
 

Structure and tidal deformability of a hybrid star within the framework
of the field correlator method

S. Khanmohamadi* and H. R. Moshfegh †

Department of Physics, University of Tehran, P.O. Box 14395-547, Tehran, Iran

S. Atashbar Tehrani ‡

School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM),
P.O. Box 19395-5531, Tehran, Iran

(Received 16 March 2020; revised manuscript received 6 May 2020; accepted 19 May 2020; published 1 June 2020)

The structure of hybrid stars within the nonperturbative framework of the field correlator method,
extended to the zero-temperature limit as a quark model, has been studied. For the hadronic sector, we have
used the lowest-order constraint variational method by employing AV18 two-body nucleon-nucleon
interaction supplemented by the phenomenological Urbana-type three-body force. For an adapted value of
the gluon condensate, G2 ¼ 0.006 GeV4, which gives the critical temperature of about Tc ∼ 170 MeV,
stable hybrid stars with a maximum mass of 2.04 M⊙ are predicted. The stability of hybrid star has been
investigated for a wide range of gluon condensate value, G2, and quark-antiquark potential, V1. A hybrid
equation of state fulfills the constraints on tidal deformability and hence on the radii of the stars, extracted
from the binary GW170817. Moreover, tidal deformability for different chirp masses and different binary
mass ratios of hybrid stars have been studied. The mass-radius relation satisfies the new constraint obtained
from the neutron star interior composition explorer (NICER). A comprehensive analysis on the structure of
a hybrid star and also its compactness, tidal Love number, and tidal deformability has been conducted for
several parameter sets of the quark equation of state. The influence of different crustal equations of state on
the mentioned quantities has been studied. Our calculations suggest the value of quark-antiquark potential,
V1, to be around 0.08 GeV. The results achieved in this study are in strong concurrence with the other
calculations reported on this subject.
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I. INTRODUCTION

In the last few decades, a great effort has been made to
understand the properties of nuclear matter at densities
higher than nuclear densities. From heavy ion collisions
and astrophysical observations of compact objects, many
attempts have been made to determine the equation of state
(EOS) of dense nuclear matter in both hadronic and quark
phases. The probable appearance of quark degrees of
freedom in the interior of heavy neutron stars (NSs) is
one of the most debated issues in the context of the compact
stars [1–3]. By the discovery of two massive NSs [4–8], the
question of whether quark matter exists in the core of
neutron stars has newly received interest [9–15].
The study of properties of NSs concerns the high-density

and low-temperature region of the phase diagram, and in
particular, it requires the QCD nonperturbative EOS at
low temperature and large chemical potential, where the

essential theoretical lattice formalism of QCD is inappli-
cable. Due to the lack of lattice data, analytic approaches
such as the MIT bag model [16,17] and the Nambu–Jona-
Lasinio (NJL) model [18] are mostly used in the high-
density regions.
The MIT bag model provides a mechanism for natural

confinement by the inclusion of phenomenological confin-
ing pressure, which is the difference in energy density
between the peturbative vacuum and true vacuum, named
the bag constant,B. TheNJLmodel contains one of the basic
symmetries of QCD, namely chiral symmetry. The most
important feature of this model is its nontrivial vacuum in
which the chiral symmetry is broken dynamically by the
spontaneous mass generation. The NJL model is applicable
invacuumaswell as in high densities, but not in the hadronic
phase in between, because of the lack of confinement due to
the lack of gluon degrees of freedom in this model.
In our previous study [19], we investigated the properties

of hybrid stars (HSs) within the Nambu–Jona-Lasinio (NJL)
andMIT bagmodels. Within both quark models, stable HSs
with pure quark cores were predicted—however, with a
maximum mass lower than 2 M⊙. HSs with the maximum
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mass compatible with the observations were predicted,
although they were found to be unstable. Since the quark
phase is unable to support the increasing central pressure due
to gravity, the instability is manifested by a cusp at the
maximum mass of the mass-radius relation [20]. However,
the radii and tidal deformability of HSs were in the same
range as deduced from the gravitational wave data of the
binary GW170817.
The general feature of many quark models, which is their

serious drawback, is their inability to give predictions for the
full temperature-chemical potential range. One of the few
exceptions is the field correlator method (FCM) [21–23],
which in principle could cover the full phase diagram panel.
Besides, the same method includes from first principles the
property of confinement (in contrast to the NJL model),
which seems to have a role in the stability of the predicted
HS [20,24].
Microscopic theories of baryonic matter have been devel-

oped in the last few decades in contrary to the quark matter
case. The lowest-order constraint variational method
(LOCV), which is a pure variational technique in the study
of the bulk properties of many fermion systems [25–28], is
employed as the nucleonicmodel of our study. This approach
is extended in such a way to enable one to calculate the
properties of asymmetric nuclear matter, neutron matter, and
beta stable matter EOSs at both zero and finite temperatures
by using more sophisticated potentials [29–32]. Besides this,
the thermodynamic properties of nuclear matter at both zero
and finite temperatures are calculated by considering rela-
tivistic corrections in this formalism [33,34]. It is well known
that the bare two-body nucleon-nucleon (2BF) interactions
cannot reproduce the saturation properties of nuclear matter.
The LOCVmethod is capable of dealing with the three-body
forces as well [35,36]. Recently, we have shown that by
employing the Urbana-type (UIX) three-body forces (TBF),
one can obtain the correct saturation quantities such as
binding energy, saturation density, and symmetry properties
likeEsymðρ0; L; andKsymÞ. Also, theNSswithmasses above
2 M⊙ are predicted within the LOCV formalism employing
AV18 supplemented by TBF in Urbana-type [36] and chiral
symmetry [37]. The EOS of hypernuclear matter is produced
within the LOCVmethod [38,39]. Newly, the HS structure is
studiedwithin the framework of theLOCVmethod combined
with the three-flavor version of the NJL model for several
parameter sets of this model [19]. Moreover, the phase
transition of hypernuclear matter to the two-flavor version
of the nonlocal NJL model is recently being studied [40].
In the study of HS structure, the nucleon-quark phase

transition plays an important role. We restrict our study to
analyze sharp hadron-to-quark matter phase transitions. It
may happen that a hadron-quark mixed phase is unlikely to
be stable for a reasonable value of the surface tension;
this situation is closer to the Maxwell construction case
[41–43], where two pure phases are in direct contact with
each other, and it shows a sharp phase transition behavior.

