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The behavior of 7° meson properties in the presence of a uniform external magnetic field is studied in the

context of a nonlocal extension of the Polyakov-Nambu-Jona-Lasinio model. The analysis includes the 7°

mass, the effective 7°-quark coupling and the pion-to-vacuum hadronic form factors, both at zero and finite
temperature. Numerical results are compared with previous calculations carried out within the local NJL
model, when available. The validity of chiral relations and the features of deconfinement and chiral

symmetry restoration transitions are discussed.
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I. INTRODUCTION

The behavior of strongly interacting matter under the
influence of intense magnetic fields has become an issue of
increasing interest in the past few years (see [1-3] and
references therein). This is mostly motivated by the
realization that the presence of strong magnetic fields
should be taken into account in the analysis of some
relevant physical systems, e.g. in the description of high
energy noncentral heavy ion collisions [4], or the study of
magnetars [5]. From the theoretical point of view, address-
ing this subject requires to deal with quantum chromody-
namics (QCD) in nonperturbative regimes. Therefore,
present analyses are based either in the predictions of
effective models (see e.g. Refs. [6-9]) or in the results
obtained through lattice QCD (LQCD) calculations. In this
work we focus on the effect of an intense external magnetic
field on various 7% meson properties at zero and finite
temperature. This issue has been studied in the past years
following various theoretical approaches for low-energy
QCD, such as Nambu-Jona-Lasinio (NJL)-like models
[10-17], chiral perturbation theory (ChPT) [18,19] and
path integral Hamiltonians [20,21]. In addition, results for
the light meson spectrum under background magnetic
fields at zero temperature have been obtained from
LQCD calculations [22,23].
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In Ref. [24] we have studied the behavior of the #°
meson mass and one of its axial decay form factors in the
presence of a uniform static magnetic field at zero temper-
ature, within a relativistic chiral quark model in which
quarks interact through a nonlocal four-fermion coupling
[25]. This so-called “nonlocal NJL (nINJL) model” can be
viewed as a sort of extension of the NJL model that intends
to provide a more realistic effective approach to QCD.
Actually, nonlocality arises naturally in the context of
successful descriptions of low-energy quark dynamics
[26,27], and it has been shown [28] that nonlocal models
can lead to a momentum dependence in quark propagators
that is consistent with LQCD results. Moreover, in this
framework it is possible to obtain an adequate descrip-
tion of the properties of light mesons in the absence
of an external electromagnetic field at both zero and
finite temperature [28-39]. Interestingly, as shown in
Refs. [40,41], nINJL models naturally allow to reproduce
the so-called inverse magnetic catalysis (IMC) effect,
previously observed from LQCD results. According to
these calculations, the chiral restoration critical temperature
turns out to be a decreasing function of the magnetic field
B. In fact, the observation of IMC in LQCD calculations
[42,43] represents a challenge from the point of view of
theoretical models, since most naive effective approaches to
low energy QCD (NJL model, ChPT, MIT bag model,
quark-meson models) predict that the chiral transition
temperature should grow when the magnetic field is
increased [1-3]. In addition, nINJL models lead to a B
dependence of the 7° mass that is found to be in good
agreement with LQCD results [24].
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The aim of the present article is to extend the work in
Ref. [24], considering some additional properties of the
magnetized 7° mesons. As shown in Ref. [44], in the
presence of a constant magnetic field B the pion-to-vacuum
vector and axial vector amplitudes can be in general
parametrized in terms of three “decay” form factors.
One of them, ff:gm, corresponds to the pion decay constant
usually denoted by f,. The behavior of this form factor
under the magnetic field has already been analyzed in
Ref. [24], together with those of the masses m o and m,,
and the quark-meson coupling g,0,,. The other two decay

form factors are a second axial decay constant, ff;,‘”,

associated to momentum components that are
perpendicular to the magnetic field, and a vector decay
constant fi\o/). As shown in Ref. [10], another relevant
feature induced by the presence of the external magnetic
field is the fact that the z° dispersion relation turns out to be
anisotropic, implying that the movement along the direc-
tion perpendicular to the magnetic field is characterized by
a diffraction index u,o which is in general different from
one. In this way, to complement the analysis carried out in
Ref. [24], in this work we study the magnetic field

dependence of ff:gl), ff:ol) and u 0. In addition, we extend
the analysis to a system at finite temperature 7', considering

the thermal behavior of these quantities and also of the

masses my and m,, the coupling g, and the decay

constant ffﬁ”), which have been studied in Ref. [24] only
for T =0.

This article is organized as follows. In Sec. II we show
how to obtain the analytical equations required to deter-
mine the relevant z° properties at zero temperature in the
presence of the magnetic field. Our calculations are based
on the formalism developed in Refs. [24,40,41], which
make use of Ritus eigenfunctions [45]. In Sec. III we show
how to extend the analysis in Sec. II to a system at finite
temperature, taking also into account the coupling of
fermions to a background color field (the so-called
“Polyakov loop nINJL model”). In Sec. IV we quote
and discuss our numerical results, while in Sec. V we
present our conclusions. Finally, in Appendixes A and B
we outline the derivation of some of the expressions quoted
in the main text.

II. THEORETICAL FORMALISM

The Euclidean action for the nonlocal NJL-like two-
flavor quark model we are considering reads

se= [ o) =i+ mowx) - S b ()
[ i |

Here m,. is the current quark mass, equal for u and d quarks,
while the currents j,(x) are given by

Jalx) = / d2G(2)i (x + §> Ty (x - §> e

where I', = (1, iys7). The function G(z) is a nonlocal form
factor that characterizes the effective interaction. The action
can be “gauged” to incorporate couplings to electromag-
netic, vector and axial vector gauge fields A, W, “(x) and

Wi (x), respectively. This is done by replacing
P I ¢ awrCa
d,»D,=0,—-iQA,(x) - EFCT WE(x),  (3)

where O = diag(q,.q4), with ¢, =2¢/3, q, = —e/3,
C=V,A a=1,2 3, TV=1 and I = ys. For this
nonlocal model, gauge symmetry also requires the replace-
ments [28,34,39]

w(x—2/2) > W(x.x —z/2)y(x - z/2),
w(x+2/2)" > yw(x+2/2)W(x 4 2/2,x), (4)

with
Wi(x,y) = exp [—i <Q / " de,AL ()
+%r0l)’df,,w,§~“(f)>}, (5)

where £ runs over an arbitrary path connecting x with y. As
it is usually done, we take it to be a straight line path.

