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The next generation of ground-based cosmic microwave background (CMB) experiments aim to
measure temperature and polarization fluctuations up to lmax ≈ 5000 over half of the sky. Combined with
Planck data on large scales, this will provide improved constraints on primordial non-Gaussianity.
However, the impressive resolution of these experiments will come at a price. Besides signal confusion
from galactic foregrounds, extragalactic foregrounds, and late-time gravitational effects, gravitational
lensing will introduce large non-Gaussianity that can become the leading contribution to the bispectrum
covariance through the connected four-point function. Here, we compute this effect analytically for the first
time on the full sky for both temperature and polarization. We compare our analytical results with those
obtained directly from map-based simulations of the CMB sky for several levels of instrumental noise. Of
the standard shapes considered in the literature, the local shape is most affected, resulting in a 35% increase
of the estimator standard deviation for an experiment such as the Simons Observatory (SO) and a 110%
increase for a cosmic-variance limited experiment, including both temperature and polarization modes up
to lmax ¼ 3800. Because of the nature of the lensing four-point function, the impact on other shapes is
reduced while still non-negligible for the orthogonal shape. Two possible avenues to reduce the non-
Gaussian contribution to the covariance are proposed: First by marginalizing over lensing contributions,
such as the Integrated Sachs Wolfe (ISW)-lensing three-point function in temperature, and second by
delensing the CMB. We show the latter method can remove almost all extra covariance, reducing the effect
to below <5% for local bispectra. At the same time, delensing would remove signal biases from
secondaries induced by lensing, such as ISW lensing. We aim to apply both techniques directly to the
forthcoming SO data when searching for primordial non-Gaussianity.
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I. INTRODUCTION

The current cosmological paradigm suggests that the early
universe requires physics that generates Gaussian, isotropic,
and adiabatic initial fluctuations. As a result, the initial
conditions of the Universe are completely characterized by
the power spectrum (the harmonic equivalent of the two-
point correlation function) of scalar fluctuations ζ, i.e.,

hζk⃗ζk⃗0 i≡ ð2πÞ3δðk⃗þ k⃗0ÞPζðkÞ: ð1Þ

Further observational constraints have found that the power
spectrum is well described by

PζðkÞ ¼ 2π2Ask−3
�
k
k�

�
ns−1

; ð2Þ

where As is the amplitude of initial fluctuations and ns is
the scale dependence of these fluctuations. There are
numerous theoretical models for their origin that are com-
patible with the current, and any near future, stringent
observational constraints on the power law above (see,
e.g., [1]). It has long been realized that additional observa-
tional constraints are required to make empirical progress in
the understanding of the early universe. One such avenue
is through measurements of primordial non-Gaussianity.
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Primordial non-Gaussianity introduces moments beyond the
two-point correlation function of Eq. (1) and has the
potential to provide critical new information on many
aspects relevant to the physics in the early universe.
Theoretically the most interesting and observationally the
most studied observable is the primordial three-point func-
tion, or its harmonic-space equivalent—the bispectrum [2].
Numerous studies have been performed, both on the
theoretical side (see, e.g., [3] and references therein),
exploring different models of the early universe, and on
the observational side, developing efficient and optimal
estimators (e.g., [4–10][]). Although no evidence exists that
the early universe requires modeling beyond the simple
power spectrum of Eq. (2), the bispectrum, and in particular
its amplitude fNL, remains one of the most illustrious targets
in cosmology. Compared to the power spectrum, the
bispectrum has many more degrees of freedom besides its
amplitude. Generally, the three-point function of primordial
scalar fluctuations is written as [11–14]

hζk⃗ζk⃗0ζk⃗00 i≡ ð2πÞ3δðk⃗þ k⃗0 þ k⃗00ÞBðk; k0; k00Þ; ð3Þ

where

Bðk; k0; k00Þ ¼ fNLAðAsÞSðk; k0; k00Þ=ðkk0k00Þ2: ð4Þ

Here AðAsÞ is a normalization function depending only on
the amplitude of the scalar power spectrum As [15], and S is
typically referred to as the shape of the bispectrum [16]. In a
statistically isotropic universe, the power spectrum is only a
function of the amplitude of the comoving wave vector k
which, with scale invariance, ensures that (to good approxi-
mation) PζðkÞ ∝ k−3. The bispectrum, on the other hand,
even in an isotropic universe, is a free function of 3 momenta
that form a connected triangle in Fourier space. Theoretical
motivations, as well as observational limitations, have
resulted in reducing the functional complexity of the
bispectrum, B, into well-defined “shapes.” These different
shapes can discriminate between different theoretical models
while the restriction to considering a few shapes also reduces
the computational challenge (as measuring the full bispec-
trum is intractable). The most well-known and best studied
shapes are the local, equilateral, and orthogonal shapes [16–
21]. Each of these shapes has been proposed to be able to
identify a specific characteristic of the early universe,
contextualized by inflation (see, e.g., Ref. [22] for a review
and references in [3] for recent developments). Planck has
put the most stringent constraints on these bispectra (among
many others) [15]. Thus far, the data suggest that there is no
evidence for a nonzero bispectrum. However, theoretically, it
is possible to identify interesting thresholds for these shapes
that separate different classes of early universe models such
as fNL ∼ 1, which separates between single- and many-field
inflationary models [12,23]. These thresholds have not yet
been reached, and it has been shown that it will generally be

quite a challenge to reach this threshold in the near future
from measurements of the bispectrum. As it stands, the local
shape is the most likely to be constrained to this level in the
next decade1 [27], while other shapes will require more
futuristic observations to reach this threshold [3,28]. While
such thresholds provide clear targets for future missions,
theoretically the window between current bounds and these
thresholds is still wide open, which motivates a continued
search.
Observationally, the CMB is still the cleanest observable

to constrain non-Gaussianities, as, to good approximation,
the temperature and polarization fluctuations in the CMB
can be described by linear physics. Hypothetically, any
observed level of non-Gaussianity in the (primary) CMB
should therefore be sourced primordially. Historically, the
linear approximation of the CMB has been sufficient to
constrain most shapes of primordial non-Gaussianity.
However, as the resolution of CMB experiments improves,
this assumption will no longer be valid and addressing
nonlinearities will be required in order to extract the
underlying primordial signal. The effects that imprint
themselves on the CMB after last scattering are known
as CMB secondary anisotropies and will produce their own
non-Gaussianity. In this work, the most important secon-
dary anisotropies are those arising from the gravitational
lensing of CMB photons by the intervening large scale
structure, which deflects photon paths by a few arcminutes,
but in a way that is coherent across several degrees. The
result is that CMB modes that were initially statistically
independent become correlated through lensing. This
induced correlation is useful as it allows us to reconstruct
maps of the lensing field and extract cosmological infor-
mation [29–32]. However, this lensing-induced correlation
also reduces the number of independent CMB modes to
average over when performing estimates of the properties
of the primordial CMB sky, such as non-Gaussianity.
In the context of bispectrum analyses, a well-studied

example of the importance of CMB lensing is through the
ISW-lensing effect [33], which generates a nonzero bis-
pectrum due to the correlation between lensing of the CMB
on small scales and the late-time integrated Sach-Wolfe
effect on large scales. Both effects are sourced by the
gravitational potential, and their correlation produces a
well-known nonzero signal. Because of the gravitational
nature of the effect, it has a local shape; i.e., long modes are
correlated with small scale power. For that reason, the ISW-
lensing bispectrum is primarily a nuisance for a primordial
signal of the local type [8,34,35]. The polarized component
of the CMB does not have an ISW signal, but instead has a
reionization signal on large angular scales [36]. Although
this does introduce a nonzero bispectrum, its amplitude is
much smaller [37]. Besides the ISW-lensing effect, many

1Although possibly not by measuring the bispectrum alone.
See, e.g., [24–26].
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other bispectra are sourced by CMB secondaries. A recent
study [38] has shown that some of these bispectra might
exceed the lensing-induced bispectra. Due to the uncer-
tainties in the astrophysical processes that source these
bispectra, their impact and amplitude are somewhat uncer-
tain and these are the topics of ongoing investigations.
Besides secondaries, galactic foregrounds will also intro-
duce nonzero bispectra [4,39,40]. Some of these can be
dealt with by proper frequency cleaning of the CMB maps,
but we should keep in mind the potential smallness of the
primordial signal, which can easily be obscured by tiny
residual foregrounds.
So far the discussion has revolved around signal con-

fusion, also known as biases to the measured non-
Gaussianity. However, the covariance of these measurements
will also be impacted by nonlinear effects. Previously,
lensing has been shown to affect the covariance of the
two-point power spectra as well as the covariance between
the two-point power spectra and the four-point-based lensing
estimates [41–46]. This work extends this analysis to the
bispectrum.
It is not uncommon in the CMB community to assume,

when constraining primordial non-Gaussianity, that the
largest contribution to the variance of the bispectrum comes
from the disconnected part of the six-point function; i.e.,
the variance is dominated by products of three power
spectra. However, it was realized in Ref. [47] that for
resolutions beyond Planck the connected parts of the six-
point function induced by lensing will quickly dominate the
contributions from the disconnected part. Since Ref. [47],
no study has been performed (to our knowledge) that
addresses the effects of this on primordial non-Gaussianity
searches, though this effect was included in Ref. [37] when
they examined the detectability of the ISW-lensing bispec-
trum. As the sensitivity of high resolution CMB experi-
ments is further pushed, and we hope to use these data to
further constrain or detect primordial non-Gaussianity, it is
timely to establish the impact of this effect in more detail
with future data in mind.
In this paper we recompute the lensing-induced covari-

ance of the observational bispectrum. For the first time, we
do this on the full sky. Because of the nature of the effect
(lensing) the largest contributions are expected on large
scales (correlated with small scale power). By working on
the full sky we ensure that we are accurately capturing the
induced extra covariance. We compare our result to those
presented in Ref. [47]. Theoretically, we limit ourselves
to contributions linear in the lensing power spectrum.
Interestingly, it was shown in, e.g., [45] that for induced
lensing covariance on measurements of the power spectrum,
terms quadratic in the lensing power spectrum are more
important. We compare our results to simulations by
applying binned and Komatsu Spergel Wandelt (KSW)
bispectrum estimators to lensed maps [5,48] and find that
our linear approximation is sufficient. In the remainder of the

paper we explore ways to deal with this extra covariance. We
investigate two avenues. First, we marginalize over known
lensing contributions to the CMB bispectrum, such as the
ISW-lensing bispectrum. Theoretically, this “new” estimator
should contain fewer lensing contributions and its lensing-
induced covariance should be reduced. Second, before
applying bispectrum estimators to the data, we try to remove
the lensing effect by delensing. Delensing was initially
introduced to remove the lensing-induced B modes in order
to aid the search for evidence of primordial gravitational
waves [49,50]. For temperature and E-mode polarization,
delensing has been shown to be useful in reducing the
lensing contributions to the two-point covariance [51]. Here,
delensing is applied to remove excess bispectrum covari-
ance. We end by discussing the practical advantages and
limitations of both techniques and comment on applying
proposed methods to upcoming CMB data.

