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We introduce a novel methodology for establishing the presence of standing accretion shock instabilities
(SASI) in the dynamics of a core collapse supernova from the observed neutrino event rate at water- or ice-
based neutrino detectors. The methodology uses a likelihood ratio in the frequency domain as a test-
statistics; it is also employed to assess the potential to estimate the frequency and the amplitude of the SASI
modulations of the neutrino signal. The parameter estimation errors are consistent with the minimum
possible errors as evaluated from the inverse of the Fisher information matrix, and close to the theoretical
minimum for the SASI amplitude. Using results from a core-collapse simulation of a 15 solar-mass star by
Kuroda et al. [Astrophys. J. 851, 62 (2017).] as a test bed for the method, we find that SASI can be
identified with high confidence for a distance to the supernova of up to ∼6 kpc for IceCube and up to
∼3 kpc for a 0.4 Mt mass water Cherenkov detector. This methodology will aid the investigation of a future
galactic supernova.
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I. INTRODUCTION

The numerical study of the dynamics of core-collapse
supernovae allowed in the recent decades to identify
specific hydrodynamics mechanisms which control the
evolution of the shock wave. Among these dynamics,
one that is expected to produce signatures both in the
neutrino luminosity and the gravitational wave emission is
the standing accretion shock instability (SASI) [1,2]. SASI
is a hydrodynamical mode with a typical frequency, phase
and possibly varying amplitude that develops when a
deformed stalled shock front precesses around the newly
formed protoneutron star (PNS). Such precession in turn
induces an asymmetric accretion onto the PNS, resulting in
fluctuations in the luminosity of the emitted neutrinos, and
the emission of gravitational waves (GW) (see, e.g., [3–6]
and references therein).
Indications of SASI were first identified in two-

dimensional (2D) numerical simulations [1,6–11], and then
confirmed by three-dimensional (3D) simulations as well
[12–18]. The precession frequency (and therefore the fre-
quency of the neutrino modulations) was found to be
between a few tens of Hz and 200 Hz [4,18–20] depending
on the progenitor mass, nuclear equation of state (EOS), and
progenitor rotation. A possible correlation of the SASI-
modulated neutrino and GW signals has been studied in [4],
which also demonstrated that a GWSASI signature could be
contaminated by other effects (e.g., neutrino-driven con-
vection and the associated turbulence). A multimessenger

analysis joint with neutrinos, which could clarify the pres-
ence of SASI in GW, is particularly motivated.
While the frequency of the SASI is expected to be mostly

related to the mechanical properties of the PNS, the
duration of SASI signatures in neutrinos and GW reflects
the duration of the phase when the shock wave is stalled,
before either being launched to drive an explosion, or dying
out so the star implodes directly into a black hole (failed
supernova). Indeed, progenitors at the interface of the
successful and failed explosions tend to exhibit longer
periods with SASI [18].
At this moment, SASI is a hypothesis—supported by

numerical simulations—that awaits observational tests.
Neutrinos and GW are the only messengers that can, for
a future galactic supernova, directly probe this pheno-
menon and provide measurements the relevant parameters
(such as the SASI frequency and amplitude). Such mea-
surements will clarify the properties of the PNS, the nuclear
EOS, ultimately the yet-uncertain supernova explosion
mechanism. The phase difference between GW and neu-
trino luminosity observed at Earth could also in principle
(for an uncertainty-free signal at the source) probe propa-
gation effects, like the time delay due to the neutrinos being
massive [21,22]. It also carries the potential to estimate the
different depths of the main production zone of neutrinos
(the neutrinosphere) and of GW [4].
The theme of this paper is the detectability of SASI

signatures in the neutrino luminosity as recorded at
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neutrino detectors on Earth, and the potential of estimation
of its main phenomenological parameters. The SASI-
induced modulation of neutrino emission has been studied
previously on the base of both two-dimensional [23,24] and
three-dimensional [15,25] SASI-dominated supernova
simulations. The neutrino signal in terms of its Fourier
power spectrum was analyzed [18,19,21,26,27] in order to
assess the detectability of SASI activity. The minimum
requirement for signal detection was established by stating
that the power spectrum of signal has to exceed the one of
the background [19,21,26,28].
In this work we advance the topic to a more quantitative

level, by establishing a framework which is new in the
context of neutrino data analyses. This methodology is an
implementation of the maximum likelihood principle, and
uses the probability distribution of the observed power
at different frequencies. As part of the likelihood-based
analysis we also address the question of parameter esti-
mation, and compare the results for the parameter variances
to the optimally possible variance according to a Fisher
matrix analysis of the problem.
The present paper is intended as a first step toward a joint

description of the problem for neutrinos and GW, which is
left for future work.
The paper is structured as follows. In Sec. II, generalities

are given on SASI and on neutrino detection. In Sec. III, our
methodology to establish the presence of SASI in a
neutrino signal is presented, and results are shown using
a specific numerical simulation as a test-bed of the method.
Parameter estimation is then addressed in Sec. IV, and a
discussion follows in Sec. V. Three appendices offer proofs
and technical details to the interested reader.

II. GENERALITIES

A. Supernova neutrino detection

We consider neutrino detections in two different exper-
imental settings. The first is a water Cherenkov detector at
the Megaton mass scale, like the planned Hyper-
Kamiokande (Hyper-K from here on) [29]. For simplicity,
only the main detection channel, inverse beta decay
(ν̄e þ p → nþ eþ), is included here. Individual positrons
are detected via their Cherenkov photon signature with high
efficiency and excellent time resolution (microseconds or
less [29]). Therefore, here an “event” from a supernova
burst indicates an individual neutrino interacting within the
volume of the detector. Background events due to other
neutrino sources, cosmic rays or detector impurities—
which in principle could mimic supernova neutrinos
events—are negligible for a galactic supernova [30].
The number of supernova neutrino events in the detector

is directly proportional to the number of target particles in
the detector (and therefore to its mass), and it scales like the
neutrino number flux, i.e., proportionally to D−2, with D
being the distance to the star. As a reference, here the

expected Hyper-K mass of 0.44 Mt and 100% detector
efficiency will be used; results for different detector masses
can thus be obtained by rescaling D. Given the microsec-
ond recording time scale, the number of events ni in each
millisecond time bin ½ti; ti þ Δt� is subject to Poisson
statistical fluctuations (standard deviation σi ¼ ffiffiffiffi

ni
p

), with
negligible correlations between different time bins.
The second experimental setting refers to the kilometer-

