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We propose that the initial state of the Universe was an isotropic state of maximal entropy. Such a state
can be described in terms of a state of closed, interacting, fundamental strings in their high-temperature
Hagedorn phase, which constitutes a novel microscopic model for the state of the Universe when it is at the
highest sustainable temperature. This state resolves the big-bang singularity by replacing the past of the hot
big-bang Universe and sets inflationary initial conditions for the subsequent evolution of the thermal
radiation and the semiclassical cosmological geometry. The entropy density in this state is equal to the
square root of the energy density in Planck units, while the pressure is positive and equal to the energy
density. These relations imply a maximally large entropy density and, therefore, a state that cannot be
described by a semiclassical spacetime geometry. If one nevertheless insists on an effective semiclassical
description of this state, she can do so by ignoring the entropy. This leads to a partially equivalent
description in which the pressure appears to be negative and equal in magnitude to the energy density, as if
the energy-momentum tensor was that of a cosmological constant. From this effective perspective, the state
describes a period of string-scale inflation of minimal duration. The stringy state ultimately decays,
possibly by a process akin to Hawking radiation, and undergoes a transition into a phase of hot radiation.
But, from the effective perspective, the same decay corresponds to the heating of the Universe at the end of
inflation. Small quantum mechanical fluctuations in the initial state lead to a scale-invariant temperature
anisotropies in the hot radiation. The temperature anisotropies are interpreted in the effective description as
arising from quantum fluctuations of the curvature and an effective inflaton field. The stringy microscopic
description determines the parameters of the model of inflation, as well as the cosmological observables, in
terms of the string length scale and coupling strength. In particular, it describes a high-scale model of
inflation with a large scalar-to-tensor ratio which is qualitatively compatible with the cosmological
observations. Our framework is similar, conceptually, to a recent description of black holes in terms of a
maximal entropy state of strings in the Hagedorn phase.

DOI: 10.1103/PhysRevD.101.123502

I. INTRODUCTION

The hot big-bang model provides an accurate description
of the cosmological evolution of our Universe starting from
a thermal state of hot radiation. However, the same model
also faces some unresolved issues that are related to
properties of the initial state: the large-scale smoothness,
the small-scale inhomogeneities, and the smallness of the

spatial curvature. As a way to extend the validity of the hot
big-bang model and resolve some of its shortcomings, it
was proposed that, prior to the thermal phase, the Universe
expanded exponentially during a relatively long period of
cosmic inflation. The Universe then “reheated” in an event
that marks the beginning of the thermal phase; this being
the essence of the inflationary paradigm [1,2].
This paradigm provides a framework for an effective

description of the period of exponential expansion. The
scale of inflation, its duration, and the type of matter
that drives it—the so-called inflaton field—are all
undetermined and subject to rather weak constraints. For
any given model of inflation, these parameters need
to be specified in a way that predicts the cosmological
observables; in particular, the spectral properties of
the observed temperature inhomogeneities. Many of the
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puzzles surrounding the inflationary paradigm are associ-
ated with attempts to identify the inflaton field with one of
the fields in the standard model or in some type of grand
unified theory or in some version of string theory.
The inflationary paradigm has been criticized recently

[3,4] (see also [5]) on the grounds that a weakly coupled
model of inflation is not self-consistent when implemented
within semiclassical gravity. More specifically, the self-
reproduction property of such models leads to scenarios of
eternal inflation which imply that semiclassical evolution
breaks down. Furthermore, the scale of inflation that is
needed to reproduce the correct spectra of perturbations
must be much lower than the natural cutoff of the theory,
the Planck scale.
Meanwhile, the problem of an initial singularity con-

tinues to persist in the inflationary paradigm. This concern
is well known [6,7] but sometimes dismissed by arguing
that the singularity decouples from horizon-scale physics.
The premise being that cosmological observables, which
are determined solely by the latter, will not be affected by
whatever does resolve the singularity. However, this is not a
truly admissible argument because, in the words of
Hawking [8], “The only way to have a scientific theory
is if the laws of physics hold everywhere including at the
beginning of the Universe.” Some remnants of the problem
linger and reappear when one attempts to define a measure
on the space of initial conditions. Just like the analogous
problem for a black hole (BH) [9], it turns out that the
resolution is much more surprising than a small tweak
which transforms the singularity into an epoch of large but
finite curvature.
Here, we propose a microscopic model for the state of

the Universe when it is at the highest sustainable temper-
ature for a state of strings, the Hagedorn temperature. This
state replaces the past of the hot big-bang Universe,
resolves the singularity, and provides the initial conditions
for the subsequent evolution of the thermal radiation and
the semiclassical cosmological geometry.
Our microscopic model is guided, in large part, by the

polymer model of BHs [10,11], which suggests that a
maximally large entropy is an essential feature of non-
singular gravitational states. Maximal entropy in this
context means the saturation of the causal entropy bound
[12,13]; then the entropy density s is as large as it can be in
relation to the energy density ρ in appropriate units.
Fundamental, closed strings in the Hagedorn phase are
in just such a maximally entropic state. Just like for BHs,
the microscopic description of cosmology in terms of this
hot string state is nonsingular. In both cases, the apparent
singularity is resolved by making dramatic changes to
the state on horizon-sized scales. However, whereas
the changes for a BH are to its interior region, it is the
prehistory of the thermal state that is changed in the
cosmological picture. Whether one is talking about BHs
or cosmology, the cost of regularization is that the

hot string state cannot be described by a semiclassical
geometry.
Our proposal differs from previous ones that involved the

Hagedorn phase of strings, such as string gas cosmology
[14–18]. In spite of the seemingly similar context, the
actual meanings of the “Hagedorn phase” in our model and
in the scenario of string gas cosmology are quite different.
In string gas cosmology, the strings are at a temperature
below the Hagedorn temperature and need some compact
spatial dimensions to wind around. Furthermore, the
number of large spatial dimensions is at most three.
String interactions are not essential for this scenario. For
our model, in contrast, the temperature is above the
Hagedorn temperature, there is no need for winding modes
around spatial dimensions and interactions are essential.
These differences affect the mechanism of exit from
inflation, as well as the cosmological perturbations and
thus the predictions for cosmological observables.
Our proposal also differs from previous ones suggesting

that the initial state of the Universe is a maximal entropy
state as in holographic cosmology [19,20]. Again, in spite
of the seemingly similar context, the details are quite
different. There are indeed some similarities between the
two models in that both involve a p ¼ ρ fluid and so one of
maximal entropy density. However, our basic claim is that
such a fluid, which saturates the causal entropy bound,
could not possibly be described in terms of semiclassical
physics. Furthermore, if one does insist on a semiclassical
description, then it should be described in terms of a dual
p ¼ −ρ fluid. This can be contrasted with the black hole
fluid of holographic cosmology, for which each constituent
is itself a solution of Einstein’s equation. Additionally,
holographic cosmology calls for a semiclassical evolution
between a p ¼ ρ phase toward a p ¼ −ρ phase such that
inflation corresponds to the p ¼ −ρ phase. This distinction
leads to a difference in predictions for cosmological
observables. The most pronounced difference is in the
prediction for the tensor to scalar ratio, which in holo-
graphic cosmology has a parametrically small value.
Even if lacking a geometry, a state of hot, interacting,

