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We propose a new non-Hermitian chiral random matrix model that describes single-flavor spin-one
Cooper pairing of quarks. For three colors the model shows spontaneous breaking of color SUð3ÞC and spin
SOð3ÞJ symmetries down to the diagonal SOð3ÞCþJ subgroup, in striking analogy to the color-spin locked
phase of one-flavor QCD at high density. For two colors, color-singlet spin-one diquarks condense and
trigger symmetry breaking Uð1Þ × SOð3ÞJ → SOð2ÞJ . In both cases the microscopic large-N limit is
rigorously taken and the effective theory of Nambu-Goldstone modes is derived.
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I. INTRODUCTION

In relativistic cold ultradense matter, the Fermi surface is
destabilized by attractive interactions between quarks and
the ground state is likely to exhibit color superconductivity
[1]. For three flavors, the most stable state at asymptotically
high density is believed to be the so-called color-flavor
locked (CFL) phase in which color and flavor symmetries
are all spontaneously broken [2], while for two flavors the
2SC phase breaks color down to SU(2) without chiral
symmetry breaking [1,3,4]. In reality, however, constraints
from color and electric charge neutrality and β-equilibrium
as well as the large strange quark mass enhance the
mismatch of Fermi momenta of different flavors, and make
the CFL and 2SC phases less favored at moderate densities
that can be reached in the interior of compact stars. Various
alternative phases are proposed in the literature [5–12]. The
possibility of Cooper pairing between equal flavors is
particularly interesting because it is free from stress
under the mismatch of Fermi momenta. Due to the Pauli
principle, the Cooper pair wave function must be antisym-
metric under the exchange of quantum numbers of quarks.
The perturbative one-gluon exchange provides an attractive
interaction in the color antisymmetric channel, so it seems
reasonable to assume that the Cooper pair is antisymmetric
in colors. Then Lorentz-scalar pairing is forbidden and the
Cooper pair is forced to carry a nonzero total angular
momentum J. Studies by various authors [1,13–27] suggest
that the ground state for J ¼ 1 at asymptotically high density
is the color-spin locked (CSL) phase [1,15], where the color
SUð3ÞC and the spin SOð3ÞJ symmetries are dynamically

broken to the diagonal SOð3ÞCþJ subgroup. This phase
retains invariance under a combination of color and spatial
rotation.
Random matrix theory (RMT) [28–30] offers a powerful

approach to probing nonperturbative dynamics of gauge
theories. It is well established that statistical fluctuations of
the Dirac operator eigenvalues in the microscopic domain
are exactly described by RMTwith chiral symmetry [31,32];
the Dirac eigenvalues of order 1=V4 with V4 the Euclidean
spacetime volume correspond to the hard-edge limit of the
Wishart-Laguerre ensemble. This correspondence general-
izes to a weakly non-Hermitian Dirac operator at small
chemical potential μ of order 1=

ffiffiffiffiffiffi
V4

p
[33–35]. Moreover, in

QCD-like theories (i.e., two-color QCD, QCD with adjoint
quarks, and QCD with isospin chemical potential), there
exist strongly non-Hermitian random matrix ensembles that
govern the Dirac spectrum at high density μ ≫ mπ [36–39].
The typical scale of the microscopic domain in these theories
is set by the BCS gap of quarks [40]. The question whether
universality of the microscopic limit of RMT holds for color-
superconducting phases of dense three-color QCD has
remained open [41]. Recently a suitable matrix model
was constructed for two and three flavors [47].
In this paper, we propose a new non-Hermitian RMT that

describes single-flavor Cooper pairing for two and three
colors. By taking the microscopic large-N limit with N the
matrix size we show, for three colors, that diquark con-
densation occurs in the color-triplet spin-one channel and
spontaneously breaks Uð1ÞB × Uð1ÞA × SUð3ÞC × SOð3ÞJ
symmetry down to SOð3ÞCþJ, which is the diagonal
subgroup of SUð3ÞC × SOð3ÞJ. This is the first-ever reali-
zation of color-spin locking in RMT. For two colors, we
show that color-singlet spin-one diquarks condense and
break Uð1ÞB × Uð1ÞA × SOð3ÞJ spontaneously. There
seems to be no previous work on one-flavor two-color
QCD at high density and this work provides the first
systematic study based on symmetries.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 116021 (2020)

