum to have
the following properties (at fixed neutrino mass): For large
wave numbers entering the horizon while neutrinos are
tightly coupled, we expect the matter power spectrum to be
suppressed compared to ΛCDM. As we go to larger scales
and approach modes entering the horizon at the onset of
free streaming, we expect a “bump”-like feature displaying
an excess of power as compared to ΛCDM. As we go to

even larger scales, the matter power spectrum is expected to
asymptote to its standard ΛCDM value.
These expectations are indeed realized as shown in

Fig. 3. The middle panel shows the power spectrum
ratios between the interacting neutrino models and
ΛCDM. Focusing for the moment on the cases withP

mν ¼ 0.06 eV, we see that the matter power spectrum
is damped at large wave numbers and then displays a broad
peaklike feature with an excess of power as compared to
ΛCDM. The shape of this power excess is determined by
the neutrino visibility function [56] encoding the details of
neutrino decoupling. Increasing the sum of neutrino masses
(at fixed Ωm) leads to a damping of the matter power
spectrum on small scales [70,73]. This standard reduction
of power is shown for ΛCDM as the thick black dashed line
in Fig. 3. Interestingly, this small-scale suppression is also
present for self-interacting neutrinos and occurs in addition
to that caused by the slower decay of the gravitational
potential ψ discussed above. Thus, the matter power
spectrum for massive self-interacting neutrinos is even
more suppressed at large k than in the standard ΛCDM
case with massive neutrinos.

FIG. 2. The evolution of the ψ gravitational potential (left) and of the gauge invariant dark matter density contrast dc (right) for
different k modes as a function of redshift. Solid lines correspond to the interacting neutrino case with Geff ¼ 10−2 MeV−2,
Neff ¼ 3.046, and

P
mν ¼ 0.06 eV, whereas dashed lines correspond to the ΛCDM case. On the left, we plot −3ψ=ð2ζÞ, where ζ is the

gauge-invariant curvature perturbation. The lower-left panel shows the normalized difference between the interacting neutrino and
ΛCDM ψ potential, while the lower-right panel shows the ratio of the dark matter fluctuations in the two models. The onset of neutrino
free streaming for the interacting neutrino model shown here occurs at zdec;ν ≃ 104. Dark matter fluctuations entering the horizon while
neutrinos are still tightly coupled decay and appear damped at present relative to ΛCDM, while those entering the horizon during
neutrino decoupling receive a net boost that persists until the present epoch.

KREISCH, CYR-RACINE, and DORÉ PHYS. REV. D 101, 123505 (2020)

123505-8



This fact might seem counterintuitive at first, since the
reduction of small-scale power from massive neutrinos is
often refereed to as “free-streaming” damping. We see this
moniker is somewhat of a misnomer, since the damping is
present whether or not neutrinos are actually free stream-
ing. Instead, the small-scale reduction of power is simply
caused by the large pressure term that prohibits neutrino
clustering on these scales. This pressure term is always
there as long as neutrinos are relativistic, even when
neutrinos are self-scattering. As was the case for the
CMB, the effects of a nonvanishing sum of neutrino masses
and large Geff are largely additive. Comparing the

P
mν ¼

0.23 eV cases to that with
P

mν ¼ 0.06 eV in Fig. 3 for

both interacting neutrino models shown illustrates this well.
Again, this near additivity reflects the fact that part of the
effect comes from the behavior of dark matter fluctuations
at horizon entry, while the rest is caused by the large
pressure term of relativistic neutrinos on small scales.
The lowest panel of Fig. 3 shows the effect of increasing

Neff (at fixed θ�, zeq, and Ωbh2) on the matter power
spectrum. For ΛCDM, the main impact is to increase the
amplitude of Fourier modes that enter the causal horizon
during radiation domination. This results from the larger
radiation density and free-streaming fraction Rν [128] at
early times. Suppressing neutrino free streaming for Neff ¼
4.046 (dotted red line) nullifies this increase of power on
small scales, even leading to a net damping compared to
ΛCDM for k > 10h=Mpc. However, as the neutrinos start
to decouple from one another, the larger radiation density
leads to a higher amplitude feature on scales entering the
horizon at that time.
We thus see that taken together, the joint effect of Geff ,P
mν, and Neff can lead to matter power spectra having a

significantly different structure and shape than the standard
ΛCDM paradigm.

V. DATA & METHODOLOGY

We use our modified versions of CAMB [125] and
CosmoMC + Multinest [136,137] to place constraints
on Geff , Neff , and

P
mν, as well as the standard cosmo-

logical parameters. We use nested sampling [138] to ensure
that we properly sample our posterior, which we expect to
be multimodal, as in previous cosmological studies of self-
interacting neutrinos [56,66,67].
We use a combination of CMB and low-redshift data sets

in our analysis:
(1) TT: Low-l and high-l CMB temperature power

spectrum from the Planck 2015 release2 [133].
(2) EE, TE: Low-l and high-l CMB E-mode polariza-

tion and their temperature cross correlation from the
Planck 2015 data release3 [133]. The 2015 polari-
zation data is known to have residual systematics,
and results drawn using this dataset should be
interpreted with caution. While our main conclu-
sions will not make use of this dataset, we none-
theless present results including this dataset for
completeness.

(3) lens: CMB lensing data from the Planck 2015 data
release [139].

(4) BAO: Baryon acoustic oscillation (BAO) measure-
ments from the 6dF Galaxy Survey constrain DV at
z ¼ 0.106 [140], the Sloan Digital Sky Survey

FIG. 3. Effects of Geff ,
P

mν, and Neff on the matter power
spectrum. Colors denote different values of Geff . Solid spectra
correspond to

P
mν ¼ 0.06 eV, and dashed spectra correspond

to
P

mν ¼ 0.23 eV. Dotted lines in the bottom panel have
Neff ¼ 4.046. Note the localized increase in amplitude at the
scales entering the horizon at the onset of neutrino free streaming.

2Explicitly, we use the likelihood plik_lite_v18_TT
for high l and commander_rc2_v1.1_l2_29_B at low l.

3Explicitly, we use the likelihood plik_lite_v18_TT-
TEEE for high l and lowl_SMW_70_dx11d_2014_10_
03_v5c_Ap at low l.
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(SDSS-III) Baryon Oscillation Spectroscopic Sur-
vey (BOSS) data release 11 low-z data measure DV
at z ¼ 0.32 and CMASS data measure DV at z ¼
0.57 [141], and data from the SDSS Main Galaxy
Sample measure DV at z ¼ 0.15 [142].

(5) H0: Local measurement4 of the Hubble parameter
H0 ¼ 73.0 � 1.75 km s−1 Mpc−1 at z¼ 0.04 from
Ref. [74].

We use the “lite” high-l likelihood, which marginalizes
over nuisance parameters, to reduce the number of free
parameters in our analysis. We use the following dataset
combinations for our nested sampling analysis: “TTþ
lensþBAO,” “TTþ lensþ BAOþH0,” “TT;TE;EE,”
and “TT;TE;EEþ lensþH0.”
In Table I, we list our adopted prior ranges. We place

uniform priors on all these parameters, except for the
Planck calibration parameter ycal, for which we use a
Gaussian prior ycal ¼ 1.0000� 0.0025. For the analyses
using the Planck polarization data, we also include a
Gaussian prior on the optical depth to reionization given
by τ ¼ 0.058� 0.012 from Ref. [143]. We note that our τ
prior is derived from the Planck HFI data, while the low-l
polarization data we use are from the Planck LFI, and while
the LFI data were used to clean the small synchrotron
foreground in the HFI map, the extra information on τ
added by this procedure is negligible compared to the much
better constraining power of the HFI likelihood on the
reionization optical depth, so there is effectively no double-
counting of information.
Weuse2000 live points in ournested sampling runs, setting

the target sampling efficiency to 0.3. We impose an accuracy
threshold on the log Bayesian evidence of 20%, which
ensures that our confidence intervals are highly accurate.

We use the mode-separation feature of Multinest
to isolate each posterior mode and compute their respective
summary statistics.

VI. RESULTS

In this section, we first present the main highlights of our
analysis before discussing the physical properties of the
two categories of interacting neutrino models that are
favored by the data. We end this section with a brief
discussion about which properties of interacting neutrino
models help to alleviate current tensions in cosmological
data. Throughout this section, we quote and analyze results
for the TTþ lensþ BAOþH0 dataset combination unless
otherwise specified. We discuss the impact of other data
(including CMB polarization) in Sec. VIII and list param-
eter constraints for these other dataset combinations in
Tables VI and VII, in Appendix A.

A. Highlights

Similarly to previous works [56,66,67], we find two
unique neutrino cosmologies preferred by the data: a
strongly interacting neutrino cosmology (hereafter denoted
the SIν model) characterized by log ðGeff MeV2Þ ¼
−1.35þ0.12

−0.07 for the TTþ lensþ BAOþH0 combination,
and a moderately interacting neutrino cosmology (here-
after, the MIν model) characterized by log ðGeff MeV2Þ ¼
−3.90þ1.00

−0.93 for the same dataset. Values of Geff between
these two modes are strongly disfavored by the data,
since they prefer to have either a phase shift that is
largely consistent with free-streaming neutrinos, or no
phase shift at all. We present constraints on cosmological
parameters for the SIν and MIν modes in Table II. While
the MIν cosmology was nearly indistinguishable from
the ΛCDM scenario with massless neutrinos in previous
work [66], the addition of neutrino mass and Neff in
combination with the H0 measurement from Ref. [74]
leads to a slight preference for a delayed onset of
neutrino free streaming. We expand more on this new
development in Sec. VI C below.
Cosmological parameters in the SIν cosmology admit

values that are significantly different from ΛCDM:
(1) The angular scale of the baryon-photon sound hori-

zon at last scattering, 100θ� ¼ 1.04604�0.00056
(68% C.L.), takes a value that is radically different
(>5σ away) from that in the ΛCDM scenario,
reflecting the absence of the free-streaming neutrino
phase shift.

(2) The large Neff value 4.02� 0.29 (68% C.L.) sug-
gests the presence of an additional neutrino species,
which might help reduce tensions between different
neutrino oscillation experiments.

(3) A smaller value of the baryon drag scale rdrag ¼
138.8�2.5Mpc (68% C.L.) helps to reconcile BAO

TABLE I. Adopted prior ranges.

Parameter Prior

log10ðGeff MeV2Þ ½−5.5;−0.000001�P
mν ½eV� [0.0001, 1.5]

Neff [2.0, 5.0]

Ωbh2 [0.01, 0.04]

Ωch2 [0.08, 0.16]

100θMC [1.03, 1.05]
τ [0.01, 0.25]

lnð1010AsÞ [2, 4]

ns [0.85, 1.1]

ycal [0.9, 1.1]

4We note that the mean value of H0 used in our analysis is
slightly lower (∼0.14σ) than the value quoted in the published
version of Ref. [74] (ours corresponds to the value found in an
earlier version of their manuscript). We do not expect this very
small difference to impact our results in any way.
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with local Hubble constant measurements, leading to
H0 ¼ 72.3� 1.4 km s−1 Mpc−1 (68% C.L.).

(4) The impact of self-interacting neutrinos on the
growth of dark matter perturbations and a preferred

suppressed spectrum of primordial scalar fluctua-
tions lead to σ8 ¼ 0.786� 0.020 (68% C.L.).