closed strings can, as discussed in [10], be described by a
simple free energy which is expressible as a power series in
the entropy density. For the BH polymer, s and the other
thermodynamic densities had to have nontrivial radial
profiles. In the context of cosmology, however, approxi-
mate isotropy and homogeneity are now mandatory fea-
tures; meaning that the free energy and all of its associated
thermodynamic densities are approximately constant in
space and time.
Although the current proposal is conceptually similar to

our proposed resolution of the BH singularity [9], it does
differ in some important ways that go beyond questions
about spacetime (in)dependence. For instance, who plays
the role of the “score-keeping observer”? In the case of
BHs, it is clear that the asymptotic external observer serves
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this purpose. The cosmological analogue—perhaps not
quite as obvious—is the late-time or “Friedmann–
Robertson–Walker (FRW) observer.” This is because the
past of this observer, before the beginning of the hot-
radiation phase, is the analogue of the interior of the BH. As
similarly argued for the BH case in [21], all proposals for
the prehistory are perfectly acceptable as long as they are
self-consistent, able to reproduce the observable Universe
and compatible with the laws of physics (see also [22]).
From the microscopic point of view, the puzzles of the
FRW observer originate from trying to explain the initial
quantum state using effective semiclassical terms. The
same situation was prevalent for BHs and led to their
infamous paradoxes. As will be shown here, the FRW
observer can (and usually does) interpret our maximally
entropic state as one of vanishing entropy (and/or temper-
ature) and approximately describes it by using the flat-
space slicing of a de Sitter (dS) spacetime.
In our cosmological model, a geometric description of

the past may be absent, but one can still adopt the
equivalent representation of gravity as an inertial effect
in a conformally flat space.1 Conformally flat spacetime
coordinates, tst, rst, etc., would then represent labels for the
position of the strings but physical observables will not
depend on these fiducial coordinates. From this point of
view, gravity is an emergent effect; it is a long-distance
description of the microscopic forces between constituents.
It is only when gravity is semiclassical that both of the
descriptions, geometric and inertial, can coexist.
In the microscopic model, the scale of inflation is fixed

by the string scale and the duration of the exponential
expansion, as perceived by the FRW observer, is the
logarithm of the entropy of the Universe in natural units.
In this sense, inflation is as short as it can be. But the
maximally entropic state still needs to be large enough to
describe a large Universe, so that one could also try to
understand how the initial state came to be so large. We will
defer this issue to a future investigation but still want to
suggest some possibilities. For example, the Universe could
start out in a large, weakly curved, contracting phase for
which it was initially large and empty—as in pre-big-bang
scenarios [23] or ekpyrotic models [24]—and then undergo
a phase of contraction in which the number of Hubble-sized
regions grows and the strings eventually heat up to the
Hagedorn temperature. This would be the analogue of a
large matter system collapsing to form a BH [25]. However,
it is not important for current purposes to track the
prehistory of the initial state. A good choice of an initial
state is always a part of a good description of any physical
system.

Throughout the paper, we typically focus on the case of
D ¼ dþ 1 ¼ 3þ 1 spacetime dimensions. However, our
conclusions are unchanged for D > 4.

II. INITIAL STATE OF THE UNIVERSE

We propose to replace the semiclassical, singular past of
the hot big-bang Universe by a quantum epoch of large but
finite curvature. The quantum state defines the initial state
of what evolves into a semiclassical, asymptotically dS
Universe.
In the next subsection, we describe the initial state as a

thermal state of closed, interacting, fundamental strings at a
temperature which is just above but parametrically close to
the Hagedorn temperature, ðT − THagÞ=THag ¼ ϵ ≪ 1. The
equation of state of the strings is p ¼ ρ, which conse-
quently implies an entropy density of s ¼ ffiffiffi

ρ
p

in Planck
units. The total entropy of the state is also specified and the
free energy that describes the state is given explicitly in
Eq. (1). Thus, what is presented is a complete description of
the initial state for given values of the total entropy S (or
equivalently, total volume V), the Hagedorn temperature
THag, the small parameter ϵ and the string coupling g2s .
Then, in Sec. II B, we explain how the FRWobserver can

interpret the maximally entropic state as one of vanishing
entropy (and/or temperature) and approximately describe it
by using the flat-space slicing of an asymptotically dS
spacetime. From this point of view, the FRW observer
invents an effective history of the Universe: the inflationary
paradigm. We emphasize that physical observables are the
results of the measurements that are made by an FRW
observer after the end of inflation. The FRW observer can
only measure a portion of the postinflationary Universe at
finite times. However, the whole state does become
observable as t → ∞. We also emphasize that, if the
observables can be predicted correctly, this is all there is
to it. The rest of the theory consists of conceptualizations
that can never be verified and must forever remain
ambiguous.
In Sec. II C, we show how it is possible to reconcile the

two points of view about the history of the early Universe,
hot strings and inflationary dS, as both lead to the same
picture of semiclassical evolution at late times.

A. Microscopic perspective: Hagedorn phase
of fundamental strings

Closed strings in the Hagedorn phase have an exponen-
tially large density of states (e.g., [26–28]) and are, there-
fore, particularly well suited for describing states with
high entropy. Moreover, the equation of state connecting
the pressure p and the energy density ρ for such high-
temperature string theory is known to be p ¼ ρ. And so p is
as large as a single-fluid pressure could be while still
respecting causality. The standard thermodynamic relation
ρþ p ¼ sT for the energy density, pressure, entropy

1The choice of conformally flat rather than just flat is to
accommodate the constancy of the thermodynamic densities as
discussed above. This point is elaborated on in Subsection II A.
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density s, and temperature T then leads to s ¼ ffiffiffi
ρ

p
in Planck

units, from which one obtains 1=T ¼ ds=dρ ¼ s=2ρ or
sT ¼ 2ρ. Meaning that s is also as large as it could ever be
in comparison to ρ.
An important consequence of the maximal entropy and

pressure is that these require exact spatial flatness and the
vanishing of the cosmological constant. This is because the
introduction of any such sources would reduce the ratio
p=ρ away from unity.
We now briefly review, for completeness, relevant parts

of the discussion in [10,11] and then adapt them to the
current cosmological setup.
Both the energy E and entropy S of noninteracting,

closed strings in the Hagedorn phase scale linearly with the
total length of string L ¼ Nls, so that S ∼ N and E ∼ N=ls
(ls is the string length scale). The free energy F ¼ E − ST
vanishes for noninteracting strings at the Hagedorn temper-
ature THag ¼ Ms=ð4πÞ (Ms ¼ 1=ls is the string mass).
Then, for temperatures T close to THag, the free energy
F should be parametrically smaller thanN=ls. Wewill use a
dimensionless parameter ϵ to parametrize this small num-
ber, ϵ ¼ ðT − THagÞ=THag ≪ 1. For the case of interacting
strings, it makes sense to consider both positive and
negative ϵ; however, one can expect a phase transition
when ϵ < 0 (see below).
Interactions between strings take place at their inter-

sections. The strength of the interactions—that is, the
probability that two different strings join to form one
single longer loop or that a single string splits up into two
shorter loops—is determined by the string coupling g and is
equal to g2. For weakly coupled strings, g2 ¼ M2

s=M2
P,

where MP is the Planck mass. If V is the volume of the
region of space that is occupied by the strings (in terms of
flat fiducial coordinates as explained in Sec. I), then the
volume density of intersections is N2=V, and so the
leading-order effects of interactions can be described by
including a term scaling as g2N2=V ¼ Nðg2N=VÞ in the
free energy. Hence, the free energy for interacting strings in
the Hagedorn phase is expressible in terms of the entropy
density s ¼ N=V as follows [10,11]:

−
�

F
VTHag

�
strings

¼ ϵs −
1

2
g2s2 þ � � � ; ð1Þ

where string units (ls ¼ 1) have now been adopted and the
first term on the right follows directly from previous
relations given that ρ ¼ E=V ¼ NTHag=V. The ellipsis
denotes higher-order interactions, which are small under
the conditions that we consider, to be discussed in more
detail later. Not coincidentally, this free energy is formally
similar to those in the literature on interacting polymers
(e.g., [29]).
Extremizing the free energy with respect to s, one finds

that

s ¼ ϵ

g2
: ð2Þ

The energy density and pressure now follow from the
standard thermodynamic definitions,

ρ ¼ 1

2

ϵ2

g2
; ð3Þ

p ¼ 1

2

ϵ2

g2
; ð4Þ

and so the equation of state of the associated fluid is indeed
p ¼ ρ. Comparing Eqs. (2) and (3), one obtains the
similarly advertised form s ¼ 2

ffiffiffiffiffiffiffiffiffi
ρ=g2

p
or, more simply,

sϵ ¼ 2ρ. The latter suggests that ϵ acts like an effective
temperature, not to be confused with the local temperature
of the string state which is the Hagedorn temperature.
Whereas the BH version of ϵ turned out to be the Hawking
temperature, it will be (re)calculated later on and identified
as the Gibbons–Hawking temperature [30].
Let us recall that, for the BH scenario, ϵ and thus the

various densities have radial profiles.2 As the cosmological
fluid has to be approximately isotropic and homogeneous,
the densities s and ρ, as well as the pressure p and the
effective temperature ϵ will all be regarded as constants.
Although, near the boundary of the string state, there is
likely to be some deviations from this constancy.
To specify the solution completely, ϵ needs to be fixed in

a way that is independent of Eq. (2). For this, we will relate
ϵ to the causal connection scale RCC [12], which can, in
general, be viewed as the relativistic analogue of the Jeans
length. The notion of a Jeans length is applicable in the
current context because of the fact that, at long distances,
the string interactions are dominated by gravity [25,31,32].
For BHs, RCC corresponds to the Schwarzschild radius and
thus serves as the linear scale for the whole string state. But
the cosmological string state can encompass many causally
disconnected regions; meaning that RCC must be the linear
scale as measured in fiducial coordinates of just one such
region.
There are several ways in which RCC can be estimated. It

was originally estimated in [12] in its capacity as a “Jeans-
like” length scale, which means considering the equation of
motion for a generic perturbation. Because the string state
is translation invariant, it is convenient if perturbations are
expressed in their Fourier-space form δk; in which case, the
relevant equation is

δ̈k þ ðk2 − R−2
CCÞδk ¼ 0; ð5Þ

2This dependence was not always made explicit in previous
papers.
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where k ¼ jk⃗j is the wave number and a dot represents a
time derivative, both with respect to the fiducial coordi-
nates. Following [12], one will find that

R−2
CC ≃ g2Max½ρ=3 − p; ρþ p�: ð6Þ

When p ¼ 0, the causal connection scale RCC is exactly the
Jeans length, R−2

CC ¼ g2ρ. For the current case of p ¼ ρ, this
is still approximately true,

R−2
CC ¼ 2g2ρ ¼ ϵ2

l2s
; ð7Þ

where we have used Eqs. (3), (4) and restored the
dependence on ls. Notice that, for a cosmological setup,
the first equality in Eq. (7) implies that RCC is the Hubble
radius H−1 and then ϵ ∼ R−1

CC ∼H is the Gibbons–Hawking
temperature.
A different (but related) way to estimate RCC is to note

that, if the string interactions are indeed dominated by
gravity, then the total interaction energy within a causally
connected region should be parametrically equal to its
gravitational energy.3 The energy of the string within such a
region is given by

Estring ≃ ρRd
CC ≃

ϵ2

g2
Rd
CC ð8Þ

and the gravitational energy can be expressed using the
Newtonian potential,

Egrav ≃ g2
E2
string

Rd−2
CC

≃
ϵ4

g2
Rdþ2
CC ; ð9Þ

along with the identification GN ¼ ld−1P ¼ g2ld−1s ¼ g2.
Then, since the interaction energy should be the same
order as the net energy of the string, it follows that

ϵ2

g2
Rd
CC ≃

ϵ4

g2
Rdþ2
CC ; ð10Þ

the solution of which is, once again, R−2
CC ¼ ϵ2

l2s
.

Yet another way to arrive at Eq. (7) is to apply a double
scaling limit in which the relative deviation of the string
temperature from the Hagedorn temperature is tuned in
response to the tuning of the total length of the string
N [10,11].
In a (d ¼ 3) cosmological setup, for a yet unspecified

external observer, we can interpret the above results as
follows: The energy within a sphere of radius RCC scales as

E ∼ R3
CCϵ

2=g2 ∼ RCC=g2 and the entropy as S ∼ R3
CCϵ=g

2 ∼
R2
CC=g

2. So that, if we identify RCC with the inverse of the
Hubble radius H−1 of some epoch of the Universe and use
that g is the inverse of the Planck mass MP in string units,
then the energy and entropy within a Hubble volume go as

EH ∼
M2

P

H
ð11Þ

and

SH ∼
M2

P

H2
; ð12Þ

which agrees with the expected scaling relations of the
energy within the horizon and the Gibbons–Hawking
entropy, respectively. If RCC ¼ H−1 is large (in string
units), the Hubble scale is smaller than the string scale
because then H ∼ ϵMs ≪ Ms.
We will be interested in situations in which not onlyH−1

is large but the Universe is “large” in another sense; namely
that its total entropy far exceeds the entropy in a single
Hubble region, Stot ≫ SH. There will then be a large
number nH ¼ V tot=H−3 of causally disconnected regions
and the entropy Stot ¼ SHnH will saturate the causal
entropy bound, S ≤

ffiffiffiffiffiffiffi
EV

p
[12,13].