2470-0010=2020=101(11)=116021(9) 116021-1 Published by the American Physical Society

https://orcid.org/0000-0002-1499-374X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.116021&domain=pdf&date_stamp=2020-06-30
https://doi.org/10.1103/PhysRevD.101.116021
https://doi.org/10.1103/PhysRevD.101.116021
https://doi.org/10.1103/PhysRevD.101.116021
https://doi.org/10.1103/PhysRevD.101.116021
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


This paper is organized as follows. In Sec. II our new
matrix model is defined and basic properties are summa-
rized. In Sec. III the large-N limit is taken for three colors
and color-spin locking is demonstrated. Similarities and
differences between RMTand QCD are clarified. In Sec. IV
the analysis for two colors is presented. The breaking of
rotational symmetry by diquark condensates is demon-
strated and the effective theory of soft modes is rigorously
derived. We conclude in Sec. V.

II. THE MATRIX MODEL

The partition function of our random matrix model for
Nc colors is defined by

Z ¼
Z

dX
Z

dY
Z YN2

c−1

A¼0

dVA

Z YN2
c−1

A¼0

dWA

× expf−NTrðXTXÞ − NTrðYTYÞ
− 2NTr½ðVAÞTVA� − 2NTr½ðWAÞTWA�g
× detðDþm14NcNÞ ð1Þ

where X; Y; VA;WAðA ¼ 0; 1;…; N2
c − 1Þ are N × N real

matrices and dX; dY; dVA; dWA are flat Cartesian measures
over RN×N. The “Dirac operator” D is a 4NcN × 4NcN
matrix defined as

D ¼
�

0 DR

DL 0

�
ð2Þ

DL ≡ ðVA ⊗ tA þ iX ⊗ 1Nc
Þ ⊗ 12 ð3Þ

DR ≡ ðWA ⊗ tA þ iY ⊗ 1Nc
Þ ⊗ 12 ð4Þ

where tAðA ¼ 0; 1;…; N2
c − 1Þ are the generators of UðNcÞ

in the fundamental representation, normalized as TrðtAtBÞ ¼
2δAB. The last factor 12 in (3) and (4) indicates thatDL;R are
diagonal in the spin space. In the chiral limit, there is a
symmetry

½SUðNcÞ × SUð2ÞJ�L × ½SUðNcÞ × SUð2ÞJ�R ð5Þ

which is reduced to the vectorial subgroup ½SUðNcÞ ×
SUð2ÞJ�V by nonzero quark mass. There is also an orthogo-
nal symmetry

VA → g1VAgT2 ; X → g1XgT2 ;

WA → g2WAgT1 ; Y → g2YgT1 ð6Þ

with g1;2 ∈ OðNÞ.
Let us introduce quarks ψα

ai and antiquarks ψ̄α
ai, where

a ∈ f1;…; Ncg is color, i ∈ f1; 2g is spin and
α ∈ f1; 2;…; Ng. Then

Z ¼
Z

dψ̄Rdψ̄LdψRdψL

Z
dX

Z
dY

Z YN2
c−1

A¼0

dVA

Z YN2
c−1

A¼0

dWA

× expf−NTrðXTXÞ − NTrðYTYÞ − 2NTr½ðVAÞTVA� − 2NTr½ðWAÞTWA�g

× exp

��
ψ̄R

ψ̄L

�
α

ai

� mδαβδab WA
αβt

A
ab þ iYαβδab

VA
αβt

A
ab þ iXαβδab m�δαβδab

��
ψL

ψR

�
β

bi

�
ð7Þ

¼
Z

dψ̄Rdψ̄LdψRdψL

Z
dX

Z
dY

Z YN2
c−1

A¼0

dVA

Z YN2
c−1

A¼0

dWA

× exp½−NX2
αβ − NY2

αβ − 2NðVA
αβÞ2 − 2NðWA

αβÞ2 þmψ̄α
Raiψ

α
Lai þm�ψ̄α

Laiψ
α
Rai

þ ψ̄α
LaiV

A
αβt

A
abψ

β
Lbi þ iψ̄α

LaiXαβψ
β
Lai þ ψ̄α

RaiW
A
αβt

A
abψ

β
Rbi þ iψ̄α

RaiYαβψ
β
Rai�: ð8Þ

It is now straightforward to integrate out the Gaussian randommatrices. Using the completeness relation tAabt
A
cd ¼ 2δadδbc