In this paper, we have employed the nonperturbative
EOS of quark-gluon plasma which was derived in the
framework of the FCM for describing quark matter [22,23].
The FCM is a nonperturbative approach which provides
a natural treatment of the dynamics of confinement
and transition to the deconfinement phase in terms of color
electric and color magnetic correlators. The quark-antiquark
(qq̄) potential, V1, and the gluon condensate, G2, are the
parameters of the model, whose numerical values are
partially supported by lattice simulations at small chemical
potentials [23,44] and the QCD sum rules [45], respectively.
In recent years, besides themaximum-mass constraints on

compact stars’ EOSs, 2.01þ0.04
−0.04 ≤ MTOV=M ⊙ ≲2.16þ0.17

−0.15 ,
there exists a new constraint on tidal deformability, and
hence on the radii of compact stars set by the binary NS
system GW170817 [46]. With the first direct detection
of both gravitational and electromagnetic radiation from
the binary NS merger GW170817 on 17 August 2017
(recorded by the Advanced LIGO and Virgo network of
gravitational-wave recorders [47–49]), we are facing a new
important feature of astronomy which could help us to
understand the origin of these phenomena [50–53]. By
applying the tidal deformability constraints on the EOS,
GW170817 provides a new essential insight to understand
the physics of matter under extreme density conditions. The
influence of the perturbing tidal field of the companion of a
NS is reflected in the tidal deformability, Λ. These new
constraints will be investigated on the several hybrid star
EOSs in this paper, and we will go further to present the
predictions for tidal deformability with different chirp
masses and different binary mass ratios. We will also check
the new constraint on the mass-radius relation extracted
from the neutron star interior composition explorer
(NICER). The effect of different crustal EOSs on the
structure and tidal deformability of a HS will be studied too.
The paper is organized as follows: In Sec. II, we briefly

describe the EOS of the nucleonic sector in beta equilib-
rium at zero temperature within the LOCV method.
Section III is devoted to the quark matter EOSs according
to the FCM. In Sec. IVA, by using these models, the EOS
of a HS is proposed assuming the Maxwell construction.
The structure of the HS is presented in Sec. IV B, and in
Sec. IV C we are concerned with the calculation of the tidal
deformability, new constraints on the mass-radius relation
extracted from NICER, and the effect of different crustal
EOSs on the structure of the hybrid stars. The summary and
concluding remarks are presented in Sec. V.

II. HADRONIC PHASE: LOCV APPROACH

The LOCV model is a microscopic model based on
cluster expansion and is in good agreement with empirical
nuclear saturation properties.
The first step in the LOCV formalism is to consider a

trial wave function for the N-body interacting system at
zero temperature. Such a trial wave function is given by
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Ψð1…NÞ ¼ Fð1…NÞΦð1…NÞ; ð1Þ

where Φð1…NÞ is a noninteracting ground-state wave
function of N independent nucleons and Fð1…NÞ is an
N-body correlation operator considered in the Jastrow
approximation.
In general, the nuclear Hamiltonian is read as the sum of

the nonrelativistic single-particle kinetic energy and the
nucleonic potential:

H ¼
X
i

p2
i

2mi
þ
X
i<j

VðijÞ þ
X
i<j<k

VðijkÞ þ � � � : ð2Þ

So, the baryonic energy expectation value EB can be
written as

EB½f� ¼
1

N
hΨjHjΨi
hΨjΨi ¼ E1 þ EMB ≅ E1 þ E2; ð3Þ

in which E1 is the one-body energy and E2 is the two-body
energy. Higher-order terms in the cluster expansion series
are negligible [29]. E2 is minimized with respect to the
channel correlation functions but subjected to the normali-
zation constraint [29,54,55], which introduces the
Lagrange multipliers in the formalism. The procedure of
minimizing E2 provides a number of Euler-Lagrange
differential equations for two-body correlation operators.
Solving these equations leads to the determination of
correlation functions and the two-body cluster energy.
By the inclusion of TBF in the nuclear Hamiltonian, the
problem of incorrectly reproducing the saturation proper-
ties of cold symmetric nuclear matter is resolved. In order
to avoid the full three-body problem, the TBF (semi-
phenomenological UIX interaction) is included via an
effective two-body potential derived after averaging out
the third particle, which is weighted by the LOCV two-
body correlation functions at a given baryonic density ρB.
For more details, see Refs. [35,36].
The beta equilibrium condition should be imposed on the

EOS of the NS, since the density of the system is high
enough for nuclei to dissolve to form an interacting system
of nucleons and leptons. As the system survives longer than
the timescale of weak interactions, it reaches equilibrium
with respect to the β decay n ¼ pþ eþ ν−e and its inverse
reaction.
By solving the β equilibrium conditions, μn ¼ μp þ μe

and μe ¼ μμ, along with the charge neutrality condition
ρp ¼ ρμ þ ρe at any given baryon density, ρB, the energy of
β-stable matter, E, written as the sum of the baryonic
energy and leptonic energy, can be determined (details of
calculations can be found in related references of LOCV
formalism). Leptons are supposed to be highly relativistic
noninteracting particles. The pressure of the NS matter as a

function of baryonic density is calculated by using the
following thermodynamic relation:

P ¼ ρ2B

�∂ðE=NÞ
∂ρB

�
: ð4Þ

III. QUARK MATTER: FCM METHOD

In this section, we briefly address the nonperturbative
framework of the field correlator method. The FCM is a
systematic method of computing nonperturbative effects
in the quenched approximation from some fundamental
nonperturbative input. A set of field strength correlators,
namely [22]

Δμ1ν1;…;μnνn ¼ TrhFμ1ν1ðx1ÞΦðx1; x2ÞFμ2ν2ðx2Þ…
FμnνnðxnÞΦðxn; x1Þi; ð5Þ

is chosen as the nonperturbative input, where Fμν’s are the
field strength tensors and Φðx; yÞ’s are the phase factors,
introduced for the gauge invariance condition. The main
idea, which is proposed in Refs. [56–58], is to use the
gauge-invariant quantities in Eq. (5) as a dynamical input in
the nonperturbative domain and to describe gauge-invariant
observables through Eq. (5) via the cluster expansion.
Moreover, a systematic cluster expansion can be per-
formed, and the first term, named the Gaussian correlator,
gives a good qualitative description of most nonperturba-
tive phenomena, while higher cumulants can be considered
as corrections. It is shown that these corrections are not
large and contribute around a few percent of the total effects
[59–62]. Therefore, one obtains a theory with a simple but
fundamental input—Gaussian approximation—and the
corresponding formalism is called the Gaussian dominance
approximation or the Gaussian stochastic model of QCD
vacuum. The method can be called “fundamental phenom-
enology,” since it uses correlators (actually the lowest-order
one) in Eq. (5) as the dynamical input which is given by
lattice measurements. The necessary nonperturbative infor-
mation enters via string tension σ, which is an integral
characteristic of the Gaussian correlator, and as a result, one
can define the hadron in terms of one parameter. In the
FCM method, the Euclidean vacuum picture of QCD fields
is considered. The results of QCD sum rules and quarko-
nium spectrum analysis show that the gluon vacuum is
dense [22] and the value of the gluon condensate G2 is

G2 ≡ αs
π
hFa

μνFa
μνi ∼ 0.012 GeV4; ð6Þ

with 50% uncertainty. Each point of the phase diagram can
be characterized by the values of condensates, describing
the symmetry-breaking pattern. The simplest condensates
are given by the nonperturbative gluon and quark con-
densates: hαsπ FμνFμνi and hΨ̄Ψi.
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A dynamical characteristic of such a stochastic vacuum
is given by a set of gauge-invariant correlators, which in the
non-Abelian case have the form

Δ1;2;…;n ¼
1

Nc
hTrGμ1ν1ðx1; x0ÞGμ2ν2ðx2; x0Þ…

Gμnνnðxn; x0Þi; ð7Þ

where

Gμkνkðxk; x0Þ ¼ Φðx0; xkÞFμkνkðxkÞΦðxk; x0Þ ð8Þ

and phase factors Φ are defined as follows:

Φðx; yÞ ¼ P exp i
Z

x

y
Aμdzμ; ð9Þ

with the path integral taken along some curves, connecting
the initial and the final points. Although the functions
Δ1;2;…;n depend on the form of the contour, this dependence
has to be canceled in physical quantities [22].
The most attractive feature of the nonlocal average

[Eq. (7)] is its gauge invariance, as compared with
the case of the usual gauge field Green’s functions
hAðxÞAðyÞ…AðzÞi.
The dynamics of confinement is described by Gaussian

color electric [DEðxÞ; DE
1 ðxÞ] and color magnetic [DHðxÞ;

DH
1 ðxÞ] gauge invariant field correlators. The main quantity

which governs the nonperturbative dynamics of deconfine-
ment is given by the two point functions:

g2hTrf½EiðxÞΦðx; yÞEkðyÞΦðy; xÞ�i

¼ δik

�
DE þDE

1 þ z24
∂DE

1

∂z24
�
þ zizk

∂DE
1

∂u⃗2 ;

g2hTrf½HiðxÞΦðx; yÞHkðyÞΦðy; xÞ�i

¼ δik

�
DH þDH

1 þ u⃗2
∂DH

1

∂u⃗2
�
− zizk

∂DH
1

∂u⃗2 ; ð10Þ

where z ¼ x − y, and

Φðx; yÞ ¼ P exp ig
Z

x

y
Aμdzμ ð11Þ

is the parallel transporter to assuring gauge invariance.
In the confined phase (below Tc), DEðxÞ is responsible

for the confinement with string tension σE ¼ 1
2

R
DEðxÞd2x.