Let us now discuss the symmetries of the string state.
These will be essential for establishing the connection
between the semiclassical perspective and the microscopic
calculation of the correlation function for the perturbations.
The string state is invariant in an obvious way under
rotations and translations of the fiducial coordinates (except
near the boundary of the state). A less obvious symmetry is
one in which the fiducial coordinates are rescaled as
xi → λxi, with λ being some numerical constant. To under-
stand the origin of this scaling symmetry, let us recall that,
in a given causally connected region, the entropy of the
string and so its length in string units are fixed and,
therefore, invariant under a rescaling of the fiducial
coordinates. The value of ϵ or, equivalently, RCC is fixed
as part of the definition of the state; as is the total entropy of
the string state and, hence, the number of causally dis-
connected regions nH. As such, all of these quantities must
be independent of any rescaling of the fiducial coordinates.
The same can be said of ρ, p, and s, as each of these can be
strictly expressed in terms of ϵ and the coupling; see
Eqs. (2)–(4). Of course, some corrections can be expected
to lead to small breaking of these scale symmetries but not
to any additional breaking of the translation and rotation
symmetries.
It seems plausible that the same reasoning requires the

various quantities to be invariant under all local Weyl
transformations. This is equivalent to these quantities
being invariant under all of the above transformations
and, in addition, be invariant under special conformal

3Here, we are temporarily generalizing the number of spatial
dimensions to d ≥ 3 to highlight the fact that the scaling of ϵ and
thus the various densities are independent of this number.
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transformations. Alternatively, it is expected on general
grounds that scale-invariant theories are conformally invari-
ant [33]. Either way, we will go one step further and require
the fiducial coordinates to be conformally flat.4 It is
unlikely that any of our conclusions are affected by this
distinction.
The thermalization time scale or “scrambling time” [34]

of the cosmological string state can be evaluated in a similar
manner to that of BHs [11],

τscrambling ¼
1

H
ln
Stot
SH

: ð13Þ

The quantity ln ðStot=SHÞ will later be identified as deter-
mining the number of e-folds of inflation. Equation (13)
implies that, for the total string state to reach thermal
equilibrium, it has to exist for a long time compared to the
light-crossing time of the causally connected regions;
another manifestation of the fact that the Universe needs
to be large.
A state of strings in the Hagedorn phase, for which the

individual string loops are typically long (e.g., [31]), can
undergo a phase transition from a bound state of hot, long
strings to a state of hot radiation. This happens if the
temperature decreases by a small amount below the
Hagedorn temperature, leading to a reversal in entropic
dominance because of F changing sign. In which case, the
stringy bound state will decay quickly into a gas of small
string loops; that is, into a radiation-dominated phase.
It is possible that such a phase transition can be attributed

to the stringy bound state being unstable to the emission of
small loops; the analogue of Hawking radiation. The decay
time scale τst (as measured in fiducial string coordinates)
would then be the analogue of the Page time [35],
τst ∼ SHRCC, and the longest time scale in the problem
from the internal microscopic perspective. The phase
transition could also be induced by some coherent pertur-
bation, which might then act on a shorter timescale. For our
purposes, it is not important what brought about the phase
transition, just that it occurred.
The exit from the Hagedorn phase in our model is

therefore essentially the Hagedorn phase transition from a
temperature above, but close to, the Hagedorn temperature,
to one below it. This can be contrasted with the conjectured
exit mechanism in string gas cosmology [16], which is
supposed to proceed via the unwinding of strings that are
initially wound around some spatial dimensions.
Let us now return to the potential issue of neglecting

higher-order interactions. The strength of each additional
string interaction is proportional to a factor of N=V, the
density of potential intersection points and to an additional

factor of the coupling strength g2. It follows that the relative
strength of the (nþ 2)-string interactions in comparison to
the strength of the 2-string interactions is proportional to

ðg2sÞn ¼ ϵn ∼
�

ls
RCC

�
n
; ð14Þ

where we have again used s ¼ N=V and Eq. (2). One can
see that these are actually α0 corrections, being proportional
to powers of ls=RCC. Similarly, higher-order string-loop
corrections are proportional to higher powers of g2. Further
recalling that the free energy is expressible as a power
series in s ¼ ϵ=g2, one can see that the higher-order
interactions are thus suppressed provided that ϵ ≪ g2 ≪ 1.5

B. Semiclassical geometric perspective: Flat slicing of
de Sitter space

As discussed in Sec. I, in looking for a semiclassical
geometric description of the initial state, if one is willing to
ignore the entropy and just focus on the state’s mechanical
aspects, then the conclusion would be that p ¼ −ρ. This
follows directly from the thermodynamic identity pþ ρ ¼
Ts given that s ¼ 0. The resulting state can then be
described by a time-independent geometry within the
framework of general relativity.
Let us begin here by specifying the p ¼ −ρ geometry for

a spherical volume of radius L. It is described by the time-
independent line element

ds2 ¼ −fðRÞdT2 þ 1

f̃ðRÞ dR
2 þ R2ðdθ2 þ sin2 θdϕ2Þ;

ð15Þ

along with an energy-momentum tensor of the form
Tμ

ν ¼ −ρδμν. The solution of the Einstein equations then
works as

ds2SP ¼ −
�
1 −

R2

L2

�
dT2 þ 1

ð1 − R2

L2Þ
dR2

þ R2ðdθ2 þ sin2 θdϕ2Þ; ð16Þ

for which

1

L2
¼ 8πG

3
ρ: ð17Þ

and R=L ≤ 1. This solution describes the static patch
of dS space, which corresponds to the interior of the

4One might be concerned that the trace of the energy–
momentum tensor is nonvanishing. However, lacking a semi-
classical Einstein equation, one cannot use properties of this
tensor to constrain the symmetries of the string state.

5At a first glance, ϵ and g look to be the same order because the
Friedmann equation H2 ∼ g2ρ with ρ ∼M4

s and H ∼ ϵ implies
that ϵ2 ∼ g2. However, when one takes numerical values seri-
ously, it becomes clear that H2 is suppressed significantly below
this estimate; see Sec. III A.
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cosmological horizon at R ¼ L. The energy density ρ from
this perspective is attributed to a cosmological constant
Λ ¼ 3=L2. Notice that the geometry is spatially flat; one
cannot introduce a source of spatial curvature without
violating the equation of state p ¼ −ρ.
If one wishes to formally extend this geometry to regions

beyond the horizon, an extra leap of faith has to be taken.
The formal extension to a Universe containing a large
number of causally disconnected static patches—the geom-
etry of an inflating Universe—is achieved by transforming
to planar dS coordinates r, t via R ¼ eHtr and e−2Ht ¼
e−2HT − R2H2 withH ¼ 1=L. The line element then adopts
the familiar form

ds2planar ¼ −dt2 þ aðtÞ2
X
i

dx2i ; ð18Þ

with aðtÞ ¼ eHt and r2 ¼ P
i x

2. It should be kept in mind
that the dS spacetime, whether in its static or planar form, is
an alternative “dual” description of the initial stringy state.
The string fluid is not the source in the Einstein equations
that leads to a dS solution.
In spite of the apparent time dependence in the planar

description, the geometry is still inherently time indepen-
dent as the static-patch metric makes clear. Real time
dependence, from this perspective, occurs only when the
geometry is modified and some physical clock is added. It
follows that the decay of the initial dS spacetime into one
filled with hot radiation—which from the perspective of the
late-time FRWobserver corresponds to the end of inflation
—has to be described by adding some external, time-
dependent modification to the dS geometry. Moreover,
meaningful observations can only be made by the FRW
observer after the state has further decayed through the
properties of the matter. This will be discussed in the next
subsection.
The isometries of dS space are important for fixing the

structure of correlation functions of perturbations (see, e.g.,
[22,36–38]) and will also be important here for establishing
the connection between the string state and its effective dS
description. These are essentially the rotations and boosts
of a hyperboloid in a flat spacetime with one additional
dimension. When translated to planar coordinates, these
include the obvious translations and rotations, along with
dilatations (or scalings) and special conformal transforma-
tions. In other words, the conformal group.

