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The typical velocity of a heavy quark in a quarkonium is a widely used quantity, in this paper, based on
the relativistic Bethe-Salpeter equation method, we calculate the average values jqjn and jvjn ≡ vn of a
heavy quark in a S wave or P wave quarkonium rest frame, where q and v are the three dimensional
momentum and velocity, n ¼ 1, 2, 3, 4. For a charm quark in J=ψ , we obtained vJ=ψ ¼ 0.46, v2J=ψ ¼ 0.26,

v3J=ψ ¼ 0.18, and v4J=ψ ¼ 0.14, for a bottom quark in ϒð1SÞ, vϒð1SÞ ¼ 0.24, v2ϒð1SÞ ¼ 0.072, v3ϒð1SÞ ¼
0.025, and v4ϒð1SÞ ¼ 0.010. The values indicate that vn > vn1 · vn2 , where n1 þ n2 ¼ n, which is correct for

all the charmonia and bottomonia. Our results also show the poor convergence if we make the speed
expansion in charmonium system, but good for bottomonium. Based on the vn values and the following
obtained relations vn4S > vn3S > vn2S > vn1S, v

n
4P > vn3P > vn2P > vn1P, and v

n
mP > vnmS (n, m ¼ 1, 2, 3, 4), we

conclude that highly excited quarkonia have larger relativistic corrections than those of the corresponding
low excited and ground states, and there are large relativistic corrections in charmonium system.

DOI: 10.1103/PhysRevD.101.116011

I. INTRODUCTION

The heavy quarkonium physics is one of the most hot
topics in particle physics after the discovery of J=ψ . Since
it is very heavy, heavy quarkonium is a multiscale system
which can probe all regimes of quantum chromodynamics
(QCD) [1]. So it presents an ideal and unique laboratory for
testing the Standard Model and to investigate various
aspects of QCD [2]. It may be crucially important to
improve our understanding of QCD [3].
Because having large masses, the quark and antiquark in

heavy quarkonium are expected to move slowly about each
other, so the velocity of heavy quark provides a small
parameter in which the dynamical scales in heavy quarko-
nium may be hierarchically ordered and then the corre-
sponding amplitudes where heavy quarkonium is involved
in can be systematically expanded in power of velocity of
quarks. For example, in the framework of nonrelativistic
QCD (NRQCD) which is a powerful effective field theory
in describing the quarkonium physics, the v expansion
method is widely used, see the paper [4] for a review. So the

typical velocity (as well as the momentum) of heavy quark
plays an important role in the physics of quarkonium. Since
this typical speed could be the expectation or the average
value v̄, as an expectation value, the relation vn ¼ v̄n is
usually incorrect, so to make speed expansion the values of
vn ≡ vn (n ¼ 1; 2; 3…) are needed.
The increasing accuracy of the experimental measure-

ments calls for a corresponding accuracy in the theoretical
predictions. To increase the theoretical accuracies, relativ-
istic corrections [5–9] and the perturbative corrections
[10–12] are usually required. In the perturbative region,
typical vn values are also needed in some calculations,
for example, within the framework of NRQCD, the
expansion in αs always accompanies expansion in v, and
αsðMÞ ∼ v2 [4].
Considering the relativistic effects, the typical values vn

are widely used. First, without specific calculation, vn

values can be used to give a rough estimation of relativistic
effect. If v and all its powers vn are small, we can conclude
that the corresponding relativistic corrections are small,
other wise, large relativistic corrections will be obtained.
For example, in literature, v2J=ψ ≈ 0.3 and v2ϒ ≈ 0.1 are

always cited, so v2J=ψ ≫ v2ϒ, then we know that J=ψ has
much larger relativistic corrections than ϒð1SÞ dose.
Second, in precise calculation with relativistic corrections,
accurate vn values are widely needed, for example, in the
NRQCD method [13–17], light-cone method [18], poten-
tial models [19,20], and lattice QCD [21], etc. Third, large
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relativistic corrections have been found in double-heavy
mesons [18,22,23], especially in highly excited charmonia
[22,24], so precise vn values are more and more important
in the physics of quarkonium.
The typical speeds of heavy quarks in a ground quarko-

nium have been studied by different methods, for example,
potential models [25,26], calculation using the equation
of binding energy or kinetic energy [23], extracting from
experimental data [27], computing using the Gremm-
Kapustin (GK) relation [8], etc, but most of the results
need to improve accuracy and reduce errors. On the other
hand, the knowledge of vn in excited quarkonium is very
limited, however, more and more attentions are paid to the
excited quarkonia [28–34]. Because of the shortage of vn

information in excited quarkonium, authors like to choose
the same values for excited quarkonium as for the ground
state, but this may cause large errors, especially in char-
monium and highly excited states, because highly excited
states may have larger relativistic corrections than the low
excited and ground states, so bigger vn values should be
obtained in highly excited states.
In this paper, using the Bethe-Salpeter (BS) equation

method [35], we will calculate the average values of qn and
vn for a heavy quark in different quarkonia. The motivation
is to provide a precise calculation. It is well know that the
BS equation or its reduced version, Salpeter equation [36],
is a relativistic equation describing bound state. By solving
it, we will obtain relativistic wave function for bound state,
from which we can make precise calculations of qn and vn

where the relativistic corrections are considered very well,
this is most important for highly excited quarkonium
because it may has larger relativistic corrections.
The remainder of this paper is organized as follows:

Sec. II contains a brief review on the BS equation and
Salpeter equation. In Sec. III, we first give the wave
functions for various JPC quarkonium bound states, then
calculate the average values qn and vn (n ¼ 1; 2; 3; 4) for a
heavy quark inside a quarkonium. Section IV is devoted to
numerical results and discussions.

II. THE BETHE-SALPETER EQUATION AND
SALPETER EQUATION

A quark and an antiquark are bound to a meson by strong
interaction, which can be described by the Schrodinger
equation if the meson is a nonrelativistic system, but if it is
relativistic, then the BS equation [35] should be used,
because it is a relativistic dynamic equation describing a
bound state. For a meson, which containing a quark 1 and
an anti-quark 2, its BS equation can be read as [35]

ð=p1 −m1ÞχðP; qÞð=p2 þm2Þ ¼ i
Z

d4k
ð2πÞ4 VðP; k; qÞχðP; kÞ;

ð1Þ

where χðP; qÞ is the relativistic four dimensional wave
function of the meson, VðP; k; qÞ is the interaction kernel
between quark and antiquark. P is the total momentum of
the meson, p1 and p2 are the momenta of the quark and
antiquark, m1 and m2 (¼ m1 for quarkonium) are the
constituent masses of the quark and antiquark respectively.
q (k) is the relative momentum, for a quarkonium which
can be defined by the following relations,

p1 ¼ 0.5Pþ q; p2 ¼ 0.5P − q:

The full BS equation is very complicated, we have to
make approach to solve it. Salpeter equation is the instan-
taneous version of BS equation, because of including
heavy mass, the instantaneous approach is a good method
for heavy meson, especially for heavy quarkonium.
References [37,38] proved this conclusion by showing a
small retardation effect in heavy quarkonium, so in this
paper we will solve the Salpeter equation instead of
BS equation.
In the instantaneous approach and in the center of mass

system (CMS) of the quarkonium, which is also its rest
frame, P ¼ ðM; 0Þ, and the interaction kernel VðP; k; qÞ
becomes to Vðk; qÞ≡ Vðk − qÞ, then the BS wave function
χðP; qÞ becomes to the Salpeter wave function φðqÞ after
integrating over q0,

φðqÞ≡ i
Z

dq0
2π

χðP; q0; qÞ: ð2Þ

With a shorthand symbol

ηðqÞ≡
Z

d3k
ð2πÞ3 Vðk; qÞφðqÞ;

BS Eq. (1) can be changed to

χðP; q0; qÞ ¼ S1ðp1ÞηðqÞS2ðp2Þ; ð3Þ

where the propagators can be decomposed into two terms:

SiðpiÞ ¼
Λþ
i ðqÞ

JðiÞq0 þ 0.5M − ωi þ iϵ

þ Λ−
i ðqÞ

JðiÞq0 þ 0.5M þ ωi − iϵ
; ð4Þ

with

ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ q2
q

; Λ�
i ðqÞ ¼

1

2ωi
½γ0ωi � JðiÞðmi − q · γÞ�;

where except the imaginary number iϵ, i ¼ 1, 2 for quark
and antiquark respectively, and JðiÞ ¼ ð−1Þiþ1. The pro-
jection operators Λ�

i ðqÞ satisfy the following relations:
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Λþ
i ðqÞ þ Λ−

i ðqÞ ¼ γ0; Λ�
i ðqÞγ0Λ�

i ðqÞ ¼ Λ�
i ðqÞ;

Λ�
i ðqÞγ0Λ∓

i ðqÞ ¼ 0:

After we take the integration over q0 in Eq. (3) on both
sides, then we get the Salpeter equation,

φðqÞ ¼ Λþ
1 ðqÞηðqÞΛþ

2 ðqÞ
M − ω1 − ω2

−
Λ−
1 ðqÞηðqÞΛ−

2 ðqÞ
M þ ω1 þ ω2

: ð5Þ

If we introduce the notations

φ��ðqÞ≡ Λ�
1 ðqÞγ0φðqÞγ0Λ�

2 ðqÞ;

the Salpeter wave function can be separated into four terms,

φ��ðqÞ≡ φþþðqÞ þ φþ−ðqÞ þ φ−þðqÞ þ φ−−ðqÞ; ð6Þ

where φþþðqÞ is the positive wave function, φ−−ðqÞ is the
negative one.
Using the relations of projection operators, the Salpeter

equation can be written as [36]