scale antarctic detector IceCube [31]. There, the detection
concept is designed for multi-TeV neutrinos, and is based
on digital optical modules (DOMs) positioned in geometri-
cally sparse arrays in the antarctic ice. For a flux of
∼10 MeV supernova neutrinos, individual neutrino inter-
actions (mostly from inverse beta decay, like in water)
cannot be resolved, however a surge of total photon count
rate in the optical modules can be observed as a signal. In
this context, an event is intended to be the observation of a
photon in a DOM.
In contrast with Hyper-K, in IceCube the background

level is relatively high, at a rate of _n ≃ 1340 ms−1 [21,32].
Therefore, the number events ni in each time bin is the
number of photons recorded in the entire detector in that
time bin, and is the sum of the contributions of the
supernova signal (scaling like D−2) and of background
(fixed, and constant in time). Note that in this work we
focus on the dominant emission signatures of electron
antineutrinos (in both IceCube and Hyper-K), and we shall
leave the consideration of multiflavor interactions (albeit
important, see an in-depth review by Mirizzi et al. [3]) for
future work.

B. SASI: Physics and numerical predictions

We use the numerically calculated neutrino event rates
for IceCube and Hyper-K from a 3D general relativistic
(GR) simulation (model SFHx, where SFHx indicates the
equation of state by [33]) by Kuroda, Kotake, Hayama and
Takiwaki (KKHT from here on) [4] as a test bed of a
realistic scenario where SASI effects are present in the
neutrino luminosity. They are shown in Fig. 1. For
simplicity, the observer’s direction is taken along the polar
(e.g., the z) axis of the source as a fiducial case, where the
flux-projection effects and the detection efficiencies for
estimating the event rates are taken into account following
Tamborra et al. [28].
In the KKHT model, the 3D hydrodynamics evolution is

self-consistently followed from the onset of core-collapse
of a 15 M⊙ star [34], through core bounce, up to ∼350 ms
after bounce. As consistent with the outcomes from recent
3D models (e.g., [5,15,35]), the hydrodynamic evolution is
characterized by the prompt convection phase shortly after
bounce (Tpb ≲ 20 ms with Tpb the postbounce time), then
the linear (or quiescent) phase (20≲ Tpb ≲ 140 ms), which
is followed by the nonlinear phase when the vigorous
activity of SASI was observed for the model. The domi-
nance of the SASI over neutrino-driven convection persists
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over 140≲ Tpb ≲ 300 ms, after which neutrino-driven
convection dominates over the SASI (see [36] for more
details). In [36], the SASI frequency was roughly esti-
mated as _M=M ∼ 100 Hz, where M ∼ 10−3 M⊙ and _M ∼
0.1 M⊙=s denote the typical mass and mass accretion rate

in the gain region, respectively, which is consistent with the
numerically obtained SASI-modulated neutrino frequency
(e.g., Fig. 7 of [4]).
In the simulation, the Baumgarte-Shibata-Shapiro-

Nakamura formalism was employed to evolve the metric
[37,38], and the GR neutrino transport was solved by an
energy-integrated M1 scheme [39]. For simplicity, effects
of neutrino flavor oscillations (e.g., the Mikheyev-
Smirnov-Wolfenstein (MSW) effect [40], and collective
neutrino oscillations, see [3] and references therein for a
review) are neglected in this study (see, e.g., [19] for a brief
discussion of the validity of this approximation).
Here the supernova burst simulated by KKHT will be

used as representative of a future SASI-carrying signal in
the two detectors of interest. It will be compared with a
similar signal that has no SASI features in it. Such null
model is constructed by smoothing out the SASI oscil-
lations from the original KKHT model. The smoothing is
done by taking the event rates averaged over eight time
bins, each of 1 ms width, and performing a polynomial
interpolation of these averaged rates. A zoomed-in plot of
the KKHT and smoothed out rates is given in Fig. 2 (black
solid lines in left panes).
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FIG. 1. Predicted neutrino event rate at Hyper-K from the
KKHT model of a 15 M⊙ progenitor with the SFHx equation of
state [4], for a star at distance D ¼ 10 kpc.

FIG. 2. Neutrino event rate (left panels) and its power spectrum (right panels) at Hyper-K for distance D ¼ 1 kpc. Shown as solid
black lines are a case where there is SASI (upper panes, from the KKHT model), and no SASI (lower panes, derived from the KKHT
model with smoothing, see text). We also show (solid, purple curves) the predictions of the 2-parameter template [2P, Eq. (1)] and of the
0-parameter template [0P, Eq. (2)], for estimated best-fitting parameters (fS ¼ 119.72 Hz, a ¼ 0.049 and A ¼ 6141.54, see Eq. (1) and
Table I). The shaded (blue) bands characterize the probability density distributions with the width of one standard deviation.
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III. TESTING FOR SASI: LIKELIHOOD
RATIO METHOD

In this section, we set up the formalism necessary to our
statistical method. Considering the oscillatory character of
the SASI signatures, we choose to work in the frequency
space, and establish the discretized power spectrum of the
neutrino time profile as the observable of interest. The
statistical behavior of the power spectrum is then presented.
Finally, the likelihood ratio as test-statistics is defined and
used to assess the detectability of the SASI. We use the
likelihood ratio as deciding statistic for the hypothesis test
because of its optimality properties, which are described by
the Neymann-Pearson Lemma [41]. For clarity, in what
follows the symbols with tilde (e.g., Ñ) will indicate an
actual outcome of a measurement, which is affected by
statistical fluctuations. The same symbol without tilde
(e.g., N) will be used for the mean, “true” value of the
same quantity.

