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We show that the “defective” terms in the expression that Dondera [Phys. Rev. D 98, 096008 (2018)]
obtained for the momentum of the retarded field of an accelerating point charge are mathematically well
justified. The repair should not be sought in assigning an accelerating “bare” charge ad hoc compensating
attributes. We advance a conjecture, supported by published work, concerning the Hadamard finite part of
the divergent integral for the retarded-field momentum in question.
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Dondera [1] has recently approached the problem of
calculating the momentum of the retarded field of an
arbitrarily moving point charge in a novel way. This
momentum is given by a divergent integral

GðtÞ ¼ ε0

Z
drEðr; tÞ ×Bðr; tÞ; ð1Þ

where E and B are the well-known retarded Lienard-
Wiechert fields, and by changing the integration variable in
(1) to a retarded relative coordinateR ¼ r − reðtretÞ, where
reðtretÞ is the charge’s position at the retarded time
tret ¼ t − R=c, Dondera was able to obtain for (1) an
expression that is a sum of divergent and finite terms
but does not involve any retarded quantities,

GDðtÞ ¼ lim
ε→0

2e20
3cε

γ2β −
2e20
3c2

d
dt

ðγ2βÞ

þ 2e20
3c2

Z
t

−∞
dt0γ4½ _β2 þ γ2ðβ · _βÞ2�β ð2Þ

([1], the limit ε → 0 of Eq. (14)). We use here Dondera’s
notation e0 ¼ e=

ffiffiffiffiffiffiffiffiffiffi
4πε0

p
; β ¼ vðtÞ=c, γ ¼ ð1 − β2Þ−1=2 and

the overdots indicate time derivatives. Dondera aimed at
deriving the space component of the relativistic Lorentz-
Abraham-Dirac (LAD) equation of motion of a point
charge [2] using the time derivative of GDðtÞ, which can
be obtained easily from (2). However, GDðtÞ cannot be
correct relativistically. Because of the factor γ2 instead of γ,
the divergent term of (2) cannot be absorbed in the charge’s
momentum by a renormalization of its rest mass in a
manner that is consistent with special relativity, while the
negative of the time derivative of the sum of the finite terms

agrees with the relativistic LAD radiation reaction force
only in the leading term, ð2e20=3c2Þγ2β̈. Dondera dealt with
this “defect" by endowing the accelerating point charge
itself, which he calls the “bare electron,” with a momentum
that “compensate[s] both the singular and noncovariant
terms” when it is added to the field momentum GD [3].
In this comment, we show that the finite and divergent

terms of (2) result from the decomposition of the divergent
integral (1) in which the integration variables are changed
according to Dondera’s transformation into the Hadamard
finite part [4] and the corresponding divergent term. A
change of the integration variables generally changes the
Hadamard finite part [5] (reflecting the fact that a regu-
larization of a divergent integral depends on the manner it
implies of the approach to the singularity in the integrand
[6]), and we conjecture that the Hadamard decomposition
of the divergent integral (1) with the original integration
variables is

GðtÞ ¼ lim
ε→0

2e20
3cε

γβþ FpGðtÞ; ð3Þ

where

FpGðtÞ ¼ −
Z

t

−∞
dt0 FLADðt0Þ ð4Þ

is the Hadamard finite part with

FLADðtÞ ¼
2e20
3c2

γ2½β̈þ 3γ2ðβ · _βÞ_β
þγ2ðβ · β̈Þβþ 3γ4ðβ · _βÞ2β� ð5Þ

being the space component divided by γ of the LAD
radiation-reaction four-force [7]. This conjecture chal-
lenges the cogency of endowing the “bare electron” with
attributes that would fix the “defects” of the result of the
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calculation of a quantity that in principle should depend
only on the particle’s charge and trajectory. We shall
support the conjecture by a recent calculation of the
momentum of the retarded field of an accelerating point
charge [8].
The Hadamard finite part of a divergent three-dimensional

integral can be evaluated by using spherical coordinates and
performing the angular integration first. When the integrand
of the remaining radial integral can be written as ΦðrÞ=rk,
whereΦðrÞ is a function regular at r ¼ 0, the finite part of the
original integral is given by the finite part of the radial
integral. After implementing Dondera’s change of variables
and performing the angular integration, one obtains for the
Cartesian components of (1)