ðM − ω1 − ω2ÞφðqÞþþ ¼ Λþ
1 ðqÞηðqÞΛþ

2 ðqÞ;
ðM þ ω1 þ ω2ÞφðqÞ−− ¼ −Λ−

1 ðqÞηðqÞΛ−
2 ðqÞ;

φðqÞþ− ¼ 0; φðqÞ−þ ¼ 0: ð7Þ

Since ω1 and ω2 are the energies of quark and antiquark
inside a quarkonium, the value of ω1 þ ω2 is close to the
quarkoniummassM, then in Salpeter equation, the quantity
of ðM − ω1 − ω2Þ is much smaller than ðM þ ω1 þ ω2Þ, so
one can conclude that the value of φðqÞþþ is much larger
than that of φðqÞ−−, so in literature, usually only the first
equation is solved instead of the whole four equations. But
we point out that this will lose the benefit of Sapeter
equation, so we should solve the full Salpeter equation to
obtain a relativistic wave function of a quarkonium.
In our method, the Cornell potential which is a linear

scalar potential plus a Coulomb vector potential, is chosen
as the instantaneous interaction kernel V,

VðrÞ ¼ λrþ V0 −
4

3

αs
r
: ð8Þ

III. RELATIVISTIC CALCULATION OF THE
AVERAGE VALUES qn AND vn OF A HEAVY

QUARK IN A QUARKONIUM

We adopt the classification of QQ̄ quarkonium in
terms of the radial quantum number n, the spin S, the

orbital angular momentum L, and the total angular momen-
tum J. Then state identified by n2Sþ1LJ corresponds to a
meson, in this paper, we consider two S wave states,
pseudoscalar 1S0 and vector 3S1, four P wave states, 1P1,
3P0, 3P1, and 3P2. Equally, we can also use the JPC to
identify the states, where P ¼ ð−1ÞLþ1 is the parity and
C ¼ ð−1ÞLþS the charge-conjugation parity. So two Swave
quarkonia can be labeled as 0−þ and 1−−, four P wave
quarkonia can be labeled as 1þ−, 0þþ, 1þþ, and 2þþ,
correspondingly.
The relativistic wave functions with certain quantum

numbers 0−þð1S0Þ, 1−−ð3S1Þ, 1þ−ð1P1Þ, 0þþð3P0Þ,
1þþð3P1Þ, and 2þþð3P2Þ can be written as [39–42]

φ0−þðqÞ ¼ M

�
γ0a1ðqÞ þ a2ðqÞ þ

q · γγ0
M

a3ðqÞ
�
γ5;

φ1−−ðqÞ ¼ ð−q · ϵÞ
�
b1ðqÞ −

q · γ
M

b3ðqÞ þ
q · γγ0
M

b4ðqÞ
�

−Mϵ · γb5ðqÞ þMγ0ϵ · γb6ðqÞ
þ γ0ðϵ · γq · γ þ q · ϵÞb8ðqÞ;

φ0þþðqÞ ¼ −q · γf1ðqÞ þ q · γγ0f2ðqÞ þMf3ðqÞ;
φ1þþðqÞ ¼ iε0μαβqαϵβ½γμg1ðqÞ þ γ0γμg2ðqÞ

þ ig4ðqÞε0μρδqργδγ5=M�;

φ1þ−ðqÞ ¼ q · ϵ

�
h1ðqÞ þ γ0h2ðqÞ þ

q · γγ0
M

h4ðqÞ
�
γ5;

φ2þþðqÞ ¼ εμνqν
�
qμ
�
j1ðqÞ −

q · γ
M

j3ðqÞ þ
q · γγ0
M

j4ðqÞ
�

þMγμ½j5ðqÞ þ γ0j6ðqÞ� − iϵ0μβγqβγγγ5j8ðqÞ
�
;

ð9Þ

where the radial wave functions aiðqÞ, biðqÞ, fiðqÞ,
giðqÞ, hiðqÞ, and jiðqÞ are functions of q2, so there is no
q2 terms in Eq. (9). There is also no P · q terms because
in the instantaneous approximation q ¼ ð0; qÞ and
P · q ¼ 0. ϵ is the polarization vector of a 1−−, 1þþ,
or 1þ− state, ϵμν is the polarization tensor of the 2þþ

state. With these wave function forms, we solved the
Salpeter Eq. (7) and obtained the mass spectra and
numerical values of wave functions. The details of how
to solve the full Salpeter equations can be found in our
previous papers [43].
The normalization conditions for above wave functions

are [43],
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Z
d3q
ð2πÞ3 2a1a2M