A. Neutrino time profile templates

When data from a supernova burst are analyzed, it can be
useful—as it is often done in neutrino data analyses, see,
e.g., [21]—to fit the event rate time profile with simplified
analytical templates that, while necessarily inaccurate, will
allow to gain analytical understanding and to estimate the
main phenomenological parameters. The latter can then be
compared with predictions of detailed numerical simula-
tions for greater insights into the microphysics at play. In
this work, we use two parametric templates which char-
acterize the main features of neutrino signals with and
without the SASI activity respectively, to study the poten-
tial of a data analysis algorithm to identify the presence
of SASI.
For the case with SASI activity we choose a single

frequency function:

R2ðtÞ ¼ ðA − nÞð1þ a sinð2πfStÞÞ þ n; ð1Þ

where A is the time-averaged event rate (the “DC compo-
nent”) in the detector including instrumental noise (after
possible experimental cuts), a is the relative SASI ampli-
tude, n is the mean value of the background rate (n ¼ 0 for
Hyper-K), and fS is the nominal frequency of the SASI.
The second template, for the case without SASI, is a
constant:

R0ðtÞ ¼ A; ð2Þ

[with A having the same meaning as in Eq. (1)].
In our method, only fS and a will be treated as free

parameters with respect to which the likelihood will be
maximized. We assume that other relevant quantities, such
as the DC component, A, and the starting time (t0) and
duration (τ) of the SASI activity, can be determined

separately, by using theoretical priors, visual inspection,
or a separate algorithm. For A, it is immediate to see that it
can be measured with high precision (i.e., negligible
uncertainty), without the need of a fit. Its relative uncer-
tainty is δA=A ¼ 1=

ffiffiffiffiffiffiffiffi
Nev

p
≪ 1 where Nev is the total

number of events, and Nev ≳ 2500 in all the cases exam-
ined here (we also assume that systematic uncertainties on
n are negligible, because background rates can be measured
precisely over years of data-taking).
With regard to t0 and τ, here they are fixed to be

t0 ¼ 155 ms post-bounce, and τ ¼ 55 ms, consistently
with the KKHT simulation results (Fig. 1). Fixing these
quantities is legitimate in the spirit of answering the
question whether there is indication of single-frequency
fluctuations in a signal between two chosen (generic)
instants of time. Realistically, in the context of a more
specific search for SASI effects, t0 and τ could be at first set
using rough estimations from visual inspections of the data,
in conjunction with expectations from the theory. Indeed, a
delay in the onset of SASI (relative to the bounce time) is
expected considering that SASI requires the shockwave to
come to a stalling point. We checked that 3D numerical
simulations roughly place t0 in the interval ∼0.1–0.4 s
post-bounce [16,36,42–44], with τ being even more uncer-
tain. It is possible that, by the time the next galactic
supernova is observed, theoretical progress will be able to
place stronger priors on t0 and τ. The method proposed here
will be applicable to data with externally-estimated (not
optimized) t0 and τ; the lack of optimization of these
parameters will result in certain loss of power of the
method, which can be overcome by generalizing the
method to include τ and t0 as fit parameters.

B. Time series and power spectrum

Let us consider the events that are recorded in a detector
after an initial time t0, in time bins of width Δ ¼ 1 ms. The
jth time bin then corresponds to the time tj ¼ t0 þ jΔ. The
observed number of events in the same bin will then be
ÑðtjÞ, which is a random variable fluctuating around its
mean NðtjÞ ≃ RðtjÞΔ.
Following [21,26], we perform a discrete Fourier trans-

form of the time series fÑðtjÞg over the time interval
½t0; t0 þ τ�, containing Nbins ¼ τ=Δ time bins. The discrete
frequency resolution is then:

δ ¼ 1

τ
; ð3Þ

which represents the minimum width of frequency bins for
which statistical independence between adjacent bins can
be realized (see the discussion in Appendix A). For our
fiducial value τ ¼ 55 ms, the resolution is δ ¼ 18 Hz [45].
The Nyquist frequency becomes [41]
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fNyq ¼
1

2Δ
; ð4Þ

which corresponds to the frequency index

kNyq ¼
fNyq

δ
¼ τ

2Δ
¼ 1

2
Nbins: ð5Þ

We define the discrete Fourier-transformed neutrino signal
as:

h̃ðkδÞ ¼
XNbins−1

j¼0

ÑðtjÞei2πjΔkδ; ð6Þ

and the one-sided power spectrum, similarly to [41] as:

P̃ðkδÞ ¼
�
2jh̃ðkδÞj2=N2

bins for 0 < kδ < fNyq;

jh̃ðkδÞj2=N2
bins for kδ ¼ 0

ð7Þ

(here the identity ðjh̃ðkδÞj2 þ jh̃ð−kδÞj2Þ ¼ 2jh̃ðkδÞj was
used).
The factor of 1=N2

bins is included in order to fix the nor-
malization, so that at k ¼ 0 we have P̃ð0Þ ¼ ðÑev=NbinsÞ2
[here Ñev ¼

PNbins−1
j¼0 ÑðtjÞ].

Figure 2 shows an illustration of the discretized time
profile, and the corresponding power spectra, for the
KKHT model, with and without SASI [as well as for
the two templates in Eqs. (1) and (2)]. For the latter, the
parameters have been fit to maximize the likelihood (see
Eq. (10) in the following section) to best reproduce the
general features of the neutrino event rates predicted by
the KKHT model. The figure shows that, qualitatively, the
templates capture the main features of the realistic, numeri-
cally calculated time and frequency profiles. An exception
is the peak at f ∼ 60 Hz in the power spectrum of the no-
SASI model, which is not reproduced by the template. We
checked that this peak is due to the “wavy” structure at
t ∼ 180–200 ms in the numerical model.

C. The SASI-meter

Let us now consider the series of power spectrum values
at the discrete frequencies kδ, PðkδÞ, and their statistical
properties. Considering that (i) the probability that a single
neutrino interacts in the detector is very small, (ii) event
counts in different time bins are statistically independent
(see Sec. II), and (iii) NðtjÞ≳ 10 (large number approxi-
mation), we conclude that the binomial distribution for
NðtjÞ approaches a Gaussian distribution with a variance
proportional to the square root of the mean number
(Poisson process): s2ðtjÞ ¼ NðtjÞ. This implies (see the
proofs in Appendices A and B) that the real part and
imaginary part of the discrete Fourier transform, hðkδÞ
[Eq. (6)], are also Gaussian-distributed, and the probability
distribution of the power spectrum P̃ at a given frequency is
given by

ProbðP̃Þ ¼ N2
bins

4σ2
exp

�
−
N2

bins

4σ2
ðP̃þ PÞ

�

× I0

�
N2

bins

2σ2

ffiffiffiffiffiffiffi
P̃P

p �
; ð8Þ

where I0 is the modified Bessel function of the first kind,
and

σ2 ¼ Nev

2
: ð9Þ

The object of this study is to perform a hypothesis test for
the presence of SASI. There is evidence from numerical
simulations that the SASI only develops within a certain
range of frequencies from a few tens of Hz to about 250 Hz
[5,25,36,46–48]. Therefore, we apply a frequency cut, and
restrict the analysis to the interval from 54 Hz to 216 Hz.
The corresponding range of wavenumbers is k ¼ 3; 4;
5;…; 12. In addition to being motivated by estimates of
the SASI frequency, the cut is instrumental to exclude a
large peak at low frequency due to the spectral leakage [41]
from 0 Hz.
Let us now define the likelihood that a given observed

power series vector, P̃ ¼ fP̃kg (i.e., the series of powers
for discrete wavenumbers k) is a realization of a certain
hypothesis, which can be described by a parametric
template. It is defined as:

LðP̃;ΩÞ ¼
Y12
k¼3

ProbðP̃k; PkðΩÞÞ; ð10Þ

where PkðΩÞ is the power predicted by the template, and Ω
indicates the set of parameters of the template.
Given two hypotheses (i.e., two templates) with param-

eters Ω and Ω0, and a fixed observed set P̃, the likelihood
ratio is

LðP̃Þ ¼ MaxΩ½LðP̃;ΩÞ�
MaxΩ0

½LðP̃;Ω0Þ�
: ð11Þ

In the numerator (denominator), the first (second) hypoth-
esis is used and the likelihood is maximized with respect to
the parameters Ω (Ω0). In this work, the templates in
Eqs. (1) and (2) will be used as representative of the SASI
and no-SASI cases. Their parameters are Ω ¼ fa; fSg and
Ω0 ¼ fNullg respectively.
It is intuitive to see how the likelihood ratio in Eq. (11) is

sensitive to SASI. Since our templates R2 [Eq. (1)] and R0

[Eq. (2)] capture well the main features of the neutrino
event rates of the models with and without SASI respec-
tively, as the SASI features in the data become more
pronounced, the numerator Eq. (11) is likely to increase
(generally better fit for the R2 template), while at the same
time the denominator is likely to decrease (poorer fit for the
R0 template), so L is likely to increase. Vice-versa, L will
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FIG. 3. Likelihood ratio probability distribution for SASI and no SASI case in Hyper-K (left) and IceCube (right), for different values
of the distanceD to the star (chosen to correspond to integer increments of the number of events, see legends). The likelihoods have been
obtained using simulated neutrino signal according to the KKHT model.
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take lower values if the SASI signatures in the data become
weaker. Therefore, Eq. (11) serves as our “SASI-meter” to
identify the presence of SASI.
To assess the effectiveness of the SASI-meter quantita-

tively, we need to find the probability distributions of L
(or, equivalently, lnL) under the two hypotheses. This was
done by simulating (using a Monte Carlo method) Nst ¼
103 sets P̃ using the KKHT model with and without SASI,
so we will have LS ≡ LðP̃SASIÞ and LnS ≡ LðP̃no-SASIÞ,
and their probability density distributions, ProbðLSÞ ≃
ProbðLjSÞ (where ProbðLjSÞ indicates the “true” proba-
bility distribution, which would be obtained in the limit
Nst → ∞) and ProbðLnSÞ ≃ ProbðLjnSÞ.
A useful way to describe these two distributions, and

compare them with one another, is to examine the prob-
abilities that—under the two hypotheses—the likelihood
ratio exceeds a certain threshold value, Λ:

PD ¼
Z
L>Λ

ProbðLjSÞdL; ð12Þ

PFI ¼
Z
L>Λ

ProbðLjnSÞdL: ð13Þ

Λ usually represents a value of the likelihood ratio above
which the SASI hypothesis is accepted as true (“detec-
tion”). Therefore, PD takes the meaning of SASI detection
probability, because it represents the probability that the
method accepts the SASI hypothesis as true when the SASI
is in fact true. PFI then represents the false identification
probability, i.e., the probability that the SASI hypothesis is
accepted when in fact the no-SASI hypothesis is the
true one.
The formalism discussed in this section becomes clearer

in light of the results we have obtained, which are going to
be illustrated next.

D. Results: SASI or no-SASI?

Our main results for hypothesis testing are summarized
in Fig. 3, for Hyper-K and IceCube, and for different
distances to the supernova. For each detector and distance,
the figure shows the probability distributions of lnLS
and lnLnS.
We observe that, reflecting the expected sensitivity of

our SASI-meter, for short distances the two distributions
are widely separated, with the distribution for the SASI
(no-SASI) case peaking at lower (higher) values of the
likelihood ratio [49]. The separation means that, if the SASI
hypothesis is true, there is a large probability that the
measured value of lnL will fall in a region where the no-
SASI hypothesis is strongly disfavored [i.e., ProbðLjnSÞ ≪
ProbðLjSÞ]. A similar argument holds if the no-SASI
hypothesis is true. We conclude, then, that for a relatively
close supernova (D ∼ few kpc) the two hypotheses are
likely to be distinguished with high confidence.

The separation between the two probability distributions
decreases as D increases, until, for D ∼ 10 kpc, the SASI
and no-SASI curves almost completely overlap, meaning
that the two hypotheses are very unlikely to be distin-
guished. The dependence on the distance is due to how the
size of the statistical fluctuations increases with D, even-
tually overpowering the SASI, which therefore becomes
invisible.
The trends shown in Fig. 3 are reflected in the behavior

of the detection and false identification probabilities, PD
and PFI [Eqs. (12) and (13)]. These are described by the
receiver operating characteristic curve (ROC). The ROC is
defined as the curve described in a plane by the points
ðPFIðΛÞ; PDðΛÞÞ, where Λ varies in the interval ½0;þ∞�.
Figure 4 shows the ROC for Hyper-K and IceCube for
several distances from the star. The plots show the general
features of the ROC: it passes by the points (0,0) and (1,1)
[corresponding to Λ → þ∞ and Λ → 0 respectively, see
Eqs. (12) and (13)]. Furthermore, the curve lies in the
region PD > PFI, as expected from Fig. 3. A high detect-
ability potential corresponds to a ROC where PD is as close

FIG. 4. Receiver operating characteristic curves based on
KKHT model for Hyper-K (top panel) and Ice Cube (bottom
panel), for several distances to the supernova. See Eqs. (12)
and (13).
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as possible to 1 and at the same time PFI is as close as
possible to 0. For example, for IceCube andD ¼ 5 kpc, the
ROC passes by the point ðPFI; PDÞ ≃ ð0.1; 0.95Þ, meaning
that, if a 10% false identification rate is considered
acceptable, the likelihood ratio will establish the presence
of the SASI in 95% of the cases. The same situation
is realized for Hyper-K for D ≃ 2 kpc. Naturally, the
ROC deteriorates as D decreases, and ultimately (for
D≳ 10 kpc) it converges to the line PD ¼ PFI, which
corresponds to a neutrino signal with SASI being com-
pletely indistinguishable from a signal without SASI. The
ROC curves allow to estimate the range where a fixed PD is
achieved for a desired PFI. If, e.g., we require the ROC to
have PD ≥ 0.7 for PFI ¼ 0.1, Fig. 4 indicates that the
largest distance of sensitivity to the SASI is D ≃ 6 kpc for
IceCube and D ≃ 3 kpc for Hyper-K.