As stated, we assume the presence of an external uniform
magnetic field B. Therefore, using the Landau gauge, and
choosing the x5 axis in the direction of E, we take Aﬂ to be
a static field given by A, (x) = Bx;5,,.

Since we are interested in studying light meson proper-
ties, we carry out a bosonization of the fermionic theory,
introducing scalar and pseudoscalar fields o(x) and 7(x)
and integrating out the fermion fields. The bosonized action
can be written as [24,28,39]

Spos = —logdetD + ZlG/ d*x[o(x)o(x) + 7(x) - Z(x)],

(6)
where
D(x, x') = 6 (x — x') (=i + m,)
+G(x =X )roW(x, ¥)ro[o(%)
+iysT - 7(X) V(X X), (7)

with ¥ = (x +x’)/2. We expand now the meson fields
around their mean field values. Since the external magnetic
field is uniform, one can assume that the field o(x) has a
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nontrivial translational invariant mean field value &, while
the vacuum expectation values of pseudoscalar fields are
zero. We separate the mean field piece of the first term of
the action in Eq. (6), writing
—logdetD = —Trlog Dy — Trlog(1 + Dy'6D), (8)
where the traces run over color, flavor, Dirac and coor-
dinate spaces. The form of the mean field operator D, in
the presence of the external magnetic field has been studied

in detail in previous works, see e.g. Ref. [41]. It can be
written as

Dy = diag(D)™ (x,x), DY (x, X)), )

where

D (') = 89 (x = ') (=i = g Bxiyz + m.)
+6G(x — x) expli®(x, x')]. (10)

Here @/ (x,x") = q;B(x, — x)(x; +x})/2 is the so-called
Schwinger phase, and a direct product to an identity matrix
in color space is understood. The mean field quark
propagators S (x, x") = [D}(x,x")]~" can be obtained
following the Ritus eigenfunction method [45]. As shown
in Ref. [41] (see also the analysis carried out within the
Schwinger-Dyson formalism in Refs. [46,47]), it is possible
to write the propagators in terms of the Schwinger phase
and a translational invariant function, namely

eip'(X—X/)S‘f(pl, pH),
(11)

(p3, P4)- The expression of

4
Sy (x,) = explidy (x..x")] / (Czlzrl)j“

where p, = (P1,p2) and p| =
S¢(py,p) in the nINJL model under consideration is
found to be [41]

S(pi.py) = 2exp(=p3/lq,Bl) ZZ[

k=0 1=
x (A, =Byl py-v))Li, (207 /lasBl)

+2(=DXC, =Dy py 1))

xpiriLlL(2pi/laB)|at (12)

where the following definitions have been used. The
perpendicular and parallel gamma matrices are collected
in vectors y | = (71,72) and y| = (73,74), while the matri-
ces A* are defined as A" = diag(1,0,1,0) and A~ =
diag(O, 1,0,1). The integers k, are given by ki =

—1/2+5s;/2, where s, = sign(q;B). The functions

X,fpf‘ with X = A, B, C, D, are defined as

e Ve )

Akﬁl’u - kl’HCkPH +pH kPH (13)
pE.f F.f

B’w’u - Ckl’u MkPHDkPH (14)

2k|qB| + pf + My M)

A:t’f o k,pH (15)
kpp — ! ’
Ay, Py
Mi-f _ M:F-f
At kp k.p)
by == (16)
k.p
where
+.f +.f S
kp‘ (2k|QfB|+p|| MkaMka) +pH(Mka Mka) .

(17)

The functions M’ k’;‘

dependent) dynamical quark masses in the presence of the
magnetic field. They are given by

M = 4n (_l)kl/dzlu
“P1 gy B (27)?

x exp(—p?i/lqsBl)Ly,(2p%/|qsBl).  (18)

play the role of effective (momentum-

M(pi + p})

where
M(p*) = m. + 69(p?), (19)

g(p?) being the Fourier transform of the nonlocal form
factor G(x). In Eqs. (12) and (18), L (x) and L} (x) stand for
generalized Laguerre polynomials, with the convention
L_i(x) =L, (x) =0. The relation in Eq. (18) can be
understood as a Laguerre-Fourier transform of the function
M(p?). Tt is also convenient to introduce the Laguerre-
Fourier transform of the form factor g(p?),

Az d?
2f P
= (-1
Ger, = g8 (=Dk / (2 >2g(m +pj)
x exp(—p1/|q;B|)Ly,( ), (20)
thus one has
My, = [1 =8, lme + 6417, (21)

The transform in Eq. (20) can be inverted to get
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9(p? + pf) = 2e7 P15 " (~1 )k
k=0

. A
gt L, (207 /|asB)).
(22)

To study the mass and decay form factors of the neutral
pion, we expand the operator 6D(x,x’) in powers of the
meson fluctuations and the external vector and axial vector
fields, keeping up to linear terms in o7, W,‘:‘3 and W,’j’3. We

obtain

6D(x,x') = 6D, (x,x") + 5D(u‘;) (x,x') + 5D$) (x,x")
+ 6Dy 4 (x,x7), (23)

where

6D, (x,x') = iyst’ exp[i®(x, x')]g(x — X' )ém3(X), (24)

3
oDy (x.x) = =6 (x =x) T > [y WEE. (29)

C=V,A
T3

5D$> (x,x) = iaEexp[id)(x, x)]g(x = x')

X Z U3 (x,x) —
C=VA

U (x.x)). (26)

8Dy ,(x,x') = —%exp[icb(x,x’)]g(x -x)

X Z ysTCIUC3 (x, %) — U3 (%, x)|675(%).