II. THE CMB BISPECTRUM

The CMB bispectrum describes the three-point correla-
tion of temperature and polarization anisotropies in the
harmonic domain. The harmonic representation means that
the temperature and polarization anisotropies are described
in terms of their spherical harmonic coefficients. Before
presenting the bispectrum, we therefore briefly introduce
these harmonic coefficients.
The temperature harmonic modes are defined as follows:

aTlm ¼
Z
S2
d2n̂Tðn̂ÞY�

lmðn̂Þ; ð5Þ

where Tðn̂Þ denotes the CMB temperature at position n̂ ∈
S2 on the celestial sphere. In terms of the standard spherical
coordinates, the differential d2n̂ is given by sin θ dϕ dθ and
Ylm is a spherical harmonic of degree l and order m. On
sufficiently small scales we can rewrite the above using the
flat-sky approximation:

aTlm → TðlÞ≡
Z

d2n̂Tðn̂Þe−il·n̂; ð6Þ

where l is now a continuous two-dimensional (2D) vector
and n̂ is in the plane of the sky.
The linearly polarized component of the CMB is

described by two (real) fields: Qðn̂Þ and Uðn̂Þ. These
fields represent the elements of a symmetric, traceless
tensor field and are therefore coordinate-dependent quan-
tities that transform among themselves under coordinate
rotations. For that reason, it is convenient to combine these
fields into two complex “spin-2” fields on the sphere that
are defined as follows:

ð�2ÞPðn̂Þ≡ ðQ� iUÞðn̂Þ; ð7Þ

and transform as
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ð�2ÞPðn̂Þ ↦ ð�2ÞPðn̂Þe∓2iψ ; ð8Þ

under a right-handed rotation by an angle ψ of the local
coordinate system around the direction n̂.
The harmonic decomposition of ð�2ÞP is performed using

the spin-weighted spherical harmonics sYlm with spin
weights s ¼ �2 [52]. The resulting harmonic coefficients
conveniently lose the implicit coordinate dependence that
ð�2ÞP has, but still mix under parity. For that reason it is
convenient instead to use the E and B modes: two linear
combinations of the harmonic coefficients that behave as
parity eigenstates [52,53]. The E and Bmodes are related to
the ð�2ÞP field as follows:

aElm ¼ −
1

2

X
s∈�2

Z
S2
d2n̂ðsÞPðn̂ÞsY�

lmðn̂Þ;

aBlm ¼ −
1

2i

X
s∈�2

sgnðsÞ
Z
S2
d2n̂ðsÞPðn̂ÞsY�

lmðn̂Þ: ð9Þ

Under parity, the odd moments of the E-mode field gain a
minus sign. The B-mode field shows the opposite behavior:

aElm ↦ ð−1ÞlaElm;
aBlm ↦ ð−1Þlþ1aBlm: ð10Þ

Note that the harmonic coefficients of the temperature
anisotropies transform as the E modes above.
When the flat-sky approximation is applied to the Q and

U fields, the definitions of the E and B modes have to be
replaced by the following [54]:

aElm → EðlÞ≡QðlÞ cosð2ψlÞ þUðlÞ sinð2ψlÞ; ð11Þ

aBlm → BðlÞ≡ −QðlÞ sinð2ψlÞ þ UðlÞ cosð2ψlÞ; ð12Þ

where here l is a vector in the 2D Fourier plane
and ψl is the angle formed between l and the positive
lx axis.
With the harmonic modes defined, we now move on to

the bispectrum. As mentioned before, the bispectrum is the
harmonic equivalent of the three-point function and is
defined as

BX1X2X3;l1l2l3
m1m2m3

≡ haX1

l1m1
aX2

l2m2
aX3

l3m3
i; ð13Þ

with X1; X2; X3 ∈ fT; E; Bg. Under the assumption of
statistical isotropy, the bispectrum can be factored into a
Wigner 3-j symbol and the angle-averaged bispectrum
[2,55]:

BX1X2X3;l1l2l3
m1m2m3

¼
�
l1 l2 l3

m1 m2 m3

�
BX1X2X3

l1l2l3
: ð14Þ

Note that the orthogonality of the 3-j symbols [56] implies
that the above relation may be inverted; the angle-averaged

bispectrum of a (noiseless) dataset aXlm can therefore be
estimated as follows:

B̂X1;X2;X3

l1;l2;l3
¼

X
m1;m2;m3

�
l1 l2 l3

m1 m2 m3

�
aX1

l1m1
aX2

l2m2
aX3

l3m3
:

ð15Þ

The flat-sky equivalent of the bispectrum is defined as
follows:

BX1;X2;X3ðl1;l2;l3Þ≡ hXðl1ÞXðl2ÞXðl3Þi: ð16Þ

In the flat sky the analog to the angle averaged bispectrum
is the reduced bispectrum, bðl1;l2;l3Þ, which is defined
as

BX1;X2;X3ðl1;l2;l3Þ
¼ 4π2δð2Þðl1 þ l2 þ l3ÞbX1;X2;X3ðl1;l2;l3Þ; ð17Þ

where we have assumed isotropy and parity invariance in
the second line. The flat-sky reduced bispectrum is related
to the full-sky angle-averaged bispectrum as [54]

BX1X2X3

l1l2l3
¼ Iðl1;l2;l3ÞbX1;X2;X3ðl1;l2;l3Þ; ð18Þ

where Iðl1;l2;l3Þ is given by

Iðl1;l2;l3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r

×

�
l1 l2 l3

0 0 0

�
:

To maintain generality for parity even and parity odd cases
(and to express the equations cleanly), we begin with a
discussion of the variance of the full bispectrum estimator
in the flat sky

B̂X1;X2;X3ðl1;l2;l3Þ
¼ 4π2δð2Þðl1 þ l2 þ l3ÞXðl1ÞXðl2ÞXðl3Þ: ð19Þ

We note that in practice this estimator would not be used
and instead an estimator of the form described in Sec. V
would be used. However, our discussion of the full
bispectrum applies equally to these estimators, as is
discussed in Sec. V.

III. GAUSSIAN COVARIANCE

Let us start by rederiving the covariance in the weak non-
Gaussianity limit, where contributions beyond the power
spectrum can be neglected. We consider X ¼ T and drop
this index for clarity. We have
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hB̂l1l2l3B̂
�
l0
1
l0
2
l0
3
i ¼

X
mm0

�
l1 l2 l3

m1 m2 m3

��
l0
1 l0

2 l0
3

m0
1 m0

2 m0
3

�
× hal1m1

al2m2
al3m3

a�l0
1
m0

1
a�l0

2
m0

2
a�l0

3
m0

3
i: ð20Þ

To proceed we use the identity

X
m1m2

�
l1 l2 L

m1 m2 M

��
l1 l2 L0

m1 m2 M0

�
¼δLL0δMM0

2Lþ1
ð21Þ

and the definition of the power spectrum

halma�l0m0 i ¼ Clδll0δmm0 : ð22Þ

Note that in our notation Cl is the observed power
spectrum and thus includes the effects of the beam, noise,
and galactic and extragalactic foregrounds, and C̃l is the
unlensed CMB spectrum. Using these we find

hB̂l1l2l3B̂l0
1
l0
2
l0
3
i ¼ Cl1

Cl2Cl3 ½δl1l01δl2l02δl3l03
þ δl1l02δl2l0

3
δl3l01 þ δl1l03

δl2l01δl3l02

þ δl1l02δl2l0
1
δl3l03 þ δl1l03

δl2l02δl3l01

þ δl1l01δl2l0
3
δl3l02 �: ð23Þ

The diagonal then becomes

hB̂2
l1l2l3i¼

Y3
i¼1

Cli
½1þ2δl1l2δl2l3 þδl1l2 þδl2l3

þδl2l1 �;

i.e., a familiar result where the variance is enhanced by a
factor of 2 if two l’s are equal and a factor of 6 when all l’s
are equal.
The variance of the bispectrum in the flat sky is given by

an identical equation with the dirac deltas replaced with
delta functions.

IV. EFFECT OF LENSING

In the derivation above we explicitly assumed that, when
expanding the six-point function, the only remaining
contributions come from the connected two-point func-
tions. If the observed CMB was completely described
by a linear transformation of the initial fluctuation ζ,
and contained only primordial non-Gaussianity, this
assumption would be a good approximation (i.e., the weak
non-Gaussian limit). However, on small scales the observed
CMB is no longer linear. Lensing is a second-order effect
that introduces a correction to the statistical properties of
the CMB and produces nonzero connected n-point func-
tions for n > 2. First, in the derived weak non-Gaussianity
limit above, the temperature spectra Cl should be replaced
with their lensed versions. Second, and this turns out to be
more important, lensing introduces large non-Gaussianity,

which appears first in the connected four-point function. In
other words, lensing will modify the covariance as [57–59]

VarðB̂Þ¼VarðB̂ÞGþΔVarðB̂ÞGþΔVarðB̂Þconnected: ð24Þ

Here VarðB̂ÞG is the covariance in the absence of lensing,
ΔVarðB̂ÞG captures changes in the variance arising due to
lensing altering the power spectrum, and ΔVarðB̂Þconnected
contains the non-Gaussian contributions from lensing to the
covariance. The last term includes all the contributions
which cannot be expressed as a product of three power
spectra. The connected contributions can be broken down
into

ΔVarðB̂Þconnected¼VarðB̂Þ2×3pþVarðB̂Þ2p×4pþVarðB̂Þ6p:
ð25Þ

The first term on the right arises from a product of two
bispectra and is caused by terms such as the aforemen-
tioned ISW-lensing bispectrum. However, for our purposes
these corrections are subdominant to the other corrections.
The second and third terms introduce the connected four-
and six-point functions from lensing. To lowest order in
the lensing potential, ϕ, the connected four-point function
will be ∝Cl00ClC

ϕϕ
l0 . In other words, the connected con-

tribution term will start dominating the covariance when
Kðl;l0ÞClC

ϕϕ
l0 ≥ Cl. Here Kðl;l0Þ presents a coupling

kernel2 that determines the strength of the coupling
between the temperature/polarization and the lensing power
spectra. Note that this coupling kernel plays an important
role. If lensing were purely a perturbative effect, then for it
to become the dominant contribution to the covariance
would requireCϕϕ

l ≥ 1; i.e., fluctuations in the gravitational
potential need to be of Oð1Þ. Instead, the coupling kernel
assures that perturbations are still under control, but the
effect can become large as many configurations are
summed over. This can occur if the kernels couple scales
in a manner similar to the signal from primordial non-
Gaussianity. In fact, the kernel strongly couples large scale
modes and small scale power, which is very similar to the
coupling produced by primordial non-Gaussianity of the
local type. Thus we find that local non-Gaussianity
searches are most affected by lensing, while other shapes
are less affected [they are obviously affected by the first

2As we will later explain, we drop “loop” corrections in this
simple picture, which could introduce internal summations
between the kernel and the power spectra.
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term on the right-hand side of Eq. (25)]. Finally, we expect
that lensing contributions from the six-point function,
which arise at a higher order in Cϕϕ, will be subdominant.