IV. PARAMETER ESTIMATION

A. Likelihood ratio and best fit parameters

For the scenarios where the SASI hypothesis is accepted
as true (L > Λ), the next step is estimation of the
parameters. For definiteness, here we present results for
Λ that corresponds to PFI ¼ 0.1 [Eq. (13)].

In our method, the best fit values of the SASI frequency,
f̄S, and of the amplitude, ā, are found as the values that
maximize the likelihood LðP̃;ΩÞ, within the process of
constructing the likelihood ratio [Eq. (11)]. From that
process, we obtained the probability distributions of f̄S,
and ā. We then calculated the mean and standard deviation
of f̄S and ā. The standard deviation gives an estimate of
approximately 68% confidence level error with which an
estimate of a given parameter can be obtained.
The results are shown in Fig. 5 and Tables I (for Hyper-

K) and II (for IceCube). For Hyper-K and D ¼ 10 kpc,
where the sensitivity to the SASI is poor, the distribution
for f̄S is very broad, with roughly all values being equally
probable. This indicates that, although there might be
indication of an oscillatory behavior in the data (such that
the likelihood ratio is above the threshold), such outcome is
most likely to be due to random statistical fluctuations and
not to SASI. An estimate of the frequency would have a
large error and might not be physically meaningful. The
corresponding distribution for ā is similarly broad for
ā≳ 0.03, indicating that, as long as there is indication
of an oscillatory pattern in the data, its amplitude can vary
widely, and is probably driven by statistical fluctuations.

FIG. 5. Probability distribution of the best-fit values of the SASI frequency, f̄S (left), and oscillation amplitude, ā (right), for Hyper-K
(top) and for IceCube (bottom), for several distances to the supernova. Only cases with sufficient statistical indication of SASI activity
are considered here, by imposing a threshold on the likelihood ratio (corresponding to PFI > 0.1, see text). Here, the likelihoods have
been obtained using simulated neutrino signal according to the KKHT model.
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AsD decreases (D≲ 5 kpc or so) the distributions of both
f̄S and ā start to concentrate around the physical values of
the injected SASI model, f̄S ∼ 120 Hz and ā ∼ 0.05, indi-
cating a sensitivity to the physical SASI signal above
statistical fluctuations. This trend appears in Table I as well,
where one can see the decrease of the standard deviation
with the decreasing distance. We note that the width of the
distributions for a and fS depend in part on how the time
structure of the neutrino signal in the KKHT model is only
roughly reproduced by the simplified template, Eq. (1). As a
consistency test, we checked that using simulated data
drawn from the simplified template has the (expected) effect
of producing narrower parameter distributions [50].
We caution the reader about the meaning of the multiple

peaks that appear in the distributions in Fig. 5: these peaks
reflect the discrete structure of the power spectrum series
fP̃kg which is being analyzed, which has a resolution
(frequency bin size) of about 20 Hz (see Eq. (3) and Fig. 2),
and therefore do not have a direct physical meaning.
The probability distributions and tabulated values

(Table II) for IceCube show a structure and dependence
on D similar to those for Hyper-K. A difference is that at
D ¼ 10 kpc, the sensitivity to SASI is not completely
washed out by the statistical fluctuations, so it might be
possible to obtain a (coarse) measurement of fS.

B. Fisher information matrix
and minimum uncertainties

In this section we aim at comparing the standard
deviations of the SASI parameters obtained using the

likelihood ratio method with the theoretical lower bound
in the accuracy. The latter is given by the Cramer-Rao lower
bound [41], and is derived from the Fisher information
matrix (FIM). We begin by summarizing the main formulas
of the FIM formalism; these will then be applied to the case
at hand.
Let us consider a generic template RðtiÞ for the event rate

at discrete times, ti (i ¼ 1; 2;…; N), which depends on a
set of parameters, θα (α ¼ 1; 2; 3;…; K) (note that, for our
choice of unitary bin size, Δ ¼ 1 ms, the event rate and the
number of events are numerically the same. Here we omit
the factor Δ to keep the notation compact). The FIM is a
K × K matrix, found from the probability distribution. We
define the joint probability as:

ProbðR̃Þ ¼
YN
i¼0

ProbðR̃iÞ; ð14Þ

where R̃ is the series of observed neutrino rate fR̃ðt1Þ;
R̃ðt2Þ;…R̃ðtNÞg in time domain. The FIM describes how
much each parameter affects the distribution via its second
derivatives:

Γαβ ¼
�
−
∂2 ln ProbðR⃗Þ

∂θα∂θβ
	
; ð15Þ

In the assumption that ProbðR̃ðtiÞÞ is a multivariate
Gaussian distribution in the time domain, the FIM reduces
to the following expression (see Appendix C):

Γαβ ¼ μTαΣ−1μβ þ
1

2
Tr½c̃αc̃β�; ð16Þ

where μTα and μβ are N-dimensional vectors (one compo-
nent for each value of ti), defined as:

μα ¼
∂R̃
∂θα ; ð17Þ

and Σ−1 is the inverse of the N × N diagonal covariance
matrix:

Σ−1 ¼

2
666666664

Rðt1Þ−1 0 0 0 0

0 Rðt2Þ−1 0 0 0

0 0 Rðt3Þ−1 0 0

0 0 0 . .
.

0

0 0 0 0 RðtNÞ−1

3
777777775
:

ð18Þ

Finally c̃α is defined as the inverse of the covariance matrix
times the partial derivative of the matrix:

TABLE I. Mean and standard deviation of the parameter
distributions in Fig. 5, for Hyper-K. The numbers in the
parentheses are the Cramer-Rao lower bounds, calculated using
Fisher matrix in the time domain. For larger D, where the
selection effects on L are strong, a direct comparison is not
meaningful and therefore the Cramer-Rao bounds are not shown.