3c
2e20

GiðtÞ ¼
Z

∞

0

dR
fiðt − R

cÞ
cR

þ
Z

∞

0

dR
giðt − R

cÞ
R2

þ 1

c2

Z
∞

0

dRhi

�
t −

R
c

�
; ð6Þ

where

fiðt − R=cÞ ¼ 2γ4ðβ · _βÞβi þ γ2 _βi; ð7Þ

giðt − R=cÞ ¼ γ2βi; ð8Þ

hiðt − R=cÞ ¼ γ4½ _β2 þ γ2ðβ · _βÞ2�βi ð9Þ

([1], Eqs. (A9)–(A11)). The first two integrals in (6) diverge
and we evaluate their finite parts according to the formula

Fp
Z

∞

0

dx
ΦðxÞ
xk

¼
Z

a

0

dx
xk

�
ΦðxÞ−

Xk−1
j¼0

ΦðjÞð0Þ
j!

xj
�

þ
Z

∞

a
dx

ΦðxÞ
xk

−
Xk−2
j¼0

ΦðjÞð0Þ
j!ðk− j−1Þak−j−1

þΦðk−1Þð0Þ
ðk−1Þ! lna; ð10Þ

where a is an arbitrary constant ([4], Eq. (2.13)). The
corresponding divergent parts are then given by the limits
ϵ → 0 of

Xk−2
j¼0

ΦðjÞð0Þ
j!ðk − j − 1Þϵk−j−1 −

Φðk−1Þð0Þ
ðk − 1Þ! ln ϵ ð11Þ

(note that here ϵ is dimensionless, unlike ε in (2) and (3)). It is
convenient to use in (6) a dimensionless variable of integra-
tion x ¼ R=R0, where R0 is a fixed arbitrary length, and to
choose a ¼ 1 in (10). We use the fact that fiðtÞ ¼ dgiðtÞ=dt
and integrate term by term the first integral on the rhs of (10),
after expanding the integrand in Taylor series. The infinite
series can be summed in terms of the functions gi and their

time derivatives, and we obtain for the Hadamard finite part
of (1) when Dondera’s transformation is used the value

FpGðtÞr→R ¼ −
2e20
3c2

d
dt

ðγ2βÞ

þ 2e20
3c2

Z
t

−∞
dt0γ4½ _β2 þ γ2ðβ · _βÞ2�β; ð12Þ

which equals the finite component of (2); the use of
formula (11) then yields the divergent part of (2).
To prove the conjecture (3)–(5) by performing a calcu-

lation of the Hadamard finite part along the above lines
seems well-nigh impossible because the integrand in (1)
depends on the integration variable r not only explicitly but
also implicitly through retardation. An exception is the case
of a uniformly moving charge whose fields are expressible
in terms of present-time quantities, and the Hadamard finite
part of the resulting field momentum can be shown easily
to vanish [9]. While simplifying, the case of nonuniform
motion along a rectilinear trajectory retains the complexity
due to retardation, and it is noteworthy that the evaluation
in [8] of the divergent retarded integral (1) for this case has
yielded a value equal to the finite part (4), including the
vanishing value when β ¼ const, with no need for any
explicit removal of infinities. The calculation procedure of
[8] thus amounted to the extraction of a finite part of the
requisite divergent integral. The integration of the field-
momentum density was carried out there in the momentum
space, using spherical coordinates of the integrationvariable.
The Fourier transforms of the Lienard-Wiechert fields were
calculated by integration by parts, employing distributional
derivatives that discard the surface terms that arise in such
integration when classical derivatives are used. Distribution
theory shows that this is equivalent to the use of the
Hadamard finite part for a divergent integral ([10], Sec. 4.1).
Some 45 years ago, Rowe [11] investigated an “ambi-

guity” in the derivation of the LAD equation, reaching the
conclusion that the regularization effected by distributions
disposes of the divergencies of standard classical electro-
dynamics. His distribution-theoretic derivation of the LAD
equation is free of renormalization and any other removal
of infinities. We believe that the manifestly covariant
derivation of Rowe, as well as the nonmanifestly covariant
calculation of [8], lends strong support for our conjecture.
The divergent and noncovariant terms in the expression

that Dondera obtained for the momentum of the retarded
field of an accelerating point charge are not a defect to be
repaired by endowing an accelerating “bare” charge with
ad hoc compensating attributes—their presence is in fact
mathematically well justified. In standard classical electro-
dynamics, the divergent nature of these terms is due to
the vanishing spatial extension assumed for the charge. The
particular noncovariant features of the terms arise from
the transformation of the integration variables that Dondera
used in his evaluation of the pertinent retarded integral.
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