To illustrate the ability of neutrino self-interactions to
help resolve current cosmological tensions, we compare
the S8 ≡ σ8Ω0.5

m and H0 2D posteriors for the SIν and
MIν models with the base ΛCDM model in Fig. 4. We
overlay bands for HSC constraints on S8 [80] and local
measurements of H0 [74]. In order for our analysis to
be independent from these measurements, we show
posteriors for the TTþ lensþ BAO constraints for both
the neutrino self-interaction models and ΛCDM.
Intriguingly, the strong neutrino self-interactions in
the SIν model are able to independently produce the
preferred values for S8 and H0, even without using
these measurements in our analysis. The base ΛCDM
model is unable to achieve these values, and the weak
neutrino interactions of the MIν model can only achieve
such values with weak significance.
In Table III, we compute the Δχ2 values between the

two neutrino self-interaction models and ΛCDM. The data
favor the strongly interacting neutrino model over ΛCDM
with Δχ2Total ¼ −7.91. This is a significant difference, even
after accounting for the three extra parameters in the SIν
model (see Sec. VII B for further discussion about this
point). The preference for the self-interacting neutrinos
comes from the local measurements of H0, the high-l TT
data, and the BAO data.
In Fig. 5, we separate the posterior modes and plot their

separate statistical distribution for the most salient param-
eters. For comparison, we also show the marginalized
posteriors for the standard ΛCDM paradigm, as well as for
its Neff þ

P
mν two-parameter extension. In Fig. 6, we

show the different covariances between the most relevant

TABLE II. TTþ lensþ BAOþH0 constraints: Parameter
68% confidence limits.

Parameter

Strongly
interacting

neutrino mode

Moderately
interacting

neutrino mode

Ωbh2 0.02245þ0.00029
−0.00033 0.02282� 0.00030

Ωch2 0.1348þ0.0056
−0.0049 0.1256þ0.0035

−0.0039

100θMC 1.04637� 0.00056 1.04062þ0.00049
−0.00056

τ 0.080� 0.031 0.127þ0.034
−0.029P

mν [eV] 0.42þ0.17
−0.20 0.40þ0.17

−0.23
Neff 4.02� 0.29 3.79� 0.28

log10ðGeff MeV2Þ −1.35þ0.12
−0.066 −3.90þ1.0

−0.93

lnð1010AsÞ 3.035� 0.060 3.194þ0.068
−0.056

ns 0.9499� 0.0098 0.993þ0.013
−0.012

H0½km=s=Mpc� 72.3� 1.4 71.2� 1.3
Ωm 0.3094� 0.0083 0.3010� 0.0080
σ8 0.786� 0.020 0.813þ0.023

−0.020

109As 2.08þ0.11
−0.13 2.44� 0.15

109Ase−2τ 1.771� 0.016 1.892þ0.019
−0.017

r� [Mpc] 136.3� 2.4 139.1� 2.3
100θ� 1.04604� 0.00056 1.04041þ0.00058

−0.00064
DA [Gpc] 13.03� 0.23 13.37� 0.21
rdrag [Mpc] 138.8� 2.5 141.6� 2.3

FIG. 4. 2D posteriors for S8 and H0 illustrating how neutrino self-interactions can remedy cosmological tensions. We compare the
Planck TTþ lensþ BAO ΛCDM posterior to the SIν and MIν posteriors for TTþ lensþ BAO. We overlay 2σ bands for the
measurements S8 ¼ 0.427� 0.016 [80] and H0 ¼ 73� 1.75 km=s=Mpc [74].
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model parameters for three of the dataset combinations
used in this work.5

B. Strongly interacting neutrino mode

The existence of the SIν mode was first pointed out in
Ref. [56], and further studied in Refs. [66,67]. As
discussed there, the SIν cosmology arises due to a multi-
parameter degeneracy that opens up in CMB data when the
onset of neutrino free streaming is delayed until redshift
z ∼ 8000. This approximately coincides with the epoch
when Fourier modes corresponding to multipole l ≈ 400
enter the causal horizon [66], which lies somewhere
between the first and second peaks of the CMB temper-
ature spectrum. We review below the properties of this
alternate cosmology, emphasizing its differences from the
standard ΛCDM model.
Sound horizon: One of the most striking features of the

SIν model is the significantly larger value of the angular
size of the sound horizon θ�. This is probably the most
confusing aspect of our results, since the angular size of the
CMB sound horizon at last scattering is thought to be the
best measured quantity in all of cosmology. To understand
this apparent discrepancy, it is important to realize that the
angular sound horizon is defined as θ� ≡ r�=DA, where

r� ¼
Z

a�

0

csðaÞ
a2HðaÞ da; DA ¼

Z
1

a�

da
a2HðaÞ ; ð17Þ

where cs is the baryon-photon sound speed, H is the
Hubble rate, and a� is the scale factor at last scattering. We
thus see that θ� is purely defined in terms of background
quantities, independent of the behavior of cosmological

perturbations. In particular, it is independent of the gravi-
tational tug that neutrinos exert on the photons.
Of course, when fitting CMB data, we use the full

temperature and polarization spectra computed from the
Boltzmann equation, which includes the effect of neutrinos.
For the SIν model, the absence of free-streaming neutrinos
means that the CMB spectra do not receive the standard
phase shift, and thus appear slightly displaced toward larger
l as compared to the corresponding ΛCDM spectra. In
order to fit the data, we must compensate for this shift by
increasing the value of θ�. Thus, the difference between the
values of θ� in the SIν and ΛCDM models directly reflects
the absence of the free-streaming neutrino phase shift in the
former.
We note that it was a priori far from obvious that such a

dramatic change in the angular size of the sound horizon
was possible without introducing other artifacts that would
significantly worsen the fit to CMB and BAO data. Our
analysis shows that the larger value of θ� is achieved by
increasing H0 and Ωch2 above their ΛCDM values.
Primordial spectrum: In addition to removing the CMB

phase shift, suppressing neutrino free-streaming also
increases the amplitude of the temperature and polarization
spectra, as discussed in Sec. IVA. In the SIν model, these
changes are reabsorbed by modifying the primordial
spectrum of scalar fluctuations parametrized by the ampli-
tude As and spectral index ns. As was found in
Refs. [56,66], lower values of both As and ns are required
to fit the temperature data in the SIν mode. The difference
between this alternative cosmology and ΛCDM is even
more apparent if we compare the values of the parameter
Ase−2τ, which directly determines the amplitude of the
CMB temperature spectrum. As shown in Fig. 5, this
amplitude parameter admits values that are radically (> 5σ)
different than in ΛCDM, again reflecting the large impact
that suppressing neutrino free-streaming has on the CMB.
Neutrino properties: The SIν model is consistent

with having an entire additional neutrino species
(Neff ¼ 4.02� 0.29, see Fig. 5), which has interesting
implications for neutrino oscillation experiments. By com-
paring the SIν cosmology with a more standard ΛCDMþ
Neff þ

P
mν model, we can understand how much of this

preference is driven by the neutrino self-interaction. As
shown in Fig. 5, the two-parameter extension of the ΛCDM
cosmology already favors a larger Neff, but the introduction
of strong neutrino self-interactions shifts the posterior to
even larger values. To a certain extent, this shift is driven by
the need to fit the large value of the local Hubble rate from
Ref. [74] by reducing the size of the sound horizon at the
baryon drag epoch (see, e.g., Ref. [144]). However, in the
presence of free-streaming neutrinos, increasing Neff also
leads to a larger phase shift toward low l, which puts a limit
on how much extra free-streaming radiation can be added
before severely degrading the fit to CMB data. For the SIν
model, the absence of this phase shift allows for larger Neff,

TABLE III. Comparison to ΛCDM for TTþ lensþBAOþH0.

Parameter
Strongly interacting

neutrino mode
Moderately interacting

neutrino mode

Δχ2lowl 0.66 −0.75
Δχ2highl −1.15 1.08

Δχ2lens 0.06 −0.24
Δχ2H0

−6.68 −6.12
Δχ2BAO −0.81 −0.36

Δχ2Total −7.91 −6.39
ΔAIC −1.91 −0.39

5Due to the presence of two posterior modes with different
widths, it is difficult to choose a smoothing scale that faithfully
captures the intrinsic shape of the whole posterior while removing
sampling noise. This particularly affects the SIν mode and results
in a significantly reduced height which appears to visually
suppress its statistical significance. See Fig. 11 in Appendix A
for a figure with a smoothing scale more appropriate for the SIν
mode.
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which leads to a smaller value of rdrag and, in turn, a larger
Hubble constant. This is the key feature of the SIν model
that allows it to severely reduce the Hubble rate tension
between CMB and late-time measurements, as we shall
discuss in Sec. VI D.
The SIν model also statistically prefers a nonzero value

for the sum of neutrino masses. This preference was,

however, already present at a less significant level
(<2σ) in the Neff þ

P
mν extension of the ΛCDM sce-

nario. In this latter case, nonzero neutrino masses arise from
the need to suppress the amplitude of matter of fluctuations
at late times (as measured here through CMB lensing) in
the presence of a larger Neff and Ωm. For the SIν model,
the preference for a nonzero sum of neutrino masses is

FIG. 5. 1D posteriors for the TTþ lensþ BAOþH0 data combination after separating the SIν and MIν modes and plotting them
independently. For this reason, the peak locations and posterior shapes are of physical interest rather than the relative heights of
the peaks.
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increased (>2σ) due to the even larger Neff and Ωm values
favored by this scenario.
We note that, in our analysis, the primordial helium

abundance YP is highly correlated with Neff due to our use
of the BBN consistency condition. Allowing YP to take a
different set of values in the SIν scenario could lead to an
even better fit to cosmological data.
Matter clustering: Several competing effects act to set

the amplitude of late-time matter fluctuations (as captured

by the parameter σ8) in the SIνmodel. First, the large values
of Neff and Ωm (the latter necessary to keep the epoch of
matter-radiation equality fixed) tend to boost the amplitude
of matter fluctuation, as discussed in Sec. IV B. On scales
entering the horizon before the onset of neutrino free
streaming, this increase is counteracted by both a nonzero
sum of neutrino masses and the reduction of the horizon
entry boost for dark matter fluctuations in the presence of
self-interacting neutrinos. Dark matter fluctuations entering

FIG. 6. Marginalized posterior distributions for select parameters for three of the dataset combinations used in this work. Here, we
focus on parameters illustrating the difference between the two modes in relation to the sound horizon, the amplitude of the spectrum,
and the neutrino properties. Posteriors for H0 and σ8 are shown in Fig. 7.
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the horizon during neutrino decoupling, which for the SIν
model are coincidentally those primarily contributing to σ8,
are, however, enhanced by the rapid decay of the gravi-
tational potential on these scales. Finally, the lower
amplitude and spectral index of the primordial scalar
spectrum in the SIν model tend to suppress power on
scales probed by σ8. Putting all of these effects together
leads to a net lower value of σ8, which, as discussed in the
previous section, might be favored by some probes of late-
time matter clustering. The overall shape of the matter
power spectrum in the SIν model will be further discussed
in Sec. VIII.