SASI 10 kpc 5 kpc 3.33 kpc 2 kpc 1 kpc

f(Hz) 111.77 109.2 111.67 116.49 119.72
δf(Hz) 42.31 22.61 16.7 9.64(0.08) 2.35(0.04)
a 0.065 0.062 0.054 0.049 0.049
δa 0.017 0.008 0.0059 0.0053(0.0047) 0.0026(0.0023)

TABLE II. Mean and standard deviation of the parameter
distributions in Fig. 5, for IceCube. The numbers in the
parentheses are the Cramer-Rao lower bounds, calculated using
Fisher matrix in the time domain. For larger D, where the
selection effects on L are strong, a direct comparison is not
meaningful and therefore the Cramer-Rao bounds are not shown.

SASI 10 kpc 7.07 kpc 5.77 kpc 5 kpc

f(Hz) 120.45 115.57 118.33 119.43
δf(Hz) 33.36 10.85 5.53 (0.078) 3.34 (0.063)
a 0.057 0.050 0.048 0.048
δa 0.0064 0.0036 0.0047(0.0041) 0.0046 (0.0034)
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c̃α ¼ Σ−1 ∂Σ
∂θα : ð19Þ

The Cramer-Rao bound on a parameter θα is given by:

δθα ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1Þαα

q
ð20Þ

We can now specialize the FIM formalism to our case,
where the template is the one in Eq. (1), and we have two
parameters, θ1 ¼ a and θ2 ¼ fS. Therefore:

RðtiÞ ¼ R2ðtiÞ ¼ ðA − nÞð1þ a sin ð2πfstiÞÞ þ n ð21Þ

μ1 ¼ ðA − nÞ sin ð2πfstiÞ ð22Þ

μ2 ¼ 2πtiðA − nÞa cos ð2πfstiÞ: ð23Þ

The elements of the Fisher matrix in time domain can be
written analytically as below:

Γ11 ¼
XN
i¼1

ðA − nÞ2 sin ð2πfstiÞÞ2
ðA − nÞð1þ a sin ð2πfstiÞÞ þ n

þ ðA − nÞ2 sin ð2πfstiÞÞ2
2ððA − nÞð1þ a sin ð2πfstiÞÞ þ nÞ2 ; ð24Þ

Γ12 ¼
XN
i¼1

2aðA − nÞ2πti sin ð2πfstiÞ cos ð2πfstiÞ
ðA − nÞð1þ a sin ð2πfstiÞÞ þ n

þ aðA − nÞ2πti sin ð2πfstiÞ cos ð2πfstiÞ
ððA − nÞð1þ a sin ð2πfstiÞÞ þ nÞ2 ; ð25Þ

Γ21 ¼
XN
i¼1

2aðA − nÞ2πti sinð2πfstiÞ cosð2πfstiÞ
ðA − nÞð1þ a sinð2πfstiÞÞ þ n

þ aðA − nÞ2πti sinð2πfstiÞ cosð2πfstiÞ
ððA − nÞð1þ a sinð2πfstiÞÞ þ nÞ2 ; ð26Þ

and

FIG. 6. Cramer-Rao lower bounds based on simplified parametric templates with SASI [see Eq. (1)], in the form of relative errors, for
the SASI frequency (top) and amplitude (bottom), as functions of frequency (left) and amplitude (right), for Hyper-K and select
distances to the star (see legend). In each curve, the remaining parameter has been fixed at its best-estimated value (the one for
D ¼ 1 kpc) in Table I.
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Γ22 ¼
XN
i¼1

4a2ðA − nÞ2π2t2i cos ð2πfstiÞ2
ðA − nÞð1þ a sin ð2πfstiÞÞ þ n

þ 2a2ðA − nÞ2π2t2i cos ð2πfstiÞ2
ððA − nÞð1þ a sin ð2πfstiÞÞ þ nÞ2 : ð27Þ

Finally, by combining Eqs. (24)–(27) with Eq. (20),
one finds the minimum uncertainties on the parameters:
δθ1 ¼ δa and δθ2 ¼ δfS. These are themselves functions of
a and fS, so they have to be estimated at a chosen (best-fit)
point in the parameter space.
In Figs. 6 and 7, the relative Cramer-Rao uncertainties

are shown for selected distances to the star (which
determine the widths of the Gaussian probability distribu-
tions that enter the calculation), and as functions of one of
the parameters, where the other parameter is kept fixed at
its best-estimated value (last columns of Tables I and II). As
expected, the uncertainties decrease with decreasing dis-
tance. We also note that the dependence on the amplitude a
is stronger than that on the frequency.
As a figure of merit, to clarify if our approach is optimal

we can compare the width (error) from the histograms
in Fig. 5 with the Cramer-Rao lower bound for the
SASI analytical model we adopt. In Tables I and II the

Cramer-Rao uncertainties—calculated at the points in
the parameter space given in the tables themselves—are
listed for the two smallest distances. They can be directly
compared to the standard deviations obtained with the
likelihood ratio method, because at such distances the
selection effects due to the threshold on L are negligible
(nearly all the simulated cases pass the selection). For larger
D, where the selection effects on L are strong, a direct
comparison is not meaningful and therefore the Cramer-
Rao bounds are not shown.
It appears that δa obtained from the likelihood ratio is

close (sightly larger, as expected) to the corresponding
Cramer-Rao bound, indicating that our method is near
optimality for estimating the SASI amplitude. In contrast,
for δfS the Cramer-Rao bound is orders of magnitude more
stringent, so in principle, a more effective method than
ours for frequency estimation could exist (although an
estimator attaining the Cramer-Rao lower bound does not
necessarily exist).