we obtain

Z∝
Z

dψ̄Rdψ̄LdψRdψLexp

�
mψ̄α

Raiψ
α
Laiþm�ψ̄α

Laiψ
α
Rai−

1

4N
ψ̄α
Laiψ̄

α
Lbjψ

β
Lbjψ

β
Laiþ

1

4N
ψ̄α
Laiψ̄

α
Lbjψ

β
Lajψ

β
LbiþðL↔RÞ

�
ð9Þ

¼
Z

dψ̄Rdψ̄LdψRdψL exp

�
mψ̄α

Raiψ
α
Lai þm�ψ̄α

Laiψ
α
Rai þ

1

4N
ψ̄α
Laiψ̄

α
Lbjψ

β
Lcjψ

β
Ldiðδacδbd − δadδbcÞ þ ðL ↔ RÞ

�
ð10Þ
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¼
Z

dψ̄Rdψ̄LdψRdψL exp

�
mψ̄α

Raiψ
α
Lai þm�ψ̄α

Laiψ
α
Rai þ

1

8N
ψ̄α
Laiψ̄

α
Lbjψ

β
Lckψ

β
Ldl · 2δjkδil · ðδacδbd − δadδbcÞ þ ðL ↔ RÞ

�
:

ð11Þ

For the Pauli matrices σM ≡ ð12; σiÞ there is the identity

X3
M¼0

ðσMσ2Þijðσ2σMÞkl ¼ 2δjkδil: ð12Þ

It allows us to write

Z ∝
Z

dψ̄Rdψ̄LdψRdψL exp

�
mψ̄α

Raiψ
α
Lai þm�ψ̄α

Laiψ
α
Rai þ

1

8N
ðψ̄α

LaσMσ2ψ̄
α
LbÞðψβ

Lcσ2σMψ
β
LdÞðδacδbd − δadδbcÞ þ ðL↔ RÞ

�

ð13Þ

where we have omitted the spinor indices for brevity. Noting that the M ¼ 0 term vanishes identically due to the Pauli
principle, we are left with

Z ∝
Z

dψ̄Rdψ̄LdψRdψL exp

�
mψ̄α

Raiψ
α
Lai þm�ψ̄α

Laiψ
α
Rai þ

1

8N
ðψ̄α

Laσmσ2ψ̄
α
LbÞðψβ

Lcσ2σmψ
β
LdÞðδacδbd − δadδbcÞ þ ðL↔ RÞ

�

ð14Þ

withm ∈ f1; 2; 3g, which should not be confused with the quark mass. The treatment henceforth depends on the number of
colors and is discussed in the following sections.

III. THREE COLORS

For Nc ¼ 3 the identity εabeεcde ¼ δacδbd − δadδbc holds. Hence we have from (14)

Z ∝
Z

dψ̄Rdψ̄LdψRdψL exp

�
mψ̄α

Raiψ
α
Lai þm�ψ̄α

Laiψ
α
Rai þ

1

8N
ðψ̄α

Laσmσ2ψ̄
α
LbεabeÞðψβ

Lcσ2σmψ
β
LdεcdeÞ þ ðL ↔ RÞ

�
: ð15Þ

To bilinearize the quartic interaction we insert the constant factor

Z
dΔL exp

�
−8N

�
ðΔLÞme −

1

8N
ψ̄α
Laσmσ2ψ̄

α
Lbεabe

��
ðΔ�

LÞme −
1

8N
ψβ
Lcσ2σmψ

β
Ldεcde

��
× ðL ↔ RÞ ð16Þ

where ΔL;R are complex 3 × 3 matrices that transform as triplet under color SU(3) and spin SO(3). They are also charged
under Uð1ÞB and Uð1ÞA. Then

