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The three-loop QED mass-dependent contributions to the g — 2 of each of the charged leptons with two

g6) ™) in the g — 2 literature, is revisited using the

my > ms

Mellin-Barnes (MB) representation technique. Results for the muon and 7 lepton anomalous magnetic

internal closed fermion loops, sometimes called A

moments Agii and AQ which were known as series expansions in the lepton mass ratios up to the first few

terms only, are extended to their exact expressions. The contribution to the anomalous magnetic moment of
the electron A(fg is also explicitly given in closed form. In addition to this, we show that the different series
representations derived from the MB representation collectively converge for all possible values of the
masses. Such unexpected behavior is related to the fact that these series bring into play double
hypergeometric series that belong to a class of Kampé de Fériet series which we prove to have the same

simple convergence and analytic continuation properties as the Appell F; double hypergeometric series.

DOI: 10.1103/PhysRevD.101.116008

I. INTRODUCTION

The Mellin-Barnes (MB) representation method, a
well-known computational tool of perturbative quantum
field theory, can be used to derive series representations
of Feynman diagrams and related quantities in terms
of multiple hypergeometric series. In general, once the
dimensionally regularized Feynman diagram or quantity of
interest has been represented by a multifold MB integral, a
standard residue calculation shows that several of such
series representations, converging in different parts of the
parameter space, can be derived and these series are, as a
rule, analytic continuations of one another (see [1] for a
systematic exposition of the twofold case). However, even
at the level of twofold MB representations the convergence
regions of these analytic continuations do not collectively
cover, in general, the whole parameter space of the
computed quantity. This implies that one has to find
alternative (and sometimes nontrivial) analytic continuation
methods in order to obtain analytic expressions valid in the
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particular regions of the parameter space where none of the
series derived from the standard residue computation of the
MB representation can be used. We call these inaccessible
regions the “white regions” in what follows.

A well-known example involving triple series is the two-
loop massive sunset Feynman diagram. In [2], two different
triple series representations of the latter, derived from its
threefold MB representation have been given in closed
form as combinations of Lauricella F (c3 ) triple series, and
two others can also be obtained, either from the MB
representation or by using the invariance of the F' (c3) series
under any permutation of its variables. These four series
representations, analytic continuations of one another,

converge in different regions of the three-dimensional
(51—2% , ;% , %) parameter space of the sunset diagram (where
p is the external momentum and the m; are the masses of
the involved particles), but there remains a “white” region,
which includes regions of phenomenological interest, that
cannot be reached by any of them. We have shown in [3]
how one can analytically continue some of these series to
get new series representations of the sunset diagram that
can be used to analytically evaluate the latter in several
important parts of its white region.

In this paper, we go further on our exploration of the
analytic continuation properties of Feynman diagrams

Published by the American Physical Society
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FIG.(Gl). The three-loop QED Feynman diagram corresponding
to Ay (my/my, my/ms3).

and related quantities by revisiting what is possibly the
simplest class of QED contributions to the anomalous
magnetic moment of each of the charged leptons that can
be represented by a twofold MB integral. These three-
loop QED mass-dependent contributions with two internal
closed fermion loops (see Fig. 1 for the corresponding
Feynman diagram), often denoted Ag(’)(ml /my,my/ms3) in
the g—2 literature, can then involve at most double
hypergeometric series, and we show that they have an
unexpected behavior. Indeed, the analytic continuation
properties that these g — 2 contributions satisfy are, sur-
prisingly, the converse of what one faces when one deals

with, for instance, the sunset diagram case because the MB

representation of Agﬁ) (my/my, m;/m3) does not give rise to

any white region. This interesting result has encouraged us
to probe what is special about the double hypergeometric
series involved in our final expressions. Studying the
specific form of these series, we observe that they have
the same simple convergence and analytic continuation
properties as the Appell F; double hypergeometric series.
Furthermore, we show that the latter and the former both
belong to a class of Kampé de Fériet series for which we
prove, from their MB representation, the absence of white
regions.