In the deconfinment phase (above Tc), DEðxÞ vanishes
while DE

1 ðxÞ remains nonzero, being responsible [together
with the magnetic part due to DHðxÞ and DH

1 ðxÞ] for
nonperturbative dynamics of the deconfined phase.
In the lattice calculations, the nonperturbative part of

DE
1 ðxÞ is parametrized as follows [22]:

DE
1 ðxÞ ¼ DE

1 ð0Þe−jxj=λ; ð12Þ

where λ ¼ 0.34 fm (full QCD) is the correlation length,
with the normalization fixed at T ¼ μ ¼ 0 by

DEð0Þ þDE
1 ð0Þ ¼

π2

18
G2; ð13Þ

where G2 is the gluon condensate. The numerical value of
G2 is determined by QCD sum rules with a large uncer-
tainty as mentioned above [45]:

G2 ¼ 0.012� 0.006 GeV4: ð14Þ

For the adapted parameter G2 ¼ 0.006 GeV4, the critical
temperature turns out to be T ¼ 170 MeV, at zero chemical
potential [23]. The generalization of the FCM at finite T
and μ provides expressions for the thermodynamic quan-
tities where the leading contribution is given by the
interaction of the single quark and gluon lines with the
vacuum [called single-line approximation (SLA)]. Within a
few percent, in SLA the quark pressure for a single flavor is
given as follows [21,23,63]:

Pq=T4¼ 1

π2

�
φν

�
μq−V1=2

T

�
þφν

�
−μqþV1=2

T

��
; ð15Þ

in which ν ¼ mq=T, and

φνðaÞ¼
Z

∞

0

du
u4ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2þν2
p 1

ðexp½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þν2

p
−a�þ1Þ ; ð16Þ

and V1 is the large-distance static qq̄ potential:

V1 ¼
Z

1=T

0

dτð1 − τTÞ
Z

∞

0

dχχDE
1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 þ τ2

q �
: ð17Þ

The gluon contribution to the pressure is

Pg=T4 ¼ 8

3π2

Z
∞

0

dχχ3
1

expð χ þ 9V1

8T Þ − 1
: ð18Þ

Note that the potential V1 in Eq. (17) does not depend on
the chemical potential, and this is partially supported by the
lattice simulation at small chemical potential [23,44].
If confinement is dominated by nonperturbative contri-

butions, the normalization DE
1 ð0Þ in Eq. (12) can be

identified with the term appearing in Eq. (13) which has
been denoted by the same symbol. Then, from Eqs. (17),
(12), and (13) in the limit T → 0, we obtain

V1ðT ¼ 0Þ ≤ π2

9
G2λ

3: ð19Þ

KHANMOHAMADI, MOSHFEGH, and TEHRANI PHYS. REV. D 101, 123001 (2020)

123001-4



However, other choices of V1 are possible, and these will be
considered at the end of the results section.
The pressure in the quark-gluon phase can be written

as [23,64]

Pqg ¼
X

i¼u;d;s

Pi
q þ Pg þ Δϵvac; ð20Þ

where Pi
q and Pg are given in Eqs. (15) and (18),

respectively, and

Δϵvac ≈ −
ð11 − 2=3NfÞ

32

G2

2
; ð21Þ

which corresponds to the difference of the vacuum energy
density in the two phases, with Nf being the flavor number.
Other thermodynamic quantities in the quark-gluon

phase can be derived in the standard way by using the
relation

ϵ ¼ −Pþ
X

i¼u;d;s

μini: ð22Þ

As the weak decays (d ↔ uþ eþ ν̄e ↔ s) should be taken
into account in the quark-gluon matter, the electrons
(neutrinos have enough time to leave the system) should
be included, which are described by a noninteracting gas of
massless fermions with

Pe ¼
μ4e

12π2
→ ϵe ¼

μ4e
4π2

: ð23Þ

Therefore, we will have

Ptot ¼ Pþ Pe; ϵtot ¼ ϵþ ϵe ð24Þ

in the β-stable quark-gluon matter. The relations between
chemical potentials of the particles take the form

μd ¼ μs ¼ μ;

μ ¼ μu þ μe: ð25Þ

The charge neutrality condition implies (2
3
nu − 1

3
nd −

1
3
ns − ne ¼ 0), and so the system can be characterized by

one independent variable—that is, the baryon number
density ρB ¼ 1

3
ðnu þ nd þ nsÞ.

IV. RESULTS

A. Hadron-quark hybrid EOS

We study the hadron-quark phase transition in order to
obtain the EOS of a hybrid star. We consider the Maxwell
construction by assuming a first-order hadron-quark phase
transition. Maxwell construction is a sharp phase transition
from neutral hadronic matter to homogeneous neutral quark

matter. Both hadron and quark phases are in β equilibrium
and also satisfy charge neutrality, separately. Each phase is
considered to be a one-component system controlled by the
baryonic density—or equivalently, a baryonic chemical
potential—because of the requirement of the charge neu-
trality in Maxwell construction. By imposing the condi-
tions of thermal, mechanical, and one-component chemical
equilibrium at zero temperature, the transition point in the
Maxwell construction is identified as

P1ðμBÞ ¼ P2ðμBÞ; ð26Þ

where the indices 1 and 2 stand for the hadronic and quark
phases, respectively. Equation (26) implies that Maxwell
construction corresponds to constant pressure in the density
interval between two phases. μB stands for the baryon
chemical potential in each phase (μB1 ¼ μp þ μn and
μB2 ¼ μu þ μd þ μs). At the interface between the two
phases, the baryon chemical potential μB is continuous,
while the electron chemical potential μe jumps in Maxwell
construction. One can consider Maxwell construction as a
limiting scenario, where the surface tension is large.
In Fig. 1, the pressure P as a function of the baryon