C. Moderately interacting neutrino mode

Within the MIν mode, the onset of neutrino free stream-
ing occurs before most Fourier modes probed by the Planck
high-l data enter the causal horizon. As such, the cosmo-
logical parameter values preferred by this mode are very
similar to those from the Neff þ

P
mν extension of the

ΛCDM scenario (see Fig. 5). The main difference here is
that high-l CMB modes do not receive the full amplitude
suppression associated with free-streaming neutrinos due to
the finite width of the neutrino visibility function. In other
words, even though these high-l modes enter the horizon
after most neutrinos have started to free-stream, residual
scattering in the neutrino sector still influences the ampli-
tude of the CMB damping tail (see, e.g., the model with
Geff ¼ 10−4 MeV−2 and

P
mν ¼ 0.06 eV in Fig. 1). This

increased small-scale power allows for a larger Neff, which,
by reducing the baryon drag scale, leads to a slightly larger
Hubble constant. This shift is, however, quite small.
A surprising fact about the MIν mode (also pointed out

in Ref. [67]) is that it shows a slight statistical preference
for a nonzero value of Geff . As we can see in Fig. 6, this

preference is nearly entirely driven by the local Hubble
constant measurement of Ref. [74]. Indeed, removing this
dataset from our analysis (blue contours) eliminates most of
the preference for a nonzero value of Geff .

D. Mediating controversy: Effects on H0 and σ8
We show in Fig. 7(a) the impact of Geff , Neff , and

P
mν

on the inferred value of the Hubble parameter. As described
above, the large values of Neff allowed in the presence of
neutrino self-interactions reduce the size of the baryon drag
scale, which allows a larger value of H0 without damaging
the fit to the BAO scale [144] and without introducing extra
damping at large multipoles (see Fig. 1 for an illustration of
this latter effect). In the SIν model, this effect is com-
pounded by the larger value of θ� necessary to compensate
for the absence of the free-streaming neutrino phase shift.
This further slightly increases the value of H0 necessary to
fit the data, as can be seen by comparing the two modes in
the leftmost panel of Fig. 7(a).
It is worth noting that when Neff is fixed at 3.046, H0

and
P

mν are usually negatively correlated (see, e.g.,
Ref. [132]). If both Neff and

P
mν are allowed to vary,

there is not a strong correlation between Neff and
P

mν for
CMB data alone. However, when H0 or BAO data are
added, Neff and

P
mν become positively correlated [145],

as shown in Fig. 6. The tight correlation between Neff and
H0 then permits a positive correlation between H0 andP

mν, seen in the third panel from the left of Fig. 7(a).
Thus, instead of larger

P
mν being correlated with a

smaller Hubble constant, here a larger sum of neutrino
masses corresponds to a slightly larger H0. Allowing the
neutrinos to self-interact does not dramatically change the
direction of this degeneracy, but it does allow it to stretch to
larger H0 values.

(a)

(b)

FIG. 7. Correlations between H0 and σ8 with neutrino properties.
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Geff’s direct effects on matter clustering are scale
dependent. As discussed in Sec. IV B, dark matter fluctua-
tions that enter the horizon during neutrino decoupling
receive a boost, while fluctuations that enter the horizon
before neutrino decoupling are damped. For the SIν
mode, neutrino decoupling is coincident with the modes
entering the horizon that contribute most to σ8, giving them
a gravitational boost. However, low values of As and ns
must accompany a large Geff for the SIν, as discussed in
Sec. VI B, which consequently damp these same scales.
The combination of Geff ’s effects thus leads to an overall
decrease in matter clustering at scales probed by σ8, seen in
the SIν island in the left panel of Fig. 7(b).
The sum of neutrino masses is negatively correlated with

σ8, since massive neutrinos do not contribute to matter
clustering for small scales where their pressure term is large
[see third panel in Fig. 7(b)]. Typically, large Neff boosts
the dark matter fluctuations upon horizon entry, leading to a
positive correlation between Neff and σ8. However, the
positive correlation between Neff and

P
mν when includ-

ing BAO data causesNeff and σ8 to be negatively correlated
[see second panel in Fig. 7(b)]. This allows the interacting
neutrino model to both be compatible with a large value of
the Hubble constant and not overpredict the amplitude of
matter fluctuations at late times.

E. Impact of CMB polarization data

As can be seen in Figs. 6 and 7, the addition of EE
polarization data tends to significantly reduce the statistical
significance of the SIν cosmology. This is in contrast with
Ref. [66], which found that polarization data slightly
increased the significance of the SIν mode (see also
Ref. [67]). The degradation of the fit for the SIν model
in our case is the result of (i) our use of the reionization
optical depth prior from Ref. [143] whenever we use
polarization data, and (ii) our use of BBN calculations
to predict the helium abundance for a given value of Neff .
As can be seen in Table II, the SIν prefers a rather high
value of the reionization optical depth, and adding the
Planck HFI prior makes these high values unlikely. Due to
parameter degeneracies, it is possible (see Sec. IX) that the
fit could improve significantly by replacing this strong prior
with the actual low-l polarization data used to obtain it,6

and by letting the helium fraction float freely in the fit. As
might be expected, the addition of the local Hubble
constant measurement increases the statistical significance

of the SIν mode, as can be seen from the TT;TE;EEþ
lensþH0 data set in Fig. 11 in Appendix A.

VII. STATISTICAL SIGNIFICANCE

In this section, we quantify the relative statistical
significance of the two modes of the posterior, and we
compare the maximum likelihood values between our
interacting neutrino models and standard extensions of
the ΛCDM paradigm.

A. Mode comparison

To determine the statistical significance of the SIν mode
relative to the MIν mode, we can compare their relative
Bayesian evidence. It is defined as the parameter-averaged
likelihood of the data

Z ≡ Pr ðdjMÞ ¼
Z
Ωθ

Pr ðdjθ;MÞ Pr ðθjMÞdθ; ð18Þ

where d is the data,M is the cosmological model, θ are the
parameters in modelM, andΩθ is the domain of the model
parameters. We use Multinest’s [146] mode separation
algorithm to compute the Bayesian evidence for each
mode. In practice, this mode separation occurs near a
neutrino coupling value of log10ðGeff MeV2Þ ≈ −2.2. This
separation in parameter space defines Ωθ for each mode.
To compare the SIν to the MIν mode, we compute the

following Bayes factor:

BSIν ≡ Pr ðMSIνjdÞ
Pr ðMMIνjdÞ

¼ ZSIν

ZMIν

PrðMSIνÞ
PrðMMIνÞ

: ð19Þ

We place a uniform prior on log10ðGeff MeV2Þ rather
than a uniform prior on Geff to avoid introducing a
preferred energy scale. With our choice of prior, small
values of Geff can be thoroughly explored, which is
particularly important, since the actual Fermi constant
governing neutrino interaction in the Standard Model
takes the value GF ∼Oð10−11 MeV−2Þ. Taking a uniform
prior on Geff would greatly increase the statistical signifi-
cance of the interacting mode (see Ref. [56]). We thus
consider it conservative to adopt a uniform prior on
log10ðGeff MeV2Þ, but note that the statistical significance
of the SIν mode could be greatly enhanced by a different
choice of prior.
The probability of the prior is equivalent for each mode

(or cosmological model), so PrðMSIνÞ=PrðMMIνÞ ¼ 1. In
Table IV, we show the Bayes factor for each dataset
combination we consider in this work. A Bayes factor less
than unity indicates that the data prefer the MIν mode
for the specified parameter space. All values are below
unity, indicating that the data, on average, do not prefer
the SIν mode. Since the MIν model contains ΛCDM
when the extended parameters take a particular value,

6Indeed, if we remove the τ prior, the low-l Δχ2 decreases by
1.25, indicating a better fit to the data than with the τ prior
present. At the same time, the high-l fit to the data worsens, with
its Δχ2 increasing by 1.48. Replacing the τ prior with the actual
low-l data may alleviate this trade-off between the low-l and
high-l fits in favor of both multipole ranges providing a better fit
to the data.

KREISCH, CYR-RACINE, and DORÉ PHYS. REV. D 101, 123505 (2020)

123505-16



i.e., Geff ¼ 0 MeV−2, Neff ¼ 3.046, etc., we can view the
Bayes factor comparing the MIν mode to ΛCDM in terms
of the Savage-Dickey density ratio (SDDR) [147,148].
Thus, the Bayes factor comparing the MIν mode to ΛCDM
will be less than unity, since a large portion of the MIν
posterior is consistent with Geff ¼ 0 MeV−2 and we use a
flat prior on log10ðGeff MeV2Þ. Since, on average, ΛCDM
is favored over the MIνmode, and the MIνmode is favored
over the SIνmode, ΛCDM is favored over the SIνmode, as
well. As expected, however, incorporating the local Hubble
rate measurement does increase the significance of the
SIν mode.
A useful method to understand if the SIν mode is ever

preferred and to further investigate the significance’s
dependence on LSS data is to compare the maximum
likelihood value of each model:

RSIν ¼
max ½LðθSIνjdÞ�
max ½LðθMIνjdÞ�

: ð20Þ

In Table IV, we show the maximum likelihood ratios
for the dataset combinations in our analysis. Again, adding
H0 and CMB lensing data increases the likelihood of the
strongly interacting mode. Intriguingly, the SIν mode
has a larger maximum likelihood (by a factor larger than
2) than the MIν mode for TTþ lensþ BAOþH0 (see the
unsmoothed posteriors in Fig. 11). It is reasonable that the
Bayes factor for TTþ lensþ BAOþH0 is below unity
while the maximum likelihood ratio is above unity, since
the former is a global, parameter-averaged statistic while
the latter is based on a single set of best-case-scenario
parameters. This indicates that the parameter space for
which strong neutrino interactions are preferred has a small
volume.
It is also informative to look at the individual χ2 values

for the different datasets. To compare the two modes, we
list the Δχ2 ¼ χ2SIν − χ2MIν values in Table IV. A positive
Δχ2 value thus means that the MIν mode is preferred, and
vice versa. The H0 and high-l TT;TE;EE data show

preference for the SIν mode for TT;TE;EEþ lensþH0,
but this is compensated by a poorer fit to low-l and CMB
lensing data. For the TTþ lensþ BAO data combinations,
the BAO and high-l TT data display a slight preference for
the SIν mode, which is again overshadowed by the low-l
data. We see that the slight preference for the SIνmodewith
the TTþ lensþ BAOþH0 data combination is largely
due to improvement of the BAO and high-l likelihoods.

B. Comparison to ΛCDM and its extensions

Comparing how well each mode fits the data relative to
ΛCDM and its common extensions tells us if these neutrino
self-interaction models offer a viable improvement to
current cosmological theory. For the TTþ lensþ BAOþ
H0 dataset, we list the Δχ2 ¼ χ2SIν − χ2ΛCDMþext values and
the Δχ2 ¼ χ2MIν − χ2ΛCDMþext values for each observable in
Table V. Here, ΛCDMþ ext refers to the Neff þ

P
mν

two-parameter extension of the ΛCDM cosmology.
Comparison to plain ΛCDM was given in Table III above.
For all datasets except the low-l TT data, both modes offer
a better fit to the data than ΛCDMþ ext. In fact, the SIν
mode has a total Δχ2 of −3.33, a significant difference. The
improvement of the high-l CMB data is notable, since
jointly fitting CMB and local H0 data usually results in a

TABLE IV. Mode comparison: Here, BSIν is the Bayes factor between the SIν and the MIν modes, RSIν is the maximum
likelihood ratio, and Δχ2 ¼ χ2SIν − χ2MIν. The low-l dataset refers to low-l TEB if polarization was included and to low-l TT if only
temperature was used. Similarly, the high-l dataset refers to high-l TT,TE,EE if polarization was included and to high-l TT if only
temperature was used.

