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Quantum electrodynamics predicts the vacuum to behave as a nonlinear medium, including effects such
as birefringence. However, for experimentally available field strengths, this vacuum polarizability is
extremely small and thus very hard to measure. In analogy to the Heisenberg limit in quantum metrology,
we study the minimum requirements for such a detection in a given strong field (the pump field). Using a
laser pulse as the probe field, we find that its energy must exceed a certain threshold depending on the
interaction time. However, a detection at that threshold, i.e., the Heisenberg limit, requires highly nonlinear
measurement schemes—while for ordinary linear-optics schemes, the required energy (Poisson or shot
noise limit) is much larger. Finally, we discuss several currently considered experimental scenarios from
this point of view.
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I. INTRODUCTION

Classical electrodynamics is governed by the Maxwell
equations, which are linear in the absence of sources. Thus
electromagnetic waves in vacuum obey the superposition
principle and do not interact [1]. Quantum electrodynam-
ics, on the other hand, predicts deviations from this
behavior: Even the quantum vacuum should be polarizable
and thus behave as a nonlinear medium due to the coupling
to the fermionic modes; see, e.g., [2–11].
However, since this polarizability is extremely weak for

available fields, this fundamental prediction of quantum
electrodynamics has not been experimentally verified yet
for electromagnetic waves in vacuum (i.e., real photons).
Note that an analogous effect has been observed for the
interaction of photons with the Coulomb field of atomic
nuclei (referred to as Delbrück scattering) [12–16].
Partly motivated by the present-day and near-future

experimental facilities aimed at the generation of ultrastrong
electromagnetic fields, there have been several proposals
and initiatives for verifying this fundamental prediction
experimentally; see, e.g., [17–66]. These scenarios include
strong magnetic fields [17–26] (see also the recent review
[27]), optical or near-optical lasers [28–30], as well as x-ray
free electron lasers (XFELs); see, e.g., [31–35]. Various

potential signatures of the quantum vacuum polarizability
have been considered, such as photon polarization changes
(birefringence), but also the deflection (scattering) of pho-
tons [61] or the phase difference in a Mach-Zehnder-type
interferometer setup [30].
In order to compare the different proposals and to sort

them into a bigger picture, we address the general question
of what are the minimum requirements for detecting the
tiny polarizability or nonlinearity of the quantum vacuum.
To be more specific, we focus on photon propagation
effects and do not consider photon splitting or photon
merging or four-wave mixing; cf. [67–84]. Along the lines
of quantum metrology, we aim at deriving a fundamental
limit for detection, largely independent of the concrete
measurement scheme. Apart from the strength of the
quantum vacuum polarizability, we find that the available
interaction time and the total energy of the probe pulse play
an important role. The independence of this limit on the
concrete measurement scheme helps us to compare differ-
ent experimental scenarios and to identify their advantages
and drawbacks. Furthermore, preconditions and limitations
of this limit point toward ultimate possibilities of increasing
sensitivity, even though the required experimental capabil-
ities may be beyond present-day technology.

II. EULER-HEISENBERG LAGRANGIAN

Let us start with a brief recapitulation of the basic
principles. As motivated above, we focus on slowly varying
electromagnetic fields E and B well below the Schwinger
critical field determined by the electron mass m and the
elementary charge q:

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 116019 (2020)

2470-0010=2020=101(11)=116019(10) 116019-1 Published by the American Physical Society

https://orcid.org/0000-0003-1183-5591
https://orcid.org/0000-0003-0390-7671
https://orcid.org/0000-0003-4400-1315
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.116019&domain=pdf&date_stamp=2020-06-30
https://doi.org/10.1103/PhysRevD.101.116019
https://doi.org/10.1103/PhysRevD.101.116019
https://doi.org/10.1103/PhysRevD.101.116019
https://doi.org/10.1103/PhysRevD.101.116019
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Ecrit ¼
m2c3

ℏq
≈ 1.3 × 1018

V
m
; ð1Þ

where the corresponding magnetic field Bcrit ¼ Ecrit=c is
given by Bcrit ≈ 4.4 × 109 T. In this regime [85], the
propagation can be described by the lowest-order Euler-
Heisenberg Lagrangian density [3,7,8,11,86]

L¼ ε0
2
ðE2−c2B2Þþξ½ðE2−c2B2Þ2þ7c2ðE ·BÞ2�; ð2Þ

with the vacuum permittivity ε0 and the prefactor

ξ ¼ ℏq4

360π2m4c7
¼ ε0

αQED
90πE2

crit

¼ 2α2QED
45m4

; ð3Þ

where αQED ≈ 1=137 is the fine-structure constant. From
now on, we shall employ natural units with

ℏ ¼ c ¼ ε0 ¼ 1; ð4Þ

in order to simplify the expressions.

