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The behavior of π0 meson properties in the presence of a uniform external magnetic field is studied in the
context of a nonlocal extension of the Polyakov-Nambu-Jona-Lasinio model. The analysis includes the π0

mass, the effective π0-quark coupling and the pion-to-vacuum hadronic form factors, both at zero and finite
temperature. Numerical results are compared with previous calculations carried out within the local NJL
model, when available. The validity of chiral relations and the features of deconfinement and chiral
symmetry restoration transitions are discussed.
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I. INTRODUCTION

The behavior of strongly interacting matter under the
influence of intense magnetic fields has become an issue of
increasing interest in the past few years (see [1–3] and
references therein). This is mostly motivated by the
realization that the presence of strong magnetic fields
should be taken into account in the analysis of some
relevant physical systems, e.g. in the description of high
energy noncentral heavy ion collisions [4], or the study of
magnetars [5]. From the theoretical point of view, address-
ing this subject requires to deal with quantum chromody-
namics (QCD) in nonperturbative regimes. Therefore,
present analyses are based either in the predictions of
effective models (see e.g. Refs. [6–9]) or in the results
obtained through lattice QCD (LQCD) calculations. In this
work we focus on the effect of an intense external magnetic
field on various π0 meson properties at zero and finite
temperature. This issue has been studied in the past years
following various theoretical approaches for low-energy
QCD, such as Nambu-Jona-Lasinio (NJL)-like models
[10–17], chiral perturbation theory (ChPT) [18,19] and
path integral Hamiltonians [20,21]. In addition, results for
the light meson spectrum under background magnetic
fields at zero temperature have been obtained from
LQCD calculations [22,23].

In Ref. [24] we have studied the behavior of the π0

meson mass and one of its axial decay form factors in the
presence of a uniform static magnetic field at zero temper-
ature, within a relativistic chiral quark model in which
quarks interact through a nonlocal four-fermion coupling
[25]. This so-called “nonlocal NJL (nlNJL) model” can be
viewed as a sort of extension of the NJL model that intends
to provide a more realistic effective approach to QCD.
Actually, nonlocality arises naturally in the context of
successful descriptions of low-energy quark dynamics
[26,27], and it has been shown [28] that nonlocal models
can lead to a momentum dependence in quark propagators
that is consistent with LQCD results. Moreover, in this
framework it is possible to obtain an adequate descrip-
tion of the properties of light mesons in the absence
of an external electromagnetic field at both zero and
finite temperature [28–39]. Interestingly, as shown in
Refs. [40,41], nlNJL models naturally allow to reproduce
the so-called inverse magnetic catalysis (IMC) effect,
previously observed from LQCD results. According to
these calculations, the chiral restoration critical temperature
turns out to be a decreasing function of the magnetic field
B. In fact, the observation of IMC in LQCD calculations
[42,43] represents a challenge from the point of view of
theoretical models, since most naive effective approaches to
low energy QCD (NJL model, ChPT, MIT bag model,
quark-meson models) predict that the chiral transition
temperature should grow when the magnetic field is
increased [1–3]. In addition, nlNJL models lead to a B
dependence of the π0 mass that is found to be in good
agreement with LQCD results [24].
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The aim of the present article is to extend the work in
Ref. [24], considering some additional properties of the
magnetized π0 mesons. As shown in Ref. [44], in the
presence of a constant magnetic field B⃗ the pion-to-vacuum
vector and axial vector amplitudes can be in general
parametrized in terms of three “decay” form factors.

One of them, fðAjjÞ
π0

, corresponds to the pion decay constant
usually denoted by fπ. The behavior of this form factor
under the magnetic field has already been analyzed in
Ref. [24], together with those of the masses mπ0 and mσ,
and the quark-meson coupling gπ0qq. The other two decay

form factors are a second axial decay constant, fðA⊥Þ
π0

,
associated to momentum components that are
perpendicular to the magnetic field, and a vector decay

constant fðVÞ
π0

. As shown in Ref. [10], another relevant
feature induced by the presence of the external magnetic
field is the fact that the π0 dispersion relation turns out to be
anisotropic, implying that the movement along the direc-
tion perpendicular to the magnetic field is characterized by
a diffraction index uπ0 which is in general different from
one. In this way, to complement the analysis carried out in
Ref. [24], in this work we study the magnetic field

dependence of fðA⊥Þ
π0

, fðVÞ
π0

and uπ0 . In addition, we extend
the analysis to a system at finite temperature T, considering
the thermal behavior of these quantities and also of the
masses mπ0 and mσ , the coupling gπ0qq and the decay

constant fðAjjÞ
π0

, which have been studied in Ref. [24] only
for T ¼ 0.
This article is organized as follows. In Sec. II we show

how to obtain the analytical equations required to deter-
mine the relevant π0 properties at zero temperature in the
presence of the magnetic field. Our calculations are based
on the formalism developed in Refs. [24,40,41], which
make use of Ritus eigenfunctions [45]. In Sec. III we show
how to extend the analysis in Sec. II to a system at finite
temperature, taking also into account the coupling of
fermions to a background color field (the so-called
“Polyakov loop nlNJL model”). In Sec. IV we quote
and discuss our numerical results, while in Sec. V we
present our conclusions. Finally, in Appendixes A and B
we outline the derivation of some of the expressions quoted
in the main text.

II. THEORETICAL FORMALISM

The Euclidean action for the nonlocal NJL-like two-
flavor quark model we are considering reads

SE ¼
Z

d4x
�
ψ̄ðxÞð−i=∂ þmcÞψðxÞ −

G
2
jaðxÞjaðxÞ

�
: ð1Þ

Heremc is the current quark mass, equal for u and d quarks,
while the currents jaðxÞ are given by

jaðxÞ ¼
Z

d4zGðzÞψ̄
�
xþ z

2

�
Γaψ

�
x −

z
2

�
; ð2Þ

where Γa ¼ ð1; iγ5τ⃗Þ. The function GðzÞ is a nonlocal form
factor that characterizes the effective interaction. The action
can be “gauged” to incorporate couplings to electromag-
netic, vector and axial vector gauge fields Aμ,W

V;a
μ ðxÞ and

WA;a
μ ðxÞ, respectively. This is done by replacing

∂μ → Dμ ≡ ∂μ − iQ̂AμðxÞ −
i
2
ΓCτaWC;a

μ ðxÞ; ð3Þ

where Q̂ ¼ diagðqu; qdÞ, with qu ¼ 2e=3, qd ¼ −e=3,
C ¼ V, A, a ¼ 1, 2, 3, ΓV ¼ 1 and ΓA ¼ γ5. For this
nonlocal model, gauge symmetry also requires the replace-
ments [28,34,39]

ψðx − z=2Þ → Wðx; x − z=2Þψðx − z=2Þ;
ψðxþ z=2Þ† → ψðxþ z=2Þ†Wðxþ z=2; xÞ; ð4Þ

with

Wðx; yÞ ¼ exp

�
−i
�
Q̂
Z

y

x
dlμAμðlÞ

þ τa

2
ΓC

Z
y

x
dlμW

C;a
μ ðlÞ

��
; ð5Þ

where l runs over an arbitrary path connecting x with y. As
it is usually done, we take it to be a straight line path.
As stated, we assume the presence of an external uniform

magnetic field B⃗. Therefore, using the Landau gauge, and
choosing the x3 axis in the direction of B⃗, we take Aμ to be
a static field given by AμðxÞ ¼ Bx1δμ2.
Since we are interested in studying light meson proper-

ties, we carry out a bosonization of the fermionic theory,
introducing scalar and pseudoscalar fields σðxÞ and π⃗ðxÞ
and integrating out the fermion fields. The bosonized action
can be written as [24,28,39]

Sbos ¼ − log detDþ 1

2G

Z
d4x½σðxÞσðxÞ þ π⃗ðxÞ · π⃗ðxÞ�;

ð6Þ

where

Dðx; x0Þ ¼ δð4Þðx − x0Þð−i=DþmcÞ
þ Gðx − x0Þγ0Wðx; x̄Þγ0½σðx̄Þ
þ iγ5τ⃗ · π⃗ðx̄Þ�Wðx̄; x0Þ; ð7Þ

with x̄ ¼ ðxþ x0Þ=2. We expand now the meson fields
around their mean field values. Since the external magnetic
field is uniform, one can assume that the field σðxÞ has a
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nontrivial translational invariant mean field value σ̄, while
the vacuum expectation values of pseudoscalar fields are
zero. We separate the mean field piece of the first term of
the action in Eq. (6), writing