Parameter TT;TE;EE TT;TE;EE þ lens þ H0 TT þ lensþ BAO TT þ lensþ BAO þ H0

BSIν 0.03� 0.01 0.10� 0.04 0.13� 0.04 0.37� 0.10
RSIν 0.26 0.63 0.81 2.14

Δχ2lowl 2.47 2.18 2.00 1.41
Δχ2highl 0.22 −0.16 −1.53 −2.23
Δχ2lens � � � 1.34 0.16 0.30
Δχ2H0

� � � −2.12 � � � −0.56
Δχ2BAO � � � � � � −0.20 −0.44
Δχ2Total 2.69 0.92 0.43 −1.52

TABLE V. Comparison of the interacting neutrino cosmology
to ΛCDMþ Neff þ

P
mν for TTþ lens þ BAO þ H0.

Parameter
Strongly interacting

neutrino mode
Moderately interacting

neutrino mode

Δχ2lowl 2.40 0.99

Δχ2highl −3.40 −1.17

Δχ2lens −0.20 −0.50
Δχ2H0

−1.32 −0.76
Δχ2BAO −0.81 −0.36

Δχ2Total −3.33 −1.81
ΔAIC −1.33 0.19
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worse fit to the CMB damping tail. For the SIν model, this
is somewhat compensated by a degradation of the low-l fit.
What if the strong improvement in fit over ΛCDM is due

to overfitting from the extra parameter we have added? To
take this into account, we compute the Akaike information
criterion (AIC) [149]. The AIC takes into account how well
the model fits the data and penalizes extra parameters,
thereby discouraging overfitting. The AIC is defined as

AIC ¼ −2 lnðLÞ þ 2k ¼ χ2Total þ 2k; ð21Þ

where χ2Total ¼ χ2lowl þ χ2highl þ χ2lens þ χ2H0
þ χ2BAO, L is

the maximum likelihood, and k is the number of fit
parameters. Then we can write

ΔAIC ¼ AICIν − AICΛCDM ¼ Δχ2 þ 2Δk; ð22Þ

where Δk is the difference in the number of parameters
between the two models. The lower AIC between two
models corresponds to the preferred model. Thus, for us, a
negative ΔAIC value indicates the data prefer the specified
Iν model over ΛCDM, while a positive ΔAIC value
indicates the data prefer ΛCDM over the Iν model.
We list the ΔAIC values relative to ΛCDMþ Neff þP
mν in Table V. Here Δk ¼ 1, and the SIν mode has a

negative ΔAIC ¼ −1.33, indicating a genuine statistical
preference for the suppression of neutrino free streaming in

the early Universe for the TTþ lensþ BAOþH0 dataset.
On the other hand, ΔAIC ¼ 0.19 for the MIν mode,
indicating that the neutrino self-interactions do not add
value to the fit beyond what is already provided by the
Neff þ

P
mν extension. Values of ΔAIC between the Iν

models and standard ΛCDM (Δk ¼ 3) are also given in
Table III. The fact that ΔAIC values for the SIν cosmology
are similar (−1.91 versus −1.33) when comparing it to
plain ΛCDM and ΛCDMþ Neff þ

P
mν means that sup-

pressing neutrino free streaming is the true driving factor
behind the improvement of the fit. Thus, even after
penalizing the self-interacting neutrino models for incor-
porating additional parameters, the TTþ lensþ BAOþ
H0 data still significantly prefer the strongly interacting
neutrino cosmology over ΛCDM.

VIII. DISCUSSION

A. Cosmic microwave background

In Fig. 8, we plot the high-l TT and EE power spectra
residuals between the maximum likelihood parameters for
each dataset combination used and the best-fit Planck
ΛCDM model. For the SIν mode (upper panels), the most
striking feature of the residuals is the deficit of power at
high multipoles (l > 1500) as compared to ΛCDM for the
TTþ lensþ BAO and TTþ lensþ BAOþH0 data com-
binations. This is caused by the large value of Neff and the

FIG. 8. Relative difference between the SIν mode (upper panels) or MIν mode (lower panels) and ΛCDM for the high-l TT (left) and
EE (right) power spectra. The SIν mode and MIν mode spectra are produced using the maximum likelihood parameter values for each
respective mode. Colors denote the dataset combination used. Measurements from the Planck 2015 data release are included [133].
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resulting high helium abundance7 YP for this category of
models. This implies that the multiparameter degeneracy
that allows the SIν cosmology to provide a decent
fit to CMB temperature data at l < 1500 could be broken
by the addition of high-resolution CMB data (see, e.g.,
Refs. [150,151]). However, it is reasonable to assume that
the BBN helium abundance is modified in the presence of
the new neutrino physics we explore here, and that the
deficit of power at large multipoles could be compensated
by a smaller value of YP [134]. We leave the detailed study
of the impact of a free helium fraction on interacting
neutrino cosmologies to future work: see Ref. [152] for an
analysis of BBN and particle physics bounds on both the
universal coupling model (this work) and flavor-dependent
couplings in which they find that the MIν mode is still
allowed for some couplings. We note that, for our work,
freeing the helium fraction and incorporating constraints
from Ref. [153] slightly shift the preferred parameter values
but do not significantly alter the results presented here. In
fact, the total Δχ2 between the two modes for the TTþ
lens þ BAO þ H0 þ He dataset remains almost exactly
the same as when the helium abundance is not free, i.e.,
−1.51. We include parameter constraints and Δχ2 values
with the helium abundance free in Appendix B.
The EE polarization residuals shown in the right panel of

Fig. 8 for the TTþ lensþ BAO and TTþ lensþ BAOþ
H0 data combinations also display strong oscillations for
the SIνmode (upper panel). This implies that the shift in θ�
(and other parameters; see Sec. VI B) that was required to
compensate for the absence of the free-streaming neutrino
phase shift in the temperature spectrum does not fully
realign the peaks of the polarization spectrum with the data.
This is a consequence of the polarization data being more
sensitive to the phase of the acoustic peaks [129]. With the
current size of the Planck error bars, this does not constitute
an overwhelmingly strong constraint on the absence of a
neutrino-induced phase shift, but it is possible that future
CMB polarization data could entirely rule out this
possibility.
The TTþ TEþ EE CMB-only data combination in the

upper panels of Fig. 8 displays an excess of power as
compared to ΛCDM at nearly all scales, resulting in an
overall poorer fit to the CMB data. At large multipoles, this
is of course in contrast with the deficit of power that the
TTþ lensþ BAO and TTþ lensþ BAOþH0 fits dis-
play. Our use of the polarization-driven prior on the
reionization optical depth from Ref. [143] is largely
responsible for this excess of power as compared to
ΛCDM for the SIν mode with the TTþ TEþ EE dataset.
Again, this shows that polarization data could in principle

break the multiparameter degeneracy that allows the SIν
cosmology to exist.
All dataset combinations we consider display an excess

of power at l < 50 for the SIνmode. This is largely caused
by the lower value of the scalar spectral index ns which
adds power on large scales. While error bars are large in this
regime due to cosmic variance, the dip in power around
l ∼ 20–30 in the CMB temperature data tends to penalize
any model displaying more low-l power than ΛCDM.
If this dip were to be explained by some other physics
(from the inflationary epoch, say), then it is possible that
the fit to the data using the SIν cosmology could signifi-
cantly improve.
It is important to emphasize how the suppression of

neutrino free streaming plays a very important role in the
existence of the SIν cosmology. To illustrate this, we plot in
Fig. 9 the spectra corresponding to the best-fit SIν
parameters for the TTþ lensþ BAOþH0 dataset, but
we allow neutrinos to free-stream at all times by setting
Geff ¼ 0 (red dash-dotted line), along with the original
TTþ lensþ BAOþH0 best-fit SIν model (solid red) and
a ΛCDM model with

P
mν ¼ 0.23 eV (black dashed) for

reference. Here, the difference between the dash-dotted
and solid red lines is entirely driven by the streaming
property of neutrinos. Figure 9 reinforces our discussion
from Sec. VII B that the Geff parameter plays a statistically

FIG. 9. Illustration of the importance of the neutrino self-
interaction to the fit to CMB data for the SIν cosmology. The red
solid spectra correspond to the best-fit SIν model, while the red
dashed-dot spectra use the same best-fit cosmological parameters
but allow neutrino free-streaming by setting Geff ¼ 0.

7We remind the reader that we use the standard BBN
predictions to compute the helium abundance for given Neff
and Ωbh2 values.
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significant role in improving the fit to the CMB data,
beyond what is already provided by the Neff þ

P
mν two-

parameter extension of ΛCDM.

B. Matter clustering

We show in Fig. 10(a) the linear matter power
spectrum residuals between the best-fit SIν (and MIν)
models and the corresponding ΛCDM models. The most
striking feature for the SIν mode is the overall red tilt
of the matter power spectrum residuals for all data combi-
nations shown. This tilt is due to the lowpreferred value ofns
for this mode. Despite this global shape difference with
ΛCDM, the enhancement of matter fluctuations on scales
entering the horizon at the onset of neutrino free-streaming
discussed in Sec. IV B causes the matter power spectrum to
only slightly deviate from the CDM prediction on scales
contributing the most to σ8 (0.02hMpc−1≲k≲0.2hMpc−1).
For the TTþ lensþ BAO and TTþ lensþ BAOþH0

data combinations, this difference is less than 5% on these
scales and results in a σ8 value that is slightly lower than in
ΛCDM, potentially bringing low-redshift measurements of
the amplitude ofmatter fluctuations in agreement with CMB
data, as discussed in Sec. VI D.
Nevertheless, it is important to note that the localized

feature in thematter power spectrum caused by the late onset

of neutrino free streaming nearly coincides with the BAO
scale—that is, it is on scaleswherewe have a large amount of
data from, for example, spectroscopic galaxy surveys (see,
e.g., Ref. [141]). While an analysis that takes into account
the full shape of the measured galaxy power spectrum at
these scales is beyond the scope of this work, we note that
both the SIν andMIν cosmologies only mildly deviate from
theΛCDMmodel near the BAO scale. On smaller scales, the
SIν mode displays a net suppression of power which has
implications for probes of small-scale structure such as the
Lyman-α forest [154] and the satellite galaxy count sur-
rounding theMilkyWay [155]. It is an interesting possibility
that the SIν cosmology could help alleviate the small-scale
structure problems [156] without introducing a nongravita-
tional coupling between neutrinos and dark matter.
The MIν residuals (lower panel) in Fig. 10(a) display an

even richer structure than those shown in Fig. 3. Indeed,
even in the case of relatively weak neutrino interactions,
their impact on the matter power spectrum is significant,
and it potentially provides a different channel to constrain
new physics in the neutrino sector. Since the dominant
constraining power of the data used here comes from
k ∼ 0.1h Mpc−1, we observe that the MIν power spectra
have values similar to ΛCDM near this scale. Outside the
scales probed by σ8, the linear matter power spectra deviate
more significantly (up to ∼20%) from ΛCDM.