C=V A
(27)

Here we have used the definitions ¥ = (x +x')/2, '€ =
}/0FC70 and

UC3(x,y) = / " de,WE (). (28)

Given a definite model parametrization, the value of &
can be found by minimization of the effective action at the
mean field level. The corresponding “gap equation” reads
[40,41]

/ngq kpy- (29)

— N [se]
PV

A. Pion field redefinition and quark-meson
coupling constants

The calculation of the z° mass in this model has been
previously carried out in Ref. [24]. As shown in that paper,
the piece of the bosonized action that is quadratic in the
neutral pion fields can be written as

1 1
Stwlsnr = 3 THDF 02Vl s+ 55 [ Oma(tom(=1)
[J_IH

1

- 2/N [F(r, tﬁ) + é]5n3(;)5ﬂ3(_t), (30)

where for integration in two-component momentum spaces
we use the notation

/W /dzp £q d2)2 a1

Choosing the frame in which the z° meson is at rest, its
mass can be obtained as the solution of the equation
1
—+ F(0,-m3,) = 0. (32)
G n
To normalize the pion field we can expand the action in
Eq. (30) around the pion pole (¢, = 0, tﬁ = —m2,) up to

first order in momentum squared. We define

_dF(ti,tﬁ)
[ 2 ’
T
dF (5, 12)
g = , (33)
dry 2 Otﬁf ]2!0

and renormalize the pion field according to 73(g) =
9ngq73(q), Where g, = Zﬁ/ ? is the meson-quark effec-
tive coupling constant. Thus, one has

a 1 ~
sp' =3 | om(-a)hat +af - mons(a). (4
q.4|
where
z
“i°:%' (35)

From the above expressions of the quark propagators and

f=ud k=090 A== 0D, after some straightforward calculation we find
|
F(2 ) = —162N 1 2 2 / 22
(3.8)=—162Nc Y 5 9(q +aD)gl(p'. + pL— 1) + ]
H (qB) , l I
f=ud f qLpLp, 9|
x exp[i2¢(q .. p1. P tL)/(Q_fB>]trD [Sf(PJ_’ CIW)YSSKPL QH)}’S], (36)

where the trace is taken over Dirac space. We have defined qﬂt = q| =% t)/2, while the function ¢ in the exponential is given by
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d(qi.pi. P t) = PP+ ai(Ph = p2) = Piph — @2(Py — p1) + talgy = (py + P1)/2) = ti(q2 = (P2 + P5)/2). (37)

As stated in Ref. [24], the trace in Eq. (36) is given by

= / A.f(AB)
wp[Sp(praf)rsS; (Pl ap)rs] = 8e” PLtrD/Br N " (—1)kek [ Fkk]f pr ‘kax (2p1/Bs)Ly,(2p't/By)
KR=0
cp
+ 8 (P POLLL (2P1/B)LY, (202/By) (38)
with

LFXY) _ paf Lf PAf

Fuavgrar = Xicar K 4 + (g -ap)¥ war Wy (39)

For simplicity we use the notation By = |g/B|.

To work out the integrals in Eq. (36) it is convenient to use the Laguerre-Fourier transforms introduced above. In this way,
the integrals over perpendicular momenta can be performed analytically. As found in Ref. [24], the expression for
F(0,—m?3,) is

/2

,1f A.f(AB) —A.f A f(CD)
(0 m ZBf Z[; }ng%\ kunkkq‘ qa +2kB kqu Fkqu qH”’H 72!0' (40)
I 2=
The normalization constant ZH can be obtained by derivation on the rhs with respect to IH
To obtain an expression for Z7! one has to expand F (2, tﬁ) up to first order in 73 . The calculation of the corresponding
integrals over perpendicular momenta is sketched in Appendix A. One finally gets

N
71— c Af A f(AB) —if pAf(CD)
Z / kl]qukq - +2kB qu Fkkq qr )
—id k=0 Y ) )= e I
. N Af Af
x [ka(giL g, + 9c0,) + (R D600 + 9l o)) = (614, + 965

Af Af A f(AB) Af —4.f\ 4f(CD)
X (g, + G F il + 2Bk = D6+ gD T (41)

B. z° decay form factors

The 7°-to-vacuum amplitudes for vector and axial vector quark currents are given by

3 1'3

Hy"(x.p) = <O|l/_/(x)7;4%l//(x)|”0(ﬁ)>’ Hy(x, p) =01 (x)r,75 =

5 v (0)l70(p))- (42)

As discussed in Ref. [44], in the presence of an external magnetic field these currents can be written in terms of three form
factors. Following the notation in Ref. [48], in Euclidean space we have

HY(x, p) + Hy(x, p) =F (P4 F p3)e””,
H{®(x.p) £ iH;"(x, p) =
HYO(x. ) £ HY(x. B) = =if ") (pa £ p3)e”™,
HYO(x, p) £ iH3O(x, p) = —if s (p1 + ipy)ei?™, (43)
If we write the corresponding piece of the bosonic action as
Swbwse, = 3 [ FEOWE (0ms(-1), (44)
C=vV.AJIL

it is easily seen that
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v _ Il\/ 2 The functions F’ f(r) can be separated into three pieces
% _ .
fa 2 (153 (1) = 1aF5 (1)) (45) FE'(I)(t) with i = LII, III, coming from the various con-
| tributions to the effective action, namely
n Zl/2 S{)OS|W5IT = _TT[DEI‘SDWJ[]’ (48)
Fal =iy, Fi\(1), (46) w
! Sboslwsn = Tt[Dy' 6Dy Dy 6D, (49)
") Zi/z S lwsr = Tr[Dy' 8Dy D' 6D, (50)
Al A
— iy R 47 .
S : 2t 1() (47) The explicit calculation of F5'”(¢) leads to
|
1 N, <
RO =23 / l9((a = r/2)) = g((a = /2 + 1/2)wp[Sp(q 1. q)rsT W (re= 1), (1)
f=ud?aimiairs
FO oy g 1 2 : '
W (1) = =8N Y o 9@ expli2p(qr. p1. P 10)/(arB)luplSp(p1. g )T, (P a))rs). (52)

f=ud P Jayapir’,

C,
Fy

f=u.d B f

x tp[S;(p L. a TSe(p'sa))rsHa((p + P — a0 —ri/2)
—qL—r /24 1/2)° +

-g9((pL+

where
V4
h,(q.t—q) = /d“z exp [—i(t — q)z] / de, exp [it?]
0
(54)
and

- paylqy +1,/2)
(1 < 2). (55)

@@L PP t) = palqr —11/2)
— g\t — paph —

As in the case of the calculation of the z° mass and wave
function renormalization, the integrals over transverse
momenta can be performed analytically after Laguerre-
Fourier transforming the nonlocal form factor functions.
The steps to be followed in each case are outlined in

|

R DB

9 2=+

N f=wd = =0

1 .
W(t)=-82%Nc Y — / o) expli2g(q.. pu.py.11)/(q;B)]
qrqLripLp’y

+ (g, —r1/2)%)
(qy—r/2+1/2)*)h,(r.t =), (53)

Appendix B. In what follows we just quote the results of
this rather lengthy calculation. The form factors are
evaluated at the pion pole i.e. t” = —m? 05 12l =0.