C. Comparing the microscopic and the effective
semiclassical perspectives

From the microscopic perspective, the phase transition
from the initial state of strings into a state of hot radiation
marks the end of inflation. Moreover, this initial state is
known and sets the boundary conditions for the semi-
classical evolution of gravity and matter from that point on.
The matter content is also known in principle as well as the

temperature, pressure, energy, and entropy densities.
Alternatively, according to the semiclassical perspective,
the inflationary phase of the Universe is described by an
empty, time-independent half of dS space which is covered
by the planar coordinates. Once inflation is over, this
distinction is inconsequential.
But, as discussed in Sec. I, the score keeper for the state

of the Universe is the FRWobserver. This observer uses the
same comoving coordinates r and t as for the planar dS
space but can only make observations after inflation has
finally ended. Meaning that the end time of inflation is the
analogue of the Schwarzschild radius in the BH case and
the inflationary past is the analogue of the BH interior. In
short, the status of the FRWobserver after inflation is quite
similar to that of an observer who remains outside of a BH.
It is after the end of inflation that the FRW observer can
measure the average temperature, energy density, temper-
ature anisotropies, etc. The measurements could be done,
for example, now or when the radiation of the cosmic
microwave background (CMB) decoupled from other
matter (or even at earlier times in principle).
From the FRW observer’s perspective, the Universe

starts its evolution in a thermal state, and so he would
need to invent a prehistory to explain the observable
Universe. He can do this in the same way that a semi-
classical observer invents a description of the BH interior
[21]. The FRW observer will conclude that the Universe
was exponentially expanding at some epoch in its pre-
thermal history, and he would then need to explain to
himself how this strange era in the early Universe came
about. The inflationary paradigm provides just such an
explanation. Accepting this “fable,” the FRWobserver also
has to explain the decay by smoothly matching the initial
dS phase to the FRW phase. Matching in this way, he
concludes that the dS phase could not really be time
independent and that the “clock” keeping track of this
(faux) evolution is the inflaton field. From this point of
view, the inflaton does not need to correspond to any
physically real field (or combination of fields) that exists in
the FRW phase.
Let us reemphasize our essential point that the infla-

tionary paradigm is an invented effective history of the
Universe. What is physical and real are the results of
the measurements that are made by an FRW observer after
the end of inflation (i.e., after the time when the whole
Universe is “created”); in particular, the measurements of
the temperature anisotropies.6 If these can be predicted
correctly, this is all there is to it. The rest of the theory
consists of conceptualizations that can never be verified and
must forever remain ambiguous.

6Note, though, that the FRW observer can only measure a
portion of the postinflationary Universe at finite times. However,
the whole state does become observable as t increases.
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A remarkable fact is that the symmetries and causal
structure of the string state and dS space are very similar.
The string state is invariant, at the very least, under
rotations, translations, and scalings (or dilatations), as is
its causal connection scale RCC, which then sets the size of
the horizon 1=H. Meanwhile, in the case of dS space, the
isometries are those of the conformal group which addi-
tionally contains special conformal transformations. As
explained earlier, it is likely that the string state is also
invariant under the full conformal group and we
proceed, for the sake of simplicity, with this as our premise.
This commonality will be important for determining the
correlation functions of the perturbations and showing
that both perspectives lead to the same scale-invariant
spectrum.
A comparison of the two alternative histories that the

FRW observer can choose from is shown in Fig. 1. The
semiclassical inflationary paradigm and the stringy initial
state lead to the same observational results if the parameters
of the inflationary model are chosen appropriately.
In summary, we proposed a novel paradigm for the early

Universe: A quantum state that defines the initial state of
what evolves into a semiclassical, asymptotically dS
Universe and that replaces the semiclassical, singular past
of the hot big-bang Universe by a quantum epoch of large
but finite curvature. This quantum state of maximal entropy
supplants semiclassical inflation by setting inflationary
initial conditions for the hot Universe. Our idea is quite

distinct from previous discussions about the cosmology of
the Hagedorn phase of strings; for example, [16].
Our paradigm is also compatible with the swampland

conjectures [39,40] in an interesting way. The swampland
conjectures discuss the absence of a semiclassical dS phase
when the string coupling is perturbatively small and the
compact volume is perturbatively large. Our model relies
on having a finite string coupling and on the absence of a
semiclassical description. In this sense, it complements the
swampland conjectures, proposing a way in which a state
that is dual to a dS space can be part of string theory. But
this dS space is not a solution of the semiclassical string
equations. It is rather an effective description, as viewed by
a late time observer, of a quantum string state whose
equation of state is p ¼ ρ. Furthermore, an immediate
consequence of our model is that dS gravity has a dual
description in terms of a state of strings that is only
metastable, as the inevitable phase transition from long,
hot strings to hot, but yet cooler, radiation suggests. This
also fits in nicely with the swampland conjectures.

III. INFLATION

As argued earlier, any invented prehistory of the
Universe that is self-consistent, agrees with observations
and obeys the laws of physics is as good as any other. The
advantage of our microscopic description is that it unam-
biguously determines the parameters in the effective
description of inflation and, as a by-product, resolves some
of the issues that were discussed in the introductory section.
Let us next explain how the effective parameters are
determined. We do not discuss precise quantitative pre-
dictions here but, rather, elaborate on some of the quali-
tative features. A more detailed comparison to the
observations will be deferred to a future article [41].

A. Scale of inflation

The energy density of the radiation just after the
Hagedorn phase transition is T4

Hag and recall that the
Hagedorn temperature relates to the string mass as
THag ¼ Ms

4π . Since the Hubble parameter is given by the
Friedmann equation,

3H2 ¼ 1

m2
P
T4
Hag; ð19Þ

with mP denoting the reduced Planck mass m2
P ¼

1=ð8πGÞ ¼ M2
P=ð8πÞ, it follows that

H ¼ 1ffiffiffi
3

p ð4πÞ2
M2

s

mP
≃ 1014 GeV

�
Ms

2.4 × 1017 GeV

�
2

: ð20Þ

We have kept track of numerical factors, both here and
below, because their large values are important for ensuring
the viability of the model.

