
 

Gravitational light deflection in Earth-based laser cavity experiments
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As known from Einstein’s theory of general relativity, the propagation of light in the presence of a
massive object is affected by gravity. In this work, we discuss whether the effect of gravitational light
bending can be observed in Earth-based experiments, using high-finesse optical cavities. To do this, we
theoretically investigate the dynamics of electromagnetic waves in the spacetime of a homogeneous
gravitational field and give an analytical expression for the resulting modifications to Gaussian beam
propagation. This theoretical framework is used to calculate the intensity profile at the output of a Fabry-
Pérot cavity and to estimate the imprints of Earth’s gravity on the cavity output signal. In particular, we
found that gravity causes an asymmetry of the output intensity profile. Based on that, we discuss a
measurement scheme, that could be realized in facilities like the GEO600 gravitational wave detector and
the AEI 10 m detector prototype.
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I. INTRODUCTION

One century ago, one of the most famous predictions
of Einsteins theory of gravitation was approved. Two
observational expeditions led by A. S. Eddington and C.
Davidson observed the stellar light deflection during the
solar eclipse of 1919 [1,2]. Since then, a number of
astrophysical observations, i.e., of gravitational lensing,
confirmed the gravitational light bending effect [3–5]. In
contrast to the variety of astrophysical confirmations, much
less is reported about gravitational light deflection in Earth-
based experiments [6–9]. Today, such experiments likely
become possible owing to the advances in high-finesse
optical cavities. These cavities are essential to the nowa-
days most accurate measurement devices, e.g., optical
clocks, high-resolution spectroscopy lasers, and gravita-
tional wave detectors [10–14]. Because of the increasing
demand for precision in these experiments, the finesse
of laser stabilization cavities underwent a tremendous
improvement toward F ∼ 3 × 105 during the last decades
[13,15,16]. Moreover, the ongoing research in advanced
mirror technologies, like crystalline coatings [17–19] or
etalons [20–22], is promising for further improvements
toward even higher finesses.
In this work, we propose to use high-finesse cavities to

measure gravitational effects. If such a cavity is subjected
to a gravitational field, the light propagation inside the
cavity slightly changes, and the light beam literally falls
down while it is caught between two highly reflective
mirrors. This results in an asymmetric cavity output signal,
that is expected to be measurable in high-finesse cavities;
see Fig. 1. The fact that the properties of the underlying

structure of spacetime are imprinted on the intensity profile
at the cavity output may help to probe the gravitational
interaction of light and matter at the laboratory scale.
The coupling of light to matter is one consequence of the

Einstein equivalence principle. Recent experiments, like
the Galileo satellites Doresa andMilena probe the Einstein
equivalence principle by redshift effects on the long range

FIG. 1. Our proposal for testing gravitational light deflection in
a high-finesse laser cavity on Earth. In this experiment, the effect
of gravity on a Gaussian beam could be detected via changes of
the intensity profile at the cavity output. For comparison, the box
above shows the gravitational light deflection at the Sun,
observed during a solar eclipse, as it was done in 1919 in order
to test Einstein’s theory of gravitation via displacement of star
positions.
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motion of an object [23,24]. Unlike that, our proposed
experiment could test the coupling of light to gravity at
small scales, using the gravitational light bending effect,
which exceeds redshift effects by many orders of magni-
tude. Moreover, in comparison to the Eddington experi-
ment, where the Sun’s gravity acts as a scattering potential
for the long-range propagation of light, in a cavity, the
effect of light deflection can be investigated directly within
the interaction region of the light beam and the gravitational
field of our planet. Therefore, the investigation of cavity
internal light bending may enable a wide range of Earth-
based tests of general relativity at the laboratory scale in a
controlled and reproducible experimental environment.

II. LIGHT PROPAGATION IN A HOMOGENEOUS
GRAVITATIONAL FIELD

In what follows, we will build up a formalism that allows
us to investigate the influence of gravity on a laser beam
with Gaussian intensity profile that enters a horizontal
Fabry-Pérot cavity. Before we discuss this scenario, how-
ever, we have to develop the formalism from the basic
principles of light propagation in a gravitational field.
Within the framework of classical electromagnetism, the
propagation of light is governed by Maxwell equations.
This set of differential equations for the electric and
magnetic fields E and B can be rewritten in terms of the
vector and scalar potentials A and Φ. Considering the
Lorenz gauge condition, in the case of freely propagating
light, the scalar potential is determined by the vector
potential, from which the fields E ¼ −∂tA −∇Φ½A� and
B ¼ ∇ × A can be obtained. This way, the set of Maxwell
equations reduces further to a wave equation that in the flat
spacetime of an inertial observer reads ∂2

tA=c2 −∇2A ¼ 0.
Here, c is the speed of light, while ∂t is the derivative with
respect to time, and ∇ is the nabla operator.
In the presence of a gravitational field, however, the

properties of spacetime change, which leads to modi-
fications of the wave equation [25]. In the case of
the approximately homogeneous gravitational field of the
Earth, characterized by the acceleration g ¼ −9.81 m=s2