A. Pump and probe field

We consider the standard situation where we have a
strong (but subcritical) pump field E0 and B0 acting on the
vacuum plus a weaker probe pulse E1 and B1 in order to
detect the induced polarizability. The pump field is sup-
posed to be a solution of the equations of motion stemming
from (2) and we study the propagation of the probe field in
this background. Then, inserting the split E ¼ E0 þE1

and B ¼ B0 þB1 into (2) and linearizing the equations of
motion in E1 and B1, we obtain the well-known effective
Lagrangian for the probe field:

L1 ¼
1

2
½E1 · ð1þ δϵÞ ·E1 − B1 · ð1 − δμÞ ·B1�

þE1 · δΨ ·B1: ð5Þ

The polarizability of the vacuum is encoded in the change
of the dielectric permittivity tensor δϵ and the magnetic
permeability tensor δμ as well as the symmetry-breaking
tensor δΨ. These quantities depend on the strength of the
pump fieldE0 andB0 (see Appendix A) and are suppressed
as OðαQED½E2

0 þ B2
0�=E2

critÞ. Since they are very small, we
only keep their first order.
Note that we consider the modifications in the propa-

gation of the probe pulse induced by the pump field. Thus,
we do not consider other nonlinear QED effects such as
photon splitting or merging or four-wave mixing; see,
e.g., [67–84], which would correspond to linear or cubic
powers ofE1 andB1 in (5). In the following, we shall focus
on the probe field and consider the tensors δϵ, δμ and δΨ as
externally given. Thus, we shall drop the subscripts for the
probe field E1 and B1 from now on.

B. Interaction Hamiltonian

In terms of the usual vector potential A, the canonically
conjugate momentum (which equals the dielectric displace-
ment field D) reads

Π ¼ D ¼ ð1þ δϵÞ ·Eþ δΨ ·B; ð6Þ
and thus the Hamiltonian density is given by

H ¼ 1

2
½Π · ð1 − δϵÞ ·Πþ B · ð1 − δμÞ ·B�

−Π · δΨ ·B: ð7Þ
After splitting off the undisturbed vacuum contribution
H0 ¼ ½Π2 þB2�=2, the remaining part describes the inter-
action between the probe field and the polarizability δϵ, δμ
and δΨ induced by the pump field

Hint ¼ −
1

2
Π · δϵ ·Π −

1

2
B · δμ ·B −Π · δΨ ·B: ð8Þ

III. HEISENBERG LIMIT

As motivated above, let us now study the question of
which minimum requirements the probe pulse has to fulfill
in order to detect the vacuum polarizability δϵ, δμ and δΨ.
According to the laws of quantum mechanics, this effect is
only detectable if the quantum state jψi of the probe field
after its interaction with the pump field Ûintjψi deviates
sufficiently from the quantum state jψi without this
interaction. As one possible signature, the no-signal fidelity
given by (see also [87])

hψ jÛintjψi ¼ hψ jT exp

�
−i

Z
dtĤintðtÞ

�
jψi ð9Þ

should sufficiently deviate from unity (T is the time-
ordering operator). Since the interaction Hamiltonian

Ĥint ¼
Z

d3rĤint ð10Þ

is linear in the small tensors δϵ, δμ and δΨ, let us apply
first-order perturbation theory:

hψ jÛintjψi ¼ 1 − i
Z

dthψ jĤintðtÞjψi þOðĤ2
intÞ: ð11Þ

We see that the lowest-order contribution corresponds to a
phase shift [87]

φ ¼ −
Z

dthψ jĤintðtÞjψi; ð12Þ

which could be measured by interferometric means, for
example; see also [30] and Sec. V below. However, the
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above estimate is just based on the laws of quantum
mechanics (and the smallness of Ĥint) and thus completely
independent of the concrete measurement scheme, such as
interferometry, change of polarization, or deflection (scat-
tering) of photons. Actually, all those signatures can be
related to phase shifts (12) or phase differences; see also
Sec. V below. In a Mach-Zehnder-type interferometric
setup (see, e.g., [30]), one would measure the phase
difference between the two arms (one interacting with
the pump field, the other one not). The effect of quantum
vacuum birefringence (see, e.g., [31]), i.e., polarization
change, is caused by the phase difference between the two
polarizations and can also be interpreted as interference
between them. Finally, spatial phase differences can change
the direction of the probe beam (similar to refraction or
diffraction), which may also be exploited for detecting
these phenomena (see, e.g., [61] and the recent review
[64]). However, as all these phase differences are smaller
than the total phase shift (12), i.e., subleading contribu-
tions, we focus on this lowest-order contribution in the
following.