− log detD ¼ −Tr logD0 − Tr logð1þD−1
0 δDÞ; ð8Þ

where the traces run over color, flavor, Dirac and coor-
dinate spaces. The form of the mean field operator D0 in
the presence of the external magnetic field has been studied
in detail in previous works, see e.g. Ref. [41]. It can be
written as

D0 ¼ diagðDMFA
u ðx; x0Þ;DMFA

d ðx; x0ÞÞ; ð9Þ
where

DMFA
f ðx; x0Þ ¼ δð4Þðx − x0Þð−i=∂ − qfBx1γ2 þmcÞ

þ σ̄Gðx − x0Þ exp½iΦfðx; x0Þ�: ð10Þ

Here Φfðx; x0Þ ¼ qfBðx2 − x02Þðx1 þ x01Þ=2 is the so-called
Schwinger phase, and a direct product to an identity matrix
in color space is understood. The mean field quark
propagators SMFA

f ðx; x0Þ ¼ ½DMFA
f ðx; x0Þ�−1 can be obtained

following the Ritus eigenfunction method [45]. As shown
in Ref. [41] (see also the analysis carried out within the
Schwinger-Dyson formalism in Refs. [46,47]), it is possible
to write the propagators in terms of the Schwinger phase
and a translational invariant function, namely

SMFA
f ðx; x0Þ ¼ exp½iΦfðx; x0Þ�

Z
d4p
ð2πÞ4 e

ip·ðx−x0ÞS̃fðp⊥; pkÞ;

ð11Þ

where p⊥ ¼ ðp1; p2Þ and pk ¼ ðp3; p4Þ. The expression of
S̃fðp⊥; pkÞ in the nlNJL model under consideration is
found to be [41]

S̃fðp⊥; pkÞ ¼ 2 expð−p2⊥=jqfBjÞ
X∞
k¼0

X
λ¼�

h
ð−1Þkλ

× ðÂλ;f
k;pk − B̂λ;f

k;pkpk · γkÞLkλð2p2⊥=jqfBjÞ
þ 2ð−1ÞkðĈλ;f

k;pk − D̂λ;f
k;pkpk · γkÞ

× p⊥ · γ⊥L1
k−1ð2p2⊥=jqfBjÞ

i
Δλ; ð12Þ

where the following definitions have been used. The
perpendicular and parallel gamma matrices are collected
in vectors γ⊥ ¼ ðγ1; γ2Þ and γk ¼ ðγ3; γ4Þ, while the matri-
ces Δλ are defined as Δþ ¼ diagð1; 0; 1; 0Þ and Δ− ¼
diagð0; 1; 0; 1Þ. The integers kλ are given by k� ¼
k − 1=2� sf=2, where sf ¼ signðqfBÞ. The functions

X̂�;f
k;pk , with X ¼ A, B, C, D, are defined as

Â�;f
k;pk ¼ M∓;f

k;pkĈ
�;f
k;pk þ p2

kD̂
�;f
k;pk ; ð13Þ

B̂�;f
k;pk ¼ Ĉ�;f

k;pk −M∓;f
k;pkD̂

�;f
k;pk ; ð14Þ

Ĉ�;f
k;pk ¼

2kjqfBj þ p2
k þM−;f

k;pkM
þ;f
k;pk

Δf
k;pk

; ð15Þ

D̂�;f
k;pk ¼

M�;f
k;pk −M∓;f

k;pk

Δf
k;pk

; ð16Þ

where

Δf
k;pk ¼ð2kjqfBjþp2

kþMþ;f
k;pkM

−;f
k;pk Þ

2þp2
kðMþ;f

k;pk−M−;f
k;pk Þ

2:

ð17Þ

The functions Mλ;f
k;pk play the role of effective (momentum-

dependent) dynamical quark masses in the presence of the
magnetic field. They are given by

Mλ;f
k;pk ¼

4π

jqfBj
ð−1Þkλ

Z
d2p⊥
ð2πÞ2 Mðp2⊥ þ p2

kÞ

× expð−p2⊥=jqfBjÞLkλð2p2⊥=jqfBjÞ; ð18Þ

where

Mðp2Þ ¼ mc þ σ̄gðp2Þ; ð19Þ

gðp2Þ being the Fourier transform of the nonlocal form
factor GðxÞ. In Eqs. (12) and (18), LkðxÞ and L1

kðxÞ stand for
generalized Laguerre polynomials, with the convention
L−1ðxÞ ¼ L1

−1ðxÞ ¼ 0. The relation in Eq. (18) can be
understood as a Laguerre-Fourier transform of the function
Mðp2Þ. It is also convenient to introduce the Laguerre-
Fourier transform of the form factor gðp2Þ,

gλ;fk;pk ¼
4π

jqfBj
ð−1Þkλ

Z
d2p⊥
ð2πÞ2 gðp

2⊥ þ p2
kÞ

× expð−p2⊥=jqfBjÞLkλð2p2⊥=jqfBjÞ; ð20Þ

thus one has

Mλ;f
k;pk ¼ ½1 − δðkλþ1Þ0�mc þ σ̄gλ;fk;pk : ð21Þ

The transform in Eq. (20) can be inverted to get
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gðp2⊥ þ p2
kÞ ¼ 2e−p

2⊥=jqfBj
X∞
k¼0

ð−1Þkλgλ;fk;pkLkλð2p2⊥=jqfBjÞ:

ð22Þ

To study the mass and decay form factors of the neutral
pion, we expand the operator δDðx; x0Þ in powers of the
meson fluctuations and the external vector and axial vector
fields, keeping up to linear terms in δπ3,W

V;3
μ andWA;3

μ . We
obtain

δDðx; x0Þ ¼ δDπðx; x0Þ þ δDðaÞ
W ðx; x0Þ þ δDðbÞ

W ðx; x0Þ
þ δDW;πðx; x0Þ; ð23Þ

where

δDπðx; x0Þ ¼ iγ5τ0 exp½iΦðx; x0Þ�gðx − x0Þδπ3ðx̄Þ; ð24Þ

δDðaÞ
W ðx; x0Þ ¼ −δð4Þðx − x0Þ τ

3

2

X
C¼V;A

Γ̄CγμW
C;3
μ ðx̄Þ; ð25Þ

δDðbÞ
W ðx; x0Þ ¼ iσ

τ3

2
exp½iΦðx; x0Þ�gðx − x0Þ

×
X

C¼V;A

Γ̄C½UC;3ðx; x̄Þ − UC;3ðx̄; x0Þ�; ð26Þ

δDW;πðx; x0Þ ¼ −
1

2
exp½iΦðx; x0Þ�gðx− x0Þ

×
X

C¼V;A

γ5ΓC½UC;3ðx; x̄Þ−UC;3ðx̄; x0Þ�δπ3ðx̄Þ:

ð27Þ

Here we have used the definitions x̄ ¼ ðxþ x0Þ=2, Γ̄C ¼
γ0ΓCγ0 and

UC;3ðx; yÞ ¼
Z

y

x
dlμW

C;3
μ ðlÞ: ð28Þ

Given a definite model parametrization, the value of σ̄
can be found by minimization of the effective action at the
mean field level. The corresponding “gap equation” reads
[40,41]

σ̄

G
¼ NC

π

X
f¼u;d

Bf

X∞
k¼0

Z
qk

X
λ¼�

gλ;fk;qk Â
λ;f
k;pk : ð29Þ

A. Pion field redefinition and quark-meson
coupling constants

The calculation of the π0 mass in this model has been
previously carried out in Ref. [24]. As shown in that paper,
the piece of the bosonized action that is quadratic in the
neutral pion fields can be written as

Sbosjðδπ3Þ2 ¼
1

2
TrðD−1

0 δDπÞ2jðδπ3Þ2 þ
1

2G

Z
t⊥tk

δπ3ðtÞδπ3ð−tÞ

¼ 1

2

Z
t⊥tk

½Fðt2⊥; t2kÞ þ
1

G
�δπ3ðtÞδπ3ð−tÞ; ð30Þ

where for integration in two-component momentum spaces
we use the notation

Z
pqr…

≡
Z

d2p
ð2πÞ2

d2q
ð2πÞ2

d2r
ð2πÞ2 � � � : ð31Þ

Choosing the frame in which the π0 meson is at rest, its
mass can be obtained as the solution of the equation

