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We present a first calculation of the rate for plasmon production in semiconductors from nuclei recoiling
against dark matter. The process is analogous to bremsstrahlung of transverse photon modes, but with a
longitudinal plasmon mode emitted instead. For dark matter in the 10 MeV—1 GeV mass range, we find
that the plasmon bremsstrahlung rate is 4–5 orders of magnitude smaller than that for elastic scattering,
but 4–5 orders of magnitude larger than the transverse bremsstrahlung rate. Because the plasmon can
decay into electronic excitations and has characteristic energy given by the plasma frequency ωp, with
ωp ≈ 16 eV in Si crystals, plasmon production provides a new signature and method to detect nuclear
recoils from sub-GeV dark matter.
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I. INTRODUCTION

There have been significant efforts recently to directly
detect dark matter (DM) in the low-mass (sub-GeV) regime
[1]. As experiments lower their energy thresholds, collec-
tive many-body effects can become increasingly important
and enhance the discovery potential beyond that of tradi-
tional searches for hard nuclear recoils. Examples can be
found in numerous theoretical studies of direct detection
of sub-GeV dark matter, including with semiconductors
[2–5], superconductors [6–8], Dirac materials [9–13],
phonon excitations in crystals [14–17], phonons in super-
fluid He [18–20], and others.
Recently, Ref. [21] has highlighted a number of low-

energy residual rates in experiments achieving the lowest
thresholds thus far, and points out the relevance of many-
body effects for understanding them. The rates are compa-
rable in SENSEI [22], CDMSHVeV [23], and EDELWEISS
[24,25], though much lower in DAMIC [26]. These experi-
ments all rely on solid-state targets, namely Si and Ge
semiconductors.
Reference [21] has proposed that such excesses could

be explained as DM exciting plasmons in semiconductors,
since no excesses with corresponding rates have been
observed in noble liquid experiments such as XENON1T
[27] and DarkSide [28]. One of their proposed ideas is the
secondary production of plasmons during DM-nucleus
scattering from DM with mass in the 30 MeV–GeV range.

This could in principle match the observed rates if the
probability to produce the plasmon is ∼10−3 − 1.
In this work, we provide a first estimate of the plasmon

production rate from nuclei recoiling against GeV-scale
dark matter, focusing on Si and Ge semiconductors.
Plasmons in a semiconductor are the collective oscillations
of the valence electrons. The key idea we will use is to
approximate the plasmon as a longitudinal mode of a
degenerate electron gas (i.e., a metal). This is justified since
plasmons carry an energy of ωp ≈ 10–20 eV, which is
much larger than the band gap ∼eV of a semiconductor.
The process by which a recoiling nucleus can emit a

plasmon is similar to the bremsstrahlung emission of trans-
verse photons, which was previously treated in Ref. [29].
Here we consider the bremsstrahlung of longitudinal modes:

χðpÞ þ N → χðp0Þ þ NðqNÞ þ ωLðkÞ ð1Þ

where χ is the dark matter, NðqNÞ is a nucleus with energy
ER ¼ q2N=ð2mNÞ, and ωLðkÞ is a plasmon mode with
3-momentum k and energy ωLðkÞ. We will focus on dark
matter in the 10 MeV–1 GeV mass range. Then the energy
scales for the plasmon and nuclear recoils are both ≳eV,
larger than the highest phonon energy ∼40–60 meV in a Ge
or Si crystal. As a result, we will treat the DM interaction as
scattering off of a free ion (nucleus surrounded by tightly-
bound core electrons). The recoiling ion is a current source
and can lose energy into both transverse photon and
longitudinal plasmon modes.
With these approximations, we find that the rate for

plasmon production through the process in Eq. (1) is
typically 4–5 orders of magnitude smaller than the elastic
nuclear recoil rate, and therefore cannot explain the
excesses studied in Ref. [21]. (Note that the mechanism
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of Ref. [21] involved a plasmon produced in association
with many phonons, and is therefore not captured by our
approach.) Nevertheless, bremsstrahlung emission of plas-
mons by a recoiling nucleus is a novel signature of dark
matter scattering in semiconductor targets, and we find that
the corresponding rate is around 5 orders of magnitude
larger than that for bremsstrahlung emission of transverse
modes. Because plasmons can be detected in the form of
electronic energy, this process can be used to extend the
reach of current experiments to much lower DM masses.
The rest of this study is structured as follows. We will

begin in Sec. II with an introduction to the physics of
plasmons and provide an estimate for the plasmon rate in a
metal. We then discuss plasmon production in semicon-
ductors in Sec. III, computing the rate using a classical
approach (an alternative quantum mechanical derivation is
provided in an Appendix). In Sec. IV, we use these results
to estimate the potential reach of a plasmon search in Si and
Ge, comparing against the sensitivity provided by elastic
nuclear recoils and the Migdal effect, wherein an electron is
excited in the nuclear recoil [30]. We conclude in Sec. V.