A. Classical fields

Let us estimate the maximum possible phase shift (12)
for a given probe pulse. First, we treat the probe pulse
as a classical field, which should be a good approximation
for laser pulses. Inserting Eqs. (10) and (8) into (12), we
obtain space-time integrals over the terms Π · δϵ ·Π=2,
B · δμ ·B=2 and Π · δΨ · B. Since the tensor δϵ is real and
symmetric, we may diagonalize it and obtain the bound

Π · δϵ ·Π ≤ Π2jjδϵjj; ð13Þ

where the norm jjδϵjj is the maximum of the absolute
values of the eigenvalues of δϵ. In complete analogy, we
can bound the term B · δμ ·B by the same norm jjδμjj
multiplied by B2. Thus, we find

1

2
½Π · δϵ ·Πþ B · δμ · B� ≤ Emax fjjδϵjj; jjδμjjg ð14Þ

at each space-time point, where E ¼ ðΠ2 þB2Þ=2 is the
(lowest-order) energy density of the probe pulse.
The remaining term Π · δΨ · B is a bit more complicated

because the tensor δΨ is not symmetric in general. Thus, we
employ the singular value decomposition

δΨ ¼
X
I

σIuI ⊗ vI; ð15Þ

with the non-negative singular values σI and the two (left
and right) orthonormal basis sets uI and vI. Then, using
ðuI ·ΠÞðvI ·BÞ ≤ jΠjjBj ≤ ðΠ2 þ B2Þ=2, we arrive at

φ ≤ Tmaxr

�X
I

σI þmax fjjδϵjj; jjδμjjg
�
E; ð16Þ

where T denotes the interaction time and E the total energy
of the probe pulse. The spatial integral can be bounded
from above by the maximum over all positions r since all
the involved quantities, such as the energy density E, are
non-negative (for classical fields, quantum fields will be
discussed in the next section).
Turning the above argument around, we get a minimum

energy E of the probe pulse required for detecting the
vacuum polarizability δϵ, δμ and δΨ in a given interaction
time T since the phase shift φ should not be too small in
order to achieve a measurable effect. Since the energy E
scales linearly with the number N of probe photons, we
refer to (16) as the (analog of the) Heisenberg limit, a well-
known concept in quantum metrology and interferometry;
see also [30].

B. Quantum fields

In the previous section, we treated the probe pulse as a
classical field in order to derive the bound (16). In the
following, let us study whether an analogous bound can be
established for quantum fields. As a crucial difference,
expectation values such as hΠ̂2i or hΠ̂ · δε · Π̂i are diver-
gent and thus require renormalization. As usual, we achieve
this by subtracting the vacuum expectation value

hΠ̂2iren ¼ hψ jΠ̂2jψi − h0jΠ̂2j0i: ð17Þ
Of course, this requires appropriate regularization. Here,
we use the normal mode decomposition. To this end, we
introduce a complete set of orthonormal

Z
d3rfI · fJ ¼ δIJ ð18Þ

and transversal ∇ · fI ¼ 0 basis functions fIðrÞ and expand
the field operates into this basis set:

Π̂ðt; rÞ ¼
X
I

p̂IðtÞfIðrÞ: ð19Þ

Inserting this normal mode decomposition, we find

Z
d3rΠ̂ · δε · Π̂ ¼

X
IJ

p̂Ip̂J

Z
d3rfI · δε · fI

¼
X
IJ

p̂Ip̂JMIJ: ð20Þ

After diagonalizing this real and symmetric matrix MIJ via
the orthogonal matrix OIJ, we may introduce a new set of
basis functions via FI ¼

P
J OIJfJ and expand the field

operator in this new set Π̂ðt; rÞ ¼ P
I P̂IðtÞFIðrÞ which

gives the simplified expression
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Z
d3rΠ̂ · δε · Π̂ ¼

X
I

λIP̂
2
I ; ð21Þ

where λI are the eigenvalues of the matrixMIJ. Since the P̂
2
I

are positive operators, we may even derive a (formal)
bound on the operator level:

Z
d3rΠ̂ · δε · Π̂ ≤ jjMjj

X
I

P̂2
I ¼ jjMjj

X
I

p̂2
I ; ð22Þ

where jjMjj ¼ maxI jλIj is the norm of the matrix MIJ in
analogy to the previous section. It can be estimated by the
maximum “expectation value”