�
ω1

m1

þm1

ω1

þ q2

ω1m1

�
¼ 1;

Z
d3q
ð2πÞ3

4ω1

3m1M

�
3b5b6M2 þ b4b5q2 − b3q2

�
b4

q2

M2
þ b6

��
¼ 1;

Z
d3q
ð2πÞ3

4f1f2ω1q2

m1M
¼ 1;

Z
d3q
ð2πÞ3

8g1g2ω1q2

3m1M
¼ 1;

Z
d3q
ð2πÞ3

4h1h2ω1q2

3m1M
¼ 1;

Z
d3q
ð2πÞ3

4ω1q2

15m1M

�
5j5j6M2 þ 2j4j5q2 − 2q2j3

�
j4

q2

M2
þ j6

��
¼ 1: ð10Þ

In the CMS of the quarkonium, we have the relation
p1 ¼ q ¼ −p2, so q is the quark momentum. The normali-
zation conditions can be summarized as

R
dqf2ðqÞ ¼ 1,

which means the probability we find the quark in the whole
momentum space is unity, and f2ðqÞdq is the possibility that
the quark momentum takes on the values q → qþ dq,
so same to the method of Maxwell speed distribution, we
define the average value, hqni≡ jqjn, for a quark inside
quarkonium, which can be calculated as followings,

hqni0−þ ¼
Z

d3q
ð2πÞ3 2a1a2jqj

nM

�
ω1

m1

þm1

ω1

þ q2

ω1m1

�
; ð11Þ

hqni1−− ¼
Z

d3q
ð2πÞ3

4ω1jqjn
3m1M

×

�
3b5b6M2 þ b4b5q2 − b3q2

�
b4

q2

M2
þ b6

��
;

ð12Þ

hqni0þþ ¼
Z

d3q
ð2πÞ3

4f1f2ω1jqj2þn

m1M
; ð13Þ

hqni1þþ ¼
Z

d3q
ð2πÞ3

8g1g2ω1jqj2þn

3m1M
; ð14Þ

hqni1þ− ¼
Z

d3q
ð2πÞ3

4h1h2ω1jqj2þn

3m1M
; ð15Þ

hqni2þþ ¼
Z

d3q
ð2πÞ3

4ω1jqj2þn

15m1M

×

�
5j5j6M2 þ 2j4j5q2 − 2q2j3

�
j4

q2

M2
þ j6

��
;

ð16Þ
where jqj is the absolute magnitude of momentum.
The calculated method of average value shows us

obviously that it is also the expectation value, so we have
the relation

qn ≡ jqjn ≡ hqni; vn ≡ jvjn ≡ hvni; ð17Þ

where v ¼ q
m1

is the quark velocity.

IV. NUMERICAL RESULTS AND DISCUSSIONS

When solving the full Salpeter equations, we choose the
same parameter values as in the paper [43], which are
determined by fitting mass spectra of charmonia and
bottomonia, and the quark masses are chosen as mc ¼
1.62 GeV and mb ¼ 4.96 GeV. Using the Eqs. (11)–(16),
the expectation values of qn and vn for a heavy quark inside
different quarkonia are calculated, and results are shown in
Tables I–IV, in these tables, we also show the mass spectra
where the masses of ground states are input.
In Cornell potential, at large momentum, the interaction

between quarks is dominated by the Coulomb potential.
When calculating qn or vn, with the increase of n, Bodwin
et al. [26], found the problem of ultraviolet divergence, we
meet the same problem when n ≥ 5, but we did not make
use of hard-cutoff regulator to do the calculation like they
did, only show the stable results of qn and vn where n ≤ 4.
In the numerical calculation, limited by computing

power, we have to make hard cutoff of integration variable,
relative momentum q, we find if we choose qmax ¼
3.87 GeV, the numerical results are stable. The physical
reason we can make hard cutoff is that just as this paper
shows, the probability of heavy quark inside quarkonium
with large momentum or speed is very small, so the value of
radial wave function tends to zero at large momentum. To
investigate the ultraviolet behavior of wave functions and
the stability of the results, we vary the cutoff qmax and give
the relative increasing of vn where n ¼ 3; 4; 5; 6. When
we choose qmax ¼ 7.71 GeV, the increasing of fv3; v4;
v5; v6g for ηcð1SÞ are f2.9%; 8.9%; 25%; 49%g, for ηcð2SÞ
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f2.1%; 5.7%; 14%; 31%g, for ηcð3SÞ f1.9%; 4.4%; 11%;
25%g. We can see that, the convergence is not good for v5,
and bad for v6, so in this paper, we only show the results of
qn and vn where n ≤ 4 using qmax ¼ 3.87 GeV.
Table I shows the average values qn and vn of a charm

quark inside pseudoscalars ηcð1S − 4SÞ and vectors
ψð1S − 4SÞ. In cases of fηcð1SÞ; J=ψg, v¼f0.45;0.46g,
v2 ¼ f0.25; 0.26g, v3 ¼ f0.17; 0.18g, v4 ¼ f0.13; 0.14g,
so approximately we have vnηcðmSÞ ≈ vnψðmSÞ (n, m ¼ 1, 2, 3,