[26–28], this modified wave equation reads

1

c2
∂2

∂t2 A −D2A ¼ 0þOðϵ2Þ; ð1Þ

where D ¼ ð1 − g · r=c2Þ∇ differs from the usual
nabla operator ∇ by a factor that accounts for the
gravitational light deflection and redshift. Here, we have
considered effects of gravity only to linear order in the
dimensionless parameter ϵ ¼ gL=c2, which is in the
range of ϵ ∼ 10−18…10−13 for typical length scales
L ∼ 1 cm…1 km of the experiment. Moreover, L has to
be small in comparison to the Earth’s radius, such that the
gravitational field can be considered as homogeneous.
The modified wave equation (1) is a linear partial differ-

ential equation for the vector potential A. This means that a
superposition of solutions to (1) also solves the equation.

Under the assumption of quasiscalar beam propagation,
therefore, any solution of the wave equation can be con-
structed by a superposition of the scalar basis functions

ψk
δkz
ðt; rÞ ¼ 1

2π
ffiffiffiffiffiffiffi
δkz

p e
gz

2c2Ai

�
−

k2z
δk2z

− δkzz

�
× eikxxeikyye−iω0t

ð2Þ

that solve Eq. (1) for a specific frequency constant ω0 and a
constant wave vector k ¼ ðkx; ky; kzÞ, which are connected
via the dispersion relation c2k2 ¼ ω2

0 [29]. We find that the
behavior of the wave in the z direction, which is chosen
along the acceleration vector g ¼ ð0; 0; gÞ, is described by a
damped Airy Ai function (cf. Refs. [7,8]). The gravitational
effects enter this expression via the damping term g=2c2 and
the quantity δkz ¼ ð2gω2

0=c
4Þ1=3. In the case g ¼ 0, the basis

functions (2) resemble the well-known plane wave solutions
ψk
0ðt; rÞ ∼ eiðk·r−ω0tÞ, which describe light propagation in the

spacetime of an inertial observer.

III. GRAVITATIONAL EFFECT ON GAUSSIAN
BEAM PROPAGATION

With the complete set of basis functions (2), we are able
to model light propagation in a homogeneous gravitational
field for any boundary condition [30]. In this paper in
particular, we consider a typical experimental setup, where
a y-polarized laser beam with Gaussian intensity profile
enters a Fabry-Pérot cavity. For this setup, the vector
potential at the input mirror, located at x ¼ 0, is given by

Aðt; rÞjx¼0 ¼
A0

2πb20
e
− z2þy2

2b2
0 e−iω0t; ð3Þ

FIG. 2. Choice of coordinates in the Fabry-Pérot cavity setting,
consisting of two plane mirrors. The coordinate center is situated
at the maximum of the initial Gaussian intensity profile at the first
mirror, located in the ðy; zÞ plane. The second mirror is placed at
x ¼ L. This geometry sets the boundary conditions for the
propagation of a gravitationally modified Gaussian beam and
the calculation of the cavity output signal.
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where A0 is a constant vector pointing into the y direction
and b0 is the waist of the beam; see Fig. 2. For our further
analysis, it is convenient to expand (3) in terms of the
basis functions (2); see Ref. [31]. This expansion reads
Aðt;rÞjx¼0¼ð1−gz=2c2ÞR Ãb

kψ
k
δkz
ðt;rÞdkxdkydðk2zÞ, where

the coefficients

Ãb
k ¼ A0 exp

�
−
1

2
ðk2z þ k2yÞb20

�
δðkxÞ

×
1ffiffiffiffiffiffiffi
δkz

p Ai

�
−

k2z
δk2z

þ 1

4
ðδkzb0Þ4

�
ð4Þ

are found by projecting the boundary condition (3) to the
complex conjugated basis functions ψk�

δkz
ðt; rÞ. The first line

of this expression is the Fourier transformation of the
Gaussian profile (3). In the presence of gravity, however,
Ãb
k also contains an Airy Ai function in the second line,

which becomes unity for g ¼ 0, such that we recover the
result of standard Fourier optics in the case of vanishing
gravity.
The coefficients Ãb

k from Eq. (4) only describe
the beam at x ¼ 0, which is encoded in the delta function
δðkxÞ. However, we want the beam to obey the wave
equation (1) for all points in space, close to the beam
axis. Therefore, we implement the dispersion relation
c2k2 ¼ ω2

0 by the replacement of the delta function
δðkxÞ→δðkx−ω0=c þcðk2yþk2zÞ=2ω0Þ. At this point, the
approximation of paraxial light propagation along the x axis,
with the assumption ky; kz ≪ kx, is taken into account. The
new coefficients, denoted as Ãk, can be employed to calculate
the vector potential of the gravitationally modified Gaussian
beam via Aðt;rÞ¼ð1−gz=2c2ÞR Ãkψ

k
δkz
ðt;rÞdkxdkydðk2zÞ.

The vector potential can be further evaluated by applying
methods as presented inRef. [31].As a result, the beamcanbe
decomposed into

Aðt; rÞ ¼ AGðt; rÞeSgðrÞ þOðϵ2Þ: ð5Þ

Here, AGðt; rÞ describes the propagation of a usual Gaussian
beam in the absence of gravity [32], while its gravitational
modifications are collected in the complex exponent

SgðrÞ ¼
gω2

0b
2
0z

2c4ð1þ μ2Þ ½μ
2 þ ið2μþ μ3Þ�; ð6Þ

where we introduced μ ¼ x=xR, which is the length of
propagation in units of the Rayleigh length xR ¼ b20ω0=c.
The real part of SgðrÞ describes the falling of the intensity
profile, such that the intensity maximum of the beam follows
the parabola zðxÞ ¼ −jgjx2=2c2; see Fig. 3(a). Comparing
the real part of SgðrÞ ∼ ðω0b0=cÞ2ðgz=c2Þ with redshift
contributions∼ðgz=c2Þ,we find that the effect ofgravitational
light bending is larger by a factor ðω0b0=cÞ2 ≫ 1 and
therefore exceeds redshift effects by many orders of magni-
tude. The imaginary part of SgðrÞ gives rise to a z-dependent
gravitational phase shift ϕgðx ≫ xRÞ ∼ gω0=c3zx that grows
while the beam propagates. As we will discuss hereafter, the
falling of the intensity maximum and the gravitational phase
shift will have an measurable effect on the output signal of
high-finesse Fabry-Pérot cavities.

IV. OUTPUT SIGNAL OF A
FABRY-PÉROT CAVITY

Previously, we have shown that a homogeneous gravi-
tational field modifies the propagation of a Gaussian beam.

FIG. 3. Schematic illustration of the Gaussian beam propa-
gation (a) with and (b) without gravitational modifications. In
the presence of gravity, the intensity maximum follows the
parabola zðxÞ ¼ −jgjx2=2c2.

FIG. 4. Illustration of the first round trip of the modified
Gaussian beam in a Fabry-Pérot cavity. The properties of the
plane mirrors allow us to model the light distribution in the cavity
and its output signal by the overlay of slices of the beam, where
every slice is weighted by a function of the transmittance T.
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Since the deviations from a usual Gaussian beam are small,
however, a long propagation distance would be needed to
measure the effect under real experimental conditions. To
overcome this in a laboratory scale experiment, a Fabry-
Pérot cavity can be used to accumulate the effect. To
analyze this scenario, we assume a cavity that consists of
two identical plane parallel mirrors at the positions x ¼ 0
and x ¼ L, as shown in Fig. 2. Commonly, a Fabry-Pérot
cavity is characterized by its finesse F that is related to the
transmittance of the mirrors via F ¼ π

ffiffiffiffiffiffiffiffiffiffiffi
1 − T

p
=T [33],

where T determines the number of round trips in the cavity.
The two planar mirrors only change the direction of

propagation along the x axis. This, for example, means that
the signal at the position of the output mirror after the first
two reflections equals the freely propagating beam at the
position x ¼ 3L, as illustrated in Fig. 4. Therefore, the vector
potential behind the cavity output mirror can be obtained by
the overlay of slices of the modified Gaussian beam

Aoutðy; zÞe−iω0t ¼
X∞
n¼0

ffiffiffiffi
T

p
ð1 −

ffiffiffiffi
T

p
Þ2nAðt; rÞjx¼ð2nþ1ÞL;

ð7Þ

where every slice is weighted by the loss per reflection
ð1 − ffiffiffiffi

T
p Þ in the cavity.