1

G
þ Fð0;−m2

π0
Þ ¼ 0: ð32Þ

To normalize the pion field we can expand the action in
Eq. (30) around the pion pole (t⊥ ¼ 0, t2k ¼ −m2

π0
) up to

first order in momentum squared. We define

Z−1
k ¼

dFðt2⊥; t2kÞ
dt2k

����
t2⊥¼0;t2k¼−m2

π0

;

Z−1⊥ ¼
dFðt2⊥; t2kÞ

dt2⊥

����
t2⊥¼0;t2k¼−m2

π0

; ð33Þ

and renormalize the pion field according to π3ðqÞ ¼
gπ0qqπ̃3ðqÞ, where gπ0qq ¼ Z1=2

k is the meson-quark effec-
tive coupling constant. Thus, one has

Squad

π0
¼ 1

2

Z
q⊥qk

δπ̃3ð−qÞðu2π0q2⊥ þ q2k þm2
π0
Þδπ̃3ðqÞ; ð34Þ

where

u2
π0
¼ Zk

Z⊥
: ð35Þ

From the above expressions of the quark propagators and
δDπ , after some straightforward calculation we find

Fðt2⊥; t2kÞ ¼ −16π2NC

X
f¼u;d

1

ðqfBÞ2
Z
q⊥p⊥p0⊥qk

gðq2⊥ þ q2kÞg½ðp0⊥ þ p⊥ − q⊥Þ2 þ q2k�

× exp½i2ϕðq⊥; p⊥; p0⊥; t⊥Þ=ðqfBÞ�trD½S̃fðp⊥; qþk Þγ5S̃fðp0⊥; q−k Þγ5�; ð36Þ

where the trace is taken overDirac space.We have definedq�k ¼ qk � tk=2, while the functionϕ in the exponential is given by
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ϕðq⊥; p⊥; p0⊥; t⊥Þ ¼ p2p0
1 þ q1ðp0

2 − p2Þ − p1p0
2 − q2ðp0

1 − p1Þ þ t2ðq1 − ðp1 þ p0
1Þ=2Þ − t1ðq2 − ðp2 þ p0

2Þ=2Þ: ð37Þ

As stated in Ref. [24], the trace in Eq. (36) is given by

trD½S̃fðp⊥; qþk Þγ5S̃fðp0⊥; q−k Þγ5� ¼ 8e−ðp2⊥þp02⊥Þ=Bf

X∞
k;k0¼0

ð−1Þkþk0
�X
λ¼�

Fλ;fðABÞ
kk0;qþk q

−
k
Lkλð2p2⊥=BfÞLk0λ

ð2p02⊥=BfÞ

þ 8Fþ;fðCDÞ
kk0;qþk q

−
k
ðp⊥ · p0⊥ÞL1

k−1ð2p2⊥=BfÞL1
k0−1ð2p02⊥=BfÞ

�
; ð38Þ

with

Fλ;fðXYÞ
kk0;qþk q

−
k
¼ X̂λ;f

k;qþk
X̂λ;f
k0;q−k

þ ðqþk · q−k ÞŶλ;f
k;qþk

Ŷλ;f
k0;q−k

: ð39Þ

For simplicity we use the notation Bf ¼ jqfBj.
To work out the integrals in Eq. (36) it is convenient to use the Laguerre-Fourier transforms introduced above. In this way,

the integrals over perpendicular momenta can be performed analytically. As found in Ref. [24], the expression for
Fð0;−m2

π0
Þ is

Fð0;−m2
π0
Þ ¼ −

NC

π

X
f¼u;d

Bf

X∞
k¼0

Z
qk

X
λ¼�

gλ;fk;qk ½g
λ;f
k;qk

Fλ;fðABÞ
kk;qþk q

−
k
þ 2kBfg

−λ;f
k;qk

Fλ;fðCDÞ
kk;qþk q

−
k
�jt2k¼−m2

π0
: ð40Þ

The normalization constant Z−1
k can be obtained by derivation on the rhs with respect to t2k.

To obtain an expression for Z−1⊥ one has to expand Fðt2⊥; t2kÞ up to first order in t2⊥. The calculation of the corresponding
integrals over perpendicular momenta is sketched in Appendix A. One finally gets

Z−1⊥ ¼ NC

4π

X
f¼u;d

X∞
k¼0

Z
qk

X
λ¼�

fðgλ;fk;qkF
λ;fðABÞ
kk;qþk q

−
k
þ 2kBfg

−λ;f
k;qk F

λ;fðCDÞ
kk;qþk q

−
k
Þ

× ½kλðgλ;fk−1;qk þ gλ;fk;qk Þ þ ðkλ þ 1Þðgλ;fk;qk þ gλ;fkþ1;qk Þ� − ðgλ;fk−1;qk þ gλ;fk;qk Þ
× ½kλðgλ;fk−1;qk þ gλ;fk;qk ÞF

λ;fðABÞ
kk−1;qþk q

−
k
þ 2Bfkðk − 1Þðg−λ;fk−1;qk þ g−λ;fk;qk ÞF

λ;fðCDÞ
kk−1;qþk q

−
k
�g: ð41Þ

B. π0 decay form factors

The π0-to-vacuum amplitudes for vector and axial vector quark currents are given by

HV;0
μ ðx; p⃗Þ ¼ h0jψ̄ðxÞγμ

τ3

2
ψðxÞjπ0ðp⃗Þi; HA;0

μ ðx; p⃗Þ ¼h0jψ̄ðxÞγμγ5
τ3

2
ψðxÞjπ0ðp⃗Þi: ð42Þ

As discussed in Ref. [44], in the presence of an external magnetic field these currents can be written in terms of three form
factors. Following the notation in Ref. [48], in Euclidean space we have

HV;0
4 ðx; p⃗Þ �HV;0

3 ðx; p⃗Þ ¼∓ fðVÞ
π0

ðp4 ∓ p3Þeip·x;
HV;0

1 ðx; p⃗Þ � iHV;0
2 ðx; p⃗Þ ¼ 0;

HA;0
4 ðx; p⃗Þ �HA;0

3 ðx; p⃗Þ ¼ −ifðAkÞ
π0

ðp4 � p3Þeip·x;
HA;0

1 ðx; p⃗Þ � iHA;0
2 ðx; p⃗Þ ¼ −ifðA⊥Þ

π0
ðp1 � ip2Þeip·x: ð43Þ

If we write the corresponding piece of the bosonic action as

SbosjW3δπ3
¼

X
C¼V;A

Z
tkt⊥

FC
μ ðtÞWC;3

μ ðtÞδπ3ð−tÞ; ð44Þ

it is easily seen that

PROPERTIES OF MAGNETIZED NEUTRAL PIONS AT ZERO … PHYS. REV. D 101, 116018 (2020)

116018-5



fðVÞ
π0

¼
Z1=2
k
t2k

½t3FV
4 ðtÞ − t4FV

3 ðtÞ�; ð45Þ

fðAkÞ
π0

¼ i
Z1=2
k
t2k

tk · FA
k ðtÞ; ð46Þ

fðA⊥Þ
π0

¼ i
Z1=2
k
t2⊥

t⊥ · FA⊥ðtÞ: ð47Þ

The functions FC
μ ðtÞ can be separated into three pieces

FC;ðiÞ
μ ðtÞ with i ¼ I; II; III, coming from the various con-

tributions to the effective action, namely

SIbosjWδπ ¼ −Tr½D−1
0 δDW;π�; ð48Þ

SIIbosjWδπ ¼ Tr½D−1
0 δDðaÞ

W D−1
0 δDπ�; ð49Þ

SIIIbosjWδπ ¼ Tr½D−1
0 δDðbÞ

W D−1
0 δDπ�: ð50Þ

The explicit calculation of FC;ðiÞ
μ ðtÞ leads to

FC;ðIÞ
μ ðtÞ ¼ NC

2

X
f¼u;d

Z
qkrkq⊥r⊥

½gððq − r=2Þ2Þ − gððq − r=2þ t=2Þ2Þ�trD½S̃fðq⊥; qkÞγ5ΓC�hμðr; t − rÞ; ð51Þ

FC;ðIIÞ
μ ðtÞ ¼ −i8π2NC

X
f¼u;d

1

B2
f

Z
qkq⊥p⊥p0⊥

gðq2Þ exp½i2φðq⊥; p⊥; p0⊥; t⊥Þ=ðqfBÞ�trD½S̃fðp⊥; qþk ÞΓ̄CγμS̃fðp0⊥; q−k Þγ5�; ð52Þ