The calculation of f A1) has been previously performed
in Ref. [24], where the contributions from F), <)( 1),

Fﬁ'(H)(t) and F,f'(m)(t) are quoted. Summing all three
contributions one has [24]

Ml pAIAB)
tH'F( |t2 0—’_ZBJ‘Z/ZM quFk"’quqi

q| 1=
—,1 2.f(CD) A
+2kB;M kq{ i Aqu‘u). (56)

Taking into account this result, and making use of Eq. (32)
and the gap equation (29), one arrives at [24]

f (Fﬂf(AB) —|—2kB Fﬂf(CD)‘IZ

ka) " kg gy kk.qy qj (57)

2 .
—m
20

In the case of fftp, it is seen that F,, 0 (t) vanish identically, and the contribution from F), (1) (1) is zero. From F,Y'(H) (1)

one obtains
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vl 2Nc (gj 1) B Chl
=z e st S [ s (i, o),
f=ud k=04 || I i o
Finally, for ffrﬁ”) the calculations sketched in Appendix B lead to
(D
t- P 29+,
e a Sy [ [ a
1 —0 i—+
2f Af Af Pf
+ B, [(kﬂ (g, g”k.q;‘) +k (g’k% v )]} (59)
A,(I1) o
t, - F(1) _ .N¢ Af TS Af Af
2 , Yo Z Bysg Z A [2]( IeaHicq: g aray ki (gk‘l*q” L q“)Hk-lkﬁ’qui} ' (60)
L r1=0 f=ud k=0 Y4 A==+
A, (I 0
t o F() oNc / {( if Af(AB) —2f A f(CD)
=i B FHUD 4 ok g F )
2 220 4z f;d f kZ:; o = Jiea) ™ ik, 4 FIray 44
WS Af f
/ app (29, + By |+ (1 + 900 ) (9 + 98 )]
ky I (AB) ol (AB)
) [(gk Lg qu)( k=lkqiar — Flicig ara ﬁ> +2k_;By
S +f(CD) _ g+ f(CD) !
(gk L + gk ) ) (Fk—lk,qH qﬁ - Fkk—l,qH qﬁ)i| /0 dﬁ(.g, + + g,k 1 q/iH) } (61)
where g s ‘1H’ g’ kj:iu indicate derivations with respect to qﬁ, and we have defined
ah = qp+pr /2, Y =AM C (g - qr)BY DY (62)
il [ I K.qfar — Ckal K g [ e g X
Summing these three contributions, and using the relation
Af Af Af
(g/k-‘rl ) + dk qH) gk-‘rl,qH - gk,qH (63)
(which arises from the properties of Laguerre polynomials), we arrive at a final expression for ff:ou), given by
L) 12N¢ - Af = Af pAf(AB) —0.f A f(CD)
fﬂ'o - ZH E Z Z/ Z{ |:_Akqu (gk unkkq qy +2kB kqu Fkkq q; )i|
f=ud =0 Y1 i=% U =
1 : : :
[l 0 - ) -4 )
A PPkt 1) Ty ™ Iiay, \eqy, ™ T-1.q5
— A gt Af
2Bysyh [Zkgk o . i —ki (gk Lyt 9k 4\\)Hk_zkz,qﬁq[}
_kir/ ar 1.f(AB) 1.f(AB)
Y [<9k g T 9k qH> (Fk—lk,qH a Fkic—l_qH qﬁ) +2k,Bf
4.f(CD) 2.(CD) : i Af
(gk g T s a) ) (Fk—lk,qH g7~ k-l qg)} A dﬁ(gk,q;H _gk—l.q;)} P (64)

=—m
20
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C. Chiral relations

It is interesting to study the relations involving form
factors and renormalization constants in the chiral limit,
m. — 0. First, taking into account the expression in
Eq. (40), the gap equation (29) and the relation

Af Af(AB) afpafcpy 1 agg SAf
k’unkk 99) +2kByg Ik.q) Fia, g (Ak a ™ By ‘Iu)
(65)
it is seen that
F(0.0) = — L4 MeNe S p 5 i
(©. )__5+?7Z fZ Ik.qPkay
f=ud k=074 =%
(66)

Thus, in the limit m, — 0, the second term on the rhs
vanishes and from Eq. (32) one obtains my =0, as
expected.

The validity of the Goldberger-Treiman relation

(Al -12s
Fao =20

(67)
!

N
=25 Yoy

k=0

9 A=

and the Gell-Mann-Oakes-Renner relation
m(fu + dd)y = —m2, £ (68)

in the presence of the external magnetic field have been
shown in Ref. [24]. In these equations, subindices 0
indicate that the quantities have to be evaluated in the
chiral limit. Now let us take into account the expression for

F4Y in Eq. (64). For m, = 0, mp = 0, it is seen that the

first term in curly brackets is zero owing to Eq. (65), while

FXY) .
414
under the exchange between k and k’. Moreover, it is easy
to see that

the last two terms also vanish since F* P is symmetric

Mt
ALf ke
4|

from which the piece proportional to Hi}z’q” a also vanishes.
One gets in this way

On the other hand, from Egs. (41) and (65) it is seen that in the chiral limit one has

N o 1. .
-1 __*VC Af Af Af Af
Zi0= 3, > / > ka0 g 0+ 6 4,0) [5_0 (Agp0 T AL q0)

f=u.d k=0 V4| j=+

Af Af A.f(AB)
- (gkﬂ"qH*O + gk,,l.qu ,0>F

After some algebra, it can be shown that the factor in square
brackets is equal to 2B (k; — k_ )Hﬁ ka a4 o/ 00 Since
k; —k_; = sp4, by comparing with Eq. (70) one finally
gets

AL) _ 172
155 =25 2750. (72)
Thus, taking into account Eq. (67), one has
(AL)
fﬂo,() ZH,O 2
W = Z— = uﬂo’o. (73)
f,,o,o 1.0

This result has been also found in the framework of the
local NJL model in Ref. [48] and (using a different

kik_3.q)q).0

J
Z’lkﬂ gk qu 0 +gk 4| o)H k_ky.qy4.0° (70)
Af(CD
2k—iBf(9k, 40 +9k e 0>Fklk(,ﬁ-,q‘?q”,o . (71)

notation) in Ref. [10], where it is obtained from a modified
PCAC relation.