chemical potential μB for baryonic and quark matter phases
in β equilibrium is shown, and also the hybrid EOSs
(pressure P vs baryon density ρB) are displayed. In Fig. 1(a)
[1(b)], we show the results obtained using V1 ¼ 0
[V1 ¼ 0.01 GeV] qq̄ potential [according to the constant
obtained in Eq. (19)]. In both panels, the solid black line
represents the EOS of nuclear matter with AV18 potential
supplemented by TBF in LOCV formalism, and other lines
represent the EOS of the quark-gluon phase within the
FCM with several choices of parameter sets. It is worth
noting that the chosen values of G2 give values of the
critical temperature in a range between T ≈ 150 and
200 MeV. The transition point in the V1 ¼ 0.01 GeV case
is shifted slightly to higher values of chemical potential,
and hence also baryon density, compared to the case in
which V1 ¼ 0. We notice that the crossing point is
significantly affected by the choice of the gluon conden-
sate, G2. With an increase in the value of the gluon
condensate G2, the transition point shifts to higher values
of chemical potential. However, the exact value depends
also on the stiffness of the baryonic EOS at those
densities. The onset of phase transition is around 2ρ0
(ρ0 ¼ 0.16 fm−3). In Fig. 1(c) [1(d)], the hybrid EOS in
Maxwell construction is displayed for several cases dis-
cussed. The result obtained with V1 ¼ 0 [V1 ¼ 0.01 GeV]
is displayed in Fig. 1(c) [1(d)]. Below the plateau, the
β-stable hadronic EOS governs the star, while in densities
higher than the ones characterized by the plateau, the stellar
matter is in the β-stable quark matter phase.
It is clear that the width of the plateau is related to

the values of qq̄ potential V1, gluon condensate G2, and the
baryonic EOS. With increasing values of G2 and V1, the
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width is extended. As the width of the plateau increases, the
discontinuity in energy density between the two phases
increases, which in turn causes the instability of the HS.
(We will refer to this point later.)

B. Hybrid star structure

The structure of a hybrid star is calculated by numerical
integration of thewell-known hydrostatic equilibrium equa-
tions of Tolman-Oppenheimer-Volkoff (TOV). The EOS of
the star is the fundamental input of the TOV equations:

dPðrÞ
dr

¼ −
GMðrÞϵðrÞ

c2r2

�
1þ PðrÞ

ϵðrÞ
��

1þ 4πr3PðrÞ
MðrÞc2

�

×

�
1 −

2GMðrÞ
rc2

�
−1
; ð27Þ

dMðrÞ
dr

¼ 4πϵðrÞr2
c2

; ð28Þ

inwhich ϵðrÞ is the total energy density,MðrÞ is the starmass
within radius r, c is the speed of light, and G denotes the
gravitational constant.
The hybrid EOS in Maxwell construction, with constant

pressure in the transition region, is taken from the calcu-
lations discussed above. For the description of the NS crust,
we use the Harrison-Wheeler (HW) EOS. The effects of
different crustal EOSs on the structure of hybrid star are
studied in Sec. IV C.
In Fig. 2(a) [2(b)], we display the mass-radius [mass–

central density] for hybrid stars with qq̄ potential V1¼0 for
several choices of gluon condensate, G2. Figure 2(c) [2(d)]
is the same as the previous case, but for qq̄ potential
V1 ¼ 0.01 GeV. By looking at Fig. 2(a) [2(b)], we find that
the maximum mass of the HS spans over a range between
1.4 M⊙ and 2.16 M⊙ depending on the values of the gluon
condensate G2 and qq̄ potential V1. The HS with the
maximum mass of 2.13 M⊙ is predicted for V1 ¼ 0 and
the gluon condensateG2¼0.017GeV4. By switching on the
value of qq̄ potential, V1, as displayed in Fig. 2(c) [2(d)],

(a) (b)

(c) (d)

FIG. 1. (a),(b): Pressure vs baryon number density for β-stable nuclear matter within the LOCV method supplemented with TBF and
β-stable quark matter in the FCM model with (a) V1 ¼ 0 (b) V1 ¼ 0.01 GeV and several values for the gluon condensate G2 (in GeV4).
(c),(d): The hadron-quark hybrid EOSs in Maxwell construction with qq̄ potential (c) V1 ¼ 0 (d) V1 ¼ 0.01 GeV and several choices of
gluon condensate G2 (in GeV4) combined with the LOCV supplemented by TBF.
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we observe a trend similar to the case of V1 ¼ 0. The value
of the maximum mass slightly increases in the case V1 ¼
0.01 GeV with respect to the case V1 ¼ 0. In the case
V1¼0.01GeV, the maximum mass of 2.03 M⊙ (2.16 M⊙)
is calculated for G2 ¼ 0.12 GeV4 (G2 ¼ 0.17 GeV4).
However, in the mentioned cases, with the maximum
masses compatible with observations, the HSs are unstable.
The instability manifests itself as a cusp in the mass-radius
curve, which in turn is due to the large discontinuity in the
energy density in the phase transition region. A stable HS
with a pure quark core is predicted only for small values of
G2 around less than G2 ¼ 0.07 GeV with the maximum
mass of about 1.4 M⊙, which are hardly in agreement with
the observations. It is worth noting that an “acceptable”
EOS must give a maximum mass around 2 M⊙. By
increasing the value of the gluon condensate, G2, the value
of the maximum mass increases, up to about 2.16 M⊙;
however, the stability of a pure quark core is lost. The
results are summarized in Table I. As seen in Table I,
in the cases with energy density discontinuity around
300 MeV fm−3, the HS with a pure quark core is stable.
For higher values of discontinuity in the energy density, the

HS becomes unstable. Therefore, generally speaking, the
FCM model with very low values of qq̄ potential, V1, as
predicted by Eq. (19), gives a maximum value of mass
higher than 2 M⊙ for large values of the gluon condensate
(around G2 ¼ 0.012 GeV4), and the star becomes unstable
as soon as the onset of the quark phase. A stable pure quark
core is predicted in low values of the gluon condensate with
a maximum mass around 1.4 M⊙.
As we mentioned before, lattice calculation determines

the value of the gluon condensate to be G2 ¼ 0.006 GeV4

at critical temperature and μ ¼ 0, while up to now, our
calculations predict the maximum value of the HS mass to
be around 1.4 M⊙, which is far from the observational data.
This puts a serious constraint on the value of the gluon
condensate. However, this prediction is obtained for the
very low value of long-distance static qq̄ potential V1

arising from Eq. (19). Other choices are possible. If
Eq. (12) is assumed to be valid only at long range, while
Eq. (13) is a true short-range relationship, then in this case
the parameter DE

1 ð0Þ in the two equations cannot be
identified and may correspond to two different numerical
values, and therefore the value of V1 must be considered as

(a) (c)

(b) (d)

FIG. 2. (a),(b): The gravitational HS masses vs (a) radius (b) central baryon density of the star with the qq̄ potential V1 ¼ 0 and several
choices of gluon condensateG2 (in GeV4) combined with AV18 supplemented by TBF. (c),(d): Same as (a),(b), but with the qq̄ potential
V1 ¼ 0.01 GeV.
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an independent parameter [21]. In the comparison with
lattice calculations [65], one finds a value of V1 ¼ 0.5 GeV
at the critical temperature and for μ ¼ 0. Besides that, the
assumption of the independence of V1 on μ can be
questioned, and in any case, the value of this parameter
is quite uncertain at high densities and low temperature
[21]. We have therefore varied the strength of V1 from small
values considered previously up to 0.5 GeV. The results for
the EOS are reported in Fig. 3 for different values of qq̄
potential V1. One can see that the hadron-quark phase
transition is shifted to higher values of the chemical
potential—and hence, of the densities. Actually, for qq̄
potential V1 ¼ 0.1 GeV, the phase transition occurs, while
for V1 ¼ 0.5 GeV, there are no crosses between hadronic
and quark matter EOSs, and therefore the quark phase is
irrelevant for NS physics.