FC;ðIIIÞ
μ ðtÞ ¼ −8π2σNC

X
f¼u;d

1

B2
f

Z
qkrkq⊥r⊥p⊥p0⊥

gðq2Þ exp½i2φðq⊥; p⊥; p0⊥; t⊥Þ=ðqfBÞ�

× trD½S̃fðp⊥; qþk ÞΓCS̃fðp0⊥; q−k Þγ5�fgððp⊥ þ p0⊥ − q⊥ − r⊥=2Þ2 þ ðqk − rk=2Þ2Þ
− gððp⊥ þ p0⊥ − q⊥ − r⊥=2þ t⊥=2Þ2 þ ðqk − rk=2þ tk=2Þ2Þghμðr; t − rÞ; ð53Þ

where

hμðq; t − qÞ ¼
Z

d4z exp ½−iðt − qÞz�
Z

z

0

dlμ exp ½itl�

ð54Þ

and

φðq⊥; p⊥; p0⊥; t⊥Þ ¼ p2ðq1 − t1=2Þ − p0
2ðq1 þ t1=2Þ

− q1t2 − p2p0
1 − ð1 ↔ 2Þ: ð55Þ

As in the case of the calculation of the π0 mass and wave
function renormalization, the integrals over transverse
momenta can be performed analytically after Laguerre-
Fourier transforming the nonlocal form factor functions.
The steps to be followed in each case are outlined in

Appendix B. In what follows we just quote the results of
this rather lengthy calculation. The form factors are
evaluated at the pion pole, i.e. t2k ¼ −m2

π0
, t2⊥ ¼ 0.

The calculation of fðAkÞ
π0

has been previously performed

in Ref. [24], where the contributions from FC;ðIÞ
μ ðtÞ,

FC;ðIIÞ
μ ðtÞ and FC;ðIIIÞ

μ ðtÞ are quoted. Summing all three
contributions one has [24]

tk ·FA
k ðtÞjt2⊥¼0 ¼ i

NC

π

X
f¼u;d

Bf

X∞
k¼0

Z
qk

X
λ¼�

gλ;fk;qk ðM
λ;f
k;qkF

λ;fðABÞ
kk;qþk q

−
k

þ 2kBfM
−λ;f
k;qk F

λ;fðCDÞ
kk;qþk q

−
k
− Âλ;f

k;qk Þ: ð56Þ

Taking into account this result, and making use of Eq. (32)
and the gap equation (29), one arrives at [24]

fðAkÞ
π0

¼ −mcZ
1=2
k

NC

πt2k

X
f¼u;d

Bf

X∞
k¼0

Z
qk

X
λ¼�

gλ;fk;qkðF
λ;fðABÞ
kk;qþk q

−
k
þ 2kBfF

λ;fðCDÞ
kk;qþk q

−
k
Þjt2k¼−m2

π0
: ð57Þ

In the case of fðVÞ
π0

, it is seen that FV;ðIÞ
μ ðtÞ vanish identically, and the contribution from FV;ðIIIÞ

μ ðtÞ is zero. From FV;ðIIÞ
μ ðtÞ

one obtains

GÓMEZ DUMM, IZZO VILLAFAÑE, and SCOCCOLA PHYS. REV. D 101, 116018 (2020)

116018-6



fðVkÞ
π0

¼ Z1=2
k

NC

π

X
f¼u;d

Bf

X∞
k¼0

Z
qk

ðqþk · tkÞ
t2k

×
X
λ¼�

λgλ;fk;qk

	
Âλ;f
k;q−k

B̂λ;f
k;qþk

− 2kBfĈ
λ;f
k;q−k

D̂λ;f
k;qþk


���
t2k¼−m2

π0

: ð58Þ

Finally, for fðAkÞ
π0

the calculations sketched in Appendix B lead to

t⊥ · FA;ðIÞ
⊥ ðtÞ
t2⊥

����
t2⊥¼0

¼ i
NC

4π

X
f¼u;d

Bf

X∞
k¼0

X
λ¼�

Z
1

0

dββ
Z
qk
Âλ;f
k;qk

n
2g0λ;fk;qþ

βk

þ Bf

h
ðkλ þ 1Þ

	
g00λ;fkþ1;qþ

βk
þ g00λ;fk;qþ

βk



þ kλ

	
g00λ;fk;qþ

βk
þ g00λ;fk−1;qþ

βk


io
; ð59Þ

t⊥ · FA;ðIIÞ
⊥ ðtÞ
t2⊥

����
t2⊥¼0

¼ i
NC

2π

X
f¼u;d

Bfsf
X∞
k¼0

Z
qk

X
λ¼�

λ
h
2kgλ;fk;qkH

λ;f
kk;qþk q

−
k
− kλ

	
gλ;fk−1;qk þ gλ;fk;qk



Hλ;f

k−λkλ;q
þ
k q

−
k

i
; ð60Þ

t⊥ · FA;ðIIIÞ
⊥ ðtÞ
t2⊥

����
t2⊥¼0

¼ −i
σ̄NC

4π

X
f¼u;d

Bf

X∞
k¼0

Z
qk

X
λ¼�

�	
gλ;fk;qkF

λ;fðABÞ
kk;qþk q

−
k
þ 2kBfg

−λ;f
k;qk F

λ;fðCDÞ
kk;qþk q

−
k




×
Z

1

0

dββ
h
2g0λ;fk;qþ

βk
þ Bf

h
ðkλ þ 1Þ

	
g00λ;fkþ1;qþ

βk
þ g00λ;fk;qþ

βk



þ kλ

	
g00λ;fk;qþ

βk
þ g00λ;fk−1;qþ

βk


ii

−
kλ
2

h	
gλ;fk−1;qk þ gλ;fk;qk


	
Fλ;fðABÞ
k−1k;qþk q

−
k
− Fλ;fðABÞ

kk−1;qþk q
−
k



þ 2k−λBf

×
	
g−λ;fk−1;qk þ g−λ;fk;qk


	
Fþ;fðCDÞ
k−1k;qþk q

−
k
− Fþ;fðCDÞ

kk−1;qþk q
−
k


i Z 1

0

dβ
	
g0λ;fk;qþ

βk
þ g0λ;fk−1;qþ

βk


�
; ð61Þ

where g0λ;fk;qk , g
00λ;f
k;qk indicate derivations with respect to q2k, and we have defined

qþβk ¼ qk þ βtk=2; H
λ;f
kk0;qþk q

−
k
¼ Âλ;f

k;qþk
Ĉλ;f
k0;q−k

− ðqþk · q−k ÞB̂λ;f
k;qþk

D̂λ;f
k0;q−k

: ð62Þ

Summing these three contributions, and using the relation

ðg0λ;fkþ1;qk
þ g0λ;fk;qk ÞBf ¼ gλ;fkþ1;qk

− gλ;fk;qk ð63Þ

(which arises from the properties of Laguerre polynomials), we arrive at a final expression for fðA⊥Þ
π0

, given by

fðA⊥Þ
π0

¼ Z1=2
k

NC

4π

X
f¼u;d

X∞
k¼0

Z
qk

X
λ¼�

�h
−Âλ;f

k;qk þ σ̄
	
gλ;fk;qkF

λ;fðABÞ
kk;qþk q

−
k
þ 2kBfg

−λ;f
k;qk F

λ;fðCDÞ
kk;qþk q

−
k


i

×
Z

1

0

dββ
h
ðkλ þ 1Þ

	
gλ;fkþ1;qþ

βk
− gλ;fk;qþ

βk



− kλ

	
gλ;fk;qþ

βk
− gλ;fk−1;qþ

βk


i

− 2Bfsfλ
h
2kgλ;fk;qkH

λ;f
kk;qþk q

−
k
− kλ

	
gλ;fk−1;qk þ gλ;fk;qk



Hλ;f

k−λkλ;q
þ
k q

−
k

i

− σ̄
kλ
2

h	
gλ;fk−1;qk þ gλ;fk;qk


	
Fλ;fðABÞ
k−1k;qþk q

−
k
− Fλ;fðABÞ

kk−1;qþk q
−
k



þ 2k−λBf

×
	
g−λ;fk−1;qk þ g−λ;fk;qk


	
Fλ;fðCDÞ
k−1k;qþk q

−
k
− Fλ;fðCDÞ

kk−1;qþk q
−
k


i Z 1

0

dβ
	
gλ;fk;qþ

βk
− gλ;fk−1;qþ

βk


�����
t2k¼−m2

π0

: ð64Þ
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C. Chiral relations

It is interesting to study the relations involving form
factors and renormalization constants in the chiral limit,
mc → 0. First, taking into account the expression in
Eq. (40), the gap equation (29) and the relation

gλ;fk;qkF
λ;fðABÞ
kk;qkqk

þ 2kBfg
−λ;f
k;qk

Fλ;fðCDÞ
kk;qkqk

¼ 1

σ̄
ðÂλ;f

k;qk
−mcB̂

λ;f
k;qk

Þ;
ð65Þ

it is seen that

Fð0; 0Þ ¼ −
1

G
þmc

σ̄

NC

π

X
f¼u;d

Bf

X∞
k¼0

Z
qk

X
λ¼�

gλ;fk;qkB̂
λ;f
k;qk :