III. FINITE TEMPERATURE

In this section we extend the previous analysis to a
system at finite temperature using the standard Matsubara
formalism. To describe the confinement/deconfinement
transitions we include a coupling between the fermions
and the Polyakov loop (PL), assuming that the quarks move
on a uniform background color field. This type of inter-
actions has been previously considered in nonlocal models
[35-38,41], as well as in the local Polyakov-Nambu-Jona-
Lasinio (PNJL) model [49-52] and in Polyakov-quark-
meson models [53,54]. The background field is given by
¢ = i96,0GuA"/2, where Gy are the SU(3) color gauge
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fields. Working in the so-called Polyakov gauge the matrix
¢ is given a diagonal representation ¢ = (343 + ¢pgdg, and
the traced Polyakov loop ® = 1 Trexp(i¢p/T) can be taken
as an order parameter of the confinement/deconfinement
transitions. Since at mean field @ is expected to be real
owing to charge conjugation symmetry, one has ¢ = 0 and
® = [1 +2cos(¢p3/T)]/3 [52]. In addition, we include a
Polyakov-loop potential U (®, T') that accounts for effective
gauge field self-interactions. The mean field grand canoni-
cal thermodynamic potential of the system per unit volume
under the external magnetic field is given by [41]

lq BI
a1 S S
dp3 spf 2
X/ 2 [ln( Plnc T Molp,,.”)
+Zln Cppe } +U(D.T), (74)
where A/ is the function in Eq. (17), and we have

Ko e
defined p Plne = (p3’ p4nc)’ with Panc = (21’[ + 1>ﬂT + ¢c-
The sum over color indices runs over ¢ = r, g, b, and color
background fields are (¢,, ;. ¢) = (¢3. —3,0).

Since Q) is divergent, it has to be properly regularized.
We take the prescription followed in Ref. [41], in which one
subtracts to Q' the thermodynamic potential of a free
fermion gas, and then adds it in a regularized form. The
regularized potential is given by

QII\;IF}\ Jreg Q%Fﬁ Qge; + eree reg‘ (7 5)

In fact, the “free” piece keeps the interaction with the
magnetic field and the PL. The explicit expression of

Qj7"%, for which the Matsubara sums can be performed

analytically, can be found in Ref. [41].
The form of the PL potential is an additional input of the
model. In this work we take a widely used polynomial form
based on a Ginzburg-Landau ansatz, namely [51,55]
UDT)_ balT) g by s
T 2 3 4

@, (76)

where

bz(T)_aoﬂl(TT)Hz(TTO) +a3<%>3. (77)

The numerical values for the parameters a; and b;, which
can be obtained by a fit to pure gauge lattice QCD results,
can be found in Ref. [51]. This potential leads to a first-
order phase transition at T,, which becomes a further
parameter of the model. In the absence of dynamical

quarks, form lattice QCD one would expect a deconfine-
ment temperature of about 7y = 270 MeV. However, it has
been argued that in the presence of light dynamical quarks
this parameter should be reduced. For definiteness we will
take T, ~ 200 MeV, as suggested in Refs. [53,54].

The values of 6 and ¢5 at the mean field level can be
found by minimizing the regularized thermodynamic
potential, i.e. by solving the coupled equations:

aQMFA.reg aQMFA,reg
—2L -9, —EL _=o. (78)

85 8453
Finite temperature meson masses and decay constants can
be then calculated from Egs. (32), (40), (57), (58) and (64),
following the prescription

NC/ (q.1) =T Z 2/—1” Qe 1) (79)

n=—oo

and taking the external momentum 7| = (im,(T),0).
Notice that these mass values correspond to spatial “screen-
ing masses” for the zeroth bosonic Matsubara mode
(t4 = 0). The reciprocals mo(T)~! can be understood as
the persistence lengths of this mode, in equilibrium with the
heat bath.

IV. NUMERICAL RESULTS

To obtain numerical predictions for the behavior of the
quantities defined in the previous sections, it is necessary to
specify the model parameters and the shape of the nonlocal
form factor g(p?). We consider here the often-used
Gaussian function

9(p*) = exp(=p*/A?). (80)
In general, the form factor introduces an energy scale A that
represents an effective momentum cutoff. This constant has
to be taken as a free parameter of the model, together with
the current quark mass m,. and the coupling constant G in
the effective Lagrangian. In the particular case of the
Gaussian form factor one has the advantage that the integral
in Eq. (20) can be performed analytically, which leads to a
dramatic reduction of the computer time needed for
numerical calculations of meson masses and form factors.

As in Refs. [40,41], we fix the free parameters by
requiring the model to reproduce the empirical values (for
vanishing external field) of the pion mass and decay
constant, as well as some phenomenologically adequate
values of the quark condensate (ff) (f = u, d). Some
parameter sets, corresponding to different values of the
condensate, can be found in Ref. [41]. Here we take
m, = 6.5 MeV, A = 678 MeV and GA? = 23.66, which
lead to (ff) = (=230 MeV)?. This will be called set I. As
shown in Ref. [41], for this parametrization the behavior of
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quark condensates with the magnetic field, at zero temper-
ature, are found to be in very good agreement with lattice
QCD results. These parameters have also been used in the

previous calculation of m  and fl(gH) for nonzero B carried
outin Ref. [24]. In order to test the sensitivity of our results to
the parameters we also consider two alternative sets, which
correspond to quark condensates (ff) = (=220 MeV)? and
(ff) = (=240 MeV)? in vacuum. The latter are denoted as
sets II and III, respectively.