4), this could be a double check of the correctness of this
model since in a nonrelativistic model, they are treated as
same values, and the difference between them comes from
the corrections of order v2 [4]. Our results in Table I
indicate that the average value vn in a highly excited state is
larger than in a low excited state, that is we have the relation
vn4S >vn3S >vn2S >vn1S (n ¼ 1, 2, 3, 4), for example, v2ψð4SÞ ¼
0.48 > v2ψð3SÞ ¼ 0.42 > v2ψð2SÞ ¼ 0.35 > v2J=ψ ¼ 0.26.
Reference [25] using potential model predicted the

velocity squared v2 of ψ system, their results are v2J=ψ ¼
0.23, v2ψð2SÞ ¼ 0.29, v2ψð3SÞ ¼ 0.36, and v2ψð4SÞ ¼ 0.44,

which are comparable with ours. Also based on potential
model, Ref. [26] predicted hv2J=ψ i ¼ 0.25� 0.05� 0.08,

where hv2J=ψi is not the expectation value defined in this
paper, but the long distance matrix element of J=ψ [27,44],
while based on NRQCD velocity-scaling rules [4] it is

equal approximately to v2 [44]. We can see that, their value
hv2J=ψ i is very consistent with ours. Also based on potential
model that employs Cornell potential, Ref. [44] obtained
hv2J=ψ i ¼ 0.224 and hv2ηcð1SÞi ¼ 0.226. In Ref. [27], with

the experimental γγ width Γγγ
ηc as input, they obtained

hv2ηcð1SÞi ¼ 0.228þ0.126
−0.100 , if using the total width Γtotal

ηcð1SÞ as

input, their result is hv2ηcð1SÞi ¼ 0.234þ0.121
−0.099 , all above

predictions are close to ours.
The average values qn and vn of a charm quark inside P

wave charmonia are shown in Table II. First, we have the
relations vnχc0ðmPÞ ≈ vnχc1ðmPÞ ≈ vnχc2ðmPÞ ≈ vnhcðmPÞ (n, m ¼ 1,

2, 3, 4), for example, v2χc0ð1PÞ ≈ v2χc1ð1PÞ ≈ v2χc2ð1PÞ ≈
v2hcð1PÞ ¼ 0.30, this also can be as a double check that

TABLE II. Average values of qn and vn of charm quark inside 0þþ, 1þþ, 2þþ, and 1þ− charmonia, where the masses of ground 1P
states are input.

State Mass q q2 q3 q4 v v2 v3 v4

χc0ð1PÞ 3414.7 0.838 0.796 0.850 1.02 0.517 0.303 0.200 0.148
χc0ð2PÞ 3836.8 0.882 0.992 1.30 1.87 0.544 0.378 0.305 0.271
χc0ð3PÞ 4140.1 0.937 1.15 1.64 2.58 0.579 0.439 0.387 0.375
χc0ð4PÞ 4376.9 0.985 1.28 1.94 3.21 0.608 0.489 0.455 0.466
χc1ð1PÞ 3510.3 0.849 0.814 0.874 1.05 0.524 0.310 0.205 0.152
χc1ð2PÞ 3928.7 0.896 1.02 1.34 1.93 0.553 0.388 0.315 0.280
χc1ð3PÞ 4228.8 0.953 1.18 1.70 2.68 0.588 0.451 0.401 0.389
χc1ð4PÞ 4463.1 1.00 1.32 2.01 3.34 0.619 0.503 0.473 0.485
χc2ð1PÞ 3555.6 0.839 0.791 0.829 0.959 0.518 0.301 0.195 0.139
χc2ð2PÞ 3971.0 0.896 1.01 1.30 1.84 0.553 0.385 0.307 0.267
χc2ð3PÞ 4269.3 0.957 1.18 1.68 2.60 0.590 0.451 0.396 0.378
χc2ð4PÞ 4502.0 1.01 1.33 2.00 3.28 0.622 0.505 0.471 0.476
hcð1PÞ 3526.0 0.844 0.802 0.851 1.00 0.521 0.306 0.200 0.146
hcð2PÞ 3943.0 0.896 1.01 1.32 1.89 0.553 0.387 0.311 0.274
hcð3PÞ 4242.4 0.955 1.18 1.69 2.64 0.589 0.451 0.398 0.384
hcð4PÞ 4476.2 1.00 1.32 2.01 3.31 0.620 0.504 0.472 0.481

TABLE I. Average values of qn and vn of charm quark inside 0−þ and 1−− charmonia, where the masses ofmηcð1SÞ ¼ 2980.3 MeV and
mJ=ψ ¼ 3096.9 MeV are input.