ð66Þ

Thus, in the limit mc → 0, the second term on the rhs
vanishes and from Eq. (32) one obtains mπ0 ¼ 0, as
expected.
The validity of the Goldberger-Treiman relation

fðAkÞ
π0;0

¼ Z−1=2
k;0 σ̄0 ð67Þ

and the Gell-Mann-Oakes-Renner relation

mchūuþ d̄di0 ¼ −m2
π0
fðAkÞ
π0;0

2 ð68Þ

in the presence of the external magnetic field have been
shown in Ref. [24]. In these equations, subindices 0
indicate that the quantities have to be evaluated in the
chiral limit. Now let us take into account the expression for

fðA⊥Þ
π0

in Eq. (64). For mc ¼ 0, mπ0 ¼ 0, it is seen that the
first term in curly brackets is zero owing to Eq. (65), while

the last two terms also vanish since Fλ;fðXYÞ
kk0;qkqk

is symmetric

under the exchange between k and k0. Moreover, it is easy
to see that

Hλ;f
kk;qkqk ¼

M−λ;f
k;qk

Δf
k;qk

; ð69Þ

from which the piece proportional toHλ;f
kk;qkqk also vanishes.

One gets in this way

fðA⊥Þ
π0;0

¼ Z1=2
k;0

NC

2π

X
f¼u;d

Bfsf
X∞
k¼0

Z
qk

X
λ¼�

λkλðgλ;fk−1;qk;0 þ gλ;fk;qk;0ÞH
λ;f
k−λkλ;qkqk;0

: ð70Þ

On the other hand, from Eqs. (41) and (65) it is seen that in the chiral limit one has

Z−1⊥;0 ¼
NC

4π

X
f¼u;d

X∞
k¼0

Z
qk

X
λ¼�

kλðgλ;fkλ;qk;0 þ gλ;fk−λ;qk;0Þ
�
1

σ̄0
ðÂλ;f

kλ;qk;0 þ Âλ;f
k−λ;qk;0Þ

− ðgλ;fkλ;qk;0 þ gλ;fk−λ;qk;0ÞF
λ;fðABÞ
kλk−λ;qkqk;0

− 2k−λBfðg−λ;fkλ;qk;0
þ g−λ;fk−λ;qk;0

ÞFλ;fðCDÞ
kλk−λ;qkqk;0

�
: ð71Þ

After some algebra, it can be shown that the factor in square
brackets is equal to 2Bfðkλ − k−λÞHλ;f

k−λkλ;qkqk;0=σ̄0. Since

kλ − k−λ ¼ sfλ, by comparing with Eq. (70) one finally
gets

fðA⊥Þ
π0;0

¼ Z1=2
k;0 Z

−1⊥;0σ̄0: ð72Þ

Thus, taking into account Eq. (67), one has

fðA⊥Þ
π0;0

fðAkÞ
π0;0

¼ Zk;0
Z⊥;0

¼ u2
π0;0: ð73Þ

This result has been also found in the framework of the
local NJL model in Ref. [48] and (using a different

notation) in Ref. [10], where it is obtained from a modified
PCAC relation.

III. FINITE TEMPERATURE

In this section we extend the previous analysis to a
system at finite temperature using the standard Matsubara
formalism. To describe the confinement/deconfinement
transitions we include a coupling between the fermions
and the Polyakov loop (PL), assuming that the quarks move
on a uniform background color field. This type of inter-
actions has been previously considered in nonlocal models
[35–38,41], as well as in the local Polyakov-Nambu-Jona-
Lasinio (PNJL) model [49–52] and in Polyakov-quark-
meson models [53,54]. The background field is given by
ϕ ¼ igδμ0G

μ
aλa=2, where Gμ

a are the SU(3) color gauge
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fields. Working in the so-called Polyakov gauge the matrix
ϕ is given a diagonal representation ϕ ¼ ϕ3λ3 þ ϕ8λ8, and
the traced Polyakov loop Φ ¼ 1

3
Tr expðiϕ=TÞ can be taken

as an order parameter of the confinement/deconfinement
transitions. Since at mean field Φ is expected to be real
owing to charge conjugation symmetry, one has ϕ8 ¼ 0 and
Φ ¼ ½1þ 2 cosðϕ3=TÞ�=3 [52]. In addition, we include a
Polyakov-loop potential UðΦ; TÞ that accounts for effective
gauge field self-interactions. The mean field grand canoni-
cal thermodynamic potential of the system per unit volume
under the external magnetic field is given by [41]

ΩMFA
B;T ¼ σ̄2

2G
− T

X
f¼u;d

jqfBj
2π

X∞
n¼−∞

X
c

×
Z

dp3

2π

�
lnðp2

knc þM
sf;f
0;pknc

2Þ

þ
X∞
k¼1

lnðΔf
k;pkncÞ

�
þ UðΦ; TÞ; ð74Þ

where Δf
k;pknc is the function in Eq. (17), and we have

defined p⃗knc ¼ ðp3; p4ncÞ, with p4nc ¼ ð2nþ 1ÞπT þ ϕc.
The sum over color indices runs over c ¼ r, g, b, and color
background fields are ðϕr;ϕg;ϕbÞ ¼ ðϕ3;−ϕ3; 0Þ.
SinceΩMFA

B;T is divergent, it has to be properly regularized.
We take the prescription followed in Ref. [41], in which one
subtracts to ΩMFA

B;T the thermodynamic potential of a free
fermion gas, and then adds it in a regularized form. The
regularized potential is given by

ΩMFA;reg
B;T ¼ ΩMFA

B;T −Ωfree
B;T þ Ωfree;reg

B;T : ð75Þ

In fact, the “free” piece keeps the interaction with the
magnetic field and the PL. The explicit expression of
Ωfree;reg

B;T , for which the Matsubara sums can be performed
analytically, can be found in Ref. [41].
The form of the PL potential is an additional input of the

model. In this work we take a widely used polynomial form
based on a Ginzburg-Landau ansatz, namely [51,55]

UðΦ; TÞ
T4

¼ −
b2ðTÞ
2

Φ2 −
b3
3
Φ3 þ b4

4
Φ4; ð76Þ

where

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

þ a3

�
T0

T

�
3

: ð77Þ

The numerical values for the parameters ai and bi, which
can be obtained by a fit to pure gauge lattice QCD results,
can be found in Ref. [51]. This potential leads to a first-
order phase transition at T0, which becomes a further
parameter of the model. In the absence of dynamical

quarks, form lattice QCD one would expect a deconfine-
ment temperature of about T0 ¼ 270 MeV. However, it has
been argued that in the presence of light dynamical quarks
this parameter should be reduced. For definiteness we will
take T0 ≃ 200 MeV, as suggested in Refs. [53,54].
The values of σ̄ and ϕ3 at the mean field level can be

found by minimizing the regularized thermodynamic
potential, i.e. by solving the coupled equations:

∂ΩMFA;reg
B;T

∂σ̄ ¼ 0;
∂ΩMFA;reg

B;T

∂ϕ3

¼ 0: ð78Þ

Finite temperature meson masses and decay constants can
be then calculated from Eqs. (32), (40), (57), (58) and (64),
following the prescription

NC

Z
qk
Fðqk; tkÞ → T

X∞
n¼−∞

X
c

Z
dq3
2π

Fðqknc; tkÞ ð79Þ

and taking the external momentum ⃗tk ¼ ðimπ0ðTÞ; 0Þ.
Notice that these mass values correspond to spatial “screen-
ing masses” for the zeroth bosonic Matsubara mode
(t4 ¼ 0). The reciprocals mπ0ðTÞ−1 can be understood as
the persistence lengths of this mode, in equilibrium with the
heat bath.