II. PLASMON EMISSION IN AN ELECTRON GAS

To illustrate the essential ideas surrounding plasmon
production in materials, we will start with a simplified
scenario: the textbook model of a metal. Here, we have a
background of heavy ions surrounded by a free degenerate
gas of valence electrons. Because the electrons have a fast
response time, we can treat the background of ions as fixed
when studying the linear response of the system to pertur-
bations. In this setup, there is a collective mode of longi-
tudinal electron oscillations, the plasmon. Poisson’s equation
in the absence of external charges, ϵ̂Lðω;kÞk ·E ¼ 0,

implies that collective longitudinal oscillations can occur
when ϵ̂Lðω;kÞ ¼ 0, where ϵ̂Lðω;kÞ is the longitudinal
dielectric function of the material. A plasmonmode therefore
corresponds to ϵ̂Lðω;kÞ ¼ 0.
To see the presence of this mode, we start with the

Lindhard formula for the longitudinal dielectric function in
a crystal at zero temperature [31]:

ϵ̂Lðω;kÞ ¼ 1þ lim
η→0

4παem
Vjkj2

×
X
p

� jhpþ kjeik·rjpij2
ωpþk − ωp − ω − iη

þ jhpjeik·rjp − kij2
ωp−k − ωp þ ωþ iη

�
ð2Þ

where we are summing over all occupied electron Bloch
states jpi, ωp is the energy of the state jpi, V is the volume
of the system, and αem is the fine structure constant.
(The sum over different bands has been omitted in this
formula to simplify the discussion.) This represents virtual
electron-hole excitations that modify the propagation of
longitudinal electromagnetic fields. In particular, this
dielectric function is related to the longitudinal electro-
magnetic polarization tensor ΠLðω;kÞ by ϵ̂Lðω;kÞ ¼
1 − ΠLðω;kÞ=jkj2, and the plasmon corresponds to a pole
in the longitudinal propagator (for reviews that elaborate on
this, see, e.g., Refs. [32,33]).
For a degenerate electron gas, Eq. (2) can be evaluated

with plane-wave states. Taking the Fermi surface to be
spherical and summing over states jpi with p < pF, where
p ¼ jpj and pF is the Fermi momentum, one finds

ϵ̂Lðω;kÞ ¼ 1þ lim
η→0

3ω2
p

k2v2F

�
1

2
þ pF

4k

�
1 −

�
k

2pF
−
ðωþ iηÞ
kvF

�
2
�
log

�
1þ k=ð2pFÞ − ðωþ iηÞ=ðkvFÞ
−1þ k=ð2pFÞ − ðωþ iηÞ=ðkvFÞ

�

þ pF

4k

�
1 −

�
k

2pF
þ ðωþ iηÞ

kvF

�
2
�
log

�
1þ k=ð2pFÞ þ ðωþ iηÞ=ðkvFÞ
−1þ k=ð2pFÞ þ ðωþ iηÞ=ðkvFÞ

��
: ð3Þ

In this expression, the plasma frequency is given by

ω2
p ¼ 4παemne

me
ð4Þ

where ne is the number density of valence electrons, me is
the (in-medium) electron mass, and vF ∼ 10−2 is the Fermi
velocity. In this work we use units where c ¼ 1.
The plasmon appears as a zero in Eq. (3), which in the

small k limit has the form

ϵ̂Lðω; kÞ ≈ 1 −
ω2
p

ω2

�
1þ 3

5

k2v2F
ω2
p

þ � � �
�
: ð5Þ

Thus the plasmon mode has frequency ωp at k ¼ 0 and has
a weak dispersion with momentum. In Eq. (5), we have
taken the η → 0 limit and there is no imaginary part, but in
general there is a finite width Γ or inverse damping time
in the material, which can be accounted for by taking
ω2 → ω2 þ iωΓ in Eq. (5). In the free electron gas model,
the plasmon is long-lived at small k. Meanwhile, for
k≳ ωp=vF, the plasmon dispersion matches onto kinemat-
ically-accessible single electron-hole excitations and thus
has a large decay width. Given this large width, the
plasmon is only well-defined for k≲ ωp=vF (roughly
2.4 keV in Si or Ge).
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Because of the momentum cutoff and high energy for
plasmons, it is only kinematically possible for DM to excite a
single plasmon if the DM velocity is high, v≳ 0.01 [21].
However, it is possible for plasmons to be produced by DM
with typical halo velocities ofv ∼ 10−3 if they are produced in
association with another excitation such as a nuclear recoil;
this gets around the restrictions of the 2-body kinematics by
allowing the recoil to absorbmost of themomentum.Another
way to view this process is from the point of view of the
recoiling ion: a low-energy ion cannot excite the plasmon
while satisfying energy and momentum conservation, but in
this case an off-shell ion emits the plasmon.
The rate for DM-nucleus scattering with plasmon

emission can be obtained in the electron gas model using
the machinery of quantum field theory. The process is
simply DM-nucleus scattering accompanied by electro-
magnetic bremsstrahlung radiation [29], but with an
external longitudinal mode. We use the results of
Ref. [34], which obtained simple analytic approximations
for the k-dependent plasmon pole location and residue.
The polarization vector for the longitudinal mode in
Coulomb gauge is given by