V. SUMMARY AND DISCUSSION

We have proposed a novel methodology to do both
hypothesis testing and parameter estimation for signatures
of SASI in the time profile of the neutrino event rate from a

FIG. 7. Cramer-Rao lower bounds based on simplified parametric templates with SASI [see Eq. (1)], in the form of relative errors, for
the SASI frequency (top) and amplitude (bottom), as functions of frequency (left) and amplitude (right), for IceCube and select distances
to the star (see legend). In each curve, the remaining parameter has been fixed at its best-estimated value (the one for D ¼ 1 kpc) in
Table II.
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(galactic) core collapse supernova. This method is based on
the likelihood ratio constructed using the signal power
spectrum, for which the effect of statistical fluctuations was
modeled, and suitable frequency cuts can be applied. We
quantify the confidence to identify the presence of SASI in
terms of receiver operating curves, a tool which is com-
monly used in the gravitational wave community to
establish the efficiency versus false alarm probability for
gravitational wave signals (see, e.g., [51]). We have tested
the effectiveness of the method, using an injected signal
for Hyper-K and IceCube from a supernova numerical
simulation by Kuroda, Kotake, Hayama, and Takiwaki.
Specifically, we have characterized the performance of the
method by producing the receiver operating characteristic
curves, and by comparing the probability distributions of
the best fit parameters (the SASI frequency and relative
amplitude) with the ultimate minimum uncertainties from
the Cramer-Rao lower bounds.
For hypothesis testing, our main result are the probability

distributions in Fig. 3. Figuratively speaking, these can be
considered like a calibrated measurement rod against which
we will compare the likelihood ratio from an actual, future
supernova neutrinos detection. We have found that, for a
nearby supernova, this “SASI-meter” is an effective tool: if
the experimental likelihood ratio is in the “red zone” (above
a certain threshold for the likelihood ratio, e.g., lnL≳ 30 for
Hyper-K andD ≃ 2 kpc), thenwewill be able to confidently
claim the presence of SASI. If it is in the “blue zone”
(lnL≲ 20 in the same example), then amodel without SASI
will be favored, and an upper bound on the parameters of
possible SASI will be established. We obtain that, for the
KKHT model, SASI can be identified with high confidence
for a distance to the supernova of up to ∼6 kpc for IceCube
and up to ∼3 kpc for Hyper-K. The SASI-meter can also be
used to identify unusually long periods of SASI, which
could help to establish indication of a failed supernova.
For parameter estimation, we find that, for an injected

signal with SASI and for datasets in the red zone of the
SASI-meter, the SASI frequency and amplitude can be
reconstructed if D≲ 5 kpc for Hyper-K (D≲ 10 kpc for
IceCube), and their uncertainties are consistent with the
Cramer-Rao lower bounds. Beyond such distance, the
positive response of the SASI-meter, giving indication of
an oscillatory pattern in the event rate, is to be attributed to
statistical fluctuations and not to the presence of SASI. The
most immediate development of this work will include
several three-dimensional supernova simulation results that
present SASI and map the performance of the method in
different regions of the parameter space. We expect that
including several models will result in a blurring of the
probability distributions, so the red and blue zones of the
SASI-meter will be less clearly separated, or, in other
words, the receiver operating characteristic curves will be
worse (i.e., closer to the limiting curve PD ¼ PFI). The
method will remain valid conceptually, however.

In the long term, our goal is to extend the methodology to
joint analyses of neutrino and gravitational wave SASI
signals, for a truly multimessenger approach [52–54].
Within this goal, the present paper serves to create the
foundation of a formalism for neutrinos that finds a direct
counterpart (using the same tools, like the likelihood ratio
and the receiver operating characteristic curve, for exam-
ple) in existing gravitational wave analysis protocols.
Moving forward, new approaches will have to be developed
to establish how to most effectively combine the two
signals, neutrinos and gravitational waves, that have both
similarities (e.g., similar SASI frequency) and important
differences (different sources of noise, for example). Such
development work will explore further the territory of
multimessenger astronomy and aid the investigation of a
future galactic core collapse supernova.
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APPENDIX A: PROBABILITY DISTRIBUTION OF
FOURIER TRANSFORMED NEUTRINO SIGNAL

In this Appendix the probability distribution of a Fourier
transformed neutrino signal in frequency domain defined in
Eq. (6) is given. We start from the real part of h̃:

Reðh̃Þ ¼
XNbins−1

j¼0

ÑðtjÞ cosð2πtjkδÞ; ðA1Þ

where Ñ is the observed event number in a time bin,
statistically fluctuating around its mean value N.
To simplify the notation, let us define Ñj ≡ ÑðtjÞ,

ñj ≡ Ñj cosð2πtjkδÞ, and h̃R ≡ Reðh̃Þ. Here nj and Nj

will be means of ñj and Ñj respectively, so that
nj ¼ Nj cosð2πtjkδÞ. Since the neutrino event number
Ñj ¼ R̃ðtjÞΔ follows a Gaussian distribution (with vari-
ance

ffiffiffiffiffiffi
Nj

p
), ñj also follows a Gaussian distribution, with

variance
ffiffiffiffiffiffi
Nj

p
cosð2πtjkδÞ. Specifically, the two distribu-

tions are
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ProbðÑjÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2πNj

p e
−
ðÑj−NjÞ2

2Nj ; ðA2Þ

ProbðñjÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πNjcos2ð2πtjkδÞ
q e

−
ðñj−njÞ2

2Njcos
2ð2πtjkδÞ: ðA3Þ

Below we show that the Fourier transformed neutrino
signal in frequency domain, which is a sum of Gaussian
distributed random values, follows a Gaussian distribution
as well. The probability distribution for h̃R is defined as:

Probðh̃RÞ ¼
Z � YNbins−1

j¼0

ProbðñjÞ
�
δ

�
h̃R −

XNbins−1

j¼0

ñj

�

× dñ0…dñj: ðA4Þ

Let us now perform a Fourier transform of Eq. (A4):

Z
Probðh̃RÞeilh̃Rdh̃R ¼

Z � YNbins−1

j¼0

ProbðñjÞ
�

× eil
PNbins−1

j¼0
ñjdñ0…dñj

¼
YNbins−1

j¼0

Z
ProbðñjÞeilñjdñj; ðA5Þ

and note that the Fourier transform of a Gaussian distri-
bution PGðxÞ with mean value μ and standard deviation σ is

Z
PGðxÞeilxdx ¼ eilμe−

σ2l2
2 : ðA6Þ

Then, we get:

Z
Probðh̃RÞeilh̃Rdh̃R ¼ eil

PNbins−1
j¼0

nj

× e
−l2
P

Nbins−1
j¼0

n2
j

2Nj : ðA7Þ

We then do an inverse Fourier transformation of Eq. (A7),
and obtain:

Probðh̃RÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π
PNbins−1

j¼0 Njcos2ð2πtjkδÞ
q

× e

−ðh̃R−
P

Nbins−1
j¼0

njÞ2

2

PNbins−1
j¼0

Njcos
2ð2πtjkδÞ

¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2R

p e
ðh̃R−hRÞ

2σ2
R ; ðA8Þ

with σ2R ¼PNbins−1
j¼0 Njcos2ð2πtjkδÞ and hR ¼PNbins−1

j¼0 nj.