R
d3rf · δε · f for normal-

ized functions f and thus agrees with maxr jjδεjj.
The above operator-valued bound (22) seems to be the

proper quantum generalization of the Heisenberg limit (16)
since the sums 1

2

P
I p̂

2
I and 1

2

P
I P̂

2
I can be bounded

by the total energy of the probe pulse which reads
1
2

P
Iðp̂2

I þΩ2
I q̂

2
I Þ in terms of the eigenmodes I with the

eigenfrequencies ΩI . However, this bound is of limited use
since the expectation value diverges due to the infinite zero-
point energy (as mentioned above). After subtracting this
zero-point energy (17), we cannot deduce the inequality
hp̂2

I iren ≤ hp̂2
I iren þ Ω2

I hq̂2I iren anymore since the renormal-
ized expectation values hp̂2

I iren and hq̂2I iren can become
negative. For example, in a squeezed state j0i → jri, we
may increase the momentum variance hp̂2

I i→expfþrghp̂2
I i

while decreasing the position variance hq̂2I i→expf−rghq̂2I i,
such that it is below its ground-state value hq̂2I i < h0jq̂2I j0i
which means that hq̂2I iren becomes negative.
Thus, if we naively replace the classical energy E in

the Heisenberg limit (16) by the renormalized expectation
value Eren for quantum fields, it would be possible to
violate this bound by squeezing many modes just a little bit
r ≪ 1 such that their hp̂2

I iren ∼ r increase while the growth
of the energy Eren ∼ r2 is suppressed. One could suspect
that this enhancement would be compensated by the other
terms such as B̂ · δμ · B̂ which contains hq̂2I iren but this is
not the case since different modes contribute differently to
these terms. Thus, one could squeeze those modes where
the first term Π̂ · δε · Π̂ dominates in one way hp̂2

I i →
expfþrghp̂2

I i and the other modes where the second
term B̂ · δμ · B̂ dominates in the opposite way hp̂2

I i →
expf−rghp̂2

I i. For simplicity, we have omitted the third
term ∝ δΨ since it has yet another mode structure; see also
Sec. VA.
In summary, the divergent zero-point energy invalidates

a bound like (16) for quantum electrodynamics. To obtain a
generalized bound, one would have to limit the number of
involved modes I as well as their eigenfrequencies ΩI ,
which is difficult [88].

IV. COMPARISON TO POISSON LIMIT

After having derived the Heisenberg limit (16) as our
central result, together with its requirements and limita-
tions, we may apply the well-known concepts of quantum
metrology and discuss its relation to the Poisson (shot-
noise) limit. At first, one might object that a global phase φ
cannot be measured. While this is correct in principle, this
objection could be circumvented by considering a scenario
involving a quantum superposition of two paths of the
probe pulse, one interacting with the pump field and the
other one not. This state corresponds to a many-body
entangled NOON state (see, e.g., [89–91]):

jψiNOON ¼ jN; 0i þ j0; Niffiffiffi
2

p ; ð23Þ

where either allN probephotons take the onepath jN; 0i or all
N probe photons take the other path j0; Ni. Note that this is a
highly nonclassical state, in analogy to the Greenberger-
Horn-Zeilinger (GHZ) state [92,93]. After interaction with
the pump field (in one path only), this state evolves into
ðjN; 0i þ eiφj0; NiÞ= ffiffiffi

2
p

which becomes orthogonal to the
initial state (23) forφ ¼ π. Note, however, that both preparing
the initial state (23) as well as measuring the final state
ðjN; 0i þ eiφj0; NiÞ= ffiffiffi

2
p

would require effectivelyN-photon
interactions, i.e., a highly nonlinear optics scheme.
In a typical linear-optics setup the (coherent) state of a

laser is described by the factorizing state

jψilaser ¼ ⊗
N

l¼1

j1; 0il þ j0; 1ilffiffiffi
2

p ; ð24Þ

where each photon l individually either takes the one path
j1; 0i or the other path j0; 1i. In this case, one would obtain
a Poisson distribution of the photon numbers in the output
channel and thus the accuracy scales with 1=

ffiffiffiffi
N

p
instead of

1=N, which is the well-known classical Poisson (shot-
noise) limit.
Let us illustrate this distinction in terms of the scaling of

the phase with photon number N. According to the
Heisenberg limit (16), we find

ΔφN ¼ NΔφ1; ð25Þ

whereΔφ1 is the phase shift experienced by a single photon
with frequency ω:

Δφ1 ¼ ωTmaxr

�X
I

σI þmax fjjδϵjj; jjδμjjg
�
: ð26Þ

Since ΔφN must be of order unity to obtain a measurable
detection probability, we get the well-known Heisenberg
scaling Δφ1 ∼ 1=N.
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In contrast, the Poisson distribution of the photon
numbers in the classical (i.e., coherent) state (24) results
in a relative accuracy of 1=

ffiffiffiffi
N

p
which yields the well-

known Poisson limit Δφ1 ∼ 1=
ffiffiffiffi
N

p
; see, e.g., [94].