FIG. 10. Relative difference between the SIνmode (upper panels) or MIνmode (lower panels) and ΛCDM for the linear matter power
spectrum (left) and the CMB lensing power spectrum (right). The SIν and MIν spectra are produced using the maximum likelihood
parameter values for each respective mode. Measurements from the Planck 2015 data release [133] are included in the right panel.
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The lensing potential power spectrum in Fig. 10(b)
shows a similar pattern to the matter power spectrum for
the different best-fit models, as expected. The current large
error bars of the Planck lensing measurements allow
substantial freedom to the SIν and MIν cosmologies. As
shown in Table IV, the lensing data prefer the MIνmode for
all dataset combinations, but we note that the SIνmodes are
typically within the error bars of the lensing data.

IX. CONCLUSIONS

The presence of yet-unknown neutrino interactions
taking place in the early Universe could delay the onset
of neutrino free streaming, imprinting the CMB and probes
of matter clustering with distinct features. We have per-
formed a detailed study of the impact of neutrino self-
interactions with a rate scaling as Γν ∼G2

effT
5
ν on the CMB

and the matter power spectrum, taking into account the
presence of nonvanishing neutrino masses and of a non-
standard neutrino thermal history. Using recent measure-
ments of the BAO scale, the local Hubble rate, and of the
CMB, we find that a cosmological scenario (originally
pointed out in Ref. [56]) in which the onset of neutrino free
streaming is delayed until close to the epoch of matter-
radiation equality can provide a good fit to CMB temper-
ature data while also being consistent with the Hubble
constant inferred from the local distance ladder [74].
This strongly interacting neutrino cosmology has the

following properties:
(1) Using the data combination TTþ lensþ BAOþ

H0, it displays a strong preference (>3σ) for an
additional neutrino species (Neff ¼ 4.02� 0.29,
68% C.L.). This can have important implications
given the current anomalies in neutrino oscillation
experiments. It also prefers a nonvanishing value of
the sum of neutrino masses,

P
mν ¼ 0.42þ0.17

−0.20 eV
(68% C.L.).

(2) It can easily accommodate a larger value of H0

and smaller σ8, hence possibly alleviating tensions
between current measurements. Quantitatively, the
data combination TTþ lensþ BAOþH0 favors
H0 ¼ 72.3� 1.4 km s−1 Mpc−1 and σ8 ¼ 0.786�
0.020 at 68% C.L.

It is remarkable that a cosmological model admitting
parameter values that are so different (see Fig. 5) than in the
standard ΛCDM paradigm can provide a better fit to the
data at a statistically significant level (ΔAIC ¼ −1.91). We
believe that this is the most important lesson to be drawn
from our work: While most analyses have focused on mild
deformation from the standard ΛCDM scenario in trying to
reconcile the current cosmological datasets, it is important
to entertain the possibility that a radically different scenario
(i.e., statistically disjoint in cosmological parameter space)
could provide a better global fit to the data.
Despite the success of the strongly interacting

neutrino cosmology in addressing tensions between certain

cosmological datasets, there are several important obstacles
that still tilt the balance towards the standard ΛCDM
cosmology. First, the addition of polarization data seems to
degrade the quality of the fit for the strongly interacting
neutrino cosmology. We have traced this deterioration of the
fit to our use of a Gaussian prior on the reionization optical
depth from Ref. [143]. This prior was utilized as a way to
capture the constraint on the optical depth from low-l HFI
Planck polarization data before the full likelihood is made
available. It it likely that theGaussian formof the prior leads to
constraints that are too strong compared to what the full
likelihood will provide. Only a complete analysis with the
legacy Planck data, once available, will allow us to determine
whether this is the case. An important fact to keep in mind is
thatRef. [66] found that the addition ofCMBpolarizationdata
(without an additional τ prior) tends to increase the statistical
significance of the strongly interacting neutrino cosmology.
Second, the low values of the Bayes factor (see Table IV)

consistently favor either veryweakly interacting neutrinos or
no interaction at all. This reflects the fact that strongly
interacting neutrinos can only fit the data better for a narrow
window of interaction strengths, while ΛCDM provides a
decent (but overall less good) fit over a broader part of the
parameter space. This is a fundamental feature of Bayesian
statistics, and it is unlikely to change in future analyses. This
highlights the need to consider a portfolio of statistical
measures to assess the quality of a given cosmologicalmodel.
Third, it might be difficult from a particle-model-build-

ing perspective to generate neutrino self-interactions with
the strength required by the strongly interacting neutrino
cosmology while not running afoul of other constraints on
neutrino physics. A viable model might look similar to that
presented in Ref. [32], but it remains to be seen whether the
necessary large interaction strength can be generated while
evading current constraints [104] on new scalar particles
coupling to Standard Model neutrinos. Recent work has
shown that current particle physics bounds may exclude a
simple universal coupling framework, but that a flavor-
dependent coupling framework in which only τ neutrinos
self-interact is still allowed by current particle physics
measurements [152]. It is also possible that a successful
self-interacting neutrino model could have a different
temperature dependence than that considered in this work
(Γν ∝ T5

ν). This would change the shape of the neutrino
visibility function (see Refs. [56,66]) and potentially
improve the global fit to the data. We leave the study of
different temperature scalings of the neutrino interacting
rate to future works.
Our analysis could be improved in a few different ways.

Given the computational resources we had at our disposal
and the need to obtain accurate values of the Bayesian
evidence, we used the “lite” version of the Planck high-l
likelihoods in our analysis. Since some of the assumptions
that went into generating these likelihoods [157] might not
apply to the interacting neutrino cosmologies, it would be

NEUTRINO PUZZLE: ANOMALIES, INTERACTIONS, AND … PHYS. REV. D 101, 123505 (2020)

123505-21



interesting, given sufficient computing power, to reanalyze
these models with the complete version of the likelihoods
that include all the nuisance parameters. In particular, it is
possible that some of the foreground nuisance parameters
might be degenerate with the effect of self-interacting
neutrinos. For simplicity, we have also assumed that the
helium fraction is determined by the standard big bang
nucleosynthesis calculation throughout our analysis. Given
the new physics and the resulting modified thermal history
of the neutrino sector for the type ofmodels we explore here,
it is reasonable to assume that the helium fraction would in
general be different than in ΛCDM. While the details of the
helium productionwithin any interacting neutrinomodel are
likely model dependent, a sensible way to take these effects
into accountwould be to let the helium fraction float freely in
the fit to CMB data. We leave such analysis to future works.
Given the structure of the residuals between the best-fit

interacting neutrino cosmologies and the ΛCDM model
presented in Sec. VIII, it is clear that future high-l CMB
polarization and matter clustering measurements will play
an important role in constraining or ruling out these models
(see, e.g., Ref. [158]). In particular, the overall red tilt of the
matter power spectrum in the strongly interacting neutrino
cosmology could have important consequences on both
large and small scales. Since current anomalies in terrestrial
neutrino experiments [2,3] may indicate the presence of new
physics in the neutrino sector, it is especially timely to use
the complementary nature of cosmological probes to look
for possible clues about physics beyond the StandardModel.
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APPENDIX A: RESULTS FOR ALL DATASETS

We display in Tables VI and VII the 68% confidence
limits for the strongly interacting and moderately interact-
ing neutrino modes, respectively. In Fig. 11, we show the
marginalized posteriors for key cosmological parameters

TABLE VI. Strongly interacting neutrino cosmology: Parameter 68% confidence limits.

Parameter TT;TE;EE TT;TE;EE þ lens þ H0 TT þ lensþ BAO TT þ lensþ BAO þ H0

Ωbh2 0.02219þ0.00024
−0.00022 0.02257� 0.00018 0.02239þ0.00029

−0.00036 0.02245þ0.00029
−0.00033

Ωch2 0.1189þ0.0032
−0.0038 0.1222� 0.0032 0.1311þ0.0090

−0.0065 0.1348þ0.0056
−0.0049

100θMC 1.04590þ0.00061
−0.00045 1.04622þ0.00054

−0.00042 1.04623þ0.00067
−0.00044 1.04637� 0.00056

τ 0.0633þ0.0089
−0.0066 0.0624þ0.0089

−0.0074 0.082þ0.028
−0.036 0.080� 0.031P

mν [eV] 0.166þ0.064
−0.18 0.069þ0.027

−0.066 0.39þ0.16
−0.20 0.42þ0.17

−0.20
Neff 2.88þ0.19

−0.22 3.20� 0.18 3.80� 0.45 4.02� 0.29

log10ðGeff MeV2Þ −1.60þ0.14
−0.089 −1.55þ0.12

−0.080 −1.41þ0.20
−0.066 −1.35þ0.12

−0.066
lnð1010AsÞ 2.995þ0.019

−0.015 2.994� 0.017 3.036þ0.054
−0.071 3.035� 0.060

ns 0.9273� 0.0080 0.9412� 0.0061 0.947� 0.011 0.9499� 0.0098

H0½km=s=Mpc� 66.2þ2.3
−1.9 70.1� 1.3 71.1� 2.2 72.3� 1.4

Ωm 0.327þ0.013
−0.026 0.2961þ0.0075

−0.011 0.3115� 0.0090 0.3094� 0.0083

σ8 0.799þ0.041
−0.017 0.824þ0.015

−0.010 0.786� 0.020 0.786� 0.020

109As 1.998þ0.039
−0.030 1.998� 0.034 2.09þ0.10

−0.15 2.08þ0.11
−0.13

109Ase−2τ 1.760� 0.014 1.763� 0.013 1.766� 0.016 1.771� 0.016
YP 0.2430� 0.0029 0.2476� 0.0024 0.2549þ0.0060

−0.0048 0.2577� 0.0034

r� [Mpc] 145.8� 2.0 143.0� 1.7 138.2þ3.2
−4.3 136.3� 2.4

100θ� 1.04626þ0.00060
−0.00046 1.04629þ0.00053

−0.00044 1.04604þ0.00060
−0.00046 1.04604� 0.00056

DA [Gpc] 13.93� 0.19 13.67� 0.16 13.21þ0.30
−0.41 13.03� 0.23

rdrag [Mpc] 148.5� 2.1 145.6� 1.8 140.8þ3.3
−4.3 138.8� 2.5
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FIG. 11. 1D posteriors for bimodal parameters with low smoothing.

TABLE VII. Moderately interacting neutrino mode: Parameter 68% confidence limits.