FIG. 1. Universe as viewed by the FRW observer. Shown are
Penrose diagrams depicting the semiclassical interpretation
(left) and the microscopic interpretation (right). Also displayed
are the FRW observer’s past light cone and the number of
causally disconnected regions that he can see. In the lower half
of the semiclassical diagram, lines of constant planar coordi-
nates t (approximately vertical) and r (approximately horizon-
tal) are shown.
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In our model the scale of inflation H is expressed in
terms of the fundamental string scaleMs, which is expected
to be somewhat below the Planck scale MP ¼
1.2 × 1019 GeV. In [42], for instance, Ms was estimated
to be of the order of 1017 GeV for several types of string
theories. In other scenarios it can, however, be significantly
lower or, sometimes, even somewhat higher.
The entropy within a Hubble volume SH at the beginning

of the radiation era is given by the entropy of the string state
[cf. Eq. (12)],

SH ¼ π
M2

P

H2
≃ 1011

�
2.4 × 1017 GeV

Ms

�
4

; ð21Þ

where Eq. (20) has been used in the right-most relation.
This large entropy will later be related to the strength of the
curvature perturbations.
Unlike for the entropies, the temperature of the radiation

Trad is parametrically lower than the Hagedorn (string)
temperature. This is because of the large number of
constituent particle species, Nspecies ≫ 1 that are expected
to be in thermal equilibrium at this high a temperature, so
that T4

Hag ¼ NspeciesT4
rad.

B. Duration of inflation

The next task is to determine the duration of inflation
τinflation, which is a free parameter in the effective descrip-
tion of inflation. The accepted constraint on τinflation is that it
should be long enough to explain the entropy and flatness
of the observed Universe; it could, however, be much
longer. Here, we will use the entropy as the physical
quantity that determines the duration of inflation in the
microscopic description.
Let us recall that the entropy of the stringy bound state is

the total length of string in string units. We are assuming
(but will later relax our assumption) that this string entropy
is fully converted into radiation entropy at the phase
transition which marks the ends inflation. The number
of e-folds that the FRW observer has to postulate is, from
his perspective, determined by the increase in volume that
is required to explain the difference between the initial
entropy SH in Eq. (21) and the total entropy of the Universe
Stot ¼ nHSH,

e3Ne−folds ¼ V tot

H−3 ¼ nH ¼ Stot
SH

: ð22Þ

Further recall that nH is the number of causally dis-
connected patches which the string state encompasses from
an external semiclassical perspective. Since the entropy is
fully converted into radiation, the amount of inflation is
minimal; just enough e-folds as would be necessary to
“explain” the large number of causally disconnected
patches. In this way, it is the value of Stot which determines

the number of e-folds that the FRW observer has to
postulate,

Ne−folds ≤
1

3
ln
Stot
SH

: ð23Þ

The right-hand side sets an upper bound because, if there
were any additional entropy-generating mechanisms after
inflation, it would reduce the number of e-folds that are
required to explain Stot.
In our Universe Stot ∼ 1088 so that, if there are

no additional sources of entropy, the requisite number of
e-folds should be

Ne−folds ∼
1

3
ln

�
Stot
SH

�
≃
1

3
ln 1076 ∼ 60: ð24Þ

If we convert this number of e-folds into a dimensional
duration of inflation, then

τinflation ¼ H−1Ne−folds ∼ lsðg2SHÞ1=2 ln
�
Stot
SH

�
: ð25Þ

Notice that the duration of inflation can be expressed
strictly in terms of the parameters of the string state. The
resulting time scale is, remarkably, of the same order as
the scrambling time of the string state in Eq. (13),
τinflation ∼ τscrambling.
In spite of this last observation, let us emphasize that the

number of e-folds is not directly related to any specific time
dependence. It is, rather, part of the story that an FRW
observer needs to tell in order to explain the fact that the
initial entropy is much smaller than the final one. In
addition, the FRWobserver needs to introduce this artificial
notion of time dependence to explain why inflation ends
and how perturbations originate.
The above discussion highlights the fact that the maxi-

mal entropy state does not solve the so-called homogeneity
(or smoothness or size) problem in spite of its resolution of
the flatness problem. A solution of the homogeneity
problem would amount to explaining why the stringy state
extends over many horizon regions or, alternatively, why it
is so long lived. As mentioned in the Introduction, it is
likely that one needs a long phase of contraction (whether it
be ultra-slow [24] or accelerated [23]) to explain the desired
degree of smoothness. However, in the context of our
discussion, this is a topic that is not directly relevant to the
subsequent evolution of the postinflationary Universe.

C. Perturbations

Being strongly quantum in its nature, the initial stringy
state of maximal entropy has to be fluctuating quantum
mechanically. The objective here is to understand how
these perturbations can be compatible with cosmological
observations.
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The essential properties of the perturbations in inflation
are that they “freeze” on scales larger than the horizon and
are “scale invariant.” The meaning of “freezing” is that their
amplitudes no longer oscillate as a function of time but are
(approximately) constant. The proper wave number p ¼
jp⃗j of the perturbations when they freeze is always the
horizon scale, p ¼ H, but the perturbations are deemed as
scale invariant when their amplitudes are independent of
their comoving wave number k ¼ ap at the time of
freezing. A simple way to understand both properties is
to trade cosmological time t for conformal time η ¼ R

dt
a so

that η ¼ −1=Ha. Then, the horizon-crossing condition for
p becomes jηkj ¼ 1. Hence, after crossing, the oscillating
part of the perturbations in comoving coordinates δ ∼ eikη;
depends on neither time nor wave number.
We will eventually reveal the origins of these two proper-

ties from the microscopic perspective while determining the
amplitude of the perturbations in terms of the string scale.
But evenwithout a detailed analysis, one can anticipate these
features simply because the initial string state shares with dS
space the critical property of invariance under scaling
transformations. Moreover, the change in the nature of
the stringy perturbations across the horizon scale was
already implicitly discussed in our description of the
calculation of RCC and is especially apparent from
Eq. (5). The nature of these perturbations is described in
detail in [43]; in particular, they are shown there to be
approximately constant “outside the horizon” when
k2 < R−2

CC. This constancy for perturbations that have
escaped from their Hubble-sized domain may seem strange
insofar as there are nH independent domains and, as such,
variances should be suppressed by a factor of 1=nH.
However, from a quantum-mechanical perspective, it is
natural to expect that the patches are not so independent
but, rather, correlated through quantum entanglement. And,
as is well known, quantum correlations persist over an
arbitrarily long length scales.
A simple way to quantify the strength of the perturba-

tions in the stringy description is by considering the entropy
fluctuations in some region. To this end, let us consider
some observable quantity O in a spherical region of
radius R (in terms of the stringy fiducial coordinates).
Then the relative strength of the quantum fluctuations
of O in the specified region can be defined as δ2OðRÞ≡
hδO2iR=hOðRÞi2. Our main focus is on perturbations on the
scale of the horizon H ≃ 1=RCC, but we will later comment
on longer length scales.
Let us next recall how the fluctuation strengths are

evaluated from the free energy of the string state [11]. The
essential point here is that, at fixed values of “temperature”
ϵ, the entropy density s is essentially conjugate to the
volume V. To see this, one can rewrite Eq. (1) as