State Mass q q2 q3 q4 v v2 v3 v4

ηcð1SÞ 2980.3 0.728 0.653 0.706 0.915 0.449 0.249 0.166 0.133
ηcð2SÞ 3576.4 0.796 0.885 1.17 1.72 0.491 0.337 0.274 0.249
ηcð3SÞ 3948.8 0.877 1.06 1.52 2.41 0.541 0.405 0.357 0.350
ηcð4SÞ 4224.6 0.939 1.21 1.82 3.03 0.579 0.460 0.428 0.440
J=ψ 3096.9 0.743 0.679 0.744 0.970 0.459 0.259 0.175 0.141
ψð2SÞ 3688.1 0.810 0.914 1.22 1.81 0.500 0.348 0.286 0.262
ψð3SÞ 4056.8 0.894 1.10 1.59 2.54 0.552 0.419 0.374 0.369
ψð4SÞ 4329.4 0.956 1.25 1.90 3.19 0.590 0.476 0.447 0.463
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the method is correct because in a nonrelativistic limit one
use a same wave function for these four states, but we
use four different wave functions and normalization con-
ditions for them, while we obtained similar results.
Second, similar to S wave results, there are the relations
vnχcJð4PÞ > vnχcJð3PÞ > vnχcJð2PÞ > vnχcJð1PÞ and vnhcð4PÞ >
vnhcð3PÞ > vnhcð2PÞ > vnhcð1PÞ (n ¼ 1, 2, 3, 4, J ¼ 1, 2, 3).
Third, compared with the corresponding S wave state, we
have the relations vnχcJðmPÞ > vnψðmSÞ (n, m ¼ 1, 2, 3, 4,
J ¼ 1, 2, 3) and vnhcðmPÞ > vnηcðmSÞ (n, m ¼ 1, 2, 3, 4), for

example, v2χc1ð1PÞ ¼0.31>v2ψð1SÞ ¼0.26, v2hcð2PÞ ¼ 0.39 >

v2ηcð2SÞ ¼ 0.34, so the usually used relations vnχcJðmPÞ ¼
vnψðmSÞ and vnhcðmPÞ ¼ vnηcðmSÞ are incorrect.

Reference [25] predicted v2cc̄ð1PÞ ¼ 0.25 and v2cc̄ð2PÞ ¼
0.32, which are comparable with ours, but a little smaller.
Within QCD sum rules, Ref. [45] predicted v2cc̄ð1PÞ ¼
0.30� 0.10 and v4cc̄ð1PÞ ¼ 0.12� 0.04, Ref. [46] using

the light-front framework given v2cc̄ð1PÞ ¼ 0.317 and

v4cc̄ð1PÞ ¼ 0.118, these two results are very close to ours.
We find that in charmonium system, see Tables I and II,

the results indicate the poor convergence if we make the
velocity expansion (Ref. [47] got a similar conclusion),
especially for highly excited states, where the convergence
is very bad. For example, we get vJ=ψ ¼ 0.46, v2J=ψ ¼ 0.26,
v3J=ψ ¼ 0.18, and v4J=ψ ¼ 0.14, the convergence rate on the
power of v is very slow, and the values of high power of v
are large, both of them indicate there are large relativistic
corrections in J=ψ . Inside ψð4SÞ, the values are vψð4SÞ ¼
0.59, v2ψð4SÞ ¼ 0.48, v3ψð4SÞ ¼ 0.45, and v4ψð4SÞ ¼ 0.46, the v

expansion is very bad in this case, the reason is that there
are three nodes in the wave function of ψð4SÞ. The structure
of nodes results in big contribution from large v region, so
we obtained big average values vn, which indicate very
large relativistic corrections in ψð4SÞ. By comparing the vn

values, we conclude that highly excited states (including
radially and orbitally excited state) have larger relativistic
corrections than those of low excited and ground states,
which make the convergence of the velocity expansion very

bad in highly excited states. The authors in Ref. [48] also
found the velocity expansion in the present NRQCD
framework suffers from large high order relativistic cor-
rections in another way which due to ignoring the momen-
tum of soft hadrons.
The corresponding results of the average qn and vn

values of a bottom quark inside a S wave bottomonium are
shown in Table III. Similar to the charm quark case, we
have qnηbðmSÞ ≈ qnϒðmSÞ and vnηbðmSÞ ≈ vnϒðmSÞ (n, m ¼ 1, 2, 3,