Z ∝
Z

dΔL

Z
dΔR

Z
dψ̄Rdψ̄LdψRdψL exp½−8NTrðΔ†

LΔLÞ − 8NTrðΔ†
RΔRÞ þmψ̄α

Raiψ
α
Lai þm�ψ̄α

Laiψ
α
Rai

þ ψα
Laσ2σmψ

α
LbεabcΔLmc þ ψ̄α

Laσmσ2ψ̄
α
LbεabcΔ�

Lmc þ ðL ↔ RÞ� ð17Þ
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¼
Z

dΔL

Z
dΔR exp½−8NTrðΔ†

LΔLÞ − 8NTrðΔ†
RΔRÞ�

Z
dψ̄Rdψ̄LdψRdψL

× exp

2
6664

0
BBB@

ψ̄L

ψ̄R

ψL

ψR

1
CCCA

α

ai

0
BBB@

ðσmσ2ÞijεabcΔ�
Lmc 0 0 m�δabδij=2

0 ðσmσ2ÞijεabcΔ�
Rmc mδabδij=2 0

0 −mδabδij=2 ðσ2σmÞijεabcΔLmc 0

−m�δabδij=2 0 0 ðσ2σmÞijεabcΔRmc

1
CCCA

0
BBB@

ψ̄L

ψ̄R

ψL

ψR

1
CCCA

α

bj

3
7775

¼
Z

dΔL

Z
dΔR exp½−8NTrðΔ†

LΔLÞ − 8NTrðΔ†
RΔRÞ�

× PfN
� ðσmσ2ÞijεabcΔ�

Rmc mδabδij=2

−mδabδij=2 ðσ2σmÞijεabcΔLmc

�
PfN

� ðσmσ2ÞijεabcΔ�
Lmc m�δabδij=2

−m�δabδij=2 ðσ2σmÞijεabcΔRmc

�
: ð18Þ

This is an exact rewriting of the original partition
function and so far no approximation has been made.
Now we shall letN large withm ∼ 1=

ffiffiffiffi
N

p
. To nail down the

saddle point of the integral, let us take the chiral limit using
the Pfaffian formulas [48]

Pf½ðσ2σmÞijεabcΔmc� ¼ 2 detΔ; ð19Þ

Pf½ðσmσ2ÞijεabcΔ�
mc� ¼ 2 detΔ†: ð20Þ

Here, ðσ2σmÞijεabcΔmc and ðσmσ2ÞijεabcΔ�
mc are treated as

6 × 6 matrices with left index ða; iÞ and right index ðb; jÞ.
The partition function in the chiral limit therefore reads

Z ∝
Z

dΔL

Z
dΔR exp½−8NTrðΔ†

LΔLÞ − 8NTrðΔ†
RΔRÞ�

× detNðΔ†
LΔLÞdetNðΔ†

RΔRÞ: ð21Þ

With a quick calculation involving the singular value
decomposition of ΔL;R one can verify that

ΔL ¼ ΔR ¼ 1

2
ffiffiffi
2

p 13 ð22Þ

maximizes the integrand. It is not invariant under separate
rotations by color SU(3) and spin SO(3) but is invariant
under their simultaneous rotation. Namely color and spin
are locked:

Uð1ÞB × Uð1ÞA × SUð3ÞC × SOð3ÞJ → SOð3ÞCþJ: ð23Þ

The soft fluctuations around (22) can be parametrized as

ΔL ¼ U; ΔR ¼ V ð24Þ

with U;V ∈ Uð3Þ. (This V should not be confused with the
Gaussian random matrix VA inside D.) Let us define

eiϕU ≡ detU; eiϕV ≡ detV;

Qai;bj ≡ εabmðσ2σmÞij: ð25Þ

The large-N partition function can be evaluated as follows:

Z∼
Z
Uð3Þ

dU
Z
Uð3Þ

dV detN=2

� ðσmσ2ÞijεabcV�
mc

ffiffiffi
2

p
mδabδij

−
ffiffiffi
2

p
mδabδij ðσ2σmÞijεabcUmc

�
detN=2

� ðσmσ2ÞijεabcU�
mc

ffiffiffi
2

p
m�δabδij

−
ffiffiffi
2

p
m�δabδij ðσ2σmÞijεabcVmc

�
ð26Þ

¼
Z
Uð3Þ

dU
Z
Uð3Þ

dV detN=2

��
V� ⊗ 12 0

0 U ⊗ 12

�� εabcV�
mcðσmσ2Þij

ffiffiffi
2

p
mδabδij

−
ffiffiffi
2

p
mδabδij εabcUmcðσ2σmÞij

��
V† ⊗ 12 0

0 UT ⊗ 12

��

× detN=2

��
U� ⊗ 12 0

0 V ⊗ 12

�� εabcU�
mcðσmσ2Þij

ffiffiffi
2

p
m�δabδij

−
ffiffiffi
2

p
m�δabδij εabcVmcðσ2σmÞij

��
U† ⊗ 12 0

0 VT ⊗ 12

��
ð27Þ
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∝
Z
Uð3Þ

dU
Z
Uð3Þ

dV detN=2

�
e−iϕVQ� ffiffiffi

2
p

mðV�UTÞ ⊗ 12

−
ffiffiffi
2

p
mðUV†Þ ⊗ 12 eiϕUQ

�

× detN=2

�
e−iϕUQ� ffiffiffi

2
p

m�ðU�VTÞ ⊗ 12

−
ffiffiffi
2

p
m�ðVU†Þ ⊗ 12 eiϕVQ

�
ð28Þ

∝
Z
Uð3Þ

dU
Z
Uð3Þ

dV detN=2

�
16

ffiffiffi
2

p
m½ðV�UTÞ ⊗ 12�e−iϕUQ−1

−
ffiffiffi
2

p
m½ðUV†Þ ⊗ 12�eiϕVQ�−1 16

�

× detN=2

�
16

ffiffiffi
2

p
m�½ðU�VTÞ ⊗ 12�e−iϕVQ−1

−
ffiffiffi
2

p
m�½ðVU†Þ ⊗ 12�eiϕUQ�−1 16

�
ð29Þ

¼
Z
Uð3Þ

dU
Z
Uð3Þ

dV detN=2ð16 þ 2m2e−iðϕU−ϕV Þ½ðV�UTÞ ⊗ 12�Q−1½ðUV†Þ ⊗ 12�Q�−1Þ

× detN=2ð16 þ 2m�2eiðϕU−ϕV Þ½ðU�VTÞ ⊗ 12�Q−1½ðVU†Þ ⊗ 12�Q�−1Þ ð30Þ

∼
Z
Uð3Þ

dÛ exp½m̂2Trð½Û ⊗ 12�Q−1½ÛT ⊗ 12�Q�−1Þ þ m̂�2Trð½Û† ⊗ 12�Q−1½Û� ⊗ 12�Q�−1Þ� ð31Þ

where we have defined

Û ≡ e−iðϕU−ϕV Þ=2V�UT;

m̂≡ ffiffiffiffi
N

p
m: ð32Þ

Using a software [49] we verified

Trð½Û ⊗ 12�Q−1½ÛT ⊗ 12�Q�−1Þ

¼ 1

2
fTrðÛ2Þ − ðTrÛÞ2 − TrðÛTÛÞg: ð33Þ

Upon substituting (33) into (31), we finally arrive at the
low-energy effective theory

Z ∼
Z
Uð3Þ

dÛ exp
�
m̂2

2
fTrðÛ2Þ − ðTrÛÞ2 − TrðÛTÛÞg

þ c:c:

�
: ð34Þ

Notice that (34) respects invariance under SO(3): Û trans-
forms as Û → gÛgT for g ∈ SOð3Þ. The U(1) part of Û is
the Nambu-Goldstone boson associated with the Uð1ÞA
symmetry [50]. On the other hand, the SU(3) part of
Û describes the Nambu-Goldstone bosons associated with
the symmetry breaking SUð3ÞC × SOð3ÞJ → SOð3ÞCþJ. At
this point the qualitative difference between QCD and
RMT becomes evident. In one-flavor QCD, these 8 modes
are absorbed into gluons via the Anderson-Higgs mecha-
nism and disappear from the physical spectrum [15,27].
By contrast, there is no local gauge invariance in RMT and
the Anderson-Higgs mechanism is not operative, leading
consequently to the appearance of these 8 modes in the
low-energy effective theory (34).