A. Flat-sky temperature

First, we compute the lensing-induced covariance in the
flat sky. The obtained results are valid only for l≳ 10 and
accurate results are expected only when l ≳ 40 (as we do
not use the extended Limber approximation here [60,61]).
The purpose of calculating the flat-sky bispectrum covari-
ance is twofold. First, it allows us to compare our results to
those obtained in Ref. [47]. Second, even the simplest term
in the final expression for the bispectrum covariance
depends on 5 degrees of freedom. In the flat sky, it is
possible to use both angles (2) and multipoles (3), while in
the full sky these are strictly multipoles (5). For high
resolution, e.g., lmax ∼ 4000, the effect on the full-sky
covariance, which requires summing over these degrees of
freedom, becomes a computational challenge while the flat-
sky computation is more feasible. It is useful to be able to
compare the full-sky calculations to the flat sky in a range
of multipoles where they are both valid and then use the
flat-sky results to extend out to higher multipoles. In
addition, more complicated terms involve an additional
sum in the full sky and contain a Wigner 6-j symbol. As a
result, these terms are even harder to compute numerically.

Fortunately, these “loop corrections” are small, but their
smallness is easier to check in the flat sky (as they are
computationally tractable).
In the flat sky, the power spectra are given by

hT̃ðlÞT̃�ðl0Þi ¼ ð2πÞ2δðl − l0ÞC̃l; ð26Þ

hTðlÞT�ðl0Þi ¼ð2πÞ2δðl − l0ÞCl; ð27Þ

hϕðlÞϕ�ðl0Þi ¼ð2πÞ2δðl − l0ÞCϕϕ
l ; ð28Þ

where T̃ðlÞ is the unlensed CMB temperature field. In the
flat sky the lensed temperature field can be written as [54]

TðlÞ¼ T̃ðlÞ−
Z

d2l0
1

ð2πÞ2 T̃ðl
0
1Þϕðl−l0

1Þðl−l0
1Þ ·l0

1;

ð29Þ

to linear order in ϕ. Note that while the correction to the
variance from power spectrum changes [the second term in
Eq. (24)] requires expanding the fields to second order in ϕ,
the connected term, which is the focus of this paper, can be
computed to the same order in Cϕϕ by expanding only to
first order in ϕ.
First, let us define the total covariance in the flat sky

VarðB̂Þ≡ hB̂B̂�i ¼ ð2πÞ2δð2Þ
�X

i

li

�
ð2πÞ2δð2Þ

�X
i

l0
i

�
hTðl1ÞTðl2ÞTðl3ÞT�ðl0

1ÞT�ðl0
2ÞT�ðl0

3Þi: ð30Þ

Next, we compute the VarðB̂Þ2p×4p contribution to the bispectrum covariance. The details of this calculation can be found
in Appendix A 1. We find

VarðB̂Þ2p×4p¼ð2πÞ8δð2Þð0Þδð2Þðl1−l0
1Þδð2Þ

�X
i

li

�
δð2Þ

�X
i

l0
i

�
Cl1C

ϕϕ
l1
l1 ·l2C̃l2l1 ·l0

2C̃l0
2
þ35 prem:

þð2πÞ6δð2Þðl1−l0
1Þδð2Þ

�X
i

li

�
δð2Þ

�X
i

l0
i

�
Cl1

Z
d2n̂Cϕϕ

jl2−l0
3
jGðl2;l0

3ÞC̃l2
G�ðl0

2;l3ÞC̃l0
2
þ35 prem:

þð2πÞ6δð2Þðl1−l0
1Þδð2Þ

�X
i

li

�
δð2Þ

�X
i

l0
i

�
Cl1

Z
d2n̂Cϕϕ

jl2−l0
2
jGðl2;l0

2ÞC̃l2Gðl3;l0
3ÞC̃l3

þ35 prem:; ð31Þ

where we have defined

Gðli;ljÞ ¼ li · ðli − ljÞein̂·ðli−ljÞ ð32Þ
and used

δð2Þðli þ ljÞ ¼
Z

d2n̂
ð2πÞ2 e

iðliþljÞ·n̂: ð33Þ

The second and third terms contain an explicit coupling
which we rewrote in terms of an integral over the line of
sight direction. This was done to highlight the similarity

with the full-sky result in the next section. In the language
of field theory these terms present one-loop corrections.
The first term does not have such a loop structure. Instead
there is a simple coupling described by the inner product
between l2=l0

2 and l1. We find that this term dominates
the lensing-induced contribution to the covariance. The
36 permutations of the above term are introduced by the
symmetry breaking of the 2p × 4p structure. However,
when we compute the variance in Sec. VI, symmetries in
the multipoles are restored and these permutations intro-
duce an overall multiplicity.
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B. Full-sky temperature

In this section we derive the full-sky expression for the
lensing-induced bispectrum covariance. The main purpose
of this calculation is to obtain a better estimate of the effect
on a large angular scale (i.e., l≲ 10). As discussed earlier,
squeezed configurations are expected to be the most
important, and hence an accurate computation of the extra
covariance on large scales should provide a much better
estimate than the flat-sky approximation.
Let us write the lensed alm in terms of the potential and

the unlensed ãlm

alm ¼ ãlm þ
Z

d2n̂Y�
lmðn̂Þ∇iϕðn̂Þ∇iT̃ðn̂Þ þ � � � ; ð34Þ

where T̃ðn̂Þ is the unlensed CMB temperature in direc-
tion n̂. We can expand the second term in spherical

harmonics as well (working to lowest order in the lensing
potential ϕ),

alm¼ ãlmþ
X
LM

X
l0m0

ϕ�
LMã

�
l0m0

�
l L l0

m M m0

�
FlLl0 : ð35Þ

Here the coupling matrix is given by [55]

FlLl0 ¼
�ð2lþ 1Þð2l0 þ 1Þð2Lþ 1Þ

4π

�
1=2

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þl0ðl0 þ 1Þ

p �
l l0 L

0 −1 1

�
; ð36Þ

which is nonzero only when lþ l0 þ L ¼ even.
We aim to compute

VarðB̂Þ≡ hB̂l1l2l3B̂
�
l0
1
l0
2
l0
3
i ¼

X
mm0

�
l1 l2 l3

m1 m2 m3

��
l0
1 l0

2 l0
3

m0
1 m0

2 m0
3

�
hal1m1

al2m2
al3m3

a�l0
1
m0

1
a�l0

2
m0

2
a�l0

3
m0

3
i: ð37Þ

For simplicity we define

Qlm ≡X
LM

X
l0m0

ϕ�
LMã

�
l0m0

�
l L l0

m M m0

�
FlLl0 : ð38Þ

We can then write schematically

ΔVarðB̂Þ2p×4p ¼
X
mm0

�
l1 l2 l3

m1 m2 m3

��
l0
1 l0

2 l0
3

m0
1 m0

2 m0
3

�
δl1l01δm1m0

1
Cl1

�
hãl2m2

ãl3m3
Q�

l0
2
m0

2
Q�

l0
3
m0

3
ic

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ð1Þ

þ hãl2m2
Ql3m3

ã�l0
2
m0

2
Q�

l0
3
m0

3
ic

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ð2Þ �
þ permþOðϕ3Þ; ð39Þ

where the subscript c shows that we keep only the connected terms. We compute these contributions term by term, and the
details can be found in Appendix A 2. After some algebra we find

ΔVarðB̂Þ2p×4p ¼ δl1l01Cl1C
ϕϕ
l1
Fl3l1l2C̃l2Fl0

3
l1l02

C̃l0
2

1

2l1 þ 1
þ 35 prem:

þ δl1l01
Cl1

ð−1Þl3þl0
2

X
L

Cϕϕ
L

�
l1 l3 l2

L l0
2 l0

3

	
Fl0

2
Ll2

C̃l2Fl0
3
Ll3C̃l3 þ 35 prem:

þ δl1l01
Cl1

ð−1Þl2þl0
2

X
L

Cϕϕ
L

�
l1 l2 l3

L l0
2 l0

3

	
Fl0

3
Ll2

C̃l2Fl3Ll02
C̃l0

2
þ 35 perm: ð40Þ

The above has an identical structure to the flat-sky result.
There are three distinguishable contributions. The last
two contain an explicit internal sum with a coupling des-
cribed by a Wigner 6-j symbol (see Appendix A 2). In this
form we can see the correspondence to terms found in
studying the CMB lensing power spectrum. The first term
is analogous to the reconstructed Cϕϕ term while the other

terms are analogous to the N1 bias terms [62,63]. Note that
the normal Gaussian term would be analogous to the N0
bias. The second and the third contributions are challenging
to compute numerically because the Wigner 6-j is slow to
compute. Fortunately, the first term dominates this sum,
and so in this work we focus on computing the first term
(this assumption is verified in Appendix B). We note that
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the first term still has five independent degrees of freedom,
which equates to a five-dimensional sum when estimating
VarðfNLÞ and so is slow to evaluate.

C. Generalization to polarization

For simplicity in the previous section we focused on the
effect on temperature only maps; however, non-Gaussianity

estimators use E and B mode maps as well, and
thus we need to include the effects of lensing on these
fields.