In order to obtain the probable stable HS with higher
maximum masses, we have carried out the calculation for
larger values of qq̄ potential: V1 ¼ 0.05, 0.07, 0.09, 0.1,
0.12 GeV.
In Fig. 4, we display the effect of increasing the qq̄

potential V1 on the maximum mass of the HS. In Fig. 4(a)
[4(b)], the mass-radius [mass–central density] of the HS
with a gluon condensate value of G2 ¼ 0.004 GeV4 and
several values of qq̄ potential V1 are displayed. Figures 4(c)
[4(d)] and 4(e) [4(f)] are the same as the previous case, but
with gluon condensate values of G2 ¼ 0.005 GeV4 and
G2 ¼ 0.006 GeV4. By increasing the qq̄ potential, V1, the
maximum mass increases, and simultaneously, the HS
becomes unstable. For the case G2 ¼ 0.004 GeV4, as seen
in Fig. 4(a) [4(b)], a stable HS is predicted up to qq̄
potential V1 ¼ 0.09 GeV with the maximum mass
1.92 M⊙. For larger V1, the HS becomes unstable. As
seen in Fig. 4(c) [4(d)] for the case G2 ¼ 0.005 GeV4, a
stable HS is predicted up to qq̄ potential V1 ¼ 0.09 GeV
with the maximum mass 2.03 M⊙. For larger V1, the pure
quark core becomes unstable. As seen in Fig. 4(e) [4(f)] for
the case G2 ¼ 0.006 GeV4, a stable HS is predicted up to
qq̄ potential V1 ¼ 0.08 GeV with the maximum mass
2.04 M⊙. For larger V1, the star becomes unstable. The
results are summarized in Table II. The discontinuity in the
energy density in stable HSs is around 500 MeV fm−3. By
increasing the value of qq̄ potential, V1, to higher than
0.09 GeV, the value of the maximum mass is shifted higher
than 2 M⊙, and simultaneously the stability of the star is
lost for all values of gluon condensates G2. The results are
summarized in Table III.
We also display the dependence of the maximum mass

of the HS as a function of qq̄ potential, V1, and gluon
condensates, G2, in Figs. 5(a) and 5(b), respectively.

TABLE I. Hadron-quark phase transition and hybrid star structure properties for several values of gluon condensate, G2 (GeV4), and
qq̄ potential, V1 (GeV), where μB is the critical baryon chemical potential (MeV), ρB=ρ0 is the ratio of the baryon density to the
saturation density, and ϵ is the energy density at the starting (1) and ending points (2) of phase transition (MeV=fm3). MmaxðM⊙Þ is
the maximum mass of the star in terms of the Sun’s mass, ρCBmax=ρ0 is the ratio of central density to the saturation density, and Rmax is
the hybrid star’s radius (km).

V1 G2 μB ρð1ÞB =ρ0 ρð2ÞB =ρ0 ϵð1Þ ϵð2Þ ρCBmax=ρ0 Rmax MmaxðM⊙Þ
0 0.005 987.3 1.25 2.66 191.8 415.2 10.10 8.89 1.48

0.006 1072.1 2.09 3.46 330.2 565.7 10.52 9.16 1.41
0.007 1146.6 2.57 4.28 416.8 729.9 9.5 9.79 1.40
0.008 1206.2 2.9 5.02 478.1 887.8 5.06 12.39 1.62
0.012 1364.5 3.62 7.38 626.9 1448.1 7.47 12.15 1.98
0.017 1488.3 4.10 9.66 737.0 2061.4 9.7 11.93 2.13

0.01 0.005 1018.7 1.63 2.81 253.1 444.9 10.0 9.11 1.47
0.006 1111.0 2.36 3.71 377.2 618.1 9.75 9.58 1.43
0.007 1184.3 2.78 4.55 455.8 791.3 4.62 12.39 1.53
0.008 1241.6 3.07 5.29 512.2 953.2 5.40 12.34 1.73
0.012 1393.8 3.74 7.62 653.1 1519.9 7.68 12.10 2.03
0.017 1514.3 4.2 9.88 759.9 2138.4 10.0 11.87 2.16

FIG. 3. Pressurevs baryon chemical potential, for different values
of gluon condensate, G2 (GeV4), and qq̄ potential, V1 (GeV).
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The increasing behavior of the maximum mass of the HS
when increasing both the qq̄ potential, V1, and the gluon
condensate, G2, is obvious in Fig. 5. In Fig. 5(c), we
display the maximum mass of a “stable” HS vs the gluon
condensateG2 for several values of qq̄ potential, V1 (GeV).

We also show the maximum mass constraint for NSs by the
dashed yellow region, and the values of FCM parameters
through which a stable HS is predicted by the shadowed
blue area. The adapted value ofG2 from lattice QCD, which
gives a temperature of about Tc ¼ 170 MeV, is displayed

(a) (c) (e)

(b) (d) (f)

FIG. 4. (a),(b): The gravitational HS masses vs (a) radius (b) central baryon density of the star with the gluon condensate G2 ¼
0.004 GeV4 and several qq̄ potential V1 (in GeV). (c),(d): Same as (a),(b), but with the gluon condensate G2 ¼ 0.005 GeV4. (e),(f):
Same as (a),(b), but with the gluon condensate G2 ¼ 0.006 GeV4.

TABLE II. Same as Table I but for higher values of qq̄ potential, V1 (GeV) of the FCM.

V1 G2 μB ρð1ÞB =ρ0 ρð2ÞB =ρ0 ϵð1Þ ϵð2Þ ρCBmax=ρ0 Rmax MmaxðM⊙Þ
0.05 0.004 1075.35 2.11 2.77 334.4 448.3 8.26 10.12 1.57
0.07 1206.2 2.90 3.77 478.1 645.6 6.12 11.39 1.68
0.08 1266.9 3.19 4.28 536.58 757.63 4.81 12.17 1.8
0.09 1322.167 3.44 4.78 587.7 870.5 5.0 12.2 1.92
0.1 1372.9 3.65 5.24 634.4 983.1 5.31 12.14 2.0
0.12 1464.5 4.01 6.12 716.3 1208.3 6.18 11.97 2.11

0.05 0.005 1203.5 2.89 4.07 475.5 703.8 5.27 11.83 1.64
0.07 1301.4 3.35 4.92 568.7 890.4 5.0 12.26 1.87
0.08 1347.3 3.55 5.31 610.9 989.9 5.43 12.17 1.95
0.09 1391.1 3.73 5.70 650.6 1089.9 5.83 12.1 2.03
0.1 1432.9 3.89 6.09 686.7 1192.3 6.18 12.02 2.08
0.12 1512.5 4.2 6.85 758.3 1403.4 7.0 11.87 2.16

0.05 0.006 1281.1 3.26 5.02 550.3 911.04 5.14 12.29 1.83
0.07 1363.5 3.62 5.74 626.1 1088.4 5.83 12.16 1.99
0.08 1403.3 3.78 6.1 661.2 1182.5 6.187 12.08 2.04
0.09 1441.8 3.92 6.45 695.2 1278.6 6.58 12.0 2.09
0.1 1479.4 4.07 6.81 729.3 1377.2 6.81 11.95 2.13
0.12 1551.6 4.33 7.5 792.5 1580.3 7.62 11.79 2.19
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by a vertical line. As is clear, the area in which all three
constraints are satisfied occurs with a value of qq̄ potential
of about V1 ¼ 0.08 GeV.
Up to now, we have studied the effect of two FCM

parameters—qq̄ potential, V1, and gluon condensates,

G2—on the maximum mass of the HS. The calculation
predicts that values of V1 as small as 0.01 GeV are
excluded, since the maximum mass of stable HSs (around
1.4 M⊙) is so far from the observational values. If one
requires a stable HS, our calculations also exclude large

(a) (b)

(c)

FIG. 5. (a),(b): Maximum mass of the HS vs (a) qq̄ potential, V1 (GeV) (b) gluon condensate, G2 (GeV4). (c): Maximum mass of
“stable” HS vs gluon condensate, G2 (GeV4), for several values of qq̄ potential, V1 (GeV). The dashed yellow region shows the
constraint on the maximum mass of NSs, the shadowed blue region displays the values of FCM parameters for which a stable HS is
predicted, and the vertical line manifests the adapted value of the gluon condensate which gives the critical temperature of about
Tc ¼ 170 MeV.