We also wish to point out that while our RMT concerns
pairing of quarks with the same chirality, it is known that in
one-flavor QCD pairing of quarks of opposite chirality can
take place [15,19,52]. However, this is beyond the scope of
this paper.

IV. TWO COLORS

Due to its unique features and theoretical simplicity, two-
color QCD has long been studied as a prototype of strongly
coupled non-Abelian gauge theories. A particularly pleas-
ant feature of two-color QCD is that for an even number of
flavors with degenerate masses, the path-integral measure
is positive definite even at nonzero quark chemical poten-
tial and can be simulated on a lattice [53–56]. Interestingly,
the color-singlet scalar diquarks in two-color QCD are
degenerate with pions and condense when the chemical
potential exceeds mπ=2, breaking Uð1ÞB spontaneously.
The phase structure of two-color QCD has been studied
with chiral perturbation theory [57–65] and low-energy
effective models [66–74].
It seems that almost all previous work focused on two-

color QCD with an even number of flavors [75], but there
is a qualitative difference between even and odd flavors.
(Note that we refer to the number of Dirac fermions here.
The famous Witten’s SU(2) anomaly [76], which asserts
that an SU(2) gauge theory coupled to an odd number of
Weyl fermions in the spin-1=2 representation of SU(2) is
inconsistent, does not affect our present discussion.) It is
easy to understand this intuitively. If we assume that
quarks form pairs in the Lorentz-scalar color-antisymmet-
ric channel, the Pauli principle stipulates that the quantum
number of flavors must be antisymmetric. For even flavors
all quarks can participate in this pairing, while for odd
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flavors a single flavor remains gapless (recall that an
antisymmetric matrix of odd dimension always has a zero
eigenvalue). Then what option is available for this isolated
quark? One option is to form a color-adjoint diquark
condensate in the Lorentz-scalar channel, causing color
superconductivity. At least in the high-density limit we
regard this possibility as unlikely, because the single-gluon
exchange interaction is repulsive in the color-symmetric

channel. Another option is to form a color-singlet diquark
condensate in the channel of total angular momentum
J ¼ 1. It inevitably breaks rotational symmetry. Neither a
low-energy effective theory nor RMT is known for this
phase.
In order to understand implications of our RMT for

dense two-color QCD, let us return to (14). For Nc ¼ 2 the
identity εabεcd ¼ δacδbd − δadδbc holds. Therefore

Z ∝
Z

dψ̄Rdψ̄LdψRdψL exp

�
mψ̄α

Raiψ
α
Lai þm�ψ̄α

Laiψ
α
Rai þ

1

8N
ðψ̄α

Laσmσ2εabψ̄
α
LbÞðψβ

Lcσ2σmεcdψ
β
LdÞ þ ðL ↔ RÞ

�
: ð35Þ

The ensuing analysis is routine. To bilinearize the quartic interaction we insert the constant factor
Z
C3

dΩ⃗L exp

�
−8N

�
ΩLm −

1

8N
ψ̄α
Laσmσ2εabψ̄

α
Lb

�
×

�
Ω�

Lm −
1

8N
ψβ
Lcσ2σmεcdψ

β
Ld

��
× ðL ↔ RÞ ð36Þ

where Ω⃗L;R are three-component complex vectors that transform as triplet under SO(3) and are also charged under
Uð1ÞB × Uð1ÞA. Then