4). And the average value vnϒðmSÞ is much smaller than the

corresponding vnψðmSÞ in Table I, for example, v2ϒð1SÞ ¼
0.072 ≪ v2J=ψ ¼ 0.26, which indicate there are much
smaller relativistic corrections in bottomonium than those
in charmonium. We also have the relation vn4S > vn3S >
vn2S > vn1S (n ¼ 1, 2, 3, 4), except vηbð2SÞ ¼ vηbð1SÞ ¼ 0.24
and vϒð2SÞ ¼ 0.23 < vϒð1SÞ ¼ 0.24, but these deviations
cannot change our conclusion, that the relativistic correc-
tions in a highly excited state is larger than that in a low
excited state. In Ref. [25], the authors predicted v2ϒð1SÞ ¼
0.077, v2ϒð2SÞ ¼ 0.075, v2ϒð3SÞ ¼ 0.085, and v2ϒð4SÞ ¼ 0.098,

which are consistent well with our results v2ϒð1SÞ ¼ 0.072,

v2ϒð2SÞ ¼ 0.080, v2ϒð3SÞ ¼ 0.090, and v2ϒð4SÞ ¼ 0.10.
For the P wave bottomonium case, see Table IV, similar

to P wave charnomium results, the relations vnχb0ðmPÞ ≈
vnχb1ðmPÞ ≈ vnχb2ðmPÞ ≈ vnhbðmPÞ (n, m ¼ 1, 2, 3, 4) are also

exist. Except vχbJð2PÞ ¼ vχbJð1PÞ and vhbð2PÞ ≃ vhbð1PÞ, we
have vnχbJð4PÞ > vnχbJð3PÞ > vnχbJð2PÞ > vnχbJð1PÞ and vnhbð4PÞ >
vnhbð3PÞ > vnhbð2PÞ > vnhbð1PÞ (n ¼ 1, 2, 3, 4, J ¼ 1, 2, 3).

Though we have the similar relations to charmonium
system, that vnχbJðmPÞ > vnϒðmSÞ (n, m ¼ 1, 2, 3, 4, J ¼ 1,

2, 3) and vnhbðmPÞ > vnηbðmSÞ (n, m ¼ 1, 2, 3, 4), but different

from the charmonium case, in a roughly estimation, we
can choose the approximation vnχbJðmPÞ ≈ vnhbðmPÞ ≈ vnϒðmSÞ≈
vnηbðmSÞ (n, m ¼ 1, 2, 3, 4, J ¼ 1, 2, 3), for example, all the

values of v2χbJð1PÞ, v
2
hbð1PÞ, v

2
ϒð1SÞ, and v2ηbð1SÞ are around

0.071 ∼ 0.076, the existing of this relation is due to the very
heavy bottom quark mass.

TABLE III. Average values of qn and vn of bottom quark inside 0−þ and 1−− bottomonia, where the masses of ground 1S states are
input.

State Mass q q2 q3 q4 v v2 v3 v4

ηbð1SÞ 9390.2 1.19 1.74 3.02 6.00 0.240 0.0708 0.0247 0.00991
ηbð2SÞ 9950.0 1.18 2.00 4.04 9.00 0.237 0.0811 0.0331 0.0149
ηbð3SÞ 10311.4 1.21 2.11 4.43 10.3 0.244 0.0860 0.0363 0.0170
ηbð4SÞ 10554.0 1.30 2.41 5.32 13.0 0.262 0.0981 0.0436 0.0214
ϒð1SÞ 9460.5 1.20 1.76 3.05 6.10 0.241 0.0715 0.0250 0.0101
ϒð2SÞ 10023.1 1.16 1.96 3.95 8.79 0.234 0.0797 0.0324 0.0145
ϒð3SÞ 10368.9 1.25 2.22 4.74 11.1 0.251 0.0904 0.0388 0.0184
ϒð4SÞ 10635.8 1.34 2.52 5.61 13.7 0.270 0.103 0.0460 0.0226
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Reference [25] considered the similar quantities, their
values are v2

bb̄ð1PÞ ¼ 0.069, v2
bb̄ð2PÞ ¼ 0.078, and v2

bb̄ð3PÞ ¼
0.090, our values for a bottom inside χb0ðnPÞ are
v2χb0ð1PÞ ¼ 0.076, v2χb0ð2PÞ ¼ 0.088, and v2χb0ð3PÞ ¼ 0.099.
The values in Ref. [25] are slightly smaller than ours,
but two results are comparable. Reference [46] also
predicted their results, which are v2

bb̄ð1PÞ ¼ 0.111 and

v4
bb̄ð1PÞ ¼ 0.0160, larger than ours.