TABLE III. Central density ρCB (fm−3), radius R (km), compactness C, yR, tidal Love number k2, and dimensionless tidal
deformability Λ for several hybrid stars with the mass of 1.4 M⊙ studied in the paper. The units of V1 and G2 are GeV and GeV4,
respectively.

V1 G2 ρCB R C yR k2 Λ

0 0.005 1.065 9.44 0.219 0.393 0.0646 84.573
0.006 1.42 9.47 0.218 0.388 0.0655 88.396
0.007 1.39 10.01 0.206 0.380 0.0720 128.498

0.01 0.005 1.078 9.72 0.212 0.388 0.0685 105.545
0.006 1.156 10.27 0.201 0.378 0.0750 152.721
0.007 0.42 12.42 0.168 0.356 0.0951 469.980

≥0.008 0.42 12.42 0.168 0.356 0.0951 469.980
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values of G2, larger than around 0.007 GeV4, and the
maximum mass is shifted to values higher than 2 M⊙,
which is compatible with the observations. A stable HS is
predicted for lower values of the gluon condensate G2,
around 0.006 GeV4. Therefore, our calculations put con-
straints on the qq̄ potential, V1, of around 0.08 GeV, and
on the gluon condensates, G2, of around 0.006 GeV4.
The adapted value of G2 from lattice QCD calculations
which give rise to a critical temperature around Tc ∼ 170

is 0.006 GeV4.

C. Tidal deformability

Until 17 August 2017, electromagnetic observation of
NSs [66,67] and simultaneous measurements of both the
masses and radii of NSs [68–70] provided constraints on
the EOSs of such dense systems. However, these measure-
ments are dependent on detailed modeling of the radiation
and absorption mechanism at the NS surface and inter-
stellar medium and are also subject to systematic uncer-
tainties [71]. Another possibility for obtaining information
on the EOS of the NS is from ispiraling binary NSs due to
the gravitational radiation. The tidal distortion of NSs in a
binary system links the EOS describing NS matter to the
emission of the gravitational wave during the inspiral [71].
On 17 August 2017, the first direct detection of a binary

NS merger (GW170817) by the LIGO-Virgo scientific
collaboration has opened a new window into modern
astronomy. This historic detection has been instrumental
in providing initial constraints on the tidal polarizibility (or
deformability) of NSs [50–53].
During the early regime of the inspiral, the signal is very

clean, and the influence of the tidal effects is only a small
correction to the wave form’s phase [72]. The influence of
the internal structure on the gravitational wave phase in this
early regime of the inspiral is characterized by a single
dimensionless parameter—namely, the ratio of the induced
quadrupole moment to the perturbing tidal field (from the
companion star). This ratio, which is called the tidal
deformability (or tidal polarizability), Λ, is related to the
star’s tidal Love number, k2, by

Λ ¼ 2

3
k2

�
c2R
GM

�
5

; ð29Þ

where R and M are the radius and mass of the NS. In other
words, the tidal deformability Λ measures the star’s
quadrupole deformation in response to the companion’s
perturbing tidal field. The compactness of the star, C, is
defined as C ¼ GM

c2R. As is clear, Λ is extremely sensitive to
the compactness of the star.
The tidal Love number k2, being a dimensionless

parameter that is sensitive to the entire EOS [71,72], is
expressed as

k2ðC;yRÞ¼
8

5
C5ð1−2CÞ2½ð2−yRÞþ2CðyR−1Þ�

×f2Cð6−3yRþ3Cð5yR−8ÞÞ
þ4C3½ð13−11yRÞþCð3yR−2Þþ2C2ð1þyRÞ�
þ3ð1−2CÞ2½ð2−yRÞþ2CðyR−1Þ�
×logð1−2CÞg−1: ð30Þ

Now, we proceed to compute yR, which is the value of
the function yðrÞ at the surface of the star (for more details,
see Refs. [71–75,77] and references contained therein).
yðrÞ satisfies the following nonlinear, first-order differential
equation [77,78]:

r
dyðrÞ
dr

þ y2ðrÞ þ FðrÞyðrÞ þ r2QðrÞ ¼ 0;

with yð0Þ ¼ 2 and yR ¼ yðr ¼ RÞ; ð31Þ

where FðrÞ and QðrÞ are functions of the mass, pressure,
and energy density profiles assumed to have been obtained
by solving the TOV equations and are given by the
expressions

FðrÞ ¼ 1 − 4πGr2ðϵðrÞ − PðrÞÞ
ð1 − 2GMðrÞ

r Þ
ð32Þ

and

QðrÞ ¼ 4π

ð1− 2GMðrÞ
r Þ

�
5ϵðrÞþ 9PðrÞþ ϵðrÞþPðrÞ

c2sðrÞ
−

6

4πr2

�

− 4

�
GðMðrÞþ 4πr3PðrÞÞ

r2ð1− 2GMðrÞ
r Þ

�
; ð33Þ

in which c2sðrÞ ¼ dPðrÞ=dϵðrÞ is the speed of sound at
radius r.
One may use the weighted Λ̃ðMÞ, where M is defined

by M ¼ M3=5
1 M3=5

2 =ðM1 þM2Þ1=5. However, as both
EOSs of the NSs are the same, the mass ratio of stars
has no big effect on Λ̃. Therefore, we can useΛ instead of Λ̃
without loss of generality [77].
GW170817 puts only an upper limit on the tidal

deformability of a 1.4 M⊙ NS; i.e., Λ1.4 ≤ 800 [75].
Moreover, the authors in Ref. [46] find additional con-
straints on the tidal deformability and radii of neutron
and hybrid stars. For a purely hadronic star with a mass
of 1.4 M⊙, the radius of the NS is considered to be
12.00 km < R1.4 < 13.45 km; similarly, the smallest
weighted average dimensionless tidal deformability is
Λ̃1.4 > 375. Since EOSs with a phase transition allow
for very compact stars on the “twin star” branch, small
radii are possible for HSs [76]; therefore, the radius varies
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in a much broader range of 8.35 km < R1.4 < 13.74 km,
with Λ̃1.4 > 35.5.
In order to check these new constraints, we have

computed the tidal deformabililty for individual stars with
the mass of 1.4 M⊙: Λ1.4 [71,77]. The results of the
computation of yR, the compactness C, tidal Love number
k2, and dimensionless tidal deformability Λ for HSs with
the mass of 1.4 M⊙ within the FCM, with several choices
of parameter sets, are summarized in Tables III and IV.
Table III concerns very low values of the qq̄ potential,
V1 ¼ 0, 0.01, with several choices of gluon condensate G2,
while Table IV collects the results of higher values of
V1 ¼ 0.05, 0.07, 0.08, 0.09, 0.1 GeV.
As seen in Tables III and IV, for the cases in which the