0.15 T T T T

n

m, [ GeV]

) [GeV]

(UAII

m

In Fig. 1 we show our numerical results for various
quantities associated with the neutral pion at zero temper-
ature, as functions of eB. Solid red lines denote the results
from set I, while the limits of the corresponding gray bands
are determined by the results from set II (dashed lines) and
set III (dotted lines). For comparison we also include in the
figure the numerical results obtained within the local NJL
model, quoted in Ref. [48]. Solid blue lines correspond
to a parametrization leading to a constituent quark mass
M =350 MeV (for B = 0), while the limits of the gray

gn“qq

0.20 T T T T

0.15 | N

[GeV]

(AL)
1.[(J

Y— Y
0.05 i
OOO 1 1 1 1 000 1 1 1 1
010 T T T T 12 T T T T
0.08} NIL 257
S 006 Z= ]
© S
o —_,,—/’,/ 3°,=
— A nINJL
S., 004 7z -
=
0.02} . ozl |
000 1 1 1 1 00 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
eB [GeV?] eB [GeV?]
FIG. 1. Neutral pion properties as functions of eB. Solid red lines correspond to set I, while the limits of the gray bands correspond to

set II (dashed lines) and set III (dotted lines). Solid blue lines and associated gray bands correspond to local NJL results (see text).
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bands correspond to M = 320 MeV (dashed lines) and M =
380 MeV (dotted lines). The values of the quark-antiquark
condensates for these parametrizations of the NJL model are
(Gq) ~ (-243 MeV)?, (=236 MeV)? and (—250 MeV)?,

respectively. It should be noted that the results for the pion

mass and the ff:o‘”)

obtained in Ref. [24].

From the graphs in Fig. 1 it can be said that in general our
results do not show a large dependence with the model
parametrization. As shown in the upper left panel in Fig. 1,
the dependence of the 7° mass with the external field for the
nonlocal effective model is significantly stronger than in
the case of the local NJL approach. In the upper right panel
of the figure we plot the curves for the effective coupling
constant g,o,,, which shows different behaviors for nINJL
and NJL models. In the left and right central panels of the
figure we quote the curves corresponding to the axial form
factors. Notice that for B =0 one has spacial rotation

form factor have been previously

symmetry and both ff;é'“ and ffzf)u) reduce to the usual 7°
decay constant [see Eqs. (43)]. As the magnetic field

increases, ff;gH) gets enhanced and ff:ﬁL) gets reduced.
This is in qualitative agreement with the results for the local
NJL model, although for the latter the B dependence is
noticeably milder The lower left panel shows the behavior

of the vector form factor fi‘n/) as a function of eB. This form

factor is zero at vanishing external field and shows a
monotonic growth with eB, with little dependence on the
parametrization. In this case the growth is shown to be
somewhat steeper for the local NJL. model. Finally, in the
lower right panel we quote the curves for directional
refraction index u,, which is found to get reduced for
increasing external field.

The results for the above discussed quantities, together
with those obtained for (gg) (for the analysis of conden-
sates and related quantities, see Refs. [40,41]), allow us to
check the validity of the chiral relations in Egs. (68) and
(73). They are found to be satisfied within 5% and 0.2%
accuracy, respectively, for eB up to 1.5 GeV? (for definite-
ness, we have considered parameter set I). In particular, the

opposite behavior of f](;gH) and f fﬁl) with the magnetic field

can be understood from Eq. (73), taking into account that
u,0 becomes significantly reduced for increasing B. In the

NJL, it has also been shown that the relation ff:o/) =

eB/(872f%) holds in the chiral limit [48]. We have
checked this relation numerically in the nINJL model,
finding that it remains only approximately valid (that is,
within a 15% accuracy) for the chosen range of e¢B.

We turn now to our results for a system at finite
temperature. As expected, at some critical temperature
T.(B) the system undergoes a crossover transition in which
chiral symmetry is partially restored. Moreover, as shown
in Refs. [40,41], this model leads to inverse magnetic

catalysis, in the sense that 7', is found to be a decreasing
function of B. This is in agreement with lattice QCD results
[43]. It has been also shown that there is a very small
splitting between chiral restoration and deconfinement
transition temperatures, the latter being defined according
to the behavior of the Polyakov loop @ (see e.g. Ref. [41]
for details).

Regarding the quantities we are interested in here, in
Fig. 2 we show the behavior of the z° and ¢ meson masses
(upper panel), and the normalized z° axial and vector decay
form factors (lower panel) as functions of the temperature,
for three representative values of the external magnetic
field, namely eB = 0, eB = 0.6 GeV? and eB = 1 GeV>.
The curves correspond to parameter set I and a polynomial
Polyakov loop potential, as discussed in Sec. III. It can be
seen that for nonzero B the masses show a similar
qualitative behavior with T as in the B = 0 case. The 7°
mass remains approximately constant up to the critical
temperature, and 7° and ¢ masses match above T, as
expected from chiral symmetry. For large temperatures it is
seen that the masses get steadily increased, the growth
being dominated by pure thermal effects. As stated, the
critical temperature gets lower for increasing B. The critical

1.0 —— ————————7———
m
(o3
08~ ~— - - -~ — =~
0.6 |-
% eB=0
— = eB=0.6GeV
2 0.4 - 1... eB=1.0Gev]
02| mno
0.0 L | L | L |
—— 7
1.0 —
0.8 |- e
0.6 —_— f(aAII) (eB = 0)
[ | — — ™ (eB=0.6GeV?)
04 | —-— ¥ (eB=06GeV?)
- - 100 (eB =1GeV?)
02| =---1(eB=1GeV)
00 s | s | s |
0.08 0.10 0.12 0.14 0.16 0.18 0.20
T [GeV]
FIG. 2. 7° and ¢ meson masses (upper panel) and normalized

7° decay form factors (lower panel) as functions of the temper-
ature. Solid lines correspond to eB = 0, dashed and dash-dotted
lines to eB = 0.6 GeV2, and dotted and dash-dot-dotted lines to
eB =1 GeV2.
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temperatures for the chosen values eB = 0, 0.6 GeV? and
1 GeV? are found to be T,~ 180, 165 and 150 MeV,
respectively [41]. In the case of the form factors, the curves

for f (/?,H) show a drop at the critical temperatures, exhibiting
4 . . . . . .

once again a qualitatively similar behavior for zero and

nonzero external magnetic field. The curves for ff:()u),

normalized to ff:gj‘)(T = 0), differ from those of f(ﬂf,‘”) by
less than about 5%. For clarity they have not been included

in the figure. Finally, the vector form factor fi‘o/) also shows

adrop at T ~ T.(B). The transition in this case is somewhat

(All)
20

temperature. We recall that, at any temperature, ff:ol) is
zero for vanishing external field.