Because the bottom quark mass is very heavy, it moves
slowly and has a small velocity in bottomonium, then its
relativistic corrections are small, so the behavior of velocity
expansion of the bottom quark if we make is much different
from charm quark case. From Tables III and IV, we can see
that the convergence in the velocity expansion is good, even
for highly excited state. For example, we get vϒð1SÞ ¼ 0.24,
v2ϒð1SÞ ¼ 0.072, v3ϒð1SÞ ¼ 0.025, and v4ϒð1SÞ ¼ 0.010, the

convergence rate on the power of v is much quick. The
small values of vn, and the good convergence in velocity
expansion, indicate small relativistic corrections in botto-
monium, including highly excited states.
We also note that in a quarkonium, as a expectation

value, v2 ≠ v̄2, v̄ · v2 ≠ v̄3, and v4 ≠ v22. For example in

case of J=ψ , v2 ¼ 0.26, but v̄2 ¼ 0.21, v4 ¼ 0.14 is much

larger than v22 ¼ 0.067. In case of ϒð1SÞ, v2 ¼
0.072 ≠ v̄2 ¼ 0.058, v4 ¼ 0.010 ≠ v22 ¼ 0.0051. We have

the relation vn > vn1 · vn2 , where n1 þ n2 ¼ n, and this
relation is correct for all the charmonia and bottomonia. GK
relation [8] predicted, hv2ni ¼ hv2in, which is accurate up
to corrections of order v2. Our results show the deviation of
GK relation from direct calculation, and the deviation is
small when n is small, but large when n is large.
In summary, using the Bethe-Salpeter method, we

calculate the average values qn and vn (n ¼ 1, 2, 3, 4)
of c and b quarks in S wave and P wave quarkonia. We
obtained, for example, vJ=ψ ¼ 0.46, v2J=ψ ¼ 0.26, v3J=ψ ¼
0.18, v4J=ψ ¼ 0.14, and vϒð1SÞ ¼ 0.24, v2ϒð1SÞ ¼ 0.072,

v3ϒð1SÞ ¼ 0.025, v4ϒð1SÞ ¼ 0.010. Our results also show the
following relations, vn4S > vn3S > vn2S > vn1S, v

n
4P > vn3P >

vn2P > vn1P, vnmP > vnmS (n, m ¼ 1, 2, 3, 4) and
vn > vn1 · vn2 , where n1 þ n2 ¼ n. We find highly excited
states have larger relativistic corrections than those of
the corresponding low excited and ground states, and the
convergence of the velocity expansion is poor in charmo-
nium system, especially bad for highly excited states,
which indicate large relativistic corrections existing in
charmonium system.
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TABLE IV. Average values of qn and vn of bottom quark inside 0þþ, 1þþ, 2þþ, and 1þ− bottomonia, where the masses of ground 1P
states are input.

State Mass q q2 q3 q4 v v2 v3 v4

χb0ð1PÞ 9859.0 1.29 1.88 3.08 5.62 0.259 0.0764 0.0253 0.00929
χb0ð2PÞ 10240.6 1.29 2.15 4.22 9.07 0.259 0.0875 0.0346 0.0150
χb0ð3PÞ 10524.7 1.35 2.44 5.20 12.1 0.271 0.0993 0.0426 0.0200
χb0ð4PÞ 10757.0 1.39 2.65 5.92 14.5 0.280 0.108 0.0485 0.0239
χb1ð1PÞ 9892.2 1.28 1.88 3.08 5.60 0.259 0.0763 0.0252 0.00925
χb1ð2PÞ 10272.7 1.29 2.16 4.25 9.13 0.260 0.0880 0.0348 0.0151
χb1ð3PÞ 10556.2 1.35 2.45 5.22 12.2 0.271 0.0994 0.0427 0.0201
χb1ð4PÞ 10787.8 1.38 2.61 5.83 14.2 0.278 0.106 0.0477 0.0235
χb2ð1PÞ 9913.3 1.26 1.80 2.88 5.13 0.254 0.0731 0.0236 0.00847
χb2ð2PÞ 10284.0 1.24 2.04 3.94 8.35 0.251 0.0830 0.0323 0.0138
χb2ð3PÞ 10591.6 1.36 2.49 5.32 12.4 0.275 0.101 0.0436 0.0205
χb2ð4PÞ 10786.9 1.43 2.76 6.17 15.0 0.289 0.112 0.0506 0.0248
hbð1PÞ 9900.2 1.27 1.84 2.97 5.32 0.257 0.0747 0.0243 0.00879
hbð2PÞ 10280.4 1.25 2.05 3.93 8.30 0.252 0.0832 0.0322 0.0137
hbð3PÞ 10562.0 1.34 2.42 5.11 11.8 0.270 0.0983 0.0419 0.0195
hbð4PÞ 10793.8 1.39 2.65 5.90 14.4 0.281 0.108 0.0484 0.0237
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