V. EXPERIMENTAL SCENARIOS

Now we are in the position to apply our findings to
several experimental scenarios known from the literature.
Since the Heisenberg limit (16) is independent of the actual
measurement scheme, we may apply it directly to the
various scenarios in order to compare them and to under-
stand their advantages and drawbacks.

A. Static magnetic pump field

There are several running or planned experiments where
the pump field is an approximately constant magnetic field
of a few Tesla; see, e.g., [17–27]. For a purely magnetic
field, the symmetry-breaking term δΨ vanishes (see
Appendix A). The maximum eigenvalues of the remaining
terms δε and δμ are given by 10ξB2

0 and 12ξB2
0, respec-

tively, which are then of order 10−22. Thus, the accuracy
requirements are roughly comparable to those for the
detection of gravitational waves at LIGO [95]. Indeed,
there have been studies for the requirements and possibil-
ities to investigate vacuum birefringence at gravitational
wave detectors; see, e.g., [96,97].
As in LIGO, the signal can be amplified by having the

probe photons bounce back and forth many times (in a
cavity, for example), which facilitates a large integration
time T. (The noise characterization for cavity-enhanced
polarimetry experiments and related issues have been
discussed in [98], for example.) Assuming an optimized
cavity finesse of order 106 and length scales of order meter,
we get an integration time of order ωT ¼ Oð1012Þ periods
for optical or near-optical photons. Again in analogy to
LIGO, the remaining orders of magnitude should be
compensated by a sufficiently large number of probe
photons. Using the Heisenberg limit (16), we would get
N ¼ Oð1010Þ which is a comparably low number.
However, as explained above, this detection scheme would
require an effective N-photon interaction involving this
number of photons, which is currently out of reach.
With laser fields and linear-optics schemes, we can only

reach the Poisson limit, which gives N ¼ Oð1020Þ corre-
sponding to a probe pulse energy E in the Joule regime.
This shows that such an experiment is not impossible with
present-day technology but still quite challenging.
Note that the actual limit is even a bit larger because

these experiments typically do not measure the polar-
izabilities δε and δμ directly, but only the induced rotation
of polarization—which measured their difference in the
different directions. Otherwise, the rotation of polarization
is very similar to an interferometric setup, where the two
arms correspond to the two polarizations.

B. Optical pump and XFEL probe

Another popular scheme envisions a strongly focused
ultrastrong laser pulse (again in the optical or near-optical
regime) where intensities of order 1022 W=cm2 or more
should be reachable with present-day or near-future tech-
nology; see, e.g., [99–101]. This corresponds to electric
fields above 1014 V=m which generate polarizabilities δϵ,
δμ and δΨ of order 10−11. This illustrates a major advantage
in comparison to the static setup in Sec. VA, as the pump
field is much stronger in a laser focus. As a drawback, the
interaction time T is limited to the pump pulse length of a
few (say ten) optical cycles.
However, for a probe pulse generated by an XFEL with

photon energies in the 10 keV range, this corresponds to
Oð105Þ XFEL cycles; see, e.g., [32]. The Heisenberg limit
(16) then gives N ¼ Oð106Þ photons, i.e., an energy of
Oð1010 eVÞ or Oð10−9 JÞ. Again, as an N-photon inter-
action with these numbers seems unrealistic, the Poisson
limit yields N ¼ Oð1012Þ photons, corresponding to an
energy of Oð1016 eVÞ or Oð10−3 JÞ. As before, this shows
that the detection is challenging but not completely out
of reach.
In analogy to Sec. VA, the envisioned scheme is based

on the rotation of the polarization which offers experi-
mental advantages in comparison to an interferometric
setup with x rays but decreases the signal a bit. Note
that, with N ¼ Oð1011Þ photons in an initially polarized
probe beam (see also [102–106]), the signal may consist of
a single photon with flipped polarization after several
runs. This necessitates a careful study of potentially
competing effects in order to distinguish the signal from
the background.