With the vector potential (7), we can analyze the
properties of the light that emerges from the
Fabry-Pérot cavity. The intensity profile at the cavity
output, in paraxial approximation, is given by the
energy density at the output mirror, which can be ex-
pressed by the squared module of the vector potential
Iðy; zÞ ¼ cε0ω2

0ð1 − gz=c2Þ−1jAoutðy; zÞj2 [34]. In fact, the
redshift prefactor of the intensity turns out to be negligible
in comparison to the light deflection of the beam that
constitutes the leading effect on the structure of the
intensity pattern, illustrated in Fig. 5. Furthermore, inte-
grating the intensity between two heights z1 and z2 gives

the power Pðz1 < z < z2Þ ¼
R
z2
z1

R∞
−∞ Iðy; zÞdydz at the

corresponding section of the output mirror. The total output
power P, therefore, is obtained by integrating the intensity
over the whole mirror surface.

V. MEASUREMENT SCHEME

To extract the effect of gravity from the signal, a position
sensing detector, i.e., a quadrant detector, can be used. Such
a detector measures the power difference between the upper
and the lower half-plane of the output mirror. This differ-
ence, which can be normalized to the total output power,
determines the detection parameter

χ ¼ ðPðz < 0Þ − Pðz > 0ÞÞ=P: ð8Þ

The measurement of this parameter is limited by the
detector photon shot noise, which determines the sensitivity
Δχ as a function of the total output power P by

Δχ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔP=PÞ2i

q
¼2

ffiffiffiffiffiffiffiffiffiffiffiffi
hcΔf
λP

r
≈0.86×10−9ðP=WÞ−1=2;

ð9Þ

where hðΔP=PÞ2i is the relative light power variance and
Δf is the measurement bandwidth, which we set to the
common value of 1 Hz [35]. For cavity lengths of
centimeter to meter scale, the detector photon shot noise
is the dominant limitation of sensitivity in the proposed
experiment, assuming optimized measurement frequencies
and experimental parameters such as mirror mass, seismic
decoupling, and optical coatings [36–38]. For larger
cavities, like the GEO600 facility, with increased finesse,
cryogenic mirrors or metamirrors would be needed to
suppress the mirror coating thermal noise below the photon
shot noise [17,20].
In what follows, we will use the signal-to-noise ratio

χ=Δχ > 1 as a criterion for the measurability of the cavity
internal gravitational light bending effect. To obtain the
predicted signal of the quadrant detector, the summation in
Eq. (7) and the power integrals in Eq. (8) are evaluated
numerically.

VI. RESULTS AND DISCUSSION

Equations (7)–(9) allow us to analyze the gravitational
light bending effect for a wide range of experiments with
Fabry-Pérot cavities. Therefore, in this rapid communica-
tion, we consider three specific showcase scenarios for
Earth-based cavity designs: (i) a horizontal 21 cm Fabry-
Pérot cavity with a finesse between 3 × 105 and 3 × 107,
(ii) a hypothetical Fabry-Pérot version of the GEO600
facility with an improved finesse between 3 × 103 and
3 × 105, and (iii) the 10 m gravitational wave detector
prototype at the Albert-Einstein Institute Hannover (AEI)
with the same finesse values as for GEO600. Our results are
presented in the Table I, where we give the parameter χ and

FIG. 5. Schematics of the characteristic output signal
jAoutðy; zÞj2 of a Fabry-Pérot cavity (a) with a highly exaggerated
value of g and (b) without gravity. While for the Earth’s actual
value of g the effect cannot be imaged directly in cavities with
current precision, a quadrant detector can be used to study the
effect by comparison of the total output power in the upper and
the lower half-plane.
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the ratio χ=Δχ for each scenario. Moreover, the inverse
signal-to-noise ratio can be interpreted as the relative
accuracy of hypothetical measurements of the gravitational
acceleration η ¼ Δg=g using the light bending effect.
Combining Eqs. (8) and (9), the order of magnitude of
the effect can be estimated,