As another motivation for studying these particular
g — 2 contributions it should be noted, and as emphasized
in [4], that in contrast to all other three loop QED
contributions to the muon anomalous magnetic moment,

A(flz(mﬂ /m,,m,/m,) is the only one whose exact analytic
form has not been derived so far. Results were first
presented in [5] in terms of the first few terms of a series
expansion in powers and logarithms of the mass ratios,
using large-momentum, heavy mass, and eikonal expan-
sions techniques. These results have then been checked and
extended in [6] using the MB representation method. In the
present paper, we have derived them in their entirety and
present their exact expressions, in terms of generalised
hypergeometric and Kampé de Fériet double hypergeo-
metric series. In the case of the electron, we have not
been able to find any analytic result for these contributions
in the g — 2 literature, although some numerical evaluations

of these have been given, for instance in [7]. We will
show in the following that the exact expression of

Agfg (me/m,,m,/m,) has a simple and compact form.
The 7 lepton case is more intricate and has been considered

a long time ago in [8]. The latter reference gives, to our
knowledge, the only available non-numerical result for

Agi)(m,/ m,, m./m,). The result of [8] corresponds to the
leading term in the double series expansion of the exact
expression which we will present in the following. The
numerical evaluation of this leading term, presented
in [9], does not agree with the numerical evaluation of
Agi)(mf/ m,,m./m,) given in [7]. We show here that this
mismatch can be solved once one adds some sub-leading
terms to the expression of [8,9].

In view of all the considerations spelt out in the fore-
going, we now give the outline of this paper. In Sec. II, a
short review of the QED contributions to the anomalous
magnetic moment of charged leptons is given. In Sec. III,
we present the MB representation for the three-loop
contribution to g — 2 coming from the Feynman diagrams
of Fig. 1 and then calculate it for the cases with external
electron, muon and z lepton. Detailed expressions for each
of these are listed in the Appendix. In Sec. IV, we present
the checks of our formulas and give a brief numerical
analysis, and in Sec. V, we discuss the analytic continuation
properties of the class of Kampé de Fériet series mentioned
above. We conclude with Sec. VI, where a short discussion
of the results and future work are presented.

II. SHORT QED LITERATURE REVIEW

The anomalous magnetic moment of the charged leptons
is defined as a; = (g, — 2)/2, where g, is the Landé factor
and [ = e, pu, 7. In the Standard Model, contributions to a;
arise from electroweak and strong processes. The anoma-
lous magnetic moment of charged leptons has a distin-
guished place in elementary particle physics. Historically,
the electron anomalous magnetic moment has been among
the most important tests of quantum electrodynamics
(QED). During the last decade, a persistent discrepancy
between the Standard Model theoretical predictions and
experimental results in the case of the muon, now reaching
a 3.5¢ level, has spurred a new experiment at Fermilab,
from which a 5¢ deviation could well be obtained in the
near future [10] (see however [11]). Due to these reasons,
over the decades a huge amount of theoretical effort has
been devoted to computing this quantity (see [4] for a
recent and comprehensive review in the muon case), with a
great deal of activity being directed at computing hadronic
contributions to it. We recall that, due to the larger mass of
the muon, it is usually accepted that the muon anomalous
magnetic moment is more sensitive to new physics than the
electron. The very short lifetime of the 7 lepton prevents the
experimental measurement of its anomalous magnetic
moment, which explains why the theoretical study of the
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latter is less well developed (see [12] for a review of the =
lepton case). The best experimental limits are —0.052 <
a, <0.013 (95% C.L.) [13].

The QED contributions to the anomalous magnetic
moment of the charged leptons can be expressed perturba-
tively as

m;, m
a?ED A11+A21< >+A21< >+A3< L l)
my my - my

(1)
with
CYCANCICARNNCICAS
Ai,l == Ai,l ; +Ai,l ; +Ai,l ; + DY (2)
where A( " is the sum of the loop contributions,

aMAQ_AQ:Aﬁzd

The A, ; are mass independent and thus equivalent for all
three lepton flavors. Up to O(@?), these contributions are
(8)

known in closed analytic form, while A}” and higher—loop

contributions are only known numerically. That A =1/2

has long been known [14], as has the value of A [15 17].
(6) .

A numerical value of A" is given in [18], and after work
spanning several decades in calculating the various dia-

grams that constitute A (e g. [19-25]), the calculation
was finalized and the exact close form analytic result was
presented in [26]. Purely numerical calculations for A(l8>
can be found in [27-33], and a result to 1100 digit
precision, accompanied by a semianalytic fit to the result,

is presented in [34]. A numerical value for Aglo)

in [32,33].