εμL ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ZLðkÞ

p ωLðkÞ
k

ð1; 0; 0; 0Þ ð6Þ

with wave function renormalization given by

ZLðkÞ ≈ 1 −
3

5

k2v2F
ω2
p

þ � � � ð7Þ

in the k ≪ ωp=vF limit. These results are obtained directly
from the in-medium longitudinal polarization tensor as
described in Ref. [34].
In what follows we will restrict ourselves to the soft

photon/plasmon limit, defined here to be when the three-
momentum of the photon/plasmon k satisfies jkj ≪ jqN j
and jk · qN j=mN ≪ ωp, where qN is the momentum of the
recoiling ion. This is a good approximation for DM masses
in the range 10 MeV—1 GeV, since the typical momentum
transfer is on the order of jqN j ∼ μχNv ∼ 10 keV ×
ðmχ=10 MeVÞ, which is much larger than the plasmon
cutoff momentum. We have restricted to DM masses mχ ≲
1 GeV so that ER ¼ jqN j2=ð2mNÞ is not too large com-
pared to the typical binding energies of the core electrons.
In this limit, we can treat the ions as point particles of
charge Zion and mass mN .
With these assumptions, the differential cross section for

a recoiling ion to emit a plasmon in the soft limit is

d2σplasmon

dERdk
¼ 2Z2

ionαem
3π

ZLðkÞk2
ωLðkÞ3

ER

mN
×

dσ
dER

				
el

ð8Þ

where ER ¼ q2N=ð2mNÞ is the nuclear recoil energy and
dσ=dERjel is the differential cross section for elastic

DM-nucleus scattering, modified to account for the fact
that the DM deposits total energy ER þ ωLðkÞ. As we argue
in the following section, we expect this expression to
provide a reasonable approximation for the rate in simple
semiconductors as well, and we will use it to compute the
production rates from DM scattering in Sec. IV.
In comparison, the bremsstrahlung rate for transverse

photons in the soft limit is

d2σγ
dERdk

¼ 4Z2
ionαem
3π

ZTðkÞk2
ωTðkÞ3

ER

mN
×

dσ
dER

				
el

ð9Þ

where the transverse modes are well-approximated by a

dispersion ωTðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
p þ k2

q
and ZTðkÞ ≈ 1. In the limit

of k ≫ ωp, the plasmon bremsstrahlung rate is enhanced by
a large factor of ZLðkÞk3=ωLðkÞ3; however, this is partially
counteracted by the cutoff in plasmon momentum.
Assuming Zion ¼ 4, ER ∼ 100 eV, and allowing for k up
to a keV, Eq. (8) indicates that plasmon production will be
roughly 4 orders of magnitude smaller than the rate for
elastic nuclear scattering. This is still significantly larger
than the production rate for transverse modes, which is
suppressed relative to the elastic recoil rate by roughly 10
orders of magnitude. While the rate to emit plasmons is
small, the plasmon is an electronic excitation peaked
around ωp, which provides a complementary signature
for nuclear recoils from light dark matter. In the following
section, we discuss how this simplified scenario is modified
in semiconductors.

III. PLASMON EMISSION
IN SEMICONDUCTORS

In semiconductors such as Si and Ge, the plasmon
energy at zero momentum is well-approximated by the
plasma frequency ωp, taking ne to be the number density of
valence electrons and me to be the effective electron mass
in the material [35]. As discussed above, the plasmon is a
zero in the dielectric function or a pole in the longitudinal
propagator for electromagnetic fields. In what follows, we
will use classical arguments to derive general results for the
energy transfer to soft plasmon and photon modes in terms
of the dielectric function. Given experimental data or first-
principles calculations for ϵ̂ðω;kÞ, we can in principle
account for the many-body physics of a semiconductor.
We begin this section with a discussion of how the

dielectric function in semiconductors differs from that of
the simple model in the previous section. The first differ-
ence appears in the presence of a band gap, ωg ≈ 1 eV.
However, for the materials under consideration such as Si
and Ge, the plasmon frequency ωp ≈ 10–20 eV is much
larger than the band gap ωg ≈ eV and the corresponding
effect is small. This can be seen for example in the Fröhlich
oscillator model for ϵ̂LðωÞ in semiconductors considered by
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Refs. [21,36], which predicts a dielectric function nearly
identical to Eq. (5) for ω near ωp (we discuss this
further below).
In contrast to the electron gas, the band structure of a

semiconductor also allows for interband electronic tran-
sitions. These contribute to both the real and imaginary
parts of ϵ̂Lðω;kÞ (see, e.g., Ref. [31]). In addition, one
needs to account for the electron wave functions, which are
not described by plane waves. Taking all this into account,
we expect the residue of the plasmon pole, the plasmon
dispersion relation and width to be sensitive to the band
structure and wave functions of the electron-hole pairs that
contribute to the correlation function. All of this informa-
tion is encapsulated inside ϵ̂Lðω;kÞ.
Despite the differences between semiconductors and

metals, experimental data suggests that in relatively simple
semiconductors, a slight modification of the free electron
gas model of Sec. II can provide a good description of the
plasmon pole. The energy loss by charged particles in a
material is characterized by Imð−1=ϵ̂Lðω;kÞÞ, and the
plasmon appears as a pole in this quantity. As discussed
in Refs. [21,36], the Fröhlich oscillator model describes the
plasmon line shape in the k → 0 limit:

Im

�
−1

ϵ̂Lðω; 0Þ
�
≃

1

ϵc

ðω2
p − ω2

gÞωΓ
ðω2 − ω2

pÞ2 þ ω2Γ2
ð10Þ

where we have identified the quantity E0
p in Ref. [36] as the

effective plasma frequency ωp, ϵc is the contribution to
the dielectric constant from core electrons (≈1 in Si [36])
and ωg ∼Oð1Þ eV is an average band gap energy. For
ωg ≪ ωp, Eq. (10) reduces to the prediction of the Drude-
Sommerfeld model of a metal [31]; this is just the free
electron gas model of Sec. II, modified to include a
phenomenological relaxation time τ ¼ 1=Γ for electronic
excitations, as discussed below Eq. (5).
In Fig. 1, we show Imð−1=ϵ̂Lðω;kÞÞ for Si determined

from experimental data. For k ¼ 0, the plasmon is indeed
well-described by Eq. (10) with ωg → 0, ωp ¼ 16.6 eV
and width of Γ ¼ 4 eV, as shown in the top left panel of
Fig. 1. For finite k, the simplified model of Sec. II suggests
that Eq. (10) should be modified to include the residue
factor ZLðkÞ and ωp → ωLðkÞ. The comparison of the
resulting expression to experimental data is shown in the
top right and bottom panels of Fig. 1. Again we find good
agreement, especially for smaller k values below ωp=vF ≈
2.4 keV (although the width requires some adjusting for
each k). We therefore expect the results of Sec. II to provide
a reasonable estimate of the plasmon rate once the pole is
integrated over. Nevertheless, in what follows we will
provide expressions for the energy loss rate for general
ϵ̂ðω;kÞ that can be used away from the plasmon pole and
explicitly show how they reduce to the results of Sec II.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft photon/
plasmon limit. We assume that DM scatters off one of the
nuclei in the material, imparting kinetic energy ER to the
nucleus and the bound electrons. This generates an effec-
tive current density

Jion ¼ ZionevionΘðtÞδ3ðx − viontÞ ð11Þ

where Zion is equal to the number of valence electrons,
e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

4παem
p

is the unit charge in Heaviside-Lorentz units,
and vion is the resulting velocity of the scattered ion in the
material. Here we neglect the effects of energy loss and
damping on the kinetic energy of the ion, which we assume
to be small on the short time scale associated with plasmon
production, t≲ 1=ωp. We can also neglect the effects of the
ion harmonic potential, since the potential energy of the ion
displacement on that time scale is small compared to ER.
The plasmon will arise as longitudinal E field oscillations
induced by the current in Eq. (11) and the corresponding
response in the material.
Going to Fourier space, one finds the total energy

transfer to the material to be

FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Imð−1=ϵ̂Lðω;kÞÞ,
plotted here using collected experimental data on Si (solid lines).
Data for k → 0 comes from optical measurements [37] while data
for the other k values is from scattering measurements [38]
(shown here for k along the [111] direction in the crystal). The
plasmon appears as a zero in the real part of the dielectric
function, or as a pole in Im(−1=ϵ̂Lðω; kÞ). The data is well
approximated near the pole by the simplified model of Sec. II: the
dotted curves are Eq. (10), adapted with the residue factor ZLðkÞ
and ωp → ωLðkÞ from Sec. II. The plasmon width Γ is adjusted
for each panel.
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W ¼ −
Z

d3k
Z

∞

0

dω
ð2πÞ4 2Re½J

�
ionðω;kÞ · Eðω;kÞ�: ð12Þ

Focusing on the energy transferred to longitudinal modes,
we define the projection Jion;Lðω;kÞ ¼ Jion · k=k and
similarly for EL. In the soft plasmon limit, k · vion ≪ ω,
and the longitudinal current density corresponding to
Eq. (11) becomes