IV. NUMERICAL RESULTS

To obtain numerical predictions for the behavior of the
quantities defined in the previous sections, it is necessary to
specify the model parameters and the shape of the nonlocal
form factor gðp2Þ. We consider here the often-used
Gaussian function

gðp2Þ ¼ expð−p2=Λ2Þ: ð80Þ

In general, the form factor introduces an energy scaleΛ that
represents an effective momentum cutoff. This constant has
to be taken as a free parameter of the model, together with
the current quark mass mc and the coupling constant G in
the effective Lagrangian. In the particular case of the
Gaussian form factor one has the advantage that the integral
in Eq. (20) can be performed analytically, which leads to a
dramatic reduction of the computer time needed for
numerical calculations of meson masses and form factors.
As in Refs. [40,41], we fix the free parameters by

requiring the model to reproduce the empirical values (for
vanishing external field) of the pion mass and decay
constant, as well as some phenomenologically adequate
values of the quark condensate hf̄fi (f ¼ u, d). Some
parameter sets, corresponding to different values of the
condensate, can be found in Ref. [41]. Here we take
mc ¼ 6.5 MeV, Λ ¼ 678 MeV and GΛ2 ¼ 23.66, which
lead to hf̄fi ¼ ð−230 MeVÞ3. This will be called set I. As
shown in Ref. [41], for this parametrization the behavior of

PROPERTIES OF MAGNETIZED NEUTRAL PIONS AT ZERO … PHYS. REV. D 101, 116018 (2020)

116018-9



quark condensates with the magnetic field, at zero temper-
ature, are found to be in very good agreement with lattice
QCD results. These parameters have also been used in the

previous calculation of mπ0 and f
ðAkÞ
π0

for nonzero B carried
out inRef. [24]. In order to test the sensitivity of our results to
the parameters we also consider two alternative sets, which
correspond to quark condensates hf̄fi ¼ ð−220 MeVÞ3 and
hf̄fi ¼ ð−240 MeVÞ3 in vacuum. The latter are denoted as
sets II and III, respectively.

In Fig. 1 we show our numerical results for various
quantities associated with the neutral pion at zero temper-
ature, as functions of eB. Solid red lines denote the results
from set I, while the limits of the corresponding gray bands
are determined by the results from set II (dashed lines) and
set III (dotted lines). For comparison we also include in the
figure the numerical results obtained within the local NJL
model, quoted in Ref. [48]. Solid blue lines correspond
to a parametrization leading to a constituent quark mass
M ¼ 350 MeV (for B ¼ 0), while the limits of the gray

FIG. 1. Neutral pion properties as functions of eB. Solid red lines correspond to set I, while the limits of the gray bands correspond to
set II (dashed lines) and set III (dotted lines). Solid blue lines and associated gray bands correspond to local NJL results (see text).
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bands correspond toM ¼ 320 MeV (dashed lines) andM ¼
380 MeV (dotted lines). The values of the quark-antiquark
condensates for these parametrizations of the NJLmodel are
hq̄qi ≃ ð−243 MeVÞ3, ð−236 MeVÞ3 and ð−250 MeVÞ3,
respectively. It should be noted that the results for the pion

mass and the fðAkÞ
π0

form factor have been previously
obtained in Ref. [24].
From the graphs in Fig. 1 it can be said that in general our

results do not show a large dependence with the model
parametrization. As shown in the upper left panel in Fig. 1,
the dependence of the π0 mass with the external field for the
nonlocal effective model is significantly stronger than in
the case of the local NJL approach. In the upper right panel
of the figure we plot the curves for the effective coupling
constant gπ0qq, which shows different behaviors for nlNJL
and NJL models. In the left and right central panels of the
figure we quote the curves corresponding to the axial form
factors. Notice that for B ¼ 0 one has spacial rotation

symmetry and both fðAkÞ
π0

and fðA⊥Þ
π0

reduce to the usual π0

decay constant [see Eqs. (43)]. As the magnetic field

increases, fðAkÞ
π0

gets enhanced and fðA⊥Þ
π0

gets reduced.
This is in qualitative agreement with the results for the local
NJL model, although for the latter the B dependence is
noticeably milder The lower left panel shows the behavior

of the vector form factor fðVÞ
π0

as a function of eB. This form
factor is zero at vanishing external field and shows a
monotonic growth with eB, with little dependence on the
parametrization. In this case the growth is shown to be
somewhat steeper for the local NJL model. Finally, in the
lower right panel we quote the curves for directional
refraction index uπ0 , which is found to get reduced for
increasing external field.
The results for the above discussed quantities, together

with those obtained for hq̄qi (for the analysis of conden-
sates and related quantities, see Refs. [40,41]), allow us to
check the validity of the chiral relations in Eqs. (68) and
(73). They are found to be satisfied within 5% and 0.2%
accuracy, respectively, for eB up to 1.5 GeV2 (for definite-
ness, we have considered parameter set I). In particular, the

opposite behavior of fðAkÞ
π0

and fðA⊥Þ
π0

with the magnetic field
can be understood from Eq. (73), taking into account that
uπ0 becomes significantly reduced for increasing B. In the

NJL, it has also been shown that the relation fðVÞ
π0

¼
eB=ð8π2fðAkÞ

π0
Þ holds in the chiral limit [48]. We have

checked this relation numerically in the nlNJL model,
finding that it remains only approximately valid (that is,
within a 15% accuracy) for the chosen range of eB.
We turn now to our results for a system at finite

temperature. As expected, at some critical temperature
TcðBÞ the system undergoes a crossover transition in which
chiral symmetry is partially restored. Moreover, as shown
in Refs. [40,41], this model leads to inverse magnetic

catalysis, in the sense that Tc is found to be a decreasing
function of B. This is in agreement with lattice QCD results
[43]. It has been also shown that there is a very small
splitting between chiral restoration and deconfinement
transition temperatures, the latter being defined according
to the behavior of the Polyakov loop Φ (see e.g. Ref. [41]
for details).
Regarding the quantities we are interested in here, in

Fig. 2 we show the behavior of the π0 and σ meson masses
(upper panel), and the normalized π0 axial and vector decay
form factors (lower panel) as functions of the temperature,
for three representative values of the external magnetic
field, namely eB ¼ 0, eB ¼ 0.6 GeV2 and eB ¼ 1 GeV2.
The curves correspond to parameter set I and a polynomial
Polyakov loop potential, as discussed in Sec. III. It can be
seen that for nonzero B the masses show a similar
qualitative behavior with T as in the B ¼ 0 case. The π0

mass remains approximately constant up to the critical
temperature, and π0 and σ masses match above Tc, as
expected from chiral symmetry. For large temperatures it is
seen that the masses get steadily increased, the growth
being dominated by pure thermal effects. As stated, the
critical temperature gets lower for increasing B. The critical

FIG. 2. π0 and σ meson masses (upper panel) and normalized
π0 decay form factors (lower panel) as functions of the temper-
ature. Solid lines correspond to eB ¼ 0, dashed and dash-dotted
lines to eB ¼ 0.6 GeV2, and dotted and dash-dot-dotted lines to
eB ¼ 1 GeV2.
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temperatures for the chosen values eB ¼ 0, 0.6 GeV2 and
1 GeV2 are found to be Tc ∼ 180, 165 and 150 MeV,
respectively [41]. In the case of the form factors, the curves

for fðAkÞ
π0

show a drop at the critical temperatures, exhibiting
once again a qualitatively similar behavior for zero and

nonzero external magnetic field. The curves for fðA⊥Þ
π0

,

normalized to fðA⊥Þ
π0

ðT ¼ 0Þ, differ from those of fðAkÞ
π0

by
less than about 5%. For clarity they have not been included

in the figure. Finally, the vector form factor fðVÞ
π0

also shows
a drop at T ∼ TcðBÞ. The transition in this case is somewhat

steeper than for fðAkÞ
π0

, and occurs at a slightly lower

temperature. We recall that, at any temperature, fðVÞ
π0

is
zero for vanishing external field.
For completeness, in Figs. 3 and 4 we show the behavior

of meson properties as functions of eB for three represen-
tative values of the temperature, namely T ¼ 0, 165 and
180 MeV. The results for T ¼ 0, same as those previously
shown in Fig. 1, are included just for comparison. The
curves for T ¼ 165 MeV can be understood by looking at
the results in Fig. 2, which show that this is the critical
temperature that corresponds to eB ≃ 0.6 GeV2. Thus, the
pion mass and form factors in Figs. 3 and 4 show
approximately the same behavior as for T ¼ 0 up to

eB ∼ 0.5–0.6 GeV2. Beyond these values, as expected
from the results in Fig. 2, one finds an enhancement in
the pion mass and a decrease in the axial and vector form
factors. On the other hand, the curves for T ¼ 180 MeV are
consistent with the fact that the chiral restoration transition
occurs at approximately this temperature for vanishing
magnetic field; the values of the pion mass and axial form
factors are well separated from the T ¼ 0 values already at
B ¼ 0. Finally, as shown in the lower panel of Fig. 3, the
behavior of the directional refraction index uπ0 is found to
be basically independent of the temperature.