The mass dependent terms Ag ,) have been calculated as a
series expansion in the small mass ratio [5,35-37], as an
exact result for small mass ratios [38], and finally as a
closed form analytic result for all values of the mass ratio
[39]. As the diagrams under consideration in this work can
contribute at the three-loop level when two of the three
involved leptons have the same flavor, we discuss Agﬁl) in
greater detail below. The fourth and higher loop results
were known primarily numerically, e.g. [32,33,40],
although some analytic results are also available, e.g.
[41-45].

One of the earliest calculations of A( ) was done in [46],
where an expansion including some of the leading log and
analytic terms was presented. This expansion was extended
in [47], and a result for Fig. I, with [y = pand , =3 = ¢
was given with log contributions up to order (m,/m,)"
included. In [19,48-50] calculations and results for some

is given

g ; and Ag are presented. In [51]

analytic results for vacuum polarization contributions to

diagrams making up A

Ag and A(;g, up to order (m,/m,)", are given. Expressions
for all the individual graphs (such as for Fig. 1) are however
not presented. Reference [52] completes the calculation of
all the log(m,/m,) terms by computing light-by-light
scattering diagrams, numerical estimates for which are to
be found in [53,54]. The electron light-by-light scattering

graph contributions to A( ) are calculated in [55], and the

expansion presented there is extended to higher order in
[56]. Reference [36] continues the expansion given in [51]
to order (m,/m,)". In [57] close form analytic results for

the vacuum polarization diagrams contributing to A( ) are

given, as are expansions in mass ratios (up to a certam
order) that can be used to calculate the equivalent con-
tributions to Ag and Ag’T). The exact expression given in
[57] is also expanded in the small mass ratio in [58], but to a
higher order than in the former, and which is then used to

calculate and compare with numerically evaluated values
of Ag.

The three loop contribution that we are primarily
concerned with in this work is the lowest order nonzero
term consisting of three masses (or two mass ratios), Agél) .
In [36], an integral representation is given for Ag(”; and
numerically evaluated for [ =u [we have noted that
Egs. (32) and (33) of [36] do not match numerically
because of a 2 overall factor that is missing in the rhs of

Eq. (32)]. Another numerical evaluation of A<6)

[57]. For A3 o
terms, based on asymptotic and eikonal methods, while in
[6] these results are slightly extended, using the Mellin-
Barnes technique. In [40], results for QED contributions to
muon g — 2 up to the tenth order are given, which includes

is given in

[5] gives an expansion up to the first few

numerical values for A( ) and A<2 j The integral of [36] is
evaluated for the electron case, and a numerical value for

Ag is given in [58]. Numerical results for the same, as well
(6)

as for A, ,, but based on an older set of mass value inputs, is
given in [42]. And [32] gives numerical results for QED
contributions to electron g—2 up to the tenth order,
including values for Ag?g and Ag’z. [9] reviews and updates
all contributions to the muon and 7 lepton g — 2 up to its
date of publication, and based on the results of [8], gives an

expression for A( ) as an expansion up to its leading term,
which corresponds to our Rz result, see Sec. IIC,

Table V. Its numerical value is 2.75316 [9] and can be

compared to the numerical value for Ag given in [59]:

1.679. The numerical result for Agi) calculated in [58] (see

also [12]) is 3.34797, which therefore disagrees with those
of [9,59] but agrees with our own calculated value as shown
later on in this work. Since the result of [59] is precisely
half of the one of [58], we suppose that, as mentioned
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above, the factor of 2 missing in the rhs of Eq. (32) of [36]
is at the origin of this discrepancy, since the authors of [36]
are also those of [59]. Concerning the discrepancy with
[8,9], as already said in the Introduction, adding a few
subleading terms allows to obtain agreement with [58].

For a recent review of the theory and experimental status
of the g — 2, see [10] ([60] is also useful). For a compre-
hensive review of QED contributions to all the leptons’
g—2, see [58,61]. A review of the muon g — 2 is given
in [4,39,62-64], and a review of contributions to 7 lepton
g —2 is presented in [12].

T ds dt
A ) =

y+ir? 21 2in

IFG=—s—0I(1=-s=nI2+s+1)

III. THREE-LOOP QED CONTRIBUTIONS
WITH TWO INTERNAL LOOPS

We will now give the exact expressions of the contri-
butions Afl) to the anomalous magnetic moments of the
electron, muon and 7 lepton coming from the Feynman
diagram of Fig. 1 