Jion;Lðω;kÞ ≃
i
ω
Zionevion ·

k
k

ð13Þ

where we have dropped a term ∝ δðω − k · vionÞ which will
not contribute to the plasmon production rate since ω ≥ ωp

and k · vion ≪ ωp for the process of interest. This delta-
function term would give the usual contribution to the
energy loss rate for fast charged particles such as electrons
[36] or millicharged DM [21], if we take vion to be the
velocity of the charged particle and consider velocities
v≳ 10−2 to match onto the plasmon momentum and
energy. Instead, the term we have kept in Eq. (13)
corresponds to the bremsstrahlunglike contribution from
the acceleration of the ion, not present in the standard
electron energy loss spectroscopy (EELS) setting.
The field EL is related to Jion;L through the dielectric

function of the material. Treating Jion as an external current,
the Fourier space Maxwell-Ampère equation becomes

iωDLðω;kÞ ¼ iωϵ̂Lðω;kÞELðω;kÞ ¼ Jion;Lðω;kÞ: ð14Þ

Substituting Eqs. (13) and (14) into Eq. (12) and perform-
ing the angular k integration yields

dWL

dk
¼

Z
∞

0

dω
2Z2

ionαem
3π2

jvionj2
k2

ω3
Im

�
−1

ϵ̂Lðω;kÞ
�
: ð15Þ

As expected, the plasmon appears as a pole in
Imð−1=ϵ̂Lðω;kÞÞ. However, Eq. (15) also applies away
from the plasmon pole, and can be used to compute the total
energy deposited through longitudinal excitations in the
material (in the soft limit); this accounts for the full
dielectric structure of the semiconductor without making
the electron gas approximation of the previous section.1

The same quantity Imð−1=ϵ̂Lðω;kÞÞ characterizes energy
loss by fast electrons in metals or semiconductors [36,40].
To make contact with the result of Sec. II, we approxi-

mate Imð−1=ϵ̂Lðω;kÞÞ using Eq. (10) modified with a
factor of ZLðkÞ and taking ωp → ωLðkÞ; as noted earlier,
this agrees well with the experimentally determined energy

loss function in Si (c.f. Fig. 1). To isolate the contribution
from the plasmon pole, we take the Γ → 0 limit of this
expression, which yields

Im

�
−1

ϵ̂Lðω;kÞ
�

→
ZLðkÞπωLðkÞ

2
δðω − ωLðkÞÞ ð16Þ

for ω > 0, where we have used the fact that ω2
g ≪ ωLðkÞ2

and ϵc ≈ 1. Noting that the number of plasmons produced
at a given energy is dWL=ω and performing the ω
integration, we arrive at

dNplasmon

dk
≃
2Z2

ionαem
3π

ZLðkÞk2
ωLðkÞ3

ER

mN
: ð17Þ

This can be interpreted as the probability for producing
a plasmon with momentum k for a given nuclear recoil
energy, ER. In terms of the cross-section, Eq. (17) corre-
sponds precisely to the prediction of Eq. (8), as anticipated.
A similar calculation can be done for transverse exci-

tations. The current in Eq. (11) sources a transverse field

ETðω;kÞ ¼
iω

k2 − ω2ϵ̂Tðω;kÞ
JTðω;kÞ: ð18Þ

The corresponding energy loss, WT , is given by the
transverse contributions to Eq. (12). Noting that the number
of photons produced at a given energy is dWT=ω, the
photon production rate is

dNγ

dk
¼

Z
dω

8Z2
ionαem
3π2

ERk2

mNω
2
Im

�
−1

ω2ϵ̂Tðω;kÞ − k2

�
:

ð19Þ

In this expression, ϵ̂Tðω;kÞ fully characterizes the trans-
verse response of the semiconductor and does not rely on
the simplifying assumptions of the model in Sec. II.
We can again apply the oscillator model to infer an

analog of Eq. (10) for Imð−1=ðω2ϵ̂Tðω;kÞ − k2ÞÞ. Starting
from the same Fröhlich model for ϵ̂ðω; 0Þ in e.g., Ref. [36],
we compute Imð−1=ðω2ϵ̂Tðω; 0Þ − k2ÞÞ, identify k2 þ ω2

p

as ω2
TðkÞ, and restore an overall residue factor ZTðkÞ. Then,

taking ω2
g ≪ ω2

p and ϵc ≈ 1, one finds that for Γ → 0

Im

�
−1

ω2ϵ̂Tðω;kÞ − k2

�
→

ZTðkÞπ
2ωTðkÞ

δðω − ωTðkÞÞ: ð20Þ

Inserting this expression into Eq. (19) and performing the ω
integration yields the differential probability for exciting a
photon with a given k. In terms of the production cross
section, the final result matches Eq. (9).
Equations (15) and (19) in principle fully characterize

the energy loss to plasmons and transverse modes in
semiconductors. In order to obtain accurate predictions