−
F

THagϵ
¼ sV −

1

2ϵ
g2s2V: ð26Þ

The variance of the volume fluctuations at fixed temper-
ature can now be evaluated in the standard way,

ðδVÞ2ϵ ¼
∂2ðF=THagϵÞ

∂s2 ¼ g2V
ϵ

: ð27Þ

Substituting for ϵ from Eq. (2) and dividing by V2, we now
obtain

δ2VðRÞ ¼
1

SðRÞ ; ð28Þ

for some region of size R.
The conjugacy of s and V ensures that their respective

fluctuations have the same relative strength, so that

δ2sðRCCÞ ≃
1

SðRCCÞ
: ð29Þ

And, since s and ρ differ only by a single factor of
(constant) ϵ,

δ2ρðRCCÞ ≃
1

SðRCCÞ
¼ 1

π

R2
CC

M2
P

ð30Þ

or, in more conventional notation,

δ2ρðHÞ ≃ 1

π

H2

M2
P
; ð31Þ

where the argument H has been used as short hand for a
Hubble-sized length scale RCC ≃ 1=H. The standard infla-
tionary result scales in the same way, as PρðkÞ ¼ 2

π
H2

M2
P
is the

closely related power spectrum for the tensor perturbations
[44]. As already mentioned, we will conduct a precise
quantitative comparison between our results and those of
the inflationary paradigm in a separate publication [41].
From the semiclassical perspective, Eq. (31) quantifies

the strength of the tensor curvature perturbations rather than
the scalar curvature perturbations, which will be discussed
next. These tensor perturbations are, therefore, the most
direct link between the stringy description and the effective
model of inflation. Using either Eq. (20) or (21), one can
estimate their strength in terms of the value of the string
scale Ms.
A less direct link is provided by the value of the gauge-

invariant scalar curvature perturbation ζ [44]. We will rely
on the relationship between ζ and the perturbation in the
number of e-folds δNe−folds, as used in the “separate
Universe” approach and the δN formalism [45,46] for
the calculation of superhorizon perturbations,

ζ ¼ δNe−folds: ð32Þ
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This identity will be used here as the defining relation of the
gauge-invariant scalar perturbation in the maximal entropy
state,

ζst ≡ δNe−folds: ð33Þ

As shown below, the value of δNe−folds can be expressed in
terms of quantities that are well defined for the maximal-
entropy state.
The number of e-folds in the maximal entropy state can

be expressed as in Eq. (22),

Ne−folds ¼
Z

dt
1

3
∂t lnV ≃

Z
dt∂t ln S; ð34Þ

from which it follows that

δNe−folds ≃
Z

dt∂t
δSH
SH

≃
Z

dtH
δs
s

����
H
: ð35Þ

It can then be concluded that

ζst ¼
Z

dtH
δs
s

����
H
: ð36Þ

It is also noteworthy that

_ζst ¼ H
δs
s

����
H
; ð37Þ

similar to the case in which the perturbations are non-
adiabatic [44,47].
It should be emphasized that the above time derivatives

refer to the time coordinate tst of the string state’s fiducial
(conformally flat) system and not that of the planar dS
space. However, as both descriptions share the property of
conformal invariance, we have the freedom to match their
respective coordinate systems with one another and with
those of the FRW observer at the surface r ¼ H−1 (equiv-
alently, at rst ¼ RCC). In other words, once at or outside the
horizon, all relevant observers can be assigned a common
definition of time, and we can subsequently adopt the
coordinate t of planar dS without any loss of generality.
Nonetheless, as explained below (also see [22]), any time
dependence in the calculation is something of a red herring
and so one’s particular choice of time coordinate is almost
besides the point.
The magnitude of the scalar curvature perturbation at the

horizon can be evaluated as follows:

hζ2stiH ¼
Z

dt0
Z

dt00H2

�
δs
s
ðt0Þ δs

s
ðt00Þ

�
H

≃H
Z

dtδ2sðHÞ ≃H
Z

dtδ2ρðHÞ: ð38Þ

Here, hδss ðt0Þ δss ðt00ÞiH ∼H−1δðt0 − t00Þ has been used. The
reason that a delta function appears here is basically the
same reason that it appears in the standard inflationary
calculations. The horizon-crossing constraint—or its cas-
ual-connection analogue—means that at times such that
Hjt0 − t00j > 1, the perturbations ζstðt0Þ and ζstðt00Þ are
uncorrelated. From Eq. (38), one can observe that ζst
evolves outside the horizon, again, as in the case of
nonadiabatic perturbations.
The remaining integration over time can be interpreted as

the time to probe the total length of string, which amounts
to an integration over the number nH of independent
domains. To see this, one can apply Hdt ≃ dNe−folds to
obtain

hζ2stiH ∼
Z

dNe−foldδ
2
ρðHÞ ∼

Z
d ln nHδ2ρðHÞ; ð39Þ

where Eq. (22) has been used. The last equality also makes
it clear that Eq. (39) is expressed entirely in terms of the
microscopic description.
If one assumes that δ2ρðHÞ remains approximately con-

stant over the nH disconnected regions, the above integral
simplifies to

hζ2stiH ∼ Ne−foldsδ
2
ρðHÞ: ð40Þ

The factor of Ne−folds represents an enhancement factor of
the scalar perturbation over the tensor perturbations.
Indeed, the tensor-to-scalar ratio r is given by

r ¼ δ2ρðHÞ
hζ2stiH

≃
1

Ne−folds
: ð41Þ

The calculation of the scalar perturbations and the resulting
enhancement does not depend explicitly on any deviations
from scale invariance. The quantity ζst therefore shares the
properties of the standard gauge-invariant scalar perturba-
tion ζ—it is the physical clock.
The calculation of the ζst correlation function can,

as alluded to, also be done in a way that eliminates the
time dependence altogether. Let us reconsider the double
time integral in Eq. (38) and rewrite each integral in terms
of conformal time,