1. Flat sky

First, we perform the calculation in the flat sky. The
bispectrum variance is now given by

hBX1;X2;X3BX0
1
;X0

2
;X0

3
�i ¼ ð2πÞ2δð2Þ

�X
i

li

�
ð2πÞ2δð2Þ

�X
i

l0
i

�
hX1ðl1ÞX2ðl2ÞX3ðl3ÞX0

1
�ðl0

1ÞX0
2
�ðl0

2ÞX0
3
�ðl0

3Þi: ð41Þ

The effect of lensing on polarization maps is given by

EðlÞ � iBðlÞ ¼ ẼðlÞ � iB̃ðlÞ −
Z

d2l0

ð2πÞ2 e
�2iðψl0−ψlÞðẼðl0Þ � iB̃ðl0ÞÞϕðl − l0

1Þðl − l0
1Þ · l0

1; ð42Þ

where ψl is the angle between the vector l and the lx axis. Thus we see that the flat-sky results can be immediately
generalized by making the following replacement:

ðl1 þ l2Þ · l2C̃l2 ↔ GX1;X2

l1;l2
; ð43Þ

where we have defined GX1;X2

l1;l2
as

GX1;X2

l1;l2
¼

8>>><
>>>:

ðl1 þ l2Þ · l2C̃
TX2

l2
; if X1 ¼ T

ðl1 þ l2Þ · l2½cos 2ðψl1
þ ψl2

ÞC̃EX2

l2
− sin 2ðψl1

þ ψl2
ÞC̃BX2

l2
�; if X1 ¼ E

ðl1 þ l2Þ · l2½cos 2ðψl1
þ ψl2

ÞC̃BX2

l2
þ sin 2ðψl1

þ ψl2
ÞC̃EX2

l2
�; if X1 ¼ B

: ð44Þ

Thus the first line of Eq. (31), which is the leading contribution, is given by

VarðB̂Þ2p×4p ¼ ð2πÞ8δðl1 − l0
1Þδð2Þ

�X
i

li

�
δð2Þ

�X
i

l0
i

�
C
T;X1;X0

1

l1
Cϕϕ
l1
GX2;X3

l2;l3
G

X0
2
;X0

3

l0
2
;l0

3
þ 35 perm: ð45Þ

2. Full sky

Now working in the full sky, the bispectrum variance is given by

hBX1;X2;X3

l1l2l3
BX0

1
;X0

2
;X0

3
�
l0
1
l0
2
l0
3
i ¼

X
mm0

�
l1 l2 l3

m1 m2 m3

��
l0
1 l0

2 l0
3

m0
1 m0

2 m0
3

�
haX1

l1m1
aX2

l2m2
aX3

l3m3
aX

0
1
�
l0
1
m0

1
aX

0
2
�
l0
2
m0

2
aX

0
3
�
l0
3
m0

3
i: ð46Þ

The effect of lensing on E and B modes (in the full sky) is

δaE ¼
X
L;M

X
l0;m0

�
l L l0

m M m0

�
ϕ�
L;M½Fþ2

l;L;l0 ã
E�
l0;m0 − iF−2

l;L;l0 ã
B�
l0;m0 �;

δaB ¼
X
L;M

X
l0;m0

�
l L l0

m M m0

�
ϕ�
L;M½Fþ2

l;L;l0 ã
B�
l0;m0 þ iF−2

l;L;l0 ã
E�
l0;m0 �; ð47Þ

where
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F�s
l;L;l0 ¼

1

4
½LðLþ1Þþl0ðl0 þ1Þ−l0ðl0 þ1Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1ÞLðLþ1Þl0ðl0 þ1Þ

4π

r ��
l L l0

s 0 −s

�
�
�

l L l0

−s 0 þs0

��
: ð48Þ

We note that Fþs
l;L;l0 is only nonzero when lþ Lþ l0 ¼

even and that F−s
l;L;l0 is only nonzero when lþ Lþ

l0 ¼ odd. As the manipulations in Sec. IV B did not utilize
any properties of the lensing kernel Fl;L;l0 it is trivial to
generalize to the polarization result, with the caveat that not
all of the permutations are equivalent. To obtain the general
result we perform the following replacement:

Fl1Ll2C̃l2 ↔ GX1;X2

l1Ll2
; ð49Þ

where we have defined GX1;X2

l1Ll2
as

GX1;X2

l1Ll2
¼

8>>><
>>>:

Fl1Ll2C̃
TX2

l2
; if X1 ¼ T

Fþ2
l1Ll2

C̃EX2

l2
− iF−2

l1Ll2
C̃BX2

l2
; if X1 ¼E

Fþ2
l1Ll2

C̃BX2

l2
þ iF−2

l1Ll2
C̃EX2

l2
; if X1 ¼B

: ð50Þ

As a concrete example, the first term in Eq. (40) would be

ΔVarðB̂Þ2p×4p ¼ δl1l01
C
T;X1;X0

1

l1
Cϕϕ
l1

GX2;X3

l3l1l2
G

X0
2
;X0

3

l0
3
l1l02

2l1 þ 1
: ð51Þ

Note that as F−s
l;L;l0 is only nonzero when

lþ Lþ l0 ¼ odd, some of these terms simplify if the
bispectrum estimator only measures even parity
(lþ Lþ l0 ¼ even) or odd parity (lþ Lþ l0 ¼ odd)
bispectra. Thus for scalar primordial bispectra, which
typically have l1 þ l2 þ l3 ¼ even, the contributions to
(51) from B-mode fields will be zero.

V. RELATION TO PRIMORDIAL
NON-GAUSSIANITY CONSTRAINTS

The above discussion has focused on the variance of
the angle averaged bispectrum or the full bispectrum in
the flat sky. In practice, calculating either of these has
some challenges. First, the expected signal-to-nose ratio
(SNR) in any triplet of these estimators is expected to be
small. Second, explicitly calculating all of the bispectrum
triplets is computationally prohibitive. To overcome these
issues it is common to measure template amplitudes
instead defined as [5]

f̂iNL ¼ N
X

li;Xi;Yi

bi;X1;X2;X3

l1;l2;l3

�
l1 l2 l3

m1 m2 m3

�
WX1;X2;X3;Y1;Y2;Y3

l1;m1;l2;m2;l3;m3
aY1

l1m1
aY2

l2m2
aY3

l3m3
; ð52Þ

where f̂iNL is the estimated amplitude of the bispectrum with reduced bispectrum biðl1;l2;l3Þ, WX1;X2;X3;Y1;Y2;Y3

l1;m1;l2;m2;l3;m3
is a set

of weight functions, and N is the estimator normalization. For the minimum variance estimator (in the case of weak
primordial non-Gaussianity and Gaussian CMB) the weight functions are separable and correspond to inverse variance
filtering.
The variance of the template amplitudes is given by

hf̂iNLf̂iNLi ¼ N2
X
li;Xi

X
l0i;X

0
i

bi;X1;X2;X3

l1;l2;l3

�
l1 l2 l3

m1 m2 m3

�

× hC−1½a�X1

l1m1
C−1½a�X2

l2m2
C−1½a�X3

l3m3
C−1½a��X0

1

l0
1
m0

1
C−1½a��X0

2

l0
2
m0

2
C−1½a��X0

3

l0
3
m0

3
i
�
l0
1 l0

2 l0
3

m0
1 m0

2 m0
3

�
b
i;X0

1
;X0

2
;X0

3

l0
1
;l0

2
;l0

3
; ð53Þ

where C−1½a�Xl;m ≡P
l0;m0;X0 C−1X;X0

l;m;l0;m0aX
0

l0;m0 . When the covariance is diagonal inm space (which is generally a reasonable
approximation), this can then be simply related to the results of the previous section as

hf̂iNLf̂iNLi ¼ N2
X
li;Xi

X
l0i;X

0
i

bi;X1;X2;X3

l1;l2;l3
C−1C−1C−1hBX1;X2;X3

l1;l2;l3
B
X0
1
;X0

2
;X0

3

l0
1
;l0

2
;l0

3
iC−1C−1C−1b

i;X0
1
;X0

2
;X0

3

l0
1
;l2;0l03

; ð54Þ
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where for clarity we suppressed the indices on the inverse covariance matrix. The template variance is thus just a weighted
sum of the variance of the angle averaged bispectrum. For example, we find the leading order temperature-only contribution
to be

hf̂iNLf̂iNLi2p×4p ¼ 36N2
X
li

X
l0i

bl1;l2;l3
C−1C−1C−1δl1l0

1
Cl1

Cϕϕ
l1
Fl3l1l2C̃l2Fl0

3
l1l02

C̃l0
2

1

2l1 þ 1
C−1C−1C−1bl0

1
;l0

2
;l0

3
: ð55Þ

In the flat-sky regime the sums are replaced with integrals, the fl; mg pairs with vectors l, and the Wigner 3-j with dirac
delta functions δð2ÞðPi liÞ. For example, the leading order term is given by

hf̂iNLf̂iNLi2p×4p ¼ 36N2

Z Y
i

d2li

ð2πÞ2
d2l0

i

ð2πÞ2 ð2πÞ
8δð2Þ

�X
li

�
δð2Þ

�X
l0
i

�
bl1;l2;l3δ

ð2Þðl1 − l0
1ÞC−1C−1C−1

× Cl1C
ϕϕ
l1
l1 · l2C̃l2l1 · l0

2C̃l0
2
C−1C−1C−1bl0

1
;l0

2
;l0

3
: ð56Þ

The subsequent sections explore how the lensing contri-
butions impact measurements of the primordial template
amplitudes.

VI. HOW LARGE IS THE EFFECT?

We use the results of Sec. IV to compute the size of the
lensing-induced variance on primordial local non-
Gaussianity to first order in Cϕϕ for two cases: temperature
only and temperature and E-mode polarization. Summing
over all configurations that contribute to the six-point
function is computationally prohibitive as there are five
or six nested sums that need to be evaluated to a large lmax
as well as Wigner 6-j terms that are slow to calculate. In
order to estimate the size of this term we only evaluate the

leading term, shown in Eq. (A24). We expect the term in
Eq. (A24) will be the dominant contribution to the
bispectrum variance, and we checked this for low l, where
the computation of all the terms is feasible, and found that
to be the case. This is also justified from considering
lensing reconstruction. The term in Eq. (A24), which is
analogous to the reconstructedCϕϕ term, is the leading term
and the other terms, which are analogous to the N1 bias
terms [62,63], are subdominant. Finally we checked this in
simulations by isolating the nonleading terms, using the
procedure described in Appendix B, and found they
contribute only around ∼10% of the total lensing variance.
To further speed up the calculation, we used a combi-

nation of the full-sky and flat-sky expressions to compute

(a) (b)