C. Optical pump and optical probe

In contrast to the scenario described above, it has also
been discussed to employ an optical (or near-optical) probe
pulse; cf. [30]. Using the same parameters for the pump
pulse, the Heisenberg limit (16) would yield the same
energy E as in Sec. V B. However, the probe pulse would
now contain N ¼ Oð1010Þ photons because the interaction
time corresponds to a few optical cycles only. The Poisson
limit then yields N ¼ Oð1020Þ corresponding to an energy
of Oð1020 eVÞ or Oð10 JÞ. The fact that this is of the same
order as the pump pulse itself shows the challenges of this
detection scheme.
On the other hand, for this all-optical scheme, it is not

necessary to have the optical laser close to an XFEL. Thus,
it might be possible to reach even higher intensities in the
1023 W=cm2 regime, which reduces the requirements on
the probe pulse to N ¼ Oð1018Þ photons, i.e., an energy of
Oð1018 eVÞ or Oð10−1 JÞ. As one possibility, one could
use a dual-beam facility (see, e.g., [107]) or spit off a small
part of the pump pulse before focusing and use it as probe
pulse. This could help ensuring the necessary temporal
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overlap between pump and probe pulse, which can pose a
challenge for the scheme described in Sec. V B. Still,
performing interference experiments with such Oð10−1 JÞ
pulses containing N ¼ Oð1018Þ photons is highly non-
trivial. Again in analogy to LIGO, it might be advantageous
to operate the interferometer not exactly at the dark spot but
close to it—corresponding to a small phase mismatch φ0

between the two arms. For example, using a phase mis-
match of φ0 ¼ 10−3 (corresponding to a precision of
placing the mirrors in the nanometer regime), the output
at the dark port would contain Oð1012Þ photons. A single-
photon phase shift of Δφ1 ¼ Oð10−9Þ would then generate
a signal of Oð106Þ photons difference on top of the
background of Oð1012Þ photons. Measuring such a large
photon number with a relative accuracy of Oð10−6Þ is
challenging and probably requires an advanced detector
with many megapixels.
On the other hand, this setup could also offer an

advantage as the signal would now contain many
Oð106Þ coherent photons, which could help distinguishing
it from the background, especially from incoherent noise.

D. Angular dependence

Especially for the latter all-optical scenario, it is probably
unrealistic to assume a head-on collision between pump
and probe pulse. Thus, let us estimate the angular depend-
ence of the phase shift; see also [60]. For simplicity, we
model pump and probe pulse as plane waves (as a first
step). Then, their relative directions can be described in
terms of the three Euler angles ψ , θ, and ϕ. Without loss of
generality, the pump field is supposed to propagate in z
direction with E0 and B0 pointing in x and y directions,
respectively. After starting with the same orientation, the
probe field directions are obtained by three rotations: first, a
rotation around the z axis with the angle ϕ, second, a
rotation around the new x axis with the angle θ, followed by
a third rotation around the new z axis with the angle ψ .
Then, the interaction Hamiltonian reads

Hint ¼ −2ξE2
0E

2
1ð11 − 3 sin½2ψ − 2ϕ�Þ sin4 θ

2
: ð27Þ

For the copropagating case θ ¼ 0, it vanishes identically (as
is well known). In this case, the angles ψ and ϕ just rotate
the polarization and one can transform into a comoving
Lorentz frame where all fields E0 and B0 as well as E1 and
B1 become arbitrarily small. The maximum is obtained in
the counterpropagating case θ ¼ π where such a Lorentz
boost diminishing all fields is not possible. In this limiting
case, the angles ψ and ϕ again just rotate the polarization
and the maximum signal is obtained by ψ − ϕ ¼ −π=4.
Apart from these well-known limiting cases, we see that

this condition ψ − ϕ ¼ −π=4 does also give the maximum
signal for arbitrary given θ, which may be unavoidable
due to experimental constraints. For small deviations

Δθ ¼ θ − π from the optimal counterpropagating case
θ ¼ π, we find

Hint ¼ −28ξE2
0E

2
1

�
1 −

½Δθ�2
2

þOð½Δθ�4Þ
�
: ð28Þ

VI. CONCLUSIONS

We study the general requirements for detecting the
impact of the weak vacuum polarizability (5) predicted
by quantum electrodynamics on the propagation of photons
(i.e., the probe pulse). We find that the lowest-order effect is
a phase shift (12) which could, at least in principle, be
detected by interferometric means. Approximating the
probe pulse by a classical field, we obtain an upper bound
(16) for the phase shift depending on the interaction time T
and the total energy E of the probe pulse. Since this phase
shift must be of order unity for a measurable detection
probability, this inequality does also give the Heisenberg
limit (note thatET equals the number of photonsN times the
number of periods ωT). However, such a measurement
would require a highly nonlinear optics scheme,which is out
of reach for realistic parameters. For a linear-optics scheme,
we recover the well-known Poisson (shot-noise) limit.
Going beyond the classical field approximation, the