R
dt →

R
adη. Applying the derivative

of the comoving form of horizon-crossing constraint
kdηþ ηdk ¼ 0, one then has

R
adη → −

R η
k adk ¼R

1
kH dk. If one also approximates the time derivatives by

H, the double time integral in Eq. (38) becomes a double
integral in k-space,

hζ2stiH ¼
Z

dðln k0Þ
Z

dðln k00Þhζstðk0Þζstðk00ÞiH: ð42Þ

Further imposing the delta function resulting from momen-
tum conservation, we obtain
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hζ2stiH ∼
Z

dðln kÞhζ2stðkÞiH ≃
Z

dðln kÞPζstðkÞ; ð43Þ

where the right-most equality follows from the standard
relation between a two-point correlation function in posi-
tion space and its associated power spectrum. From
Eq. (38), it can then be deduced that

hζ2stiH ≃ Ne−folds

Z
dðln kÞPρðkÞ: ð44Þ

This makes clear that both the time-dependence of the
scalar perturbations and their scale invariance can be
presented in a way that can be viewed purely in terms
of the Fourier modes of the string state.
By working within the microscopic picture, we did not

need to introduce nor rely on any time dependence. Notice
also that the enhancement of the scalar perturbations with
respect to the tensor perturbations was arrived at in a way
that does not depend explicitly on any deviations from a
scale invariant state. The tensor fluctuations, which re-
present the fundamental quantity from this perspective,
depend only on the thermodynamic properties of the initial
string state. Meanwhile, the enhancement factor for the
scalar modes can be attributed to the largeness of the initial
state rather than to a contrived period of dynamical
evolution. Additional deviations could arise from sublead-
ing terms and departures from exact equilibrium; see below.
In our model, the deviation of the spectrum of scalar
perturbations from scale invariance does not fix r, rather the
smallness of r is related to the fact that the initial state is
large and thus has a large entropy. This can be contrasted
with the predictions of string gas cosmology and holo-
graphic cosmology, as in both models r vanishes for an
exactly scale invariant scalar spectrum [18,20].
Now what happens on scales larger than the horizon?

The answer is simple: essentially the same as in the
standard inflationary picture. This is because both the
freezing of the amplitudes (or their growth) and the scale
invariance of the spectrum are direct consequences of the
scaling symmetry of the dS space and the form of the
perturbation equation. As we have shown, the correspond-
ing symmetries and perturbation equations of the micro-
scopic string state have the same relevant properties as
those in dS space. The scaling symmetry ensures, in
particular, that the position of the horizon scale and the
causal-connection scale RCC are invariant features of dS
space and the microscopic string state, respectively.
More formally and as reviewed recently in [22,48], given

a two-point function hδϕ2i in position space that is
invariant under dilatations xa d

dxa
, its two-point function

in Fourier space (i.e., its power spectrum) has to have the
following form at all trans-Hubble scales:

PϕðkÞ ¼
k3

2π2
hδϕðk⃗Þδϕð−k⃗Þi ¼ CϕðHÞ; ð45Þ

where Cϕ is a function of H only. As the tensor and scalar
perturbations inherit the same set of symmetries from the
string state as they do from dS space, all that is left is to fix
the value of the C’s, which we know to beCρðHÞ ≃H2=M2

P

from Eq. (31) and then CζstðHÞ ≃ Ne−foldsH2=M2
P due to

the enhancement.
Let us now discuss possible deviations from Gaussianity

and scale invariance. In the approximation that the free
energy of the string state is quadratic and the state is in
equilibrium, the fluctuations of the various quantities are
strictly Gaussian.
Deviations from Gaussianity then depend on the relative

strength of the higher-order string interactions. As dis-
cussed in Sec. II, the relative strength of the (nþ 2)-string
interactions in comparison to the strength of the 2-string

interactions scales as ðg2NV Þn ¼ ϵn ¼ ð HMs
Þn. These are, as

already mentioned, highly suppressed α0 corrections, which
indicates that the perturbations are approximately
Gaussian. Higher-order string-loop corrections (and com-
binations thereof) are also possible but these would of
course be suppressed by additional factors of g2. Deviations
from strict scale invariance are more subtle and will be
discussed in more detail in [41].

IV. SUMMARY AND CONCLUSION

We have presented a novel paradigm for the early
Universe which resolves the initial singularity problem of
inflation and yet can reproduce nontrivial qualitative fea-
tures of the spectrum of inflationary perturbations. Our
proposal is that the initial state is a thermal state of closed,
interacting, fundamental strings at a temperature which is
just above but parametrically close to the Hagedorn temper-
ature. We included a complete description of the initial state
for given values of the total entropy (or equivalently, the
total volume), the Hagedorn temperature, the temperature of
the state and the string coupling. Our proposed state thus
provides a microscopic model of inflation.
We showed that, qualitatively, all the essential features of

inflation are reproduced. The overall scale of the perturba-
tions and the ratio of scalar-to-tensor perturbations are,
surprisingly, qualitatively in agreement with observations.
The first surprise is that a string-scale energy density gives
a Hubble scale that is a factor of about 10−5 lower than the
Planck scale in spite of the fact that the two scales, string
and Planck, are quite close. The second, even bigger
surprise is that the ratio of scalar-to-tensor perturbations
is parametrically small, scaling as the inverse of the total
number of e-folds. In previous attempts to replace semi-
classical inflation by an initial state, this ratio was generally
found to be of order one. Achieving a hierarchy between
the scalar and tensor perturbations is considered as the main
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obstacle for such a replacement and, as far as we know, ours
is a first example of such a hierarchy. Furthermore, the
qualitative prediction of a high scale and a minimally
acceptable tensor-to-scalar ratio means that our model
predicts that the tensor perturbations are observable.
Our model is premised on a simple idea, that the

resolution of a spacelike singularity—whether it be at
the center of a BH or as a precursor to the big bang—
requires large deviations from semiclassical physics over
horizon-sized scales. Large deviations in this sense means
that the region of spacetime lacks a description in terms of a
semiclassical geometry. Such a situation occurs for strongly
coupled states of matter, which are synonymous with states
of extremely large entropy. The Hagedorn phase of closed
strings is one notable example of just such a state.
From our perspective, any description of the early

Universe up to the end of the inflationary phase is as valid
as any other, provided that it is self-consistent, agrees with
observations and obeys the known laws of physics. This
puts the late-time or FRW observer on equal footing with
the exterior observer in the BH case, as both can only
“make up stories” about the early Universe and the BH
interior respectively. Our story is one of a cosmological
picture that is devoid of singularities but deprived of a
semiclassical geometry at early times. On the other hand,
the observer who is determined to maintain a semiclassical
description of the inflationary period will take our picture
from one extreme, maximal entropy and maximally pos-
itive pressure, to another, zero entropy and maximally
negative pressure. The later extreme being the more
conventional dS description of inflation.
What is then to be gained from our stringy description of

the early Universe? The answer being that our model fixes

the parameters of inflation in terms of two fundamental
quantities, the string mass and the string coupling. As an
added bonus, this model can be connected to BH physics,
for which the same two parameters can also be probed. The
only other input is the minimal number of e-folds that is
needed to explain the size of the Universe. Our description
also manages to evade some of the usual conceptual issues
haunting inflation, such as the identity of the inflaton and
the self-consistency problems, such as eternal inflation, that
ensue from that perspective. Furthermore, the inflaton
models tend to have many adjustable parameters and a
myriad of moving parts. In short, the lack of opportunities
for “tweaking” means that our framework is predictive
and will be much easier to substantiate (or falsify). The
relatively small suppression of the tensor perturbations with
respect to the scalar perturbations suggests that they could
be discovered sooner than later. A sequel to the current
article which includes a substantially more quantitative
analysis of the observable consequences of our model will
be presented in due course [41].
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