FIG. 1. The standard deviation of the estimator f̂localNL as a function of maximum scale, for the case of Gaussian unlensed CMB fields,
blue curve, when lensing effects are included only via their contribution to the power spectrum, orange curve, and including the non-
Gaussian lensing contributions, green curve. We also plot the measurements from our non-Gaussian simulations, red curve. We see that
for lmax ≳ 2000 the error begins to saturate due to the variance sourced by CMB lensing, which is the subject of this paper, and that
including even smaller scales results in an increase in the estimator variance (i.e., a decrease in the constraining power). The upturn
occurs as the estimator does not account for the lensing non-Gaussianity and is suboptimally weighting the smallest scales.
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the effect. We used the full-sky equations when l1 in
Eq. (40) satisfied l1 ≤ 40 and the flat-sky equations for the
rest. This enabled us to utilize the fast evaluation of the flat-
sky terms. This also provides a robustness check on our
code as we computed the suppression using the flat-sky and
full-sky equations for a subset of configurations, those with
40 ≤ l1 < 80, and found percent level agreement. Finally,
we also replace the unlensed power spectra in Eq. (A24)
with the lensed power spectra. In [37] they found that
replacing the unlensed spectra with the lensed equivalents
was a reasonable approximation to including higher order
terms in Cϕϕ, and we assume that this approximation will
also improve our estimation of the extra variance.
In Figs. 1(a) and 1(b) we plot the bispectrum estimator

standard deviation as a function of lmax for the temperature
only and combined temperature and polarization cases. We
find that this lensing trispectrum term becomes the dom-
inant source of noise at l > 2000 which means that
pushing to scales much smaller than those modes already
probed by Planck results in no improvement to the local
non-Gaussianity constraint. Note that the connected tris-
pectrum contribution to the bispectrum variance is far more
significant than the lensing-induced variance accounted for
when calculating the Gaussian variance with lensed, rather
than unlensed, CMB power spectra [i.e., the ΔVarðB̂ÞG
term in Eq. (24)]. In Figs. 1(a) and 1(b) we also plot the
results from analyzing a set of 553 temperature and 200
temperature and polarization lensed CMB realizations with
a binned bispectrum estimator [9,48] as implemented in
[40]. The lensed simulations were generated with the
public code PIXELL

3 which obtains lensed CMB maps on
a cylindrical projection of the sky using bicubic spline

interpolation. We find that the effect on the lensed simu-
lation is similar to our first order calculation, despite the
fact that the simulations are correct to all orders in ϕ
(assuming that ϕ is Gaussian). Three points to note: first,
the adjacent points from the binned bispectrum estimator
are relatively strongly correlated. Second, for small lmax we
see that the theory prediction is less than the result without
lensing. This is because our non-Gaussian theory calcu-
lation does not include the slight information loss that
occurs due to our slightly suboptimal bin choice for our
binned bispectrum estimator. Third, at small scales we
actually see an increase in the variance as we push to
smaller scales, indicating a reduced ability to constrain non-
Gaussianity. This feature arises as the estimator weighs
modes by the Gaussian variance only, neglecting the non-
Gaussian variance. Thus there are configurations, which in
a Gaussian sky would contribute more to the signal than the
noise, but that for a non-Gaussian sky would contribute
more noise than signal. This results in the noise increasing
faster than the constraining power and hence an increasing
error bar. In short the estimator is optimal only for a
Gaussian sky and is suboptimal on a strongly non-
Gaussian sky.
We also verified that we obtain the same results, but

without the degradation from binning, from using a KSW
estimator [5,6]. These results are broadly consistent with
the results of Ref. [47]. We see a slightly smaller increase in
the standard deviation at low l and a slightly lower increase
at high l, we find an increase in the standard deviation by
∼25% at l ¼ 2500, whereas Ref. [47] finds ∼30%. The
differences are likely to arise due to our treatment with the
full-sky formalism, whereas Ref. [47] only used the flat-sky
approximation.
In Figs. 2(a) and 2(b) we explore the impact of

lensing variance on searches for equilateral and orthogonal

(a) (b)

FIG. 2. The standard deviation of the estimators f̂equilNL and f̂orthNL for the case of Gaussian fields (both with and without lensing power)
and including the lensing non-Gaussian contributions. Here we see that these configurations are not as affected by lensing as the local
configuration.

3https://github.com/simonsobs/pixell
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non-Gaussianity, using temperature and polarization maps.
We find that the equilateral shape is almost completely
unaffected while the orthogonal shape is suppressed above
l ¼ 2500. Note that as the standard deviation for the
orthogonal shape decreases more slowly with lmax than
the local shape, the constraints for the orthogonal shape are
less impacted than the local shape [8,64]. There is a simple
explanation for why the local shape is more affected than
the equilateral shape. The local estimator probes squeezed
shapes as local non-Gaussianity is the modulation of small
scale power by a long wavelength mode. The effect of
lensing on the CMB is a modulation of small scale power
by degree scale lenses. This means that the part of the
local bispectrum estimator which probes small scales is
essentially performing a suboptimal quadratic lensing
reconstruction (see, e.g., Ref. [29] for details on lensing
reconstruction). This suboptimal lensing reconstruction
means that there is a contribution to the estimator variance
from the lensing potential power spectrum. For the equi-
lateral configuration the lensing reconstruction is highly
suboptimal, as it is less sensitive to the modulation of small
scales by the large scales, and hence is less degraded.
Next we examine how important this effect is for real

experiments. In Fig. 3(a) we plot the size of this for an
idealized version of the Planck satellite by using noise
levels from [65]. For simplicity we simulate full-sky maps
as this drastically reduces the time to estimate the variance
from simulations (by removing the need to calculate the
normalization from simulations and eliminating the linear
term from the estimator; see, e.g., [66,67] for a description
of the linear term and [8] for a description of how this can
efficiently be calculated with simulations). We approximate
the effect of observing part of the sky by increasing the

standard deviation by 1=
ffiffiffiffiffiffiffiffi
fsky

p
, where fsky is the fraction of

sky the experiment would observe and fsky ≈ 0.8 for
Planck [44,45]. We find that for the Planck experiment
the lensing variance is a small effect, resulting in <10%
increase in the noise. In Fig. 3(b) we plot the size of this
for an idealized version of the Simons Observatory (SO).
The Simons Observatory is an upcoming CMB experiment
located in the Atacama desert [68]. For simplicity we again
use full sky maps with homogeneous noise to avoid
requiring a linear term in our estimator. In reality the
experiment will observe ∼40% of the sky with anisotropic
noise, and we approximate these effects with the appro-
priate fsky factor. We use noise power spectra, including the
effects of atmosphere, from [68]. We find that SO is
significantly affected by this effect with almost all the
gains of pushing to smaller scales eradicated by the
contribution of the lensing variance.
These analytical calculations can also be used to estimate

these effects for realistic observations, including sky cuts,
by scaling the results with the appropriate fsky factors, as
was done for the Planck and SO forecasts. More accurate
forecasts would require simulations as analytically comput-
ing the mask-induced mode coupling is too complex (this is
true even for the Gaussian contributions to the estimator
variance).
Monte Carlo methods are used extensively in bispectrum

estimation. However, one has to be mindful of the extra
lensing variance when using these Monte Carlo methods.
When estimating non-Gaussianity on masked sky maps, it
is important to accurately compute the estimator normali-
zation, which is related to the six-point function of the
estimator (when applied to Gaussian maps). Typically the
normalization of the bispectrum estimator is calculated

(a) (b)

FIG. 3. The standard deviation of the estimator f̂localNL , for a Planck-like experiment and a Simons Observatory–like experiment. The
difference between these and Figs. 1(b) and 2(b) is the inclusion of instrumental noise and scaling them to the observed sky fractions.
This shows that the extra lensing variance, if unmitigated, would remove most of the improvements expected from an SO-like
experiment.
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from simulations via a Monte Carlo average, for example,
as described in [8]. If the maps used for this ensemble
average include the effect of lensing, then there will be an
additional, and unwanted, contribution to the estimator
normalization from the lensing trispectum. This has the
potential to introduce a bias that would reduce the non-
Gaussianity signal (as the normalization would be too
large). If bispectrum estimator normalizations are to be
calculated from simulations, then the simulations need to
be Gaussian simulations.

VII. REMOVING THE VARIANCE WITH ISW-
LENSING MARGINALIZATION?

One method for removing this variance would be to
deproject the modes that are sourcing the extra variance
from the estimator. Deprojecting modes will result in an
increase of the standard deviation (as there are fewer modes
to estimate primordial non-Gaussianity with); however,
a priori it is not obvious how much constraining power
would be lost. This deprojection would be done by

f̂noise−freeNL ¼ f̂NL −
X
li;mi

Wl1;l2;l3al1;m1
al2;m2

al3;m3
; ð57Þ

where the optimal weights depend on the full six-point
function. Computing the full six-point function is compli-
cated, and it will be difficult to efficiently implement this
optimally. However, from the discussion of this effect in
Sec. VI we know that the modes we wish to remove are
actually of the following schematic form:

f̂noise−freeNL ¼ f̂NL −
X
li;mi

Wl1;l2;l3
al1;m1

ϕ̂l1;m1
; ð58Þ

where ϕ̂ is a quadratic reconstruction of the lensing
potential. This form is very similar to a known bias to
primordial non-Gaussianity searches, the ISW-lensing bis-
pectrum [33,37], and so suggests that this effect could
potentially be reduced by marginalizing over/jointly fitting
for the amplitude of the ISW-lensing bispectrum.
Using a calculation to leading order in Cϕϕ

l we calculate
the expected impact of ISW-lensing marginalization, which
is shown in Fig. 4. We see that ISW-lensing marginalization
should be quite effective at removing this bias. In the same
figure we also plot the result of using ISW-lensing
marginalization on a set of lensed simulations and we find
that it is significantly less effective. First, we should note
that this marginalization is more effective than Fig. 4
implies. This is because performing the ISW-lensing
marginalization increases the estimator standard deviation
(as it removes signal modes which are potentially con-
taminated) so the slight improvement seen in Fig. 4 means
that the cost of performing the marginalization is slightly
outweighed by the removal of some of the lensing variance.
Next we note that the ISW-lensing marginalization is very

sensitive to the shape of the measured bispectra. When the
ISW-lensing marginalization is performed using the binned
estimator, it is even less effective than the KSW estimator,
whose results are plotted in Fig. 4. This is because, unlike
the KSW estimator, the binned estimator does not use
the exact ISW-lensing template but rather a binned version
of it for the ISW-lensing marginalization. This result
suggests an explanation for the difference between our
theoretical calculation and the simulation results. It sug-
gests that higher order terms distort the shape and reduce
the effectiveness of this marginalization.