1For comparison with previous studies of DM-induced elec-
tron and phonon excitations [15,39], note that the quantity
Imð−1=ϵ̂Lðω;kÞÞ is related to the dynamic structure factor by
Sðω;kÞ ¼ k2=ð4π2αemneÞImð−1=ϵ̂Lðω;kÞÞ, where Sðω;kÞ de-
scribes material response to density perturbations [40,41].
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for DM experiments, a number of effects must be
accounted for in these energy loss functions. In the
calculations above, we have used the macroscopic
Maxwell’s equations and neglected the effects of crystal
periodicity. The relationship between microscopic calcu-
lations of ϵ̂ðω;kÞ and the energy loss functions is modified
when taking into account the variation of the microscopic
fields over a unit cell; these corrections are often referred
to as local field effects [42,43]. They have been shown to
modify the plasmon line shape and give a better match to
electron energy loss spectroscopy data in Si [44].
In addition, aside from exciting a photon or plasmon,

an electron could also be excited above the band gap.
In the energy loss rates, this corresponds to a possible
continuum of electron recoils away from the plasmon and
photon poles. This is similar to the Migdal effect in atoms
[30,45–47], where electron excitations are created from
nuclear recoils; a first approximation for semiconductors
was studied in Ref. [48]. Accounting for this effect would
again require experimental data or first-principles calcu-
lations of the structure factor or dielectric functions.
Besides the plasmon production rate, one must also

determine the plasmon decay products, which would
ultimately be detected experimentally. The imaginary part
of the dielectric function determines the plasmon decay
width, where Γ ¼ ωpImðϵ̂Lðωp; 0ÞÞ in the k → 0 limit. To
infer its decay products, note that the quantity Imðϵ̂Lðω; 0ÞÞ
is closely related to the photoabsorption rate σ1ðωÞ ¼
ωImðϵ̂Lðω; 0ÞÞ; for ω larger than the band gap, it is
dominated by electronic transitions.2 Analogous to the
electron gas case, where there is a large plasmon width
to single electron excitations for k≳ ωp=vF, in semi-
conductors the plasmon width at zero momentum can be
attributed to the availability of electronic transitions with
ω ¼ ωp [49]. We thus expect that plasmon production leads
to energy deposition into electron-hole excitations peaked
near ωp. We will use this fact in the next section when
estimating the experimental sensitivity to plasmon produc-
tion from DM scattering.

IV. RATE RESULTS

We now compute the plasmon production rate from
DM-nucleus scattering. Given our assumptions, the total
rate to emit plasmons via bremsstrahlung is

dR
dER

¼ NT
ρχ
mχ

Z
vmin

d3vvfðvÞ
Z

kmax

0

dk
d2σ

dERdk
: ð21Þ

Here, NT is the target number density, ρχ ¼ 0.4 GeV=cm3

is the local dark matter density, and fðvÞ is the DM velocity
distribution in the Earth’s frame, which we take to be the
Standard Halo Model with v0¼220 km=s, ve ¼ 240 km=s,
and vesc ¼ 550 km=s. Since we are working in the soft
limit, we approximate the threshold velocity for exciting a
plasmon as

vmin ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mNER
p

�
mNER

μNχ
þ ωp

�
ð22Þ

with μNχ the nucleus-DM reduced mass. This is identical to
the threshold velocity for inelastic DM scattering with mass
splitting δ ¼ ωp. (We have neglected the weak dispersion
in the plasmon mode to simplify the velocity integral.) In
order to estimate the effects of the k-dependent dispersion
and wave function renormalization, the rate is computed
from Eq. (8) using the results of Ref. [34] for ωLðkÞ, ZLðkÞ.
As argued in the previous section, this should provide
a reasonable estimate of the rate in relatively simple
semiconductors.
In Fig. 2 we compare the rate for elastic nuclear recoils,

bremsstrahlung production of plasmons, and bremsstrah-
lung production of transverse modes formχ ¼ 1 GeV. Here
it is assumed that DM couples equally to all nucleons with a
DM-nucleon cross section of σn. Then the elastic scattering
cross section is dσ=dERjel ¼ A2σnmN=ð2μ2χnv2Þ, where μχn
is the DM-nucleon reduced mass. The nuclear form factor
can be neglected for the low energy recoils considered here.
For plasmon emission in both Si and Ge targets we take

ωp ¼ 16 eV [35]. Compared to elastic nuclear recoils,
plasmon emission is suppressed by 4-5 orders of magni-
tude, depending on the maximum plasmon momentum
kmax, which we vary between ωp=vF and 2ωp=vF. For
transverse bremsstrahlung, we show both the result derived
in our approach, which should be valid for energies below
Oð100Þ eV, and the result of Ref. [29], which was
computed for atomic targets and thus not appropriate for
low energies. We expect the full result to interpolate
between these two, but we defer a more detailed analysis
of this to future work. In either case, the rate for transverse
photon emission is smaller than the plasmon emission
rate by another ∼5 orders of magnitude, in line with the
discussion of Sec. II.
Plasmon emission is relatively more important for larger

DM masses and more energetic ions, which can be seen in
the factor of ER=mN in the differential cross sections. For
mχ < 1 GeV, the probability for plasmon emission is thus
even smaller than that shown in Fig. 2. However, the
plasmon can deposit energy in electronic excitations, so
this can still be a promising way to search for low-energy
nuclear recoils from DM, as we will discuss below.
Finally, while we do expect the probability for plasmon

emission to grow for mχ > 1 GeV, we caution against

2In the proposal of Ref. [21], the plasmon decays domi-
nantly to phonons. Here we attribute the plasmon width and
imaginary part of the dielectric function to single electron
transitions [49], which is also assumed in studies of bosonic
DM absorption at these energies and in the zero momentum
limit [22,25,50–52].
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numerical extrapolation of our results to much higher
masses. This is because we have treated the nucleus and
core electrons together as a point particle. For heavier DM,
there is sufficient energy in nuclear recoils to also ionize
core electrons, and the bremsstrahlung rates may be even
larger since the screening of the nucleus electric charge is
less effective.