V. SUMMARY AND CONCLUSIONS

We have studied the behavior of neutral meson proper-
ties in the presence of a uniform static external magnetic
field B, in the context of the so-called nlNJL model. That is,
a nonlocal effective approach based on the Nambu-Jona-
Lasinio chiral quark model. Our analysis is a sort of
extension of the work carried out in Ref. [24], where the

pion mass and the decay form factor fðAkÞ
π0

, at zero temper-
ature, were studied in this same framework. In the nlNJL
model the effective couplings between quark-antiquark
currents include nonlocal form factors that regularize

FIG. 3. π0 and σ meson masses (upper panel) and directional
refraction index (lower panel) as functions of eB, for three
representative values of the temperature.

FIG. 4. From top to bottom, decay form factors fðAkÞ
π0

, fðA⊥Þ
π0

and

fðVÞ
π0

as functions of eB, for three representative values of the
temperature.
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ultraviolet divergences in quark loop integrals, and lead to a
momentum-dependent effective mass in quark propagators.
In order to obtain closed analytical expressions for meson
polarization functions and pion decay constants in the
presence of the external magnetic field, we have worked out
a formalism that involves Ritus transforms of the Dirac
fields.
We have first concentrated in the analysis at zero

temperature of the form factors associated with pion-to-
vacuum matrix elements of the vector and axial vector
hadronic currents. In agreement with the model indepen-
dent analysis in Ref. [44], it is seen that for nonzero B three
nonvanishing independent form factors can be defined.

Two of them, fðAkÞ
π0

and fðA⊥Þ
π0

, correspond to the axial-

vector current, and the other one, fðVÞ
π0

, to the vector piece.
We have also calculated the neutral pion directional
refraction index, uπ0 , which in general is different from
one. In addition, chiral relations are shown to be valid in the
presence of the external field.
For the numerical calculations we have considered the

case of Gaussian nonlocal form factors, choosing sets of
model parameters that were previously found to reproduce
the empirical values of the pion mass and decay constant at
B ¼ 0, and lead to values of quark condensates at nonzero
B that are compatible with lattice QCD calculations. Taking
into account external fields in the range from zero to
eB ¼ 1 GeV2, from our numerical results it is noticed that
all studied quantities show a strong dependence with B. As
discussed in Sec. IV, in most cases this dependence is found
to be significantly larger than that observed in the local NJL
model [48]. On the other hand, it is seen that in general the
results are rather stable under changes in the model
parameters. It has been also verified that chiral relations
remain approximately valid for the chosen parameter sets.
We have extended the calculations to finite temperature

systems, including the couplings of fermions to the
Polyakov loop and a PL polynomial potential that accounts

for effective color gauge field self-interactions. As
expected, it is seen that the system undergoes a phase
transition corresponding to the restoration of SU(2) chiral
symmetry. The model predicts the existence of inverse
magnetic catalysis, leading to a decrease of the critical
temperature Tc with the magnetic field. Concerning the
behavior of meson masses, it is seen that the π0 mass
remains approximately constant up to TcðBÞ, while the σ
meson mass begins to drop earlier. Beyond the transition
both masses become degenerate, as expected, and show a
thermal growth for large T. Regarding the thermal behavior
of the form factors, we observe that they remain approx-
imately constant until temperatures close to TcðBÞ are
reached, and then they show sudden drops. Finally, the
directional refraction index uπ0 is found to be basically
independent of the temperature. To provide an alternative
view, we have also included some graphs showing the
behavior of the studied quantities as functions of the
magnetic field, for some selected values of the temperature.
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APPENDIX A: DERIVATION OF THE
EXPRESSION FOR Z−1

We outline here the derivation of the relation in Eq. (41),
which can be obtained following a procedure similar to that
described in the appendices of Ref. [24].
It is easy to see that the expression in Eq. (36) can be

rearranged in the form

Fðt2⊥; t2kÞ ¼ −128π2NC

X
f¼u;d

1

B2
f

X∞
k;k0¼0

Z
qk

hX
λ¼�

Fλ;fðABÞ
kk0;qþk q

−
k
Iλ;fð0Þkk0;qk

þ Fþ;fðCDÞ
kk0;qþk q

−
k
Ifð1Þkk0;qk

i
: ðA1Þ

Taking the Laguerre-Fourier transforms of the nonlocal form factors given by Eq. (20), and changing the integration
variables to dimensionless vectors u ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffið2=BfÞ
p

p⊥, v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffið2=BfÞ
p

p0⊥, w ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffið2=BfÞ
p ðp⊥ − q⊥Þ and r⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffið2=BfÞ

p
t⊥

in the plane perpendicular to B⃗, the integrals Iλ;fð0Þkk0;qk
and Ifð1Þkk0;qk

are given by

Iλ;fð0Þkk0;qk
¼ B3

f

2
ð−1Þkþk0

X∞
m;m0¼0

ð−1Þmþm0
gλ;fm;qkg

λ;f
m0;qk

Kλ;fð0Þ
kk0mm0 ;

Ifð1Þkk0;qk
¼ 2B4

fð−1Þkþk0
X∞

m;m0¼0

ð−1Þmþm0−1gþ;f
m;qkg

−;f
m0;qk

Kfð1Þ
kk0mm0 ; ðA2Þ

with
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Kλ;fð0Þ
kk0mm0 ¼

Z
uvw

exp½−w2� exp½−u2 − u · wþ isfðu1w2 − u2w1Þ�Lkλðu2ÞLmλ
½ðuþ wÞ2�

× exp½−v2 − v · wþ isfðv1w2 − v2w1Þ�Lk0λ
ðv2ÞLm0

λ
½ðvþ wÞ2�

× exp

�
isf
2

½r1ð2w2 þ u2 þ v2Þ − r2ð2w1 þ u1 þ v1Þ�
�
;

Kfð1Þ
kk0mm0 ¼ −

Z
uvw

exp½−w2� exp½−u2 − u · wþ isfðu1w2 − u2w1Þ�L1
k−1ðu2ÞLmþ½ðuþ wÞ2�

× ðu · vÞ exp½−v2 − v · wþ isfðv1w2 − v2w1Þ�Lk0−1ðv2ÞLm0
−
½ðvþ wÞ2�

× exp
�
isf
2

½r1ð2w2 þ u2 þ v2Þ − r2ð2w1 þ u1 þ v1Þ�
�
: ðA3Þ

Notice that Kλ;fð0Þ
kk0mm0 and Kfð1Þ

kk0mm0 do not depend on the magnetic field, but they do depend on the external momenta
r⊥ ¼ ðr1; r2Þ. Thanks to rotational symmetry we can choose r1 ¼ r and r2 ¼ 0. Using the polar coordinates

u1 ¼ u cosðα − βÞ; v1 ¼ v cosðα − γÞ; w1 ¼ w cosðαÞ;
u2 ¼ u sinðα − βÞ; v2 ¼ v sinðα − γÞ; w2 ¼ w sinðαÞ; ðA4Þ

and performing a series expansion around r ¼ 0 in the exponential, we can integrate the variable α. As seen from Eq. (33),
only the terms quadratic in the external momenta t2⊥ will contribute to the perpendicular renormalization constant. Thus, we
have

Z
2π

0

dα exp fisfr½2w sin αþ u sinðα − βÞ þ v sinðα − γÞ�=2g

¼ 2π −
πr2

8
½u2 þ v2 þ 4w2 þ 4uw cos β þ 4vw cos γ þ 2uv cosðβ − γÞ� þOðr4Þ: ðA5Þ

The calculation of the remaining integrals can be performed with the aid of the useful relations