Δg
g

¼ Δχ
χ

¼ c2

gb0

ffiffiffiffiffiffiffiffiffiffiffiffi
hcΔf
λP

r �
ω0b0
c

�
−2
sðσ;F Þ; ð10Þ

where, in order to get the exact value, the factor sðσ;F Þ
depending on the cavity length in units of the Rayleigh
length σ ¼ Lc=b20ω0 and the finesse F has to be evaluated.
In what follows, we will discuss the parameter χ and the
signal-to-noise ratio χ=Δχ for the cavity settings men-
tioned above.
First, we consider the 21 cm Fabry-Pérot cavity. Because

of the combination of the small beam waist of 0.5 mm [16],
low laser power in the nanowatt range, e.g., 40 nW [36],
and the short length of the cavity, even for higher finesses
of 3 × 107, no cavity internal gravitational light bending
effect can be measured in this setup. This can be seen from
Table I, where the quadrant detector signal is less than
10−4 ppb, which is much smaller than the detector noise.
However, gravity may set a limit on the phase stability of
comparable laser stabilization cavities, as we will discuss in
a future publication [39].
The effect can be enhanced dramatically if one uses

longer cavities and larger beam waists. To show this, we
discuss a hypothetical Fabry-Pérot version of the GEO600
facility with a 600 m baseline: the substitution of the
GEO600 beam splitter by a mirror, which is comparable to
the current GEO600 mirrors [40], would transform the
Michelson interferometer into a Fabry-Pérot cavity. This
configuration could be operated with a laser beam waist of
18 mm [41]. Considering a finesse of 3 × 103 and keeping
the current GEO600 input power of 3.2W [40], the signal is
expected to be 42 ppb with a signal-to-noise ratio of up to

90 at a measurement bandwidth of 1 Hz. While increasing
the finesse up to 3 × 105 could enhance the signal to
178 ppb with a signal-to-noise ratio of up to 400, cryogenic
mirrors or metamirrors would be needed to reach this
sensitivity. Moreover, by assuming the planned GEO-HF
update [37] and the associated increased laser power by a
factor of 4, the signal-to-noise ratio would be enhanced
further by a factor of 2.
The needed size of the experiment scales down, if a

higher laser power is used. For a third example, we
therefore discuss the AEI 10 m prototype, which can be
operated with a powerful 38 W input laser [42]. Like in the
case of GEO600, the substitution of the beam splitter by a
highly reflective mirror would turn the device into a Fabry-
Pérot interferometer. Considering a beam waist of 7 mm
[43] and a finesse of 3 × 105, the detector output signal χ is
expected to be 2.7 ppb with a signal-to-noise ratio of 20 at a
1 Hz bandwidth. Thus, a Fabry-Pérot version of the AEI
10 m prototype would be suitable for testing the cavity
internal gravitational light bending effect at laboratory
scales.

VII. CONCLUSIONS

In this work, we lay down a theory for the propagation of
light in a homogeneous gravitational field. For this, we
solved the wave equation in Rindler spacetime to first order
in gL=c2 and applied the result to the propagation of a
Gaussian beam. We found that the presence of gravity
leads to a falling of the beam intensity profile and an
additional phase shift. Both effects increase while the beam
propagates.
To study the gravitational light bending, we propose

performing measurements in high-finesse Fabry-Pérot
cavities, where the effect accumulates due to the multiple
round trips of the light between the mirrors. For such a
setup, we applied our theory to calculate the intensity
profile at the cavity output. To estimate whether gravita-
tional effects can be observed in the output signal of
nowadays or future cavity settings, we considered three
experimental scenarios. Based on this we found, that cavity
designs like the GEO600 gravitational wave detector and
the 10 m detector prototype at Albert Einstein Institute
Hannover are highly suitable for the measurement of the
gravitational light bending effect. Moreover, we found that
the effect of light bending for a Gaussian beam is enhanced
by a factor ðω0b0=cÞ2 ≫ 1 in comparison to redshift
effects. We suppose that the realization of the proposed
experiment and the validation of the effect can open a road
to test the interaction of light and gravity at small scales in
Earth-based cavity experiments.
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TABLE I. Results for the parameter χ and the ratio χ=Δχ for the
cavity design examples of a 21 cm cavity (i), GEO600 (ii), and
the AEI 10 m prototype (iii). The results are presented for recent
and hypothetical higher finesses F of these devices. For the
calculations, we assumed the cavity to be matched to a wave-
length of λ ¼ 1064 nm.

Properties F χ (ppb) χ=Δχ

(i) L ¼ 0.21 m 3 × 105 2 × 10−3 5 × 10−7

b0 ¼ 0.5 mm 3 × 106 5 × 10−3 1 × 10−6

P ¼ 40 nW 3 × 107 9 × 10−3 2 × 10−6

(ii) L ¼ 600.00 m 3 × 103 42.2 87.4
b0 ¼ 18 mm 3 × 104 89.3 184.8
P ¼ 3.2 W 3 × 105 178.1 368.7

(iii) L ¼ 10.00 m 3 × 103 0.4 2.8
b0 ¼ 7.0 mm 3 × 104 1.2 8.6
P ¼ 38 W 3 × 105 2.7 19.3
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