mass of 1.4 M⊙ occurs on the hadron branch, the men-
tioned properties are similar for the same hadron inter-
action. The reason is that the EOS of hadron matter governs
the star in the hadron branch, and as is clear from Eqs. (31),
(32), and (33), yR, which depends on the profile of the star,
takes the same value, so k2 and hence Λ from Eqs. (30) and
(29) will have a unique value for the same hadron
interaction. In these cases, the HSs become much less
compact, and tidal deformability takes larger values in
comparison with the cases in which the mass of 1.4 M⊙
occur on the quark branch. In those cases, the EOS is the
hybrid EOS of hadron and quark matter within the Maxwell
construction. If one compares these results with those for
pure NSs [19], one can see that the HSs are a little less
compact in comparison with pure NSs. Moreover, if we
compare the result for HSs within the FCM with HSs
within the MIT and NJL models [19], it is obvious that
when a star with the mass of 1.4 M⊙ occurs in the hadron
branch, the tidal deformability parameters are independent
of the employed quark models and just depend on hadron
models. It means that the tidal deformability in such cases
is the same for a specified hadron model with any quark
models.
For very low values of qq̄ potential, V1 ¼ 0, 0.01 GeV,

and low values of quark condensation, G2 ¼ 0.005,
0.006 GeV4 and rarely G2 ¼ 0.007 GeV4, the star mass
of 1.4 M⊙ occurs on the quark branch. In such cases, the
HSs are much compacted (9 km < R1.4 < 11.6 km), and
the dimensionless tidal deformability takes low values
(lower than around Λ1.4 ¼ 350).
For larger values of qq̄ potential, V1 ≥ 0.05 GeV, and all

values of the quark condensate, G2, (except in the case of

V1 ¼ 0.05 GeV and G2 ¼ 0.004 GeV4), the mass of
1.4 M⊙ occurs on the hadron branch, and therefore the
tidal deformability depends only on hadron interaction. The
values of dimensionless tidal deformability are in the range
470 < Λ1.4 < 485, and the radii of the HSs in such cases
are in the range 12.28 km < R1.4 < 12.42 km. All the
results are in line with the constraint on tidal deformability
for HSs, 35.5 < Λ̃1.4 < 800.
If we link the results of this section for tidal deform-

ability to the results of the last section on the maximum
mass of the HSs, we can observe that for the cases with
larger masses (which are compatible with observations), the
tidal deformability takes larger values, which is more
compatible with the constraints extracted from binary
GW170817 for “NSs”: 375 < Λ̃1.4 < 800. Therefore, this
scenario is a feasible scenario for a NS.
Moreover, we study the effect of different chirp masses

and different binary mass ratios q ¼ M2=M1 on the tidal
deformability Λ. The total mass of Mtot ¼ M1 þM2 ≃
2.74 M⊙, which was inferred from the gravitational wave
signal, is compatible with masses measured in binary NS
systems containing pulsars [79,80]. The binary mass ratio q
is restricted to the range 0.7 to 1. In Fig. 6(a), we present the
tidal deformability Λ as a function of star mass M=Msun.
The gray box shows the Λ ≤ 800 constraint in the range
1.16 M⊙–1.60 M⊙ of the low-spin prior [48,81]. As seen
in Fig. 6(a), the hybrid EOSs mentioned in Fig. 5(c),
associated with stable hybrid stars, are within the range of
this constraint. In Fig. 6(b), we display the tidal deform-
ability Λ1 and Λ2 of the low- and high-mass mergers
obtained from theΛðmÞ. For comparison, the 50% and 90%
probability contours of the low-spin prior from the analysis
by the LIGO VIRGO Collaboration (LVC) of the gravita-
tional wave signal of the GW170817 merger event are also
shown [48,81]. As seen in Fig. 6(b), the hybrid EOSs with
very low values of qq̄ potential, V1 ¼ 0, 0.01 GeV, are
within the 50% fidelity region, and the hybrid EOSs with
high values, V1 > 0.05 GeV, are in the 90% fidelity region.
We also study the influence of different inner and outer

crusts on the radius and tidal deformability of the hybrid
stars. We apply two different crustal EOSs: the first one is
that of Bame, Pethick, and Suttherland (BPS) [82], and the
second one uses the base of microscopic calculation (we
mention it as “Sharma” in the figures) [83]. In Fig. 7, we
display the relative deviation, for different quantities—
namely, radius R, tidal Love number k2, dimensionless tidal
deformability Λ and yR, calculated with the BPS and
Sharma crusts—and the quantities calculated with the
HW crust, XBPS or Sharma−XHW

XHW
, as a function of the star mass

M=Msun. We present the calculation for a sample parameter
set, V1 ¼ 0.08 GeV, with G2 ¼ 0.006 GeV4 of the FCM.
As is clear from the figures, the EOSs of the crusts are more
or less important in the determination of all these quantities
except for the dimensionless tidal deformability Λ. This
result arises from a cancellation between the second Love

TABLE IV. Same as Table III, but for larger values of V1

(GeV).

V1 G2 ρCB R C yR k2 Λ

0.05 0.004 0.72 11.28 0.183 0.365 0.0861 279.02
0.055 0.004 0.65 11.75 0.175 0.365 0.0906 361.243
≥0.05 ≥0.005 0.42 12.42 0.168 0.355 0.0958 469.980
≥0.063 ≥0.004 0.42 12.42 0.168 0.355 0.0958 469.980
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number k2 and the stellar compactness C. Whereas Λ
depends on both C and k2, with k2 being a highly complex
function of C and yR [see Eq. (30)], the value Λ ∝ k2C−5 is
almost equal for different crusts. So, while yR—and hence,
the second Love number k2—is sensitive to the crustal
component of the EOS, such sensitivity disappears in the
case of the dimensionless tidal deformability Λ. As shown
earlier, the behavior of Λ is largely dictated by the EOS of
the uniform liquid core. It worth noting that the core-crust

transition densities in BPS and Sharma crustal EOSs are
almost the same (around 0.06 fm−3), and the results
obtained on the HS radii when applying them are almost
the same. Meanwhile, the core-crust transition density in
HW crustal EOSs (0.04 fm−3) is different, and the results in
this case are a little bit different (in HW crustal EOSs, the
radii of the stars are around 0.04–0.1 km lower than the
mentioned cases). It seems that—at least in the cases
studied—the core-crust transition density has more influ-
ence in the HS radii than the type of the crustal EOS.
Our results are in good agreement with those given in
Refs. [75,84].
We close this subsection by checking the constraints

deduced from GW170817 for the radius of NS; i.e., Rmax >
9.6 km and R1.6 > 10.7 km [79,81].
We also check the new constraint on mass-radius relation

extracted from the neutron star interior composition
explorer (NICER) for PSR J0030þ 451 [85], as well as
the constraint on the maximum mass extracted from PSR
J0740þ 6620 [86]. These constraints are summarized in
Fig. 8. In this figure, we have also shown various stable
hybrid stars’ mass-radius relations from Fig. 5(c). The
green (red) region shows the constraint on the mass-radius
relation inferred from NICER for PSR J0030þ 451 (the
excluded region inferred from the binary GW170817). The
constraint on maximum mass, extracted from PSR
J0740þ 6620, is shown by the gray region. Finally, the
dashed line shows the causality constraint. As is clear from
the figure, the hybrid stars with very low values of qq̄
potential, V1 ≤ 0.01, do not fulfill the value and the radius
of maximum mass, while they fulfill the constraints on R1.6
and Rmax. These cases also satisfy the constraint inferred
from NICER. The only exception is the case with V1 ¼ 0
and G2 ¼ 0.004. The constraint on R1.6 is not fulfilled only
in the case with V1 ¼ 0.05 and G2 ¼ 0.004.