Parameter TT;TE;EE TT;TE;EE þ lens þ H0 TT þ lensþ BAO TT þ lensþ BAO þ H0

Ωbh2 0.02203� 0.00023 0.02246� 0.00018 0.02254þ0.00030
−0.00035 0.02282� 0.00030

Ωch2 0.1191� 0.0031 0.1220� 0.0027 0.1220þ0.0039
−0.0046 0.1256þ0.0035

−0.0039
100θMC 1.04085� 0.00044 1.04063� 0.00040 1.04086� 0.00058 1.04062þ0.00049

−0.00056
τ 0.0642þ0.0095

−0.0082 0.0645þ0.0090
−0.0073 0.108� 0.033 0.127þ0.034

−0.029P
mν [eV] 0.150þ0.054

−0.16 0.052þ0.020
−0.052 0.28þ0.12

−0.23 0.40þ0.17
−0.23

Neff 2.95� 0.19 3.29� 0.16 3.44þ0.30
−0.38 3.79� 0.28

log10ðGeff MeV2Þ −4.44þ0.58
−0.77 −4.26� 0.69 −4.12� 0.77 −3.90þ1.0

−0.93
lnð1010AsÞ 3.059þ0.022

−0.019 3.067þ0.019
−0.016 3.150� 0.067 3.194þ0.068

−0.056
ns 0.9548� 0.0089 0.9718� 0.0073 0.980þ0.014

−0.015 0.993þ0.013
−0.012

H0½km=s=Mpc� 65.3þ2.2
−1.7 69.3� 1.2 69.3þ1.7

−1.9 71.2� 1.3

Ωm 0.335þ0.012
−0.025 0.3021þ0.0077

−0.010 0.3075� 0.0092 0.3010� 0.0080

σ8 0.798þ0.038
−0.016 0.826þ0.014

−0.011 0.809þ0.021
−0.018 0.813þ0.023

−0.020
109As 2.132� 0.043 2.148þ0.039

−0.035 2.34þ0.14
−0.18 2.44� 0.15

109Ase−2τ 1.875� 0.018 1.888� 0.016 1.880� 0.021 1.892þ0.019
−0.017

YP 0.2439� 0.0027 0.2486� 0.0022 0.2506þ0.0041
−0.0048 0.2550� 0.0035

r� [Mpc] 145.5� 1.9 142.8� 1.5 141.9þ3.0
−2.7 139.1� 2.3

100θ� 1.04117� 0.00054 1.04066� 0.00047 1.04086� 0.00070 1.04041þ0.00058
−0.00064

DA [Gpc] 13.97� 0.17 13.72� 0.14 13.63þ0.28
−0.25 13.37� 0.21

rdrag [Mpc] 148.3� 1.9 145.4� 1.6 144.5þ3.1
−2.8 141.6� 2.3
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for a choice of smoothing kernel that represents more
accurately the shape of the SIν mode. In Fig. 12, we
compare the marginalized posterior distribution of the SIν
mode for the four dataset combinations considered in
this work.

APPENDIX B: RESULTS WITH FREE HELIUM
ABUNDANCE

We present cosmological parameter constraints in
Table VIII for the TTþ lensþ BAOþ H0 combination
with the helium abundance as a free parameter and
including direct constraints on this parameter from
Ref. [153]. We show the Δχ2 values, maximum likelihood
ratio, and Bayes factor to compare the modes for the same
dataset in Table IX. We note that the total Δχ2, and
therefore the maximum likelihood ratio, is almost identical

to when the helium abundance is computed using the
standard BBN predictions. Further, the tension between the
low-l and high-l CMB data’s preference increases with
freeing the helium abundance, with the high-l data strongly
in favor of strongly interacting neutrinos and the low-l data
strongly disfavoring the interaction. The Bayes factor
degrades with the helium abundance free due to the MIν
mode posterior flattening out like for the other datasets.

APPENDIX C: PERTURBATION EQUATIONS
FOR INTERACTING MASSIVE NEUTRINOS

In this appendix, we derive the Boltzmann equation
governing the evolution of the distribution function of
massive self-interacting neutrinos, which we denote by
fνðx;P; τÞ, where P is the canonical conjugate variable to
the position x, and τ is the conformal time. In the scenario

FIG. 12. SIν mode posteriors for all dataset combinations.
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considered here, neutrinos can exchange energy and
momentum via 2-to-2 scattering of the type νiþνj→νkþ
νl. The Boltzmann equation of neutrino species i can be
written as

dfνi
dλ

¼
X3
j;k;l¼1

Cνiþνj→νkþνl ½fνi ; fνjfνk ; fνl �; ðC1Þ

where λ is an affine parameter that described the trajectory
of the observer (see below) and Cνiþνj→νkþνl is the collision

term for the process νi þ νj → νk þ νl. In the conformal
Newtonian gauge, the space-time metric takes the form

ds2 ¼ a2ðτÞ½−ð1þ 2ψÞdτ2 þ ð1 − 2ϕÞdx⃗2�; ðC2Þ

where a is the cosmological scale factor, and ϕ and ψ are
the two gravitational potentials. We can define the affine
parameter in terms of the four-momentum P of an observer:

Pμ ≡ dxμ

dλ
; ðC3Þ

where x ¼ ðτ; x⃗Þ is a four-vector parametrizing the trajec-
tory of the observer. Using Eq. (C2), we can then write

d
dλ

¼ dτ
dλ

d
dτ

¼ P0
d
dτ

¼ Eð1 − ψÞ
a

d
dτ

; ðC4Þ

where we have used the dispersion relation gμνPμPν ¼
−m2

ν. Here, we have defined E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ν

p
, where p ¼

jpj is the proper momentum, which is related to the
conjugate momentum P via the relation p2 ¼ gijPiPj.
We note that Eq. (C4) is valid to first order in perturbation
theory. As in other work in the literature, we choose to write
the distribution function in terms of the proper momentum
p. This choice is valid as long as we also modify the
phase-space volume element as d3P → a3ð1 − 3ϕÞd3p.
The left-hand side of the Boltzmann equation takes the
form [124,135]

dfνi
dτ

¼ ∂fνi
∂τ þ p

E
· ∇fνi þ p

∂fνi
∂p

�
−Hþ ∂ϕ

∂τ −
E
p2

p ·∇ψ

�
;

ðC5Þ

where H≡ _a=a is the conformal Hubble parameter,
an overhead dot denoting a derivative with respect to
conformal time. We expand the neutrino distribution
function as

fνiðx;p; τÞ ¼ fð0Þνi ðp; τÞ½1þ Θνiðx;p; τÞ�: ðC6Þ

At early times, neutrinos form a relativistic tightly coupled
fluid with an equilibrium background distribution function

fð0Þν ðp; τÞ given by the Fermi-Dirac distribution. If the
interactions mediated by the Lagrangian in Eq. (1) go out of
equilibrium while neutrinos are relativistic, the background
distribution function would maintain this shape, with a
temperature redshifting as Tν ∝ a−1. As mentioned in
Sec. III, we work under this approximation here and
assume that the background distribution function maintains
its equilibrium shape throughout the epoch of neutrino
decoupling. In the absence of energy source or sink, and for
the type of interaction we consider in this work, this is an
excellent approximation [67].

TABLE VIII. TTþlensþBAOþH0þHe: Parameter 68% con-
fidence limits

Parameter SIν MIν

Ωbh2 0.02241� 0.00035 0.02267� 0.00032

Ωch2 0.1309þ0.0043
−0.0037 0.1256þ0.0030

−0.0034
100θMC 1.0462þ0.0012

−0.0010 1.0402þ0.0011
−0.0013

τ 0.081þ0.032
−0.038 0.118� 0.032

Σmν [eV] 0.35þ0.14
−0.19 0.32þ0.15

−0.19

Neff 3.78� 0.17 3.74� 0.16
YHe 0.252þ0.024

−0.021 0.242� 0.026

log10ðGeff MeV2Þ −1.41þ0.18
−0.071 −4.1þ1.0

−1.1

lnð1010AsÞ 3.034þ0.061
−0.075 3.174þ0.065

−0.059
ns 0.947� 0.012 0.987� 0.012

H0½km=s=Mpc� 71.34� 0.93 70.96� 0.91
Ωm 0.3086� 0.0087 0.3016þ0.0075

−0.0086
σ8 0.792� 0.020 0.816þ0.022

−0.019

109As 2.08þ0.12
−0.16 2.40� 0.14

109Ase−2τ 1.767� 0.015 1.890þ0.018
−0.015

r� [Mpc] 138.3� 1.4 139.5� 1.3
100θ� 1.04603þ0.00072

−0.00059 1.04029þ0.00064
−0.00074

DA=Gpc [Gpc] 13.22þ0.12
−0.14 13.41� 0.12

rdrag [Mpc] 140.8� 1.4 142.0� 1.3

TABLE IX. Mode comparison: Here, BSIν is the Bayes factor
between the SIν and the MIν mode, RSIν is the maximum
likelihood ratio, and Δχ2 ¼ χ2SIν − χ2MIν.

Parameter TTþ lensþ BAOþH0 þ He

BSIν 0.14� 0.05
RSIν 2.13

Δχ2lowl 3.38

Δχ2highl −4.60

Δχ2lens 1.01

Δχ2H0
−0.37

Δχ2BAO −0.93
Δχ2Total −1.51
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Substituting Eq. (C6) into Eq. (C5) and keeping terms
that are first order in the perturbation variables, we obtain

fð0Þνi ðp;τÞ
�∂Θνi

∂τ þp
E
·∇Θνi

�

þp
∂fð0Þνi ðp;τÞ

∂p
�
−HΘνi þ

∂ϕ
∂τ −

E
p2

p ·∇ψ
�
¼ a
E
Cð1Þ
νi ½p�;

ðC7Þ

where the superscript Cð1Þ
νi denotes the part of the collision

term that is first order in the perturbation variables Θνi . It is
useful at this point to introduce the comoving momentum
q≡ ap and comoving energy ϵ≡ aE. Going to Fourier
space, Eq. (C7) becomes

fð0Þνi ðq;τÞ
�∂Θ̃νi

∂τ þ i
q
ϵ
kμΘ̃νi

�
þq

∂fð0Þνi ðq;τÞ
∂q

�∂ϕ
∂τ − i

ϵ

q
kμψ

�

¼ a2

ϵ
Cð1Þ
νi ½q�; ðC8Þ

where Θ̃νi is the Fourier transform of the perturbation
variable Θνi , k is the Fourier conjugate of x, k ¼ jkj,
μ≡ q̂ · k̂, and k̂ ¼ k=k. In this work, we focus on (helicity)
scalar perturbations and expand the angular dependence of
the Θ̃νi variable in Legendre polynomials PlðμÞ:

Θ̃νiðq;k; τÞ ¼
X∞
l¼0

ð−iÞlð2lþ 1Þθlðk; q; τÞPlðμÞ: ðC9Þ

We note that this decomposition is always valid for scalar
perturbations, since they must be azimuthally symmetric
with respect to k, independently of the structure of the
collision term. Substituting the above expansion into
the first-order Boltzmann equation and and integrating
both sides with 1

2ð−iÞl
R
1
−1 dμPlðμÞ yields the hierarchy of

equations

fð0Þνi

�∂θl
∂τ þ k

q
ϵ

�
lþ 1

2lþ 1
θlþ1 −

l
2lþ 1

θl−1

��

þ q
∂fð0Þνi

∂q
�∂ϕ
∂τ δl0 þ

k
3

ϵ

q
ψδl1

�

¼ a2

ϵ

1

2ð−iÞl
Z

1

−1
dμPlðμÞCð1Þ

νi ½q�; ðC10Þ

where δij is the Kroenecker delta, and where we have

suppressed the arguments of fð0Þνi and θl for succinctness.
We now turn our attention to the collision integral.