VIII. DELENSING

Another possibility for removing this effect is delensing.
Delensing is the process of remapping the observed
temperature and polarization measurements by an estimate
of the lensing potential in order to estimate the unlensed
fields [49,69]. The authors of Ref. [51] studied the impact
of delensing on the lens-induced variance of the measured
CMB power spectra, which is a four-point function over
the CMB fields [44], and on the cross-covariance between
the reconstructed lensing power spectrum and the CMB
power spectra, which is a six-point function in terms of the
CMB fields [45,46]. They found that delensing almost
completely removes these lensing-induced variances, sug-
gesting that a similar result might hold for the measurement
of primordial bispectra. We note that the ISW marginali-
zation discussed in Sec. VII is similar to the delensing
procedure; the lensing field is reconstructed and subtracted
off. However, the weights are suboptimal (as modes are
downweighted by the ISW lensing power spectrum) and,

FIG. 4. The standard deviation of the estimator f̂localNL , with ISW-
lensing marginalization. Theoretically, we find that ISW mar-
ginalization reduces the contribution of the lensing four-point
function to the variance from the level predicted (orange) to the
level shown in green. However, when we compare the results
from a suite of simulations with ISWmarginalization (purple) to a
suite of simulations without (red), we see that the variance is only
slightly reduced.
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even with optimal weighting, would only be equivalent to
delensing at linear order; the delensing procedure used in
this section captures part of the higher order terms.
Following the methods of [51,70,71] we use the mea-

surements of the lensing potential to delens the CMB. The
measured lensing potential could either come from
reconstruction of the lensing potential from CMB maps
[29,55,72] or from using a tracer, such as the cosmic
infrared background [73,74]. For large scale lenses, which
are the lenses we wish to remove, lensing reconstructions
from CMB maps provide the highest fidelity lensing
potential measurements. However, this procedure can
introduce biases from correlations between the lensing
potential noise (which is related to the instrument noise and
the CMB modes) and the temperature and polarization
maps. When delensing the power spectrum, these biases
can be significant [75–77] and introduce additional non-
Gaussianity [78]. In this section we explore the effective-
ness of using lensing potential measurements from CMB
maps to remove the lensing contribution to the bispectrum
variance.
We use the minimum variance quadratic estimator [29] to

reconstruct the lensing potential using simulations of CMB
maps as will be observed by SO. We use the public
CMBLENSPLUS package4 to perform this reconstruction
and follow [63] by using the lensed CMB fields in the
estimator weights to reduce the higher order biases. We
then use this reconstructed lensing potential map to delens
the maps by remapping the pixels as

ˆ̃Tðn̂Þ ¼ T̂ðn̂ −∇ϕ̂Wienerðn̂ÞÞ;
ˆ̃Pðn̂Þ ¼ RP̂ðn̂ −∇ϕ̂Wienerðn̂ÞÞ; ð59Þ

where P is the polarization tensor and R is a polarization
rotation matrix which is very nearly unity [79]. Motivated
by the results of [51], we use Wiener filtered lensing
potential maps. We then use the binned bispectrum esti-
mator to measure the variance of a set of 218 of delensed
simulations.
In Figs. 5(a) and 5(b) we examine how delensing would

impact measurements of local and orthogonal non-
Gaussianity for an idealized SO-like experiment. We find
that delensing almost completely removes the contribution
of lensing to the variance. Further we find no biases or extra
contributions to the variance from higher order terms in the
zero-signal limit. The lack of higher order biases can be
simply understood. In a perturbative manner the effect of
delensing can be described as

ˆ̃Tðn̂Þ ¼ T̂ðn̂Þ −∇T̂ðn̂Þ∇ϕ̂Wienerðn̂Þ: ð60Þ

Thus in bispectra analyses this will introduce bispectra
terms of the schematic form

hal1;m1
al2;m2

al3;m3
ϕ̂l0

3
;m0

3
i: ð61Þ

As ϕ̂ is proportional to the product of two maps, this term
will vanish for Gaussian fields. This argument extends
to higher orders in ϕ̂, and so we do not expect biases
of this form. There is the potential that by remapping these
pixels we will lose some of the original bispectrum signal.
It was shown in [34,80] that the effect of lensing has a

(a) (b)

FIG. 5. The standard deviation of the estimators flocalNL and forthNL after delensing for an idealized SO-like experiment. As in Fig. 1(b) we
show how the unlensed standard deviation (blue curve) is increased by the additional lensing-induced variance (orange curve). However,
we find that, for an SO-like experiment, delensing is able to almost completely remove the contribution of the lensing variance (green
curve). This is the case for both the local and the orthogonal shapes.

4https://github.com/toshiyan/cmblensplus.git
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negligible effect on the primordial bispectrum signal.
When we delens we are performing an identical oper-
ation to the original lensing operation, and thus we
expect the impact on the primordial signal to also be
minimal. However, the delensing case is potentially more
complicated as the reconstructed lensing potential may
contain some of the primordial signal (which is not the
case when the field is lensed with the true lensing
potential). As discussed above, lensing can be thought
of as modulating the small scale power by a large scale
lens. When we delens, we reconstruct the large scale
modulation field using the small scales and then remove
it. Local non-Gaussianity is also a modulation of small
scales by a large scale mode. This means that the
reconstruction of the large scale lens may also “recon-
struct” the primordial large scale modulation field, which
is essentially the large scale CMB mode. Thus when we
delens we could also be removing the primordial non-
Gaussianity. The projection of the primordial field onto
the lensing potential reconstruction is expected to be
small and thus should have a small effect on the
primordial non-Gaussianity amplitude.5 We investigated
this effect using the following process. First, we gen-
erated maps containing local non-Gaussianity using the
methods described in [81,82]. Then we lens these

simulations, add noise for an SO-like experiment, and
then delens, as described above. We then analyze these
simulations with our non-Gaussianity pipeline. As these
simulations are computationally intensive to run, we use
a sample variance cancellation technique to reduce the
required number of simulations. We analyze the same
CMB realization with fNLlocal ≠ 0 and also with fNLlocal ¼ 0

and then look at the difference in the measured values of
flocal. Through this difference we can cancel the noise
from the primary CMB and instrument. We find this
reduces the number of simulations by 2 orders of
magnitude. When simulating maps with flocalNG ¼ 10, we
find that after delensing the average recovered value is
f̂NLlocal ¼ 8.98� 0.16. This shows that delensing is intro-
ducing a multiplicative bias of 10.1%� 1.6%, which we
believe is by the above mechanism. This bias would need
to be accounted for in future analyses but as it is small it
does not invalidate the use of delensing. Equivalently this
bias would mean that the error bars would be boosted by
∼10%. This bias can be modeled by considering the
leading order effect of delensing. We provide the details
of the calculation in Appendix C, and here we summarize
the result. The measured amplitude after delensing is
given by

hf̂delensedNL i ¼ fNL

�
1 −

6

N

X
B̃X1;X2;X3

l1;l2;l3
CX2;S3
l2

FS3
l3;l1;l2

Wl1Al1B
X1;α;β
l1;la;lb

gα;β�la;lb;l1
1

2l1 þ 1

−
6

N

X
B̃X1;X2;X3

l1;l2;l3
BX1;X2;β
l1;l2;l3

CS3;α
l0 FS3

l3;L;l0
WLALgαβ�l0;l3;L

1

2l3 þ 1

−
6

N

X
B̃X1;X2;X3

l1;l2;l3
BX1;S3;β
l1;l0;lb

CX2;α
l0 FS3

l3;L;l0
WLALgαβ�l2;lb;L

ð−1Þl3þL

2l1 þ 1

�
l3 l2 l1

lb l0 L

	�
; ð62Þ

where WLAL is the Wiener filter used when delensing the
maps, Si ¼ T if Xi ¼ T and Si ∈ ½E;B� otherwise, and
gαβl;l0;L is the lensing kernel used to reconstruct the maps
with the indices α and β labeling the maps used to
reconstruct the lensing potential (see, e.g., [77,83] for
examples of how delensing has been applied to existing
data). This result shows that the effect is a multiplicative
bias on the measured amplitude. Computing this bias for
the Simons Observatory setup used above, we find that the
bias would be 11.5%, in agreement with the result from
simulations. We note that the form of this bias suggests a
simple method to avoid it. Scalar bispectra receive no
contribution from B modes. If we only used combinations
of fields involving B modes to reconstruct the lensing
potential, then there would be no bias contributions from

the first term and significantly reduced contributions from
the second term (as these terms will be suppressed by the
bispectrum parity condition). With our suite of non-
Gaussian simulations we verified that there was no bias
when delensing was performed with a lensing potential
containing only combinations involving one B mode con-
tribution. For experiments beyond SO, quadratic estimators
for lensing reconstruction will gain most of their signal to
noise from configurations involving B modes (particularly
the EB pair), and thus this restriction can be enforced with
only a marginal cost to the lensing reconstruction accuracy.

IX. DISCUSSION AND CONCLUSIONS

Primordial non-Gaussianity remains one of most impor-
tant targets in cosmology for the purpose of constraining
the physics of the early universe. The CMB has provided
us with the strongest constraints so far. Future large scale5We thank Antony Lewis for pointing out this complication.
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structure measurements as well as innovative new estima-
tors that rely on cosmic variance cancellation will help
closing in on fNL ∼ 1. Although well studied, there is still
more we can learn from the CMB. Simple mode counting
arguments suggest that improvement of a factor of 2–4 are
possible with next generation CMB experiments such as
SO and CMB-S4. In this paper we addressed one major
obstacle reaching those forecasted numbers: the weak
gravitational lensing of the CMB. We showed that CMB
lensing not only produces signal confusion for non-
Gaussianity searches, it also produces large extra variance.
Thus far, the effect of non-Gaussian covariance from
lensing has not had a major impact on constraints,
impacting Planck at most at the 10% level. We showed
that for future experiments, whose sensitivities and reso-
lutions enable measurements up to lmax ∼ 5000, it will be
affected significantly. By far the largest impact is on local
non-Gaussianities, where lensing will introduce an increase
in the standard deviation of up to 35% for an experiment
such as SO, largely removing all gains obtained over
Planck.
Fortunately, the effect can be mitigated. We explored two

different avenues. First, we investigated the possibility of
removing this effect by ISW-lensing marginalization.
While in theory this should work well, the mitigation
was less effective when tested in simulations. We believe
this arises from the higher order terms which were
neglected in the theoretical calculation. Second, we
explored the possibility of delensing. Delensing was found
to work very effectively, and for an SO-like experiment this
resulted in an almost complete removal of the extra lensing
variance. For the case of no primordial non-Gaussianity,
delensing does not introduce any biases (i.e., it does not
introduce a bispectrum). We find that the bias to a nonzero
signal will be at the 10% level, but that this can be avoided
by reconstructing the lensing potential with combinations
that include a B-mode map. For experiments beyond SO
this can be done with minimal cost to the lensing
reconstruction. This presents a new and compelling case
to perform delensing of T and E maps. While the aim of
this paper was to discuss the extra variance induced by
lensing, delensing these maps before a measurement will
also remove bispectra sourced by secondaries, such as

those induced by ISW/reionizaton–lensing correlations.
Results presented here are directly relevant for SO and
the proposed CMB-S4 experiment.
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APPENDIX A: LENSING-INDUCED
COVARIANCE

Here we show some of the details of the calculations that
went into the derivation of the lensing-induced covariance.