For completeness, in Figs. 3 and 4 we show the behavior
of meson properties as functions of e¢B for three represen-
tative values of the temperature, namely 7 = 0, 165 and
180 MeV. The results for 7 = 0, same as those previously
shown in Fig. 1, are included just for comparison. The
curves for 7 = 165 MeV can be understood by looking at
the results in Fig. 2, which show that this is the critical
temperature that corresponds to eB ~ 0.6 GeV?. Thus, the
pion mass and form factors in Figs. 3 and 4 show
approximately the same behavior as for 7 =0 up to

steeper than for f,", and occurs at a slightly lower

12k =0 .
= —T=165MeVv
10| ---T=180 MeV .

0.8 == — 4

0.6 -

[GeV ]
\
\
/
/
/
/
|

04| ]
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00 I s | s | s | s |
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0.8

. 06

04

0.2 -

0.0 s | s | s | s | s
0.0 0.2 0.4 0.6 0.8 1.0

eB[GeV?]

FIG. 3. 7° and ¢ meson masses (upper panel) and directional
refraction index (lower panel) as functions of eB, for three
representative values of the temperature.
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FIG. 4. From top to bottom, decay form factors fiﬁ”) , fl(:ou) and
ffzp as functions of eB, for three representative values of the
temperature.

eB ~0.5-0.6 GeV?. Beyond these values, as expected
from the results in Fig. 2, one finds an enhancement in
the pion mass and a decrease in the axial and vector form
factors. On the other hand, the curves for 7 = 180 MeV are
consistent with the fact that the chiral restoration transition
occurs at approximately this temperature for vanishing
magnetic field; the values of the pion mass and axial form
factors are well separated from the 7 = 0 values already at
B = 0. Finally, as shown in the lower panel of Fig. 3, the
behavior of the directional refraction index u,o is found to
be basically independent of the temperature.

V. SUMMARY AND CONCLUSIONS

We have studied the behavior of neutral meson proper-
ties in the presence of a uniform static external magnetic
field B, in the context of the so-called nINJL model. That is,
a nonlocal effective approach based on the Nambu-Jona-
Lasinio chiral quark model. Our analysis is a sort of
extension of the work carried out in Ref. [24], where the

pion mass and the decay form factor fi’gH), at zero temper-
ature, were studied in this same framework. In the nINJL

model the effective couplings between quark-antiquark
currents include nonlocal form factors that regularize
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ultraviolet divergences in quark loop integrals, and lead to a
momentum-dependent effective mass in quark propagators.
In order to obtain closed analytical expressions for meson
polarization functions and pion decay constants in the
presence of the external magnetic field, we have worked out
a formalism that involves Ritus transforms of the Dirac
fields.

We have first concentrated in the analysis at zero
temperature of the form factors associated with pion-to-
vacuum matrix elements of the vector and axial vector
hadronic currents. In agreement with the model indepen-
dent analysis in Ref. [44], it is seen that for nonzero B three
nonvanishing independent form factors can be defined.

Two of them, fiﬁH) and fiﬁ”

vector current, and the other one, ff:o/), to the vector piece.
We have also calculated the neutral pion directional
refraction index, u,0, which in general is different from
one. In addition, chiral relations are shown to be valid in the
presence of the external field.

For the numerical calculations we have considered the
case of Gaussian nonlocal form factors, choosing sets of
model parameters that were previously found to reproduce
the empirical values of the pion mass and decay constant at
B =0, and lead to values of quark condensates at nonzero
B that are compatible with lattice QCD calculations. Taking
into account external fields in the range from zero to
eB = 1 GeV?Z, from our numerical results it is noticed that
all studied quantities show a strong dependence with B. As
discussed in Sec. I'V, in most cases this dependence is found
to be significantly larger than that observed in the local NJL.
model [48]. On the other hand, it is seen that in general the
results are rather stable under changes in the model
parameters. It has been also verified that chiral relations
remain approximately valid for the chosen parameter sets.

We have extended the calculations to finite temperature
systems, including the couplings of fermions to the
Polyakov loop and a PL polynomial potential that accounts

J

, correspond to the axial-

F(£, ) = —1287°N¢ Z
f=ud fkk/ 0

A.f(AB) +.f(CD) 7f(1)
Z [1 [ZF""' X kk/ 4 0t Fui g7 N T, qd

for effective color gauge field self-interactions. As
expected, it is seen that the system undergoes a phase
transition corresponding to the restoration of SU(2) chiral
symmetry. The model predicts the existence of inverse
magnetic catalysis, leading to a decrease of the critical
temperature 7. with the magnetic field. Concerning the
behavior of meson masses, it is seen that the 7 mass
remains approximately constant up to 7.(B), while the ¢
meson mass begins to drop earlier. Beyond the transition
both masses become degenerate, as expected, and show a
thermal growth for large 7. Regarding the thermal behavior
of the form factors, we observe that they remain approx-
imately constant until temperatures close to 7T.(B) are
reached, and then they show sudden drops. Finally, the
directional refraction index u, is found to be basically
independent of the temperature. To provide an alternative
view, we have also included some graphs showing the
behavior of the studied quantities as functions of the
magnetic field, for some selected values of the temperature.
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APPENDIX A: DERIVATION OF THE
EXPRESSION FOR Z-!

We outline here the derivation of the relation in Eq. (41),
which can be obtained following a procedure similar to that
described in the appendices of Ref. [24].

It is easy to see that the expression in Eq. (36) can be
rearranged in the form

(A1)

Taking the Laguerre-Fourier transforms of the nonlocal form factors given by Eq. (20), and changing the integration

variables to dimensionless vectors u =
in the plane perpendicular to B, the integrals I Yo

2f0) _

0 o]
k+k’ § :
Tiie g, =

m,m'=0

f(1) 4 RS
Ty, = 2BH=DFF Y7 (=

!

m,m'=0

with

(2/3f piv=+/(2/By)p ., w=/(2/Bs)(pL—qu)and r| = \/(2/B)t,

£(0) F(1)
and Ikk/

are given by

2.4(0)

kk'mm’?

m+m ﬁf Af
Gm qum 4

m+m -1 +f —f ()
qugm’.qH kk'mm’?

(A2)
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210 ,
K\, = / exp[—w?] exp[—u® — u - w + isp(uywy = uywy )Ly, ()L, [( + w)?]
uvw

x exp[—v® — v - w +isp(v;wy = vw))| Ly (07) Ly [(0 4+ w)?]