A. Sensitivity for low-threshold experiments

Plasmon production is an additional scattering mecha-
nism that contributes electron excitations or charge signals
from nuclear recoils. Not accounting for such charge
signals, the typical thresholds for detecting nuclear recoils
in current or upcoming experiments is ER ≳ 30 eV, cor-
responding to sensitivity to mχ ≳ 0.5 GeV [54,55]. On the
other hand, plasmon decay to single electron excitations
with energy ≈16 eV would yield on average ∼5 measured
electrons in Si or Ge [56]. This is well above the charge
threshold in low-threshold semiconductor experiments such
as Refs. [22,23,25,26]. Thus, nuclear recoils that are not
energetic enough to be observed directly can still result in an
observable charge yield from plasmon emission.
In Fig. 3, we show the sensitivity to light dark matter

from plasmon emission, assuming 100 g-year exposure and
zero background. Note that for plasmon decays yielding ∼5
electrons on average, it is not necessary to assume zero
background in the 1- or 2-electron bins, where there may in
fact be large backgrounds in a realistic experimental
analysis. The total plasmon rate is calculated assuming
ER > 100 meV; for lower energies, the ion kinematics
assumed here are no longer accurate and single- and multi-
phonon [17] production will start to dominate. The turnover

in the sensitivity curves at around mχ ≈ 30 MeV is due to
our choice of threshold ER. The left panel of Fig. 3 assumes
a contact interaction between the DM and the nucleus,
while the right panel shows the massless mediator case,
where we have included an additional DM-mediator form
factor F2

medðqÞ ¼ ðαme=qÞ4. The sensitivity is noticeably
worse for light mediators since plasmon production scales
as ER=mN .
Charge signals for light DM can also be produced

through the Migdal effect [30,46–48], wherein a recoiling
nucleus can excite or ionize electrons. While the first
discussions of the Migdal effect considered isolated atomic
systems, Ref. [48] estimated the corresponding effect in
semiconductors, and we show those results in Fig. 3 for
comparison. Both plasmon emission and the Migdal effect
rates feature a q2N=m

2
N suppression, leading to similar

behavior in the sensitivity curves. They start to deviate
from one another for mχ ≲ 20–30 MeV because in
Ref. [48] the rates are integrated over all ER assuming
free nuclear recoils, while we have set ER > 100 meV to
avoid the phonon regime. In the future, it would be
interesting to account for phonon dynamics, and to com-
pare the ionization signals off the plasmon pole to the
atomic Migdal effect.
In our reference model, we have assumed that DM has

spin-independent contact interactions with all nucleons,
such that rates scale as A2. If the DM couples to electrons
and protons through a dark photon mediator, all of the
rates going through nuclear recoils are smaller by Z2

ion=A
2

for the mass range discussed here. In this model,
DM-electron scattering would typically provide stronger
constraints [47,48].

FIG. 2. Comparison of the differential scattering rate for elastic nuclear recoils and nuclear recoils with plasmon emission. It is
assumed that the DM has a spin-independent contact interaction with equal coupling to all nucleons. The band for plasmon emission
shows the range of rates if we vary between maximum plasmon momentum of kmax ¼ ωp=vF (lower values) up to kmax ¼ 2ωp=vF
(upper values). We also show rates for bremsstrahlung of transverse modes as a function of photon energyωγ; the solid lines are obtained
using Eq. (9) and the dashed lines use the results of Ref. [29] with data on the dielectric functions from Refs. [37,53]. Note for Ge the
data is limited and the dashed line is uncertain within a factor of few.
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V. DISCUSSION