1. Flat sky

First, we can write the Fourier coefficients as

TðliÞ ¼ T̃i þQi; ðA1Þ

where to linear order in the lensing potential

Qi ¼
Z

d2l0
1

ð2πÞ2 T̃ðl
0
1Þϕðli − l0

1Þðli − l0
1Þ · l0

1: ðA2Þ

Now, let us define the total covariance:

VarðB̂Þ≡ hB̂B̂�i ¼ 4π2δð2Þðl1 þ l2 þ l3Þ4π2δð2Þðl0
1 þ l0

2 þ l0
3ÞhTðl1ÞTðl2ÞTðl3ÞT�ðl0

1ÞT�ðl0
2ÞT�ðl0

3Þi: ðA3Þ

The additional covariance from lensing requires us to compute the connected lensing four-point function. We work to
lowest order in ϕ and assume that the lensing potential is not correlated with the unlensed temperature field (i.e., no ISW
lensing). We then have that the connected trispectrum is given by

hTðl2ÞTðl3ÞT�ðl0
2ÞT�ðl0

3Þic ¼ hhT̃2Q�
20 iThT̃3Q�

30 iTiϕ þ 11 perm: ðA4Þ

We introduced double bracket notation to show that either the (unlensed) temperature fields or the potentials need to be
contracted. Let us compute one such term for clarity, and then use symmetry to obtain all other terms,
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hhT̃2Q�
20 iThT̃3Q�

30 iTiϕ ≡
Z

d2l
ð2πÞ2

d2l0

ð2πÞ2 hT̃ðl2ÞT̃�ðlÞihT̃ðl3ÞT̃�ðl0Þihϕ�ðl0
2 − lÞðl0

2 − lÞ · lϕ�ðl0
3 − l0Þðl0

3 − l0Þ · l0i

¼ ð2πÞ2δðl2 þ l3 − l0
2 − l0

3ÞC̃l2C̃l3C
ϕϕ
jl2−l20 jðl2 − l0

2Þ · l2ðl3 − l0
3Þ · l3: ðA5Þ

There are 11 permutations of this term, and those are indeed
identical to the terms found by [84]. In the bispectrum
covariance there are then 6!/4!/2, i.e., 15, possibilities for
the choice of which two fields to contract in the power
spectrum term. However, six of those correspond to a zero

lag or mean value, which is explicitly set to zero. Only nine
permutations persist, multiplied by 12 permutations from
the connected four-point function in Eq. (A5).
We identify three distinguishable terms when computing

the covariance, i.e.,

hhT̃2Q3iThT̃�
20Q

�
30 iTiϕ ¼ ð2πÞ2δðl2 þ l3 − l0

2 − l0
3ÞC̃l2C̃l0

2
Cϕϕ
jl2þl3jðl3 þ l2Þ · l2ðl0

3 þ l0
2Þ · l0

2; ðA6Þ
hhT̃2Q�

30 iThT̃�
20Q3iTiϕ ¼ ð2πÞ2δðl2 þ l3 − l0

2 − l0
3ÞC̃l2C̃l0

2
Cϕϕ
jl2−l0

3
jðl2 − l0

3Þ · l2ðl0
2 − l3Þ · l0

2; ðA7Þ
hhT̃2Q�

20 iThT̃3Q�
30 iTiϕ ¼ ð2πÞ2δðl2 þ l3 − l0

2 − l0
3ÞC̃l2C̃l3C

ϕϕ
jl2−l0

2
jðl2 − l0

2Þ · l2ðl3 − l0
3Þ · l3: ðA8Þ

Note that these are all just permutations on the term in Eq. (A5); however, they contribute differently to the bispectrum
due to triangle conditions enforced on the bispectrum. In particular, we find that the first contribution is significantly larger
than the other two terms. Combining Eq. (A5) with Eq. (A3), collecting terms, applying delta functions, and counting
permutations we find

VarðB̂Þ2p×4p ¼ ð2πÞ8δð2Þð0Þδð2Þðl1 −l0
1Þδð2Þ

�X
i

li

�
δð2Þ

�X
i

l0
i

�
Cl1C

ϕϕ
l1
l1 ·l2C̃l2l1 ·l0

2C̃l0
2
þ 35 perm:

þ ð2πÞ6δð2Þðl1 −l0
1Þδð2Þ

�X
i

li

�
δð2Þ

�X
i

l0
i

�
Cl1

Z
d2n̂Cϕϕ

jl2−l0
3
jGðl2;l0

3ÞC̃l2G
�ðl0

2;l3ÞC̃l0
2
þ 35 perm:

þ ð2πÞ6δð2Þðl1 −l0
1Þδð2Þ

�X
i

li

�
δð2Þ

�X
i

l0
i

�
Cl1

Z
d2n̂Cϕϕ

jl2−l0
2
jGðl2;l0

2ÞC̃l2Gðl3;l0
3ÞC̃l3 þ 35 perm:

ðA9Þ
Here we have defined

Gðli;ljÞ ¼ li · ðli − ljÞein̂·ðli−ljÞ; ðA10Þ
and we used

δðli þ ljÞ ¼
Z

d2n̂
ð2πÞ2 e

iðliþljÞ·n̂: ðA11Þ

Note that we used Eq. (A11) to express the second and third terms with an integral over the line of sight direction. This
highlights the similarity with the full-sky result (which involves an extra summation). From the perspective of the estimator
variance to be computed in Sec. VI, when summing over all triplets the 36 permutations just introduce a multiplicity.

2. Full sky

We start with Eq. (39) and compute the covariance term by term. For convenience we repeat that equation here:

ΔVarðB̂Þ2p×4p ¼
X
mm0

�
l1 l2 l3

m1 m2 m3

��
l0
1 l0

2 l0
3

m0
1 m0

2 m0
3

�
δl1l01δm1m0

1
Cl1

�
hãl2m2

ãl3m3
Q�

l0
2
m0

2
Q�

l0
3
m0

3
ic

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ð1Þ

þ hãl2m2
Ql3m3

ã�l0
2
m0

2
Q�

l0
3
m0

3
ic

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ð2Þ �
þ permþOðϕ3Þ: ðA12Þ

Let us first compute terms in (1):
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ð1Þ ¼ C̃l2C̃l3

X
LM

Cϕϕ
L ð−1Þm2ð−1Þm3ð−1ÞM

��
l0
2 L l2

m0
2 M −m2

��
l0
3 L l3

m0
3 −M −m3

�
Fl0
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Ll2

Fl0
3
Ll3

þ
�
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2 L l3

m0
2 M −m3

��
l0
3 L l2

m0
3 −M −m2

�
Fl0

2
Ll3Fl0

3
Ll2

�
: ðA13Þ

Here we used alm ¼ ð−1Þma�l−m. Note that contracting al2m2
with al3m3

, via

ð−1Þm
�
l l l0

m −m 0

�
¼ ð−1Þlffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1
p δl00; ðA14Þ

would force l3 to be 0, and hence it is not allowed.
For the second term we have

ð2Þ ¼ C̃l2C̃l0
2

X
LM

Cϕϕ
L

�
ð−1Þm2ð−1Þm0

2

�
l3 L l0

2

m3 M −m0
2

��
l0
3 L l2

m0
3 M −m2

�
Fl0

3
Ll2Fl3Ll02

þ
�
l3 L l2

m3 M m2

��
l0
3 L l0

2

m0
3 M m0

2

�
Fl3Ll2Fl0

3
Ll0

2

�
: ðA15Þ

Not counting the Wigner 3-j symbols in the coupling matrix F, we generally encounter four Wigner 3-j’s, summed over six
indices (five m’s and one L). To simplify these remaining terms we make generous use of the following identity:

X
m1m2m4m5m6

ð−1Þ
P

6

i
li−mið−1Þ−l3þm3

�
l2 l3 l1

m2 −m3 m1

��
l1 l5 l6

−m1 m5 m6

��
l5 l0

3 l4

−m5 m0
3 m4

��
l4 l2 l6

−m4 −m2 −m6

�

¼ ð−1Þl3−m3

2l3 þ 1
δl3l03δm3m0

3

�
l1 l2 l3

l4 l5 l6

	
: ðA16Þ

The identity contains a Wigner 6-j symbol, but allows us to rewrite all terms above in just sums over L (removing all visible
sums over m and four Wigner 3-j symbols).
Let us start with the first line of (1). We have the following sum:

X
m1m2m3m0

2
m0

3
M

ð−1Þm2þm3þM

�
l1 l2 l3

m1 m2 m3

��
l1 l0

2 l0
3

m1 m0
2 m0

3

��
l0
2 L l2

m0
2 M −m2

��
l0
3 L l3

m0
3 −M −m3

�
: ðA17Þ

We can massage this into the identity above by identifying l0
2 → l5, l0

3 → l6, and L → l4 (and similar for the m’s). We
then also reverse the signs of m5 and m6 (which is allowed because these are just dummies). We then have

X
m1m2m3m4m5m6

ð−1Þm2þm3þm4

�
l1 l2 l3

m1 m2 m3

��
l1 l5 l6

m1 −m5 −m6

��
l5 l4 l2

−m5 m4 −m2

��
l6 l4 l3

−m6 −m4 −m3

�
:

We can apply permutations of the columns picking up ð−1Þ
P

l for odd permutations, and sign inversion of them’s picks up
a similar factor. After some manipulation we have

X
m1m2m3m4m5m6

ð−1Þm2þm3þm4ð−1Þl1þl2þl4þl6

�
l3 l2 l1

m3 m2 m1

��
l1 l5 l6

−m1 m5 m6

��
l5 l2 l4

−m5 −m2 m4

��
l4 l3 l6

−m4 −m3 −m6

�
:

We then switch dummy labels 3 and 2 and invert the sign of m3:

X
m1m2m3m4m5m6

ð−1Þm2þm3þm4ð−1Þl1þl3þl4þl6

�
l2 l3 l1

m2 −m3 m1

��
l1 l5 l6

−m1 m5 m6

��
l5 l3 l4

−m5 m3 m4

��
l4 l2 l6

−m4 −m2 −m6

�
:
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The final step is to realize that ð−1Þm ¼ ð−1Þ−m and that the second Wigner 3-j sets m1 ¼ m5 þm6 → m1 þm5 þm6 ¼
2m1 which is an even number. We can thus write