APPENDIX D: COLLISION INTEGRALS

We now compute the first-order collision term for
neutrino scattering, νiðp1Þþνjðp2Þ↔νkðp3Þþνlðp4Þ. We
start from the general expression [159]

Cν½p1� ¼
1

2

Z
dΠ2dΠ3dΠ4jMj2νð2πÞ4

×δ4ðP1þP2−P3−P4ÞFðp1;p2;p3;p4Þ; ðD1Þ
where jMj2ν here is the spin-summed (not averaged) matrix
element for the scattering as defined in Eq. (3), pi denotes
the ith three-momentum, pi ¼ jpij, and where

dΠi ¼
d3pi

ð2πÞ32Ei
ðD2Þ

and

Fðp1;p2;p3;p4Þ ¼ fνðp4Þfνðp3Þð1 − fνðp2ÞÞ
× ð1 − fνðp1ÞÞ − fνðp2Þfνðp1Þ
× ð1 − fνðp4ÞÞð1 − fνðp3ÞÞ: ðD3Þ

Using Eq. (C6) and keeping only the first-order term
in the perturbation variable Θν, we can rewrite the collision
term as

Cð1Þ
ν ¼ 1

2

Z
dΠ2dΠ3dΠ4jMj2ν

ð2πÞ4δ4ðP1 þ P2 − P3 − P4Þeðp1þp2Þ=T

ðep1=T þ 1Þðep2=T þ 1Þðep3=T þ 1Þðep4=T þ 1Þ ð2ð1þ e−p3=TÞΘνðp3Þ

− ð1þ e−p2=TÞΘνðp2Þ − ð1þ e−p1=TÞΘνðp1ÞÞ; ðD4Þ

where we have suppressed the x and τ dependence of the
Θν variables to avoid clutter, and where we have used
the symmetry p3 ↔ p4 to simplify the integrand. Here,
we have taken the background neutrino distribution
function to have a relativistic Fermi-Dirac shape. As
mentioned in Sec. III, we assume neutrinos decouple in
the relativistic regime and thus neglect the small neutrino
mass in the computation of the collision integrals,

gμνPμPν ≈ 0 and E ≈ p. We use the technique developed
in Refs. [57,160,161] to perform the majority of the
integrals. We first perform the p4 integration using the
identity

d3pi

2Ei
≡ d4PiδðP2

i ÞHðP0
i Þ; ðD5Þ
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where HðxÞ is the Heaviside step function. The collision
term then reduces to

Cð1Þ
ν ¼π

Z
dΠ2dΠ3jMj2νδð2ðP1 ·P2−P1 ·P3−P2 ·P3ÞÞ

×Hðp1þp2−p3ÞF̃ðp1;p2;p3;p1þp2−p3Þ; ðD6Þ

where we have gathered all the terms dependent on the
distribution functions inside F̃. To make progress, we have
to choose a coordinate system. We take p1 to point in the z
direction, and p3 to lie in the x-z plane. and define the
following angles:

p̂1 · k̂¼ μ p̂1 · p̂2¼ cosα;

p̂1 · p̂3¼ cosθ; p̂2 · p̂3¼ cosαcosθþ sinαsinθcosβ;

ðD7Þ

where k is the Fourier wave number of the perturbations
and β is the azimuthal angle for p2 to wrap around p1. The
integration measure then takes the form

d3p3¼p2
3dp3dcosθdϕ d3p2 ¼p2

2dp2dcosαdβ: ðD8Þ

The ϕ angle is the azimuthal angle for p3 to wrap around
p1. Since we are only dealing with scalar perturbations
here, we are free to redefine this angle at will, since no
physical quantity depends on it. Within this coordinate
system, we can write P1 · P2 ¼ −p1p2 þ p1p2 cos α,
P1 · P3 ¼ −p1p3 þ p1p3 cos θ, and P2 · P3 ¼ −p2p3þ
p2p3ðcos α cos θ þ sin α sin θ cos βÞ. We can now use the
delta function to do the β integration. Setting the argument
of the delta function to zero and solving for cos β yields

cos β ¼ −
p1p2 − p1p3 − p2p3 − p1p2 cos αþ p1p3 cos θ þ p2p3 cos α cos θ

p2p3 sin α sin θ
: ðD9Þ

Performing the integration introduces a Jacobian:

Cð1Þ
ν ¼ 1

8ð2πÞ5
Z

p2dp2p3dp3dðcos αÞdðcos θÞdϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aαcos2θ þ bα cos θ þ cα

p jMj2ν

×Hðp1 þ p2 − p3ÞF̃ðp1; p2; p3; p1 þ p2 − p3ÞHðaαcos2θ þ bα cos θ þ cαÞ: ðD10Þ

In the above, aα, bα, and cα are

aα ¼ −p2
3ðp2

1 þ p2
2 þ 2p1p2 cos αÞ; ðD11Þ

bα ¼ 2p3ðp1 þ p2 cos αÞðp2p3 þ p1ðp3 − p2Þ þ p1p2 cos αÞ; ðD12Þ

cα ¼ −ðp2p3 þ p1ðp3 − p2Þ þ p1p2 cos αÞ2 þ p2
2p

2
3ð1 − cos2αÞ: ðD13Þ

The above form of the collision term is useful when the θ integration needs to be performed first. In some instances, it will
be easier to perform the α integral first. In this latter case, the collision term can equivalently be written as

Cð1Þ
ν ¼ 1

8ð2πÞ5
Z

p2dp2p3dp3dðcos αÞdðcos θÞdϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aθcos2αþ bθ cos αþ cθ

p jMj2ν

×Hðp1 þ p2 − p3ÞF̃ðp1; p2; p3; p1 þ p2 − p3ÞHðaθcos2αþ bθ cos αþ cθÞ: ðD14Þ

In the above, aθ, bθ, and cθ are

aθ ¼ −p2
2ðp2

1 þ p2
3 − 2p1p3 cos θÞ; ðD15Þ

bθ ¼ 2p2ðp1 − p3 cos θÞðp1p2 − p3ðp1 þ p2Þ þ p1p3 cos θÞ; ðD16Þ

cθ ¼ −ðp1p2 − p3ðp1 þ p2Þ þ p1p3 cos θÞ2 þ p2
2p

2
3ð1 − cos2θÞ: ðD17Þ

We remark that using Eq. (D9) simplifies P2 · P3:
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P2 · P3 → p1p3 − p1p2 þ p1p2 cos α − p1p3 cos θ ¼ P1 · P2 − P1 · P3: ðD18Þ

We note that since the matrix element for the type of interaction of interest [see Eq. (3)] only depends on a sum of
Mandelstam variables or squares of Mandelstam variables, we can write

jMj2ν ¼ 16G2
effðΔ2ðθÞcos2αþ Δ1ðθÞ cos αþ Δ0ðθÞÞ or jMj2ν ¼ 16G2

effðΔ2ðαÞcos2θ þ Δ1ðαÞ cos θ þ Δ0ðαÞÞ; ðD19Þ

depending on which of the θ or α integral we want to perform first. The coefficients are as follows:

Δ2ðθÞ ¼ p2
1p

2
2;

Δ1ðθÞ ¼ p2
1p2ðp3 − 2p2 − p3 cos θÞ;

Δ0ðθÞ ¼ ðp2
1ðp2

2 − p2p3 þ p2
3Þ þ p1p3 cos θðp1ðp2 − 2p3Þ þ p1p3 cos θÞÞ; ðD20Þ

Δ2ðαÞ ¼ p2
1p

2
3;

Δ1ðαÞ ¼ p1p3ðp1ðp2 − 2p3Þ − p1p2 cos αÞ;
Δ0ðαÞ ¼ ðp2

1ðp2
2 − p2p3 þ p2

3Þ þ p1p2 cos αðp1ð−2p2 þ p3Þ þ p1p2 cos αÞÞ: ðD21Þ

We note that we can perform the cos θ or the cos α integration using the following results:

Z
∞

−∞

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þ bxþ c

p Hðax2 þ bxþ cÞ ¼ πffiffiffiffiffiffi
−a

p Hðb2 − 4acÞ; ðD22Þ
Z

∞

−∞

xdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þ bxþ c

p Hðax2 þ bxþ cÞ ¼ −
bπ

2a
ffiffiffiffiffiffi
−a

p Hðb2 − 4acÞ; ðD23Þ

Z
∞

−∞

x2dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þ bxþ c

p Hðax2 þ bxþ cÞ ¼ πð3b2 − 4acÞ
8a2

ffiffiffiffiffiffi
−a

p Hðb2 − 4acÞ: ðD24Þ

To make further progress in performing the angular integration, we need to specify the angular dependence of the ΘνðpiÞ
variables. As in Eq. (C9), we expand their angular dependence in Legendre polynomials with respect to the angle between
the vector k and the pi vectors. Within our coordinate system, these angles are

p̂1 · k̂ ¼ cos γ ≡ μ; p̂2 · k̂ ¼ cos α cos γ þ sin α sin γ cos ðϕ − βÞ; p̂3 · k̂ ¼ cos θ cos γ þ sin θ sin γ cosϕ: ðD25Þ

The following identity will be useful later in order to perform the remaining azymuthal integral (the “ϕ” integral):

Z
2π

0

dϕPlðcos θ cos γ þ sin θ sin γ cosϕÞ ¼ 2πPlðcos θÞPlðcos γÞ: ðD26Þ

We now consider separately the different terms in the perturbative expansion in ΘνðpiÞ.

1. Terms involving Θνðp1Þ
This is the simplest case, sinceΘνðp1Þ can be carried outside the integrals. The azimuthal ϕ integral is trivial and yields an

extra factor of 2π:

−
Θνðp1Þ
8ð2πÞ4

Z
p2dp2p3dp3dðcos αÞdðcos θÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aθcos2αþ bθ cos αþ cθ
p hjMj2νiHðp1 þ p2 − p3ÞHðaθcos2αþ bθ cos αþ cθÞ

×
ep2=Tν

ðep2=Tν þ 1Þðep3=Tν þ 1Þðeðp1þp2−p3Þ=Tν þ 1Þ : ðD27Þ

Performing the α integration first using Eqs. (D22)–(D24), we obtain
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−
16G2

effΘνðp1Þ
128π3

Z
p2dp2p3dp3dðcos θÞffiffiffiffiffiffiffiffi−aθ

p
�
Δ2ðθÞ

3b2θ − 4aθcθ
8a2θ

− Δ1ðθÞ
bθ
2aθ

þ Δ0ðθÞ
�
Hðp1 þ p2 − p3ÞHðb2θ − 4aθcθÞ

×
ep2=Tν

ðep2=Tν þ 1Þðep3=Tν þ 1Þðeðp1þp2−p3Þ=Tν þ 1Þ : ðD28Þ

Writing η≡ cos θ, we have

−
G2

effΘνðp1Þ
8π3

Z
dp2p3dp3dηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp2
1 þ p2

3 − 2p1p3ηÞ
p jM̄ηðp1; p2; p3; ηÞj2Hðp1 þ p2 − p3ÞHðb2θ − 4aθcθÞ

×
ep2=Tν

ðep2=Tν þ 1Þðep3=Tν þ 1Þðeðp1þp2−p3Þ=Tν þ 1Þ ; ðD29Þ

where we use the definition
�
Δ2ðθÞ

3b2θ − 4aθcθ
8a2θ

− Δ1ðθÞ
bθ
2aθ

þ Δ0ðθÞ
�
≡ jM̄ηðp1; p2; p3; ηÞj2: ðD30Þ

The Heaviside step function Hðb2θ − 4aθcθÞ determines the range of integration of both η and p3. It yields