LS
wcexp {1 0w 1+ 02) = o+ + 00

1
KD = = [ explmwlexploa? = uewt isylupws = )LL) (007
uvw
X (- v)exp[=v* — v w+isg(vywy — v3wy)] Ly (V) Ly [(v + w)?]
is

senp { 5L (s 1 02) = oo+ )] (a3)
Notice that Ki,f(n ,11, and K k,({,jnm do not depend on the magnetic field, but they do depend on the external momenta
ri = (ry, ;). Thanks to rotational symmetry we can choose r; = r and r, = 0. Using the polar coordinates

u; = ucos(a—p), vy = veos(a—y), w; = wcos(a),
U, = usin(a — f), vy = vsin(a —y), w, = wsin(a), (A4)
and performing a series expansion around r = 0 in the exponential, we can integrate the variable a. As seen from Eq. (33),

only the terms quadratic in the external momenta 12l will contribute to the perpendicular renormalization constant. Thus, we
have

/277 dacexp {isgr[2wsina + usin(a — p) + vsin(a —y)]/2}
0

>
=27 — % [? + % + 4w? + duw cos B + 4ow cosy + 2uv cos(f — y)] + O(r*). (A5)

The calculation of the remaining integrals can be performed with the aid of the useful relations

1 27
2—/ dOL, (x* + y* + 2xy cos 0) exp[—xy exp(i6)] = L, (*)L, (%), (A6)
7 Jo
1 o0 Ll 2 Ll 2 Ll 2 Ll 2
2 ), df cos OL,,(x* + y* + 2xy cos 0) exp[—xy exp(+if)] = —% [ ”(); )+ '{0} ) + ot (8 )n St )] (A7)
1 2 l 2 Ll 2 Ll 2 L] 2
— dfsin 0L, (x> + y* + 2xy cos 6) exp[—xy exp(£if)] =F 2y [LaG)En () _ Lyt ()L, 07) . (A8)
27 0 2 n+1 n
together with the orthogonality properties of the generalized Laguerre polynomials. This leads to
o _ B [ g i Lf oy
Livay = T3 {gk 0, 9k.q,Okk = B, [(2kz + 1gig, gicq, + (ki + g 019Kk,
AF ky+1
LA, A
+ k/lgk,{;ugkzl,q”]ékk’ G (9! a T ng qH) O -1
k
= el + o P+ O (A9)

and
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kB4 2
Fy f —.f - =f
T g, = 395 {gk a1y O + g [[_Sf(gk Lg| 9k+1 4 gk—l,qukJrl,q”)
- k(49k 4 !Jk qH + gk 1 qH Qk q + gk qukH 4 + 9k+1 4 Qk 4| + gk qngk 1 4 )]0kx
+ (k+ 1)(g0) 4 + gk+1 qu)(gk,},u + gk-:,-l,q“)ékk’—l
=, G+ ] ]+ O . (A10)
Replacing the results in Egs. (A9) and (A10) into Eq. (A1) one arrives at our final expression, quoted in Eq. (41).

APPENDIX B: CALCULATION OF CONTRIBUTIONS TO %"

To calculate the contributions 7, - F ﬁ'm and 7, - FA I o f ) we start by integrating ¢, - &, along the straight line path
¢, = Pz,. One has

ty-hy =-i2r)* Al dps® (ry = (1 = B9 (r = (1= B)r.). (B1)

Given the definition in Eq. (47), we perform a series expansion around #;, = 0 up to order 3 for each contribution to the
axial perpendicular decay constant, similar to the case of Z,. Thus, we find

iN 1
nr100 =503 [l [ st v i)+ o 6+ gl (B2)
f u,d
ty - FJ_( (1) = 87N Z / (¢%) exp[i2p0(q .. pi. P )/ (4/B)]
=u,d f plpﬂ]
x trD[Sf(pJ_» a)rs(tL - v)Sp(p'ap)rslles < (g —up)l, (B3)
1
- Fi(m)(’) = —i4752NCGZ -7 ) 9(612)CXP[Q%(QL,PL,PL)/(QfB)]
f=ud " f/PLP14
3
X th[Sf(Pb qw}’sgf(l?l’ QH)J’S] X Zfi(an Ui, ty), (B4)
pa
where
2i 1
fi= ——; tr % (qu —up)|(uy - tJ.)/O dplg (ui + q5}) — g (4l + g5 Dl (B5)
1
f2=2(uy - u)ZA dpl(1 = p)g' (uh + qyi) + Bg" (ul + g, (B6)
1
fs = [ =P+ ) +p 0+ ) (87)

In these expressions we use the notation q/‘;” =q +pt)/2, a5 =4q) — (1=p)1/2, uy =pi+p\ —qi,
and ¢o(q1.p1.P) = @(qL.pi.P.0).

To calculate the integrals over perpendicular momenta we follow a similar procedure as that described in Appendix A.
That is, we introduce the Laguerre-Fourier transforms of the form factors and the expressions for the traces. Afterwards,

performing appropriate changes of the integration variables, the integrals can be calculated using the orthogonality
properties of the generalized Laguerre polynomials, the properties in Eqgs. (A6)—(AS8), and the relations
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1 2r . 1
3 d0 cos(20)L,, (x> + y* + 2xy cos ) exp[—xye™?] = 3 [F,(x,y) + Fo_s(x,y)], (B8)
T Jo
1 2r . ’ ) o +i
7 dfsin(20)L,, (x* + y* + 2xy cos 6) exp[—xye' =] = 5 [F,(x,y) = Fo(x,¥)], (B9)
T Jo
and
/ ™ dw2e ™ [F () £ Fyyn (6, W)|[Fy (s W) £ Fyy (3, )]
0
= (6mn + 5mn—2)Fm(xv y) + (6mn + 5mn+2)Fm—2(x’ y)? (BIO)
7 e o) £ sl [Fa0) F Focalyw)
0
= (5mn + 6mn—2)Fm(xv y) - (5mn + 5mn+2)Fm—2(xv y)’ (Bll)
where
1 1
Fu(x,y) = Ly 1 () Ly1 (07) = =5 Ly () Ly (V) +——— Ly (x*) Ly (v7). (B12)

n+2

n+1

In the case of calculations of 7, - F ﬁ’m) (1), and fi‘o/) , some relations between the Bessel functions J,(x) and the Laguerre
polynomials are also required (see the appendices in Ref. [24]).

In this way, after a lengthy calculation, one arrives at the expression for fi(:ou) in Eq. (64).
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