Z ∝
Z
C3

dΩ⃗L

Z
C3

dΩ⃗R

Z
dψ̄Rdψ̄LdψRdψL exp½−8NðjΩ⃗Lj2 þ jΩ⃗Rj2Þ þmψ̄α

Raiψ
α
Lai þm�ψ̄α

Laiψ
α
Rai

þΩLmψ
α
Laσ2σmεabψ

α
Lb þ Ω�

Lmψ̄
α
Laσmσ2εabψ̄

α
Lb þ ðL ↔ RÞ� ð37Þ

¼
Z
C3

dΩ⃗L

Z
C3

dΩ⃗R

Z
dψ̄Rdψ̄LdψRdψL exp½−8NðjΩ⃗Lj2 þ jΩ⃗Rj2Þ�

× exp

2
6664

0
BBB@

ψ̄L

ψ̄R

ψL

ψR

1
CCCA

α

ai

0
BBB@

Ω�
Lmðσmσ2Þijεab 0 0 m�δabδij=2

0 Ω�
Rmðσmσ2Þijεab mδabδij=2 0

0 −mδabδij=2 ΩLmðσ2σmÞijεab 0

−m�δabδij=2 0 0 ΩRmðσ2σmÞijεab

1
CCCA

0
BBB@

ψ̄L

ψ̄R

ψL

ψR

1
CCCA

α

bj

3
7775 ð38Þ

¼
Z
C3

dΩ⃗L

Z
C3

dΩ⃗R exp½−8NðjΩ⃗Lj2 þ jΩ⃗Rj2Þ�

× PfN
�Ω�

Rmðσmσ2Þijεab mδabδij=2

−mδabδij=2 ΩLmðσ2σmÞijεab

�
PfN

�Ω�
Lmðσmσ2Þijεab m�δabδij=2

−m�δabδij=2 ΩRmðσ2σmÞijεab

�
ð39Þ

¼
Z
C3

dΩ⃗L

Z
C3

dΩ⃗R exp½−8NðjΩ⃗Lj2 þ jΩ⃗Rj2Þ�

× detN
�Ω�

Rmðσmσ2Þij mδij=2

mδij=2 ΩLmðσ2σmÞij

�
detN

�Ω�
Lmðσmσ2Þij m�δij=2

m�δij=2 ΩRmðσ2σmÞij

�
ð40Þ

¼
Z
C3

dΩ⃗L

Z
C3

dΩ⃗R exp½−8NðjΩ⃗Lj2þjΩ⃗Rj2Þ�
�
Ω⃗�2

R Ω⃗2
L−

m2

2
Ω⃗�

R · Ω⃗Lþ
m4

16

�
N
�
Ω⃗�2

L Ω⃗2
R−

m�2

2
Ω⃗�

L ·Ω⃗Rþ
m�4

16

�
N

: ð41Þ

We are now ready to take the microscopic large-N limit with m ∝ 1=
ffiffiffiffi
N

p
. In the chiral limit we find

Z ∝
Z
C3

dΩ⃗L

Z
C3

dΩ⃗R exp½−8NðjΩ⃗Lj2 þ jΩ⃗Rj2Þ�jΩ⃗2
Lj2N jΩ⃗2

Rj2N ð42Þ

¼
�Z

C3

dΩ⃗ðe−8jΩ⃗j2 jΩ⃗2j2ÞN
�

2

: ð43Þ
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Thus the problem of finding the saddle point at large N

boils down to extremizing the function fðΩ⃗Þ≡e−8jΩ⃗j2 jΩ⃗2j2.
To simplify the problem we shall draw upon the fact that
by a suitable Uð1Þ × SOð3Þ rotation, an arbitrary complex
3-vector Ω⃗ can be brought to the form ðaþ ib; c; 0Þ with
a; b; c ∈ R. Then

fðΩ⃗Þ ¼ e−8ða2þb2þc2Þ½ða2 − b2 þ c2Þ2 þ 4a2b2�: ð44Þ
This function is maximized when b ¼ 0 and a2 þ c2 ¼
1=4, or when c ¼ 0 and a2 þ b2 ¼ 1=4. To show this, first
note that f ¼ e−8ða2þb2þc2Þ½ða2 þ b2 þ c2Þ2 − 4b2c2�. This
means that f can be increased by rotating ðb; cÞ into either
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2

p
; 0Þ or ð0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2

p
Þ. Thus one can safely

assume bc ¼ 0. If b ¼ 0, the vector ða; c; 0Þ can be rotated
to ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2

p
; 0; 0Þ by the action of SO(3). If c ¼ 0, the

vector ðaþ ib; 0; 0Þ can be rotated to ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
; 0; 0Þ by

the action of U(1). In either case, a quick calculation shows
that ð1=2; 0; 0Þ maximizes f.
The above analysis reveals that the manifold of maxima

of f is given by Uð1Þ × SOð3Þ rotations of ð1=2; 0; 0Þ.
Picking out any single point on this manifold as a ground
state breaks global symmetries according to