1

2π

Z
2π

0

dθLnðx2 þ y2 þ 2xy cos θÞ exp½−xy expð�iθÞ� ¼ Lnðx2ÞLnðy2Þ; ðA6Þ

1

2π

Z
2π

0

dθ cos θLnðx2 þ y2 þ 2xy cos θÞ exp½−xy expð�iθÞ� ¼ −
xy
2

�
L1
nðx2ÞL1

nðy2Þ
nþ 1

þ L1
n−1ðx2ÞL1

n−1ðy2Þ
n

�
; ðA7Þ

1

2π

Z
2π

0

dθ sin θLnðx2 þ y2 þ 2xy cos θÞ exp½−xy expð�iθÞ� ¼∓ ixy
2

�
L1
nðx2ÞL1

nðy2Þ
nþ 1

−
L1
n−1ðx2ÞL1

n−1ðy2Þ
n

�
; ðA8Þ

together with the orthogonality properties of the generalized Laguerre polynomials. This leads to

Iλ;fð0Þkk0;qk
¼ B3

f

128π3

�
gλ;fk;qkg

λ;f
k;qk

δkk0 −
t2⊥
4Bf

½½ð2kλ þ 1Þgλ;fk;qkg
λ;f
k;qk

þ ðkλ þ 1Þgλ;fk;qkg
λ;f
kþ1;qk

þ kλg
λ;f
k;qkg

λ;f
k−1;qk �δkk0 −

kλ þ 1

2
ðgλ;fk;qk þ gλ;fkþ1;qk Þ2δkk0−1

−
kλ
2
ðgλ;fk;qk þ gλ;fk−1;qk Þ2δkk0þ1� þOðr4Þ

�
ðA9Þ

and
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Ifð1Þkk0;qk
¼ kB4

f

32π3

�
gþ;f
k;qk

g−;fk;qk
δkk0 þ

t2⊥
8Bf

½½−sfðgþ;f
k−1;qkg

þ;f
kþ1;qk

− g−;fk−1;qkg
−;f
kþ1;qk

Þ

− kð4gþ;f
k;qkg

−;f
k;qk þ gþ;f

k−1;qkg
−;f
k;qk þ gþ;f

k;qkg
−;f
kþ1;qk þ gþ;f

kþ1;qkg
−;f
k;qk þ gþ;f

k;qkg
−;f
k−1;qk Þ�δkk0

þ ðkþ 1Þðgþ;f
k;qk þ gþ;f

kþ1;qk Þðg
−;f
k;qk þ g−;fkþ1;qk Þδkk0−1

þ ðk − 1Þðgþ;f
k−1;qk þ gþ;f

k;qk Þðg
−;f
k−1;qk þ g−;fk;qkÞδkk0þ1� þOðr4Þ

�
: ðA10Þ

Replacing the results in Eqs. (A9) and (A10) into Eq. (A1) one arrives at our final expression, quoted in Eq. (41).

APPENDIX B: CALCULATION OF CONTRIBUTIONS TO f ðA⊥Þ
π0

To calculate the contributions t⊥ · FA;ðIÞ
⊥ and t⊥ · FA;ðIIIÞ

⊥ to fðA⊥Þ
π0

we start by integrating t⊥ · h⊥ along the straight line path
lμ ¼ βzμ. One has

t⊥ · h⊥ ¼ −ið2πÞ4
Z

1

0

dβδð2Þðrk − ð1 − βÞtkÞ∂βδ
ð2Þðr⊥ − ð1 − βÞt⊥Þ: ðB1Þ

Given the definition in Eq. (47), we perform a series expansion around t⊥ ¼ 0 up to order t2⊥ for each contribution to the
axial perpendicular decay constant, similar to the case of Z⊥. Thus, we find

t⊥ · FA;ðIÞ
⊥ ðtÞ ¼ iNC

2
t2⊥

X
f¼u;d

Z
q
trD½S̃fðqÞ�

Z
1

0

dββ½g0ðq2⊥ þ qþ2
βk Þ þ q2⊥g00ðq2⊥ þ qþ2

βk Þ�; ðB2Þ

t⊥ · FA;ðIIÞ
⊥ ðtÞ ¼ −8π2NC

X
f¼u;d

sf
B3
f

Z
p⊥p0⊥q

gðq2Þ exp½i2φ0ðq⊥; p⊥; p0⊥Þ=ðqfBÞ�

× trD½S̃fðp⊥; qþk Þγ5ðt⊥ · γμÞS̃fðp0⊥; q−k Þγ5�jt⊥ × ðq⊥ − u⊥Þj; ðB3Þ

t⊥ · FA;ðIIIÞ
⊥ ðtÞ ¼ −i4π2NCσ

X
f¼u;d

1

B2
f

Z
p⊥p0⊥q

gðq2Þ exp½i2φ0ðq⊥; p⊥; p0⊥Þ=ðqfBÞ�

× trD½S̃fðp⊥; qþk Þγ5S̃fðp0⊥; q−k Þγ5� ×
X3
i¼1

fiðq⊥; u⊥; t⊥Þ; ðB4Þ

where

f1 ¼ −
2i
Bf

jt⊥ × ðq⊥ − u⊥Þjðu⊥ · t⊥Þ
Z

1

0

dβ½g0ðu2⊥ þ q−2βk Þ − g0ðu2⊥ þ qþ2
βk Þ�; ðB5Þ

f2 ¼ 2ðu⊥ · t⊥Þ2
Z

1

0

dβ½ð1 − βÞg00ðu2⊥ þ q−2βk Þ þ βg00ðu2⊥ þ qþ2
βk Þ�; ðB6Þ

f3 ¼ t2⊥
Z

1

0

dβ½ð1 − βÞg0ðu2⊥ þ q−2βk Þ þ βg0ðu2⊥ þ qþ2
βk Þ�: ðB7Þ

In these expressions we use the notation qþβk ¼ qk þ βtk=2, q−βk ¼ qk − ð1 − βÞtk=2, u⊥ ¼ p⊥ þ p0⊥ − q⊥,
and φ0ðq⊥; p⊥; p0⊥Þ ¼ φðq⊥; p⊥; p0⊥; 0Þ.
To calculate the integrals over perpendicular momenta we follow a similar procedure as that described in Appendix A.

That is, we introduce the Laguerre-Fourier transforms of the form factors and the expressions for the traces. Afterwards,
performing appropriate changes of the integration variables, the integrals can be calculated using the orthogonality
properties of the generalized Laguerre polynomials, the properties in Eqs. (A6)–(A8), and the relations
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1

2π

Z
2π

0

dθ cosð2θÞLnðx2 þ y2 þ 2xy cos θÞ exp½−xye�iθ� ¼ 1

2
½Fnðx; yÞ þ Fn−2ðx; yÞ�; ðB8Þ

1

2π

Z
2π

0

dθ sinð2θÞLnðx2 þ y2 þ 2xy cos θÞ exp½−xyei�θ� ¼ �i
2
½Fnðx; yÞ − Fn−2ðx; yÞ�; ðB9Þ

and

Z
∞

0

dw2e−w
2 ½Fmðx; wÞ � Fm−2ðx; wÞ�½Fnðy; wÞ � Fn−2ðy; wÞ�

¼ ðδmn � δmn−2ÞFmðx; yÞ þ ðδmn � δmnþ2ÞFm−2ðx; yÞ; ðB10Þ
Z

∞

0

dw2e−w
2 ½Fmðx; wÞ � Fm−2ðx; wÞ�½Fnðy; wÞ ∓ Fn−2ðy; wÞ�

¼ ðδmn ∓ δmn−2ÞFmðx; yÞ − ðδmn ∓ δmnþ2ÞFm−2ðx; yÞ; ðB11Þ

where

Fnðx; yÞ ¼ Lnþ1ðx2ÞLnþ1ðy2Þ −
1

nþ 2
L1
nþ1ðx2ÞL1

nþ1ðy2Þ þ
1

nþ 1
L1
nðx2ÞL1

nðy2Þ: ðB12Þ

In the case of calculations of t⊥ · FA;ðIIÞ
⊥ ðtÞ, and fðVÞ

π0
, some relations between the Bessel functions JνðxÞ and the Laguerre

polynomials are also required (see the appendices in Ref. [24]).

In this way, after a lengthy calculation, one arrives at the expression for fðA⊥Þ
π0

in Eq. (64).
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