Plasmons can significantly impact several aspects of
dark matter production and detection. Dark sector particles
can be produced through plasmon decay or conversion in
stars [32,62–68] or in the early universe [69]. Plasmons
also play a role in the interaction of charged DM in Galactic
dynamics [70]. As for direct detection, bosonic dark matter
can be absorbed into plasmon modes [8,50,71].
Here, we have taken the first steps toward calculating the

plasmon production rate from nuclear recoils in a solid state
target material. We have treated the plasmon mode in the
semiconductor as similar to that in a degenerate electron
gas. In modeling the initial nuclear recoil, we treated the ion
as a recoiling point particle, which loses energy by creating
electronic excitations including the plasmon. Plasmon
production can be further elucidated by taking into account
the semiconductor band structure, possible anisotropic
crystal structure, and the role of phonons. Detailed studies
of the plasmon pole and decay modes in semiconductors,
particularly at large momenta, will allow us to obtain more
accurate rate calculations. Finally, calibration data with
sources demonstrating plasmon production will be needed
in order to set precise limits or search for DM with plasmon
production.
We have found that the rate for producing plasmons

via bremsstrahlung off nuclear recoils is insufficient to
explain the direct detection rates highlighted by Ref. [21].
This emission of a plasmon from an off-shell ion occurs on
short timescales ∼1=ωp in the nuclear recoil. Meanwhile,
Ref. [21] proposes secondary plasmon production from a
nonlinear interaction involving multiphonon production;
such a process would have to occur in a different kinematic
regime or on a different timescale than considered here.

Beyond such excesses, plasmon production provides a
complementary way to search for nuclear recoils from low-
mass DM. The approach is similar in spirit to searches for
recoil-associated bremsstrahlung of transverse modes from
DM-nucleus scattering and to the Migdal effect. In all of
these cases, it is possible to use the electronic energy to
improve the detectability of low mass DM, since currently
charge thresholds are much lower than thresholds for
nuclear recoil energy deposited in the form of heat or
scintillation light. Furthermore, our approach accounts for
ionization signals away from the plasmon or photon poles.
We plan to investigate charge signals off the plasmon pole
and derive limits accounting for all of these processes in
future work.
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APPENDIX: PLASMON PRODUCTION
IN QUANTUM MECHANICS

In this Appendix, we provide an alternate derivation of
the energy loss rate in Eq. (15). We evaluate the rate for
the recoiling ion to lose energy to longitudinal electronic

FIG. 3. Projected sensitivity to sub-GeV dark matter from plasmon production. Also shown is the sensitivity from estimates of the
Migdal rate in semiconductors from Ref. [48]; these may be uncertain within an order of magnitude. All curves are drawn with kg-year
exposure and zero background events. Assuming the plasmon decays to electron excitation with Oð1Þ probability, it will yield on
average ∼5 electrons with high efficiency. The differences in behavior of the plasmon and Migdal rates at low masses is due primarily to
the choice of threshold ER (nuclear recoil energy), which we have taken here to be 100 meV to avoid the phonon regime. The gray
shaded areas include constraints from XENON1T [57], LUX [58], a recast of XENON10 [59], XENON100 [60], and XENON1T [27]
data in terms of the Migdal effect from Ref. [48], as well as (left plot only) constraints from CRESST III [54] and CDEX [61].
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excitations using quantum mechanics. We start with the matrix element for χðpχÞ þ N þ jpi → χðp0
χÞ þ NðqNÞ þ jp0i,

where jp0i is an excited electron state and jpi is an electron in the ground state of the crystal. The matrix element is

Mp→p0 ¼ Mel
4παemZion

Vk2ϵ̂LðΔω;kÞ
× hp0jeik·rjpi ×

�
1

Δω − k · qN=mN − k2=2mN
−

1

Δωþ k2=2mN

�
: ðA1Þ

Here Mel is the matrix element for elastic DM-nucleus scattering, and Δω ¼ ωp0 − ωp is the energy difference in the
electron states. In addition, for longitudinal excitations of energy deposition Δω and momentum transfer k we have taken a
Coulomb interaction that is screened by ϵ̂LðΔω;kÞ. For Bloch states, the matrix element hp0jeik·rjpi is only nonzero if
p0 ¼ kþ p, up to a reciprocal lattice vector (for simplicity, we set this to zero in the following discussion).
We next expand in the soft limit where k · qN=mN ≪ ω, sum over all initial and final electron states, and include a factor

of unity in the form of
R
dωδðω − ΔωÞ:

X
p;p0

jMp→p0 j2 ¼
Z

dω
jMelj2
ω4

4αemZ2
ion

Vjϵ̂Lðω;kÞj2
jk̂ · qN j2

m2
N

×

�
4π2αem
k2V

X
p

jhpþ kjeik·rjpij2δðω − ΔωÞ
�
: ðA2Þ

The expression in the second line of the above equation can be identified with Imðϵ̂Lðω;kÞÞ [31]. Summing over all k and
averaging over angles, we find the total matrix element squared for excitations into electronic states is

X
k;p;p0

jMp→p0 j2 ¼ jMelj2 ×
2Z2

ionαem
3π2

jvionj2 ×
Z

dk
Z

∞

0

dω
k2

ω4
Im

�
−1

ϵ̂Lðω;kÞ
�
: ðA3Þ

The elastic scattering matrix element is multiplied by a factor identical to the energy loss of Eq. (15), but with an extra factor
of 1=ω here since we are just computing the rate to produce excitations. Integrating over the ion and dark matter phase
space, we find that the cross section to produce electronic excitations in association with the nuclear recoil is the same as the
result in the main text.
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