Uð1Þ × SOð3Þ → SOð2Þ: ð45Þ
Note that this breaking occurs for each chirality
independently.
The low-energy fluctuations in the ground state can be

parametrized as

Ω⃗L ¼ 1

2
eiϕLnL and Ω⃗R ¼ 1

2
eiϕRnR ð46Þ

where the unit vectors nL;R ∈ R3 ðn2
L;R ¼ 1Þ stand for the

directions of diquarks in the spin space. For N ≫ 1 with
m̂≡ ffiffiffiffi

N
p

m ∼Oð1Þ, we have from (41)

Z ∼
Z
Uð1Þ

dϕL

Z
Uð1Þ

dϕR

Z
S2
dnL

Z
S2
dnR

×

�
1

16
e2iðϕL−ϕRÞ −

m2

8
eiðϕL−ϕRÞnL · nR

�
N

×
�
1

16
e−2iðϕL−ϕRÞ −

m�2

8
e−iðϕL−ϕRÞnL · nR

�
N

∼
Z
Uð1Þ

dϕL

Z
Uð1Þ

dϕR

Z
S2
dnL

Z
S2
dnR

× exp½−2m̂2e−iðϕL−ϕRÞnL · nR þ c:c:�

ð47Þ

∝
Z
Uð1Þ

dϕ
Z
S2
dnL

Z
S2
dnR expð4jm̂j2nL · nR cosϕÞ:

ð48Þ
The ϕ field is nothing but the Nambu-Goldstone mode for
the Uð1ÞA symmetry. Integrating out ϕ yields

Z ∝
Z
S2
dnL

Z
S2
dnR I0ð4jm̂j2nL · nRÞ ð49Þ

∝
Z

π

0

dθ sin θ I0ð4jm̂j2 cos θÞ ð50Þ

∝
Z

1

0

dx I0ð4xjm̂j2Þ; ð51Þ

where I0 is the modified Bessel function of the first
kind. This is the simplest form we found for the micro-
scopic partition function. An important observation is that
a nonzero quark mass tends to make the diquarks of
opposite chiralities parallel to each other. In fact, for a large
mass jm̂j ≫ 1, the leading asymptotic behavior I0ðzÞ ∼
ejzj=

ffiffiffiffiffiffiffiffiffiffi
2πjzjp

for jzj ≫ 1 [77], as applied to (49), shows that
a dominant contribution to Z comes from the region with
nL · nR ∼�1, i.e., nLknR.

V. CONCLUSIONS

In this paper we reported an attempt to extend chiral
random matrix theory (RMT) [31] to cold and dense
one-flavor quark matter, in which quarks are thought to
form Cooper pairs with nonzero total angular momentum
[1]. For three colors the putative ground state is the color-
spin locked (CSL) phase [15] that breaks color and
rotational symmetries but retains invariance under their
combination, bearing a close resemblance to the B phase
of 3He and the CFL phase of three-flavor quark matter [2].
In this paper we have formulated a new non-Hermitian
chiral RMT and showed that in the microscopic large-N
limit it exhibits the same symmetry breaking pattern as the
CSL phase of QCD. This work can be viewed as a natural
sequel to our previous work [47] that put forward chiral
RMT for Cooper pairing in two and three-flavor dense
QCD. A downside of our RMT is the existence of 8
unphysical Nambu-Goldstone modes that enter into the
large-N low-energy effective theory. They are associated
with the breaking of color SU(3) symmetry. Although they
are “eaten” by gluons in the CSL phase of QCD, they do
represent physical fluctuations in RMT because the
Anderson-Higgs mechanism does not operate in a zero-
dimensional theory with no local gauge invariance. In
the second half of this paper we also discussed the
application of our RMT to two colors. In this case the
symmetry breaking pattern of RMT was found to be
Uð1Þ × SOð3Þ → SOð2Þ, which matches physical expect-
ations for two-color one-flavor QCD at high density. It
would be worthwhile to perform weak-coupling calcula-
tions of gap equations for the latter in order to precisely
check the validity of correspondence between our RMT
and two-color QCD. Analytical calculation of the micro-
scopic spectral density of the Dirac operator D in RMT is
quite challenging and we leave it to future work.
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