Equation (A8) concludes the proof for the real part of h̃.
A similar proof can be done for the imaginary part of h̃,
with the replacement cosð2πtjkδÞ → sinð2πtjkδÞ, leading
to a result analogous to Eq. (A8).
Let us now prove the statistical independence of the

values of h̃ in different frequency bins. First, it is known
that neutrino event rates in each time bin are statistically
independent, i.e.:

hÑðt1ÞÑðt2Þi ¼ hÑðt1ÞihÑðt2Þi; ðA9Þ

where t1 ≠ t2. It then follows that:

hh̃ðkδÞh̃�ðk0δÞi ¼
XNbins

m

XNbins

l

eitlkδhÑðtlÞÑðtmÞie−itmk0δ

¼
XNbins

l

eitlkδhÑðtlÞi
XNbins

m

hÑðtmÞie−itmk0δ

þ
XNbins

l

NðtlÞe−itlðk−k0Þδ

¼ hh̃ðkδÞihh̃�ðk0δÞi þ
XNbins

l

NðtlÞe−itlðk−k0Þδ:

ðA10Þ

The second term on the right-hand side of Eq. (A10) comes
from the contribution of the terms with l ¼ m, and is much
smaller than the first term given that N ≫ 10 and
Nbins ≫ 10. Therefore, Eq. (A10) shows an approximate
statistical independence for h̃ in different frequency bins.
The same conclusion can be reached for the real and
imaginary parts of h̃ (h̃ ¼ hR þ ihI) by rewriting Eq. (A10)
in terms of hR and hI .

APPENDIX B: PROBABILITY
DISTRIBUTION OF POWER

In this Appendix we derive Eq. (8). The power at a
specific frequency is written as:

P̃ ¼ Cðh̃2R þ h̃2I Þ; ðB1Þ

whereC ¼ 2=N2
bins is the normalization factor from Eq. (7).

It can be shown that the standard deviations of h̃R and h̃I ,
denoted as σ2R and σ2I respectively, are approximately equal,
with differences of less than 10% (we checked this by
comparing the two quantities in the whole space of the
parameters Ω ¼ fa; fSg). Accordingly in the following we
assume that:
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σ2R≊σ2I≊σ2 ≡ σ2I þ σ2R
2

¼
XNbins−1

j¼0

Njðcos2ð2πtjkδÞ þ sin2ð2πtjkδÞÞ
2

¼ Nev

2
: ðB2Þ

We now define new variable P̃0:

P̃0 ¼ P̃
Cσ2

¼ h̃2R þ h̃2I
σ2

: ðB3Þ

Note that both h̃R=σ and h̃I=σ areGaussian randomvariables
with unit standard deviation given Eq. (B2). As a result, P̃0
follows a noncentral-chi-squared distribution [41]:

ProbðP̃0Þ ¼ 1

2
e
1
2
ðP̃0þλ0ÞI0ð

ffiffiffiffiffiffiffiffi
λ0P̃0

p
Þ; ðB4Þ

where λ0 ¼ ðh2R þ h2I Þ=σ2 is the noncentrality parameter and
I0 is the modified Bessel function of the first kind. By using
the normalization condition:Z

ProbðP̃0ÞdP̃0 ¼
Z

ProbðP̃ÞdP̃ ¼ 1; ðB5Þ

the probability density function of P̃ is

ProbðP̃Þ ¼ 1

2
e−

1
2
ð P̃
Cσ2

þλ0ÞI0

 ffiffiffiffiffiffiffiffiffiffiffiffi
λ0

P̃
Cσ2

s !
1

Cσ2
: ðB6Þ

We then insert Eqs. (B1) and (B2) into Eq. (B6) to get the
probability density function as written in Eq. (8). The

analytical expression for the probability density distribution
of power agrees very well with our numerical Monte Carlo
simulation.

APPENDIX C: FISHER MATRIX

In this Appendix, we show that Eq. (16) follows
from Eq. (15).
Integrating by parts with null boundary condition,

Eq. (15) can be re-written as:

Γαβ ¼
Z

−
∂2 ln ProbðR̃Þ

∂θαθβ ProbðR̃ÞdR̃

¼
Z ∂ ln ProbðR̃Þ

∂θα
∂ ln ProbðR̃Þ

∂θβ ProbðR̃ÞdR̃: ðC1Þ

Using the expression:

ln ProbðR̃Þ ¼
X
i

�
−
1

2
lnð2πσ2i Þ −

ðR̃i − RiÞ2
2σ2i

�
; ðC2Þ

we then obtain:

∂ ln ProbðR̃Þ
∂θα ¼

X
i

1

σ2i
ðR̃i − RiÞ

∂Ri

∂θα
þ
X
i

�
−

1

2σ2i

∂σ2i
∂θα þ

ðR̃i − RiÞ2
2σ4i

�∂σ2i
∂θα
��

:

ðC3Þ
The integration in Eq. (C1) is then divided into several
parts, and becomes:

Z ∂ ln ProbðR̃Þ
∂θα

∂ ln ProbðR̃Þ
∂θβ ProbðR̃ÞdR̃ ¼

X
i

∂Ri

∂θα
∂Rj

∂θβ
1

σ2i
þ
X
i;j

�
1

2σ2i

∂σ2i
∂θα
��

1

2σ2j

∂σ2j
∂θβ
�

þ
Z

dR̃
X
i;j

ðR̃i − RiÞ2
2σ4i

∂σ2i
∂θα

ðR̃j − RjÞ2
2σ4j

∂σ2j
∂θβ ProbðR̃Þ

þ
Z

dR̃
X
i;j

�
−

1

2σ2i

∂σ2i
∂θα
� ðR̃j − RjÞ2

2σ4j

∂σ2j
∂θβ ProbðR̃Þ þ fi ↔ jg: ðC4Þ

Note that:

hðR̃ − RÞ4i ¼ 3σ4; ðC5Þ

and that the second and the fourth term in Eq. (C4) sum to
zero. Finally Eq. (C4) becomes:

Γαβ ¼
X
i

∂Ri

∂θα
∂Rj

∂θβ
1

σ2i
þ 1

2

X
i

1

σ2i

∂σ2i
∂θα

1

σ2i

∂σ2i
∂θθ

¼ μTαΣ−1μβ þ
1

2
Tr½c̃αc̃β�; ðC6Þ

which concludes the proof.
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