(a)

(b)

FIG. 6. (a) Dimensionless tidal deformability Λ as a function of the star mass, M=Msun, for some of the parameter sets concerning
stable hybrid stars mentioned in Fig. 5(c). The gray box shows the Λ ≤ 800 constraint in the range of 1.16 M⊙–1.60 M⊙ for the
low-spin prior [48,81]. (b) Corresponding tidal deformability Λ1 and Λ2 of the low- and high-mass mergers obtained from the ΛðmÞ.
The 50% and 90% fidelity regions of the low-spin prior are also shown [48,81].

FIG. 7. Relative deviation ðXBPS or Sharma − XHWÞ=XHW for the
different quantities—radius R, tidal Love number k2, dimension-
less tidal deformability Λ, and yR calculated with BPS and
Sharma crust and the quantities calculated with HW crust—as a
function of hybrid star mass M=Msun for the parameter set V1 ¼
0.08 GeV and G2 ¼ 0.006 GeV4 of the FCM. See text for
details.
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The hybrid stars with higher values of qq̄ potential,
V1 ≥ 0.07, and gluon condensate, G2 > 0.05, fulfill the
maximum mass constraint from PSR J0740þ 6620 and the
mass-radius constraints inferred from both GW170817 and
NICER, PSR J0030þ 451.

V. CONCLUSION

In this paper, we have studied the appearance of a quark
matter in the NS core with the corresponding quark-gluon
EOS derived in the framework of the FCM. We performed
our analysis at various constant values of the parameters of
the model—namely, the gluon condensate, G2, and the qq̄
potential, V1, extracted from QCD sum rules and lattice
data, respectively. For small values of qq̄ potential,
V1 ≤ 0.01, HSs with maximum mass higher than 2 M⊙
are predicted for large values of the gluon condensate, G2,
around 0.012 GeV4; however, these HSs become unstable
as soon as the onset of the quark phase in the core of the
star. This instability manifests itself as a cusp in the mass-
radius curves. The large discontinuity in the energy density
is probably responsible for the instability of the quark core,
since the star cannot counteract the additional pressure due
to the additional force exerted on the star.
By increasing the values of qq̄ potential, V1, to higher

than 0.07 GeV, a stable HS with maximum mass higher
than 2 M⊙ is predicted also for small values of the gluon
condensate G2, around 0.006 GeV4. A stable HS with a
maximum mass of 2.03 M⊙ (2.04 M⊙) is calculated for

G2¼0.005GeV4 and V1 ¼ 0.09 GeV (G2 ¼ 0.006 GeV4

and V1 ¼ 0.08 GeV).
Strictly speaking, our calculations excluded very low

values of qq̄ potential V1, since the maximum mass of
stable HSs for very low values of V1 is around 1.4 M⊙,
which is so far from the observational values. Besides, it
suggested that values of qq̄ potential, V1, around 0.08–
0.09 GeV and gluon condensate, G2, around 0.006 GeV4

are the FCM parameters in which stable HSs with maxi-
mummass higher than 2 M⊙ are predicted. Since the lattice
calculations predict the value of the gluon condensate
to be G2 ¼ 0.006 GeV4, resulting in a critical temperature
of about Tc ¼ 170 MeV, in the parameter set G2 ¼
0.006 GeV4 and V1 ¼ 0.08, we obtain a maximum mass
value for a stable HS of 2.04 M⊙. Therefore, one can
conclude that V1 ¼ 0.08 GeV could be the best choice in
accordance with our calculation.
In order to test the new constraint which was extracted

from the gravitational waves of the binary GW170817 on
tidal deformability and hence on the radii of the NSs, we
have calculated the tidal deformability of a HSwith themass
1.4 M⊙ with several choices of parameter sets of the FCM.
For very low values of quark-antiquark static potential,
V1 ¼ 0, 0.01 GeV, and values of gluon condensateG2 lower
than around 0.007 GeV4, the mass of 1.4 M⊙ occurs on
the quark branch, and so the HS becomes so compact
(9 km < R1.4 < 11.6 km) that the tidal deformability takes
lower values (84 < Λ1.4 < 345). However, even in such
cases, the value of tidal deformability—and hence the radii
of HSs—is still compatible with the constraints in HSs,
Λ̃1.4>35.5 and 8.35km<R1.4<13.74km.The lower limit of
the constraint in HSs is much lower than that for purely NSs
because of the probability of the existence of a “twin branch”
in HSs.
For higher values of quark-antiquark potential, V1≥0.05,

the mass of 1.4 M⊙ occurs on the hadron branch. Thus, the
HS becomes much less compact, 12.28 km < R1.4 <
12.42 km, and therefore the tidal deformability takes larger
values, 470 < Λ1.4 < 485, for different hadron interactions
supplemented by TBF. These values are more compatible
with the constraint for tidal deformability for NSs—that is,
375 < Λ̃1.4 < 800 and 12.00 km < R1.4 < 13.45 km. In
such cases, the value of tidal deformability is independent
of the quark model and only depends on the hadron model
and the hadron interaction. As we mentioned above, in
some of such cases our calculations predict a stable HS with
a pure quark core with the maximum mass higher than
2 M⊙, which is in the recent constraint put on maximum
mass—that is, 2.01þ0.04

−0.04 ≤ Mmax=M ⊙ ≲ 2.16þ0.17
−0.15 .

We study the effect of different chirp masses and
different binary mass ratios q ¼ M2=M1 on the tidal
deformability Λ. All the hybrid EOSs are in the range of
constraint on the low-spin prior.
The influence of different inner and outer crusts on the

tidal deformability of the stars is examined. The crustal

FIG. 8. Mass-radius relations of the stable hybrid star men-
tioned in Fig. 5(c) overplotted with constraints on the NS radii
and maximum mass. The gray region shows the constraint on the
maximum mass extracted from the PSR J0740þ 6620 results
[86]. The red region shows the excluded region of mass-radius
relation inferred from the GW170817 results [79,81]. The green
region shows the constraint on mass-radius relation extracted
from NICER, PSR J0030þ 451 [85,87].
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EOS is important in the determination of the radius R, yR
and the tidal Love number k2, but not the dimensionless
tidal deformability Λ. This result arises from a cancellation
between the second Love number k2 and the stellar
compactness C.
We check the new constraint extracted from NICER for

PSR J0030þ 451. All the hybrid EOSs except the case
with V1 ¼ 0 and G2 ¼ 0.004 are within the range of this
constraint. We also check the constraints on the radius of
maximum mass and the star with 1.6 M⊙ configurations
extracted from GW170817. The hybrid EOSs with V1 >
0.05 satisfy these constraints.
Considering all the above results, we conclude that, in

some range of the parameter sets of the FCM, i.e.,
V1 ∼ 0.08–0.09 GeV, and the gluon condensate, G2 ∼
0.005–0.006 GeV4, we find stable HSs with a maximum

mass higher than 2 M⊙ in which the tidal deformability of a
HS is exactly compatible with the new constraint extracted
from the binary GW170817 for NSs. Also, it is compatible
with the mass-radius constraints extracted from both
GW170817 and PSR J0030þ 451. Therefore, this scenario
for the EOS of the NS system can be considered an
acceptable one.
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