X
m3

ð−1Þ−l2þl3þl5þm3

X
m1m2m4m5m6

ð−1Þ
P

6

i
li−mið−1Þ−l3þm3

�
l2 l3 l1

m2 −m3 m1

��
l1 l5 l6

−m1 m5 m6

�

×

�
l5 l3 l4

−m5 m3 m4

��
l4 l2 l6

−m4 −m2 −m6

�
:

For the inner sum we can use this identity, and the first correction to the variance becomes (after substituting back the
correct l)

ΔVarðB̂Þ2p×4p½1� ¼ δl1l01Cl1C̃l2C̃l3ð−1Þl3þl0
2

X
L

Cϕϕ
L

�
l1 l3 l2

L l0
2 l0

3

	
Fl0

2
Ll2Fl0

3
Ll3 þ 3 perm: ðA18Þ

Next, we compute the second line of (1). We have

X
m1m2m3m0

2
m0

3
M

ð−1Þm2þm3þM

�
l1 l2 l3

m1 m2 m3

��
l1 l0

2 l0
3

m1 m0
2 m0

3

��
l0
2 L l2

m0
2 M −m3

��
l0
3 L l2

m0
3 −M −m2

�
; ðA19Þ

and make the same identifications as before, and changing the signs of m3, m4, m5, and m6 we find

X
m3

ð−1Þl3−l2−l5−m3

X
m1m2m4m5m6

ð−1Þ
P

6

i
li−mið−1Þ−l3þm3

�
l2 l3 l1

m2 −m3 m1

��
l1 l5 l6

−m1 m5 m6

�

×

�
l5 l3 l4

−m5 m3 m4

��
l4 l2 l6

−m4 −m2 −m6

�
:

The second correction correction to the covariance from term one thus becomes

ΔVarðB̂Þ2p×4p½2� ¼ δl1l01Cl1C̃l2C̃l3ð−1Þ−l2−l
0
2

X
L

Cϕϕ
L

�
l1 l2 l3

L l0
2 l0

3

	
Fl0

2
Ll3Fl0

3
Ll2 þ 1 perm: ðA20Þ

Let us continue with the first line of the second term, i.e.,

X
m1m2m3m0

2
m0

3
M

ð−1Þm2þm0
2

�
l1 l2 l3

m1 m2 m3

��
l1 l0

2 l3

m1 m0
2 m3

��
l3 L l0

2

m3 M −m0
2

��
l0
3 L l2

m0
3 M −m2

�
: ðA21Þ

We again make the same identification in l as well as changing sign of m3, m4, m5 and m6 we find

X
m3

ð−1Þl3−l2−l5þm3

X
m1m2m4m5m6

ð−1Þ
P

6

i
li−mið−1Þ−l3þm3

�
l2 l3 l1

m2 −m3 m1

��
l1 l5 l6

−m1 m5 m6

�

×

�
l5 l3 l4

−m5 m3 m4

��
l4 l2 l6

−m4 −m2 −m6

�
;

and hence

ΔVarðB̂Þ2p×4p½3� ¼ δl1l01Cl1C̃l2C̃l0
2
ð−1Þ−l2−l02

X
L

Cϕϕ
L

�
l1 l2 l3

L l0
2 l0

3

	
Fl0

3
Ll2Fl3Ll02

þ 1 perm: ðA22Þ

The second line in (2) reads
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X
m1m2m3m0

2
m0

3
M

�
l1 l2 l3

m1 m2 m3

��
l1 l0

2 l3

m1 m0
2 m3

��
l3 L l2

m3 M m2

��
l0
3 L l0

2

m0
3 M m0

2

�
: ðA23Þ

Reordering of columns allows us to use a simple identity, and this term becomes
P

m
δl1Lδm1M

2l1þ1
,

ΔVarðB̂Þ2p×4p½4� ¼ δl1l01Cl1C̃l2C̃l0
2
Cϕϕ
l1
Fl3l1l2Fl0

3
l1l02

1

2l1 þ 1
þ 3 perm: ðA24Þ

This completes all the terms that you can expect in the
covariance.

APPENDIX B: EXAMINING THE NONLEADING
CONTRIBUTIONS

In our theoretical modeling we identified one of the
terms as the leading term, Eq. (A24), and assumed that the
other terms are subdominant. This assumption was moti-
vated by the fact that these terms have a similar form to
those seen in CMB lensing reconstruction analyses, where
they have been found to be small [62]. To validate this
assumption we used the methods developed in [85] to
isolate this term in simulations. Here we summarize this
method and refer the reader to [85] for more details. As was

seen in Appendix A, the nonleading terms all arise from
mixed between the two bispectra, i.e., couplings between
the primed and unprimed indices. To isolate the subleading
variance term we compute the difference in variance of two
bispectra measurements. The first bispectrum is measured
on three different realizations of the primary CMB that
have been lensed by the same lensing potential; hereafter
these maps are denoted Dϕ

l;m, E
ϕ
l;m, and Fϕ

l;m. The second
bispectrum is measured on three different realizations of
the primary CMB that have been lensing by different
lensing potentials; hereafter we denote these maps byDϕD

l;m,

EϕE
l;m, and FϕF

l;m. We then examine the difference of their
variances, i.e.,

VarðB̂1Þ − VarðB̂2Þ ¼

�X

li;mi

�
l1 l2 l3

m1 m2 m3

�
Dϕ

l1;m1
Eϕ
l2;m2

Fϕ
l3;m3

�
2

−
�X

li;mi

�
l1 l2 l3

m1 m2 m3

�
DϕD

l1;m1
EϕE
l2;m2

FϕF
l3;m3

�
2
�
:

ðB1Þ

Computing this variance to linear order in Cϕϕ we find that
it contains all of the terms in the full expression, Eq. (40),
except the leading term, Eq. (A24), as we wanted. As
computing this for both temperature and polarization would
be computationally expensive, we computed this only for
the temperature case. The polarization case is analogous,
and so we expect that the nonleading terms should
contribute to the total variance at a similar level. Using
this configuration we measured the contribution of the
nonleading terms using 342 of the lensing CMB simu-
lations for a cosmic variance limited setup. We find, after

accounting for multiplicity, these terms contribute 13.5% of
the total variance and hence are subdominant.

APPENDIX C: ANALYTIC CALCULATION OF
THE DELENSING BIAS

As discussed in Sec. VIII, delensing introduces a
multiplicative bias to primordial non-Gaussianity measure-
ments. Here we describe the calculation of this bias to
leading order in Cϕϕ. After delensing the spherical har-
monic coefficients can be written as

aT;delensedl;m ¼ aTl;m −
X
L;M

X
l0;m0

WLϕ̂
�
L;MaT

�
l0;m0

�
l L l0

m M m0

�
Fl;L;l0 ;

aE;delensedl;m ¼ aEl;m −
X
L;M

X
l0;m0

�
l L l0

m M m0

�
WLϕ̂

�
L;M½Fþ2

l;L;l0a
E�

l0;m0 − iF−2
l;L;l0a

B�
l0;m0 �;

aB;delensedl;m ¼ aBl;m −
X
L;M

X
l0;m0

�
l L l0

m M m0

�
WLϕ̂

�
L;M½Fþ2

l;L;l0a
B�

l0;m0 þ iF−2
l;L;l0a

E�
l0;m0 �; ðC1Þ
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where ϕ̂ is the reconstructed lensing potential and WL ¼ Cϕϕ
L =½Cϕϕ

L þ Nϕϕ
L �. We use the quadratic estimator to recon-

struct the lensing potential, following [29], and thus have

ϕ̂L;M¼AL

X
la;lb

�
la lb L

ma mb M

�
gα;βla;lb;L

aα
�

la;ma
aβ

�
lb;mb

; ðC2Þ

where AL is the normalization and gα;βla;lb;L
are the lensing reconstruction weights and the indices α and β are summed over

maps used in the reconstruction. Using these we can compute the leading order effect of delensing on the bispectrum. We
only consider scalar bispectra, and so we do not consider bispectra involving B

f̂delensedNL ¼ 1

N

X
B̃X1;X2;X3

l1;l2;l3

�
l1 l2 l3

m1 m2 m3

�
haX1;delensed

l1;m1
aX2;delensed
l2;m2

aX3;delensed
l3;m3

i

¼ 1

N

X
S3

B̃X1;X2;X3

l1;l2;l3

�
l1 l2 l3

m1 m2 m3

�

ãX1

l1;m1
ãX2

l2;m2

�
ãX3

l3;m3
−3

X
L;l0

WLϕ̂
�
L;MaS3�l0;m0

�
l3 L l0

m3 M m0

�
FS3
l3;L;l0

��
; ðC3Þ

where Si is T if Xi ¼ T and Si ∈ ½E;B� otherwise,

FSi
li;L;l0

¼

8>>><
>>>:

F0
li;L;l0

if Si ¼ T

F2
li;L;l0

if Si ¼ E

−iF−2
li;L;l0

if Si ¼ B;

ðC4Þ

and, for conciseness, we defined

B̃X1;X2;X3

l1;l2;l3
¼

X
C−1X1;X0

1

l1
C−1X2;X0

2

l2
C−1X3;X0

3

l3
B
X0
1
;X0

2
;X0

3

l1;l2;l3
: ðC5Þ

Now we evaluate Eq. (C3) for the case of nonzero fNL, i.e., when

haX1

l1;m1
aX2

l2;m2
aX3

l3;m3
i ¼ fNLB

X1;X2;X3

l1;l2;l3

�
l1 l2 l3

m1 m2 m3

�
: ðC6Þ

We find

hf̂NLi ¼ fNL

�
1 −

6

N

X
B̃X1;X2;X3

l1;l2;l3
CX2;S3
l2

FS3
l3;l1;l2

Wl1Al1B
X1;α;β
l1;la;lb

gα;β�la;lb;l1
1

2l1 þ 1

−
6

N

X
B̃X1;X2;X3

l1;l2;l3
BX1;X2;β
l1;l2;l3

CS3;α
l0 FS3

l3;L;l0
WLALgαβ�l0;l3;L

1

2l3 þ 1

−
6

N

X
B̃X1;X2;X3

l1;l2;l3
BX1;S3;β
l1;l0;lb

CX2;α
l0 FS3

l3;L;l0
WLALgαβ�l2;lb;L

ð−1Þl3þL

2l1 þ 1

�
l3 l2 l1

lb l0 L

	�
: ðC7Þ

Thus, at leading order, we find that the bias is a multiplicative bias. We estimate the size of this bias by computing the first
two terms. Unfortunately the last term is computationally intractable, but it is expected to be small as it has the same
structure as the subleading variance terms (which we explicitly verified are small). This claim is further supported as in
Sec. VIII we find that the first two terms in Eq. (C7) predict a level of bias that is consistent with the bias measured in
simulations.
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