failure of proving a bound as (16) for quantum fields hints
at the interesting (theoretical) possibility to reach an even
higher accuracy by exploiting the zero-point fluctuations.
One option could be to squeeze many field modes a little bit
such that their quadratures are modified (in order to
increase the sensitivity) while the total energy expectation
value does not change significantly [108]. For optical
frequencies, such a squeezing could be achieved in non-
linear crystals in analogy to parametric down-conversion,
while for XFEL frequencies, a corresponding undulator
setup could serve the same goal; see also [109]. However,
apart from preparing this squeezed state initially, reading
out the final state poses grand experimental challenges.
Altogether, we obtain three regimes: the linear-optics

regime corresponding to the Poisson (shot-noise) limit, the
Heisenberg limit (16) for (locally) classical fields, and a
regime beyond that limit for quantum fields.
As a demonstration, we apply these limits to three

experimental scenarios, which offer different advantages
(e.g., control of polarization for XFEL fields) and dis-
advantages. For all cases, we find that the detection of the
vacuum polarizability is quite challenging but not com-
pletely out of reach. Note that, apart from the verification
aspect, the vacuum polarizability could also provide a clean
way to measure the peak intensity of the laser, which is a
highly nontrivial task.
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APPENDIX A: VACUUM PERMITTIVITY AND
PERMEABILITY TENSORS

After inserting the splitE ¼ E0 þ E1 intoB ¼ B0 þB1

into (2) and keeping the quadratic terms only, we find the
effective Lagrangian for the probe field:

L1¼ξf4ðE1 ·E0−B1 ·B0Þ2þ2ðE2
0−B2

0ÞðE2
1−B2

1Þ
þ7ðE1 ·B0þB1 ·E0Þ2þ14ðE0 ·B0ÞðE1 ·B1Þg: ðA1Þ

This effective Lagrangian provides information about the
vacuum polarization tensors (δϵ, δμ and δψ) which can be
extracted after comparing with (5)

L1 ¼
1

2
E1 · δϵ · E1 þ

1

2
B1 · δμ ·B1 þ E1 · δΨ ·B1: ðA2Þ

Therefore these tensors are given in terms of the electric
and magnetic components of the pump pulse:

δϵij ¼ 2ξð2ðE2
0 −B2

0Þδij þ 4E0iE0j þ 7B0iB0jÞ; ðA3Þ

which is a symmetric tensor, δμ is obtained from δϵ by
interchanging E and B:

δμ ¼ ðδϵÞfEi ↔ Bi;E ↔ Bg; ðA4Þ
and finally the symmetry-breaking tensor

δΨij ¼ 2ξð7E0 ·B0δij þ 7E0jB0i − 4E0iB0jÞ: ðA5Þ
As has been already discussed in Sec. III, we need to

compute the eigenvalues of δϵ and δμ and the singular
values of δψ since the latter is in general an asymmetric
tensor. It is straightforward to obtain the eigenvalues λ1;2;3
of the symmetric tensors. For a general pump field, we
obtain for δϵ

λ1;2 ¼ ξð3B2
0 þ 8E2

0Þ
� ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49B4

0 þ 16E4
0 − 56B2

0E
2
0 þ 112ðE0 ·B0Þ2

q
;

λ3 ¼ 4ξðE2
0 −B2

0Þ: ðA6Þ
In the limit of constant crossed fields they simplify to

jλ1j ¼ 14ξE2
0;

jλ2j ¼ 8ξE2
0;

λ3 ¼ 0: ðA7Þ
Then the spectral representation of δϵ is

δϵ ¼
X3
I¼1

λIvI ⊗ vI; ðA8Þ

where vI are the eigenvectors of δϵ (after a suitable rotation
of the coordinate system)

v1 ¼ ð1; 0; 0Þ; v2 ¼ ð0; 1; 0Þ; v3 ¼ ð0; 0; 1Þ;

and for δμ (with its eigenvalues are denoted by ΛI) the
eigenvalues are simply obtained from the ones for δϵ by the
following replacements:

Λ1 ¼ λ1ðEi ↔ BiÞ;
Λ2 ¼ λ2ðEi ↔ BiÞ;
Λ3 ¼ λ3ðEi ↔ BiÞ: ðA9Þ

In the limit of plane-wave background (or constant crossed
fields), the two sets of eigenvalues for δϵ and δμ become
equivalent—so to obtain the upper bound, it suffices to
consider the maximum value of one of them. Bounding
the terms in the Hamiltonian with δϵ and δμ is simple since
they have real eigenvalues; therefore, one can consider the
maximum value of their eigenvalues as discussed in
Sec. III A. The most nontrivial term is the one with δψ
since it has no symmetry in general; then a direct
eigenvalue computation may lead to imaginary values
which correspond to nonorthogonal set of eigenvectors.
Therefore one can rely on singular value decomposition
which are defined based on the following theorem [110].
If A is a real m × n matrix, then there exist two

orthogonal matrices U ¼ ½u1;…;um� ∈ Rm×m and V ¼
½v1;…; vn� ∈ Rn×n such that

UTAV ¼ diag½σ1;…; σp� ∈ Rm×n; ðA10Þ

where p ¼ minfm; ng and

σ1 ≥ σ2 ≥ � � � ≥ σp ≥ 0: ðA11Þ

In other words the singular values σ1;…; σp of a m × n
matrix A are the positive square roots, σI ¼

ffiffiffiffi
λI

p
> 0, of the

nonzero eigenvalues of the associated Gram matrix
K ¼ ATA. The corresponding eigenvectors of K are known
as the singular vectors of A (note that for m ≠ n or
rectangular matrices there is no eigenvalue in its general
definition and that is why one finds the singular values).
This theorem leads to the following singular decom-

position for a nonsymmetric matrix A ∈ Rn×n:

A ¼
Xn
I¼1

σIuI ⊗ vI; ðA12Þ

and from here

AAT ¼
Xn
I¼1

σ2IuI ⊗ uI; ðA13Þ
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in which σI are the singular values and the left and right
singular vectors uI and vI for I ¼ 1; 2;…; n, respectively.
Applying this theorem to δψ we get

σ21;2 ¼ 2ξ2½65E2
0B

2
0 þ 84ðE0 · B0Þ2�

� 6ξ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
121B4

0E
4
0 þ 168E2

0B
2
0ðE0 ·B0Þ2

q
;

σ23 ¼ 196ξ2ðE0 · B0Þ2: ðA14Þ

For a constant crossed field they give

jσ1j ¼ 14ξE2
0;

jσ2j ¼ 8ξE2
0;

σ3 ¼ 0: ðA15Þ

After having the eigenvalues of δϵ and δμ as well as the
singular values of δψ one can easily compute the phase
given in (16).

APPENDIX B: THE ROTATION MATRIX

Let us consider two different frames for the pump and
probe pulses in which the former is fixed to be denoted by
xyz and the latter XYZ. We need three Euler angles to rotate
XYZ [111]. The sequences of the rotations are the follow-
ing: XYZ rotates by an angle ϕ about the Z axis to obtain
ξηζ with corresponding rotation matrix D. For the second
rotation, ξηζ is rotated about the ξ axes by an angle θ to
obtain new axes called ξ0η0ζ0 with rotation matrix C. Finally
in the last step the latter is rotated by an angle ψ about ζ0 to
obtain xyz with rotation matrix B. The three successive
rotations lead to a transformation matrix A:

A ¼ BCD ¼

0
B@

cosψ cosϕ − cos θ sinϕ sinψ cosψ sinϕþ cos θ cosϕ sinψ sinψ sin θ

− sinψ cosϕ − cos θ sinϕ cosψ − sinψ sinϕþ cos θ cosϕ cosψ sin θ cosψ

sin θ sinϕ − sin θ cosϕ cos θ

1
CA: ðB1Þ

Therefore we have the following equation:

X ¼ Ax; ðB2Þ
where x ¼ ðx; y; zÞ andX ¼ ðX; Y; ZÞ. To obtain a general
form for the interaction Hamiltonian we need the probe
electric and magnetic fields ðEω;BωÞ. For a general probe
field we have the following transformation:

Ex
ω ¼ AEX

ω ;

Bx
ω ¼ ABX

ω : ðB3Þ

If we consider a constant crossed background for the probe
pulse in which the propagation direction lies again in Z and
Eω and Bω in X and Y directions accordingly, then the
interaction Hamiltonian defined in (7) with the polarization
tensors obtained in Appendix A one arrives at

Hint ¼ −2ξE2
0E

2
ωð11 − 3 sinð2ψ − 2ϕÞÞ sin4

�
θ

2

�
; ðB4Þ

which has a maximum at ðθ ¼ π;ψ − ϕ ¼ −π=4Þ.
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