Max½η−;−1� ≤ η ≤ 1 for 0 ≤ p3 ≤ p1 þ p2; ðD31Þ

where

η− ¼ ðp1 þ 2p2Þp3 − 2p2ðp1 þ p2Þ
p1p3

: ðD32Þ

We can then write

−
G2

effΘνðp1Þ
8π3

Z
∞

0

dp2

1

ðe−p2=Tν þ1Þ
Z

p1þp2

0

p3dp3

ðep3=Tν þ1Þðeðp1þp2−p3Þ=Tν þ1Þ
Z

1

Max½η−;−1�
dη

jM̄ηðp1;p2;p3;ηÞj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp2
1þp2

3−2p1p3ηÞ
p : ðD33Þ

Defining xi ≡ pi=Tν, we obtain

−
G2

effT
6
νΘνðp1Þ
8π3

Z
∞

0

dx2
1

ðe−x2 þ 1Þ
Z

x1þx2

0

x3dx3
ðex3 þ 1Þðeðx1þx2−x3Þ þ 1Þ

Z
1

Max½η−;−1�
dη

jM̄ηðx1; x2; x3; ηÞj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21 þ x23 − 2x1x3ηÞ

p : ðD34Þ

2. Terms involving Θνðp2Þ
For a term involving Θνðp2Þ, we start from Eq. (D10) and substitute the expansion from Eq. (C9):

−
X∞
l¼0

ð−iÞlð2lþ 1Þ
8ð2πÞ5

Z
p2dp2p3dp3dðcos αÞdðcos θÞdϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aαcos2θ þ bα cos θ þ cα
p hjMj2νiHðp1 þ p2 − p3ÞHðaαcos2θ þ bα cos θ þ cαÞ

×
θlðp2ÞPlðcos α cos γ þ sin α sin γ cosðϕÞÞep1=Tν

ðep1=Tν þ 1Þðep3=Tν þ 1Þðeðp1þp2−p3Þ=Tν þ 1Þ ; ðD35Þ

where we have used the available freedom to redefine the azimuthal angle ϕ. We can now perform the ϕ integral using the
identity given in Eq. (D26):

−
X∞
l¼0

ð−iÞlð2lþ 1ÞPlðμÞ
8ð2πÞ4

Z
p2dp2p3dp3dðcos αÞdðcos θÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aαcos2θ þ bα cos θ þ cα
p hjMj2νiHðp1 þ p2 − p3ÞHðaαcos2θ þ bα cos θ þ cαÞ

×
θlðp2ÞPlðcos αÞep1=Tν

ðep1=Tν þ 1Þðep3=Tν þ 1Þðeðp1þp2−p3−μνÞ=Tν þ 1Þ : ðD36Þ
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Performing the cos θ integral yields

− 16G2
eff

X∞
l¼0

ð−iÞlð2lþ 1ÞPlðμÞ
128π3ðe−p1=Tν þ 1Þ

Z
p2dp2p3dp3dðcos αÞffiffiffiffiffiffiffiffi−aα

p
�
Δ2ðαÞ

3b2α − 4aαcα
8a2α

− Δ1ðαÞ
bα
2aα

þ Δ0ðαÞ
�

×Hðp1 þ p2 − p3ÞHðb2α − 4aαcαÞ
θlðp2ÞPlðcos αÞ

ðep3=Tν þ 1Þðeðp1þp2−p3Þ=Tν þ 1Þ : ðD37Þ

Similarly to the previous section, we define
�
Δ2ðαÞ

3b2α − 4aαcα
8a2α

− Δ1ðαÞ
bα
2aα

þ Δ0ðαÞ
�
≡ jM̄ρðp1; p2; p3; ρÞj2: ðD38Þ

We use the Heaviside step function Hðb2α − 4aαcαÞ to determine the range of integration for ρ≡ cos α and p3:

Max½ρ−;−1� ≤ ρ ≤ 1 for 0 ≤ p3 ≤ p1 þ p2; ðD39Þ

where

ρ− ¼ p1p2 − 2ðp1 þ p2Þp3 þ 2p2
3

p1p2

: ðD40Þ

We thus obtain

−
X∞
l¼0

G2
effð−iÞlð2lþ 1ÞPlðμÞ
8π3ðe−p1=Tν þ 1Þ

Z
∞

0

dp2θlðp2Þp2

Z
p1þp2

0

dp3

ðep3=Tν þ 1Þðeðp1þp2−p3Þ=Tν þ 1Þ

×
Z

1

Max½ρ−;−1�
dρ

jM̄ρðp1; p2; p3; ρÞj2PlðρÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2

1 þ p2
2 þ 2p1p2ρÞ

p : ðD41Þ

The remaining difficulty is the p2 dependence of θlðp2Þ. Since we are working in the thermal approximation in which the
only possible neutrino perturbations are local temperature fluctuations, we note that the perturbation variable Θðp2Þ admits
the form

Θðx;p2; τÞ ¼ −
d ln fð0Þν

d lnp2

δTνðx; τÞ
Tð0Þ
ν ðτÞ

: ðD42Þ

It is therefore convenient to introduce the temperature fluctuation variables [see Eq. (7) in main text] νl:

νl ≡ −4θlðp2Þ
d ln fð0Þν
d lnp2

; ðD43Þ

which are independent of p2 in the ultrarelativistic limit. We note that as the neutrinos transition to the nonrelativistic
regime, the νl variables will develop a momentum dependence due to the presence of the mass term on the left-hand side of
the Boltzmann equations. However, since we expect the neutrinos to self-decouple in the relativistic regime, we can safely
assume that νl is independent of the neutrino momentum. Substituting

θlðp2Þ ¼
1

4

ep2=Tν

1þ ep2=Tν

p2

Tν
νl ðD44Þ

in Eq. (D41) and writing down the answer in terms of xi, we obtain

−
X∞
l¼0

G2
effT

6
νð−iÞlð2lþ1ÞνlPlðμÞ
32π3ðe−x1 þ1Þ

Z
∞

0

dx2x22
ex2

1þex2

Z
x1þx2

0

dx3
ðex3 þ1Þðeðx1þx2−x3Þ þ1Þ

Z
1

Max½ρ−;−1�
dρ

jM̄ρðx1;x2;x3;ρÞj2PlðρÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21þx22þ2x1x2ρÞ

p :

ðD45Þ
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3. Terms involving Θνðp3Þ
For a term involving Θνðp3Þ, we begin from Eq. (D14) and substitute the expansion from Eq. (C9):

X∞
l¼0

ð−iÞlð2lþ 1Þ
8ð2πÞ5

Z
p2dp2p3dp3dðcos αÞdðcos θÞdϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aθcos2αþ bθ cos αþ cθ
p hjMj2νiHðp1 þ p2 − p3ÞHðaθcos2αþ bθ cos αþ cθÞ

×
eðp1þp2−p3Þ=Tνθlðp3ÞPlðcos θ cos γ þ sin θ sin γ cosϕÞ

ðep1=Tν þ 1Þðep2=Tν þ 1Þðeðp1þp2−p3Þ=Tν þ 1Þ : ðD46Þ

We can now perform the ϕ integral using the identity given in Eq. (D26):

X∞
l¼0

ð−iÞlð2lþ 1ÞPlðμÞ
8ð2πÞ4

Z
p2dp2p3dp3dðcos αÞdðcos θÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aθcos2αþ bθ cos αþ cθ
p hjMj2νiHðp1 þ p2 − p3ÞHðaθcos2αþ bθ cos αþ cθÞ

×
eðp1þp2−p3Þ=Tνθlðp3ÞPlðcos θÞ

ðep1=Tν þ 1Þðep2=Tν þ 1Þðeðp1þp2−p3Þ=Tν þ 1Þ : ðD47Þ

Performing the cos α integral yields

16G2
eff

X∞
l¼0

ð−iÞlð2lþ 1ÞPlðμÞ
128π3

Z
p2dp2p3dp3dðcos θÞffiffiffiffiffiffiffiffi−aθ

p
�
Δ2ðθÞ

3b2θ − 4aθcθ
8a2θ

− Δ1ðθÞ
bθ
2aθ

þ Δ0ðθÞ
�

×Hðp1 þ p2 − p3ÞHðb2θ − 4aθcθÞ
eðp1þp2−p3Þ=Tνθlðp3ÞPlðcos θÞ

ðep1=Tν þ 1Þðep2=Tν þ 1Þðeðp1þp2−p3Þ=Tν þ 1Þ : ðD48Þ

Writing η≡ cos θ and using the same integration limits as in Eq. (D31), we obtain

X∞
l¼0

G2
effð−iÞlð2lþ1ÞPlðμÞ
8π3ðep1=Tν þ1Þ

Z
∞

0

dp2

ep2=T þ1

Z
p1þp2

0

dp3

p3θlðp3Þ
e−ðp1þp2−p3Þ=Tν þ1

Z
1

Max½η−;−1�
dη

jM̄ηðp1;p2;p3;ηÞj2PlðηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1þp2

3−2p1p3η
p : ðD49Þ

Again, writing down the p3 dependence of θlðp3Þ in terms of the νl variables and writing the integrals in terms of the
dimensionless variables xi, we get

X∞
l¼0

G2
effT

6
νð−iÞlð2lþ1ÞνlPlðμÞ
32π3ðex1 þ1Þ

Z
∞

0

dx2
ex2 þ1

Z
x1þx2

0

dx3
x23e

x3

ð1þex3Þðe−ðx1þx2−x3Þ þ1Þ
Z

1

Max½η−;−1�
dη

jM̄ηðx1;x2;x3;ηÞj2PlðηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21þx23−2x1x3η

p :

ðD50Þ

4. Total collision term

The complete collision term can then be written as

Cð1Þ
ν ½p1� ¼

G2
effT

6
ν

4

∂ ln fð0Þðp1Þ
∂ lnp1

X∞
l¼0

ð−iÞlð2lþ 1ÞνlPlðμÞ
�
A

�
p1

Tν

�
þ Bl

�
p1

Tν

�
− 2Dl

�
p1

Tν

��
; ðD51Þ

where

Aðx1Þ ¼
1

8π3

Z
∞

0

ex2dx2
ex2 þ 1

Z
x1þx2

0

x3dx3
ðex3 þ 1Þðeðx1þx2−x3Þ þ 1Þ

Z
1

Max½η−;−1�
dη

jM̄ηðx1; x2; x3; ηÞj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21 þ x23 − 2x1x3ηÞ

p ; ðD52Þ

NEUTRINO PUZZLE: ANOMALIES, INTERACTIONS, AND … PHYS. REV. D 101, 123505 (2020)

123505-31



Blðx1Þ ¼
1

8π3x1

Z
∞

0

ex2x22dx2
ex2 þ 1

Z
x1þx2

0

dx3
ðex3 þ 1Þðeðx1þx2−x3Þ þ 1Þ

Z
1

Max½ρ−;−1�
dρ

jM̄ρðx1; x2; x3; ρÞj2PlðρÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21 þ x22 þ 2x1x2ρÞ

p ; ðD53Þ

Dlðx1Þ ¼
e−x1

8π3x1

Z
∞

0

dx2
ex2 þ 1

Z
x1þx2

0

ex3x23dx3
ðex3 þ 1Þðe−ðx1þx2−x3Þ þ 1Þ

Z
1

Max½η−;−1�
dη

jM̄ηðx1; x2; x3; ηÞj2PlðηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x23 − 2x1x3η

p ; ðD54Þ

where xi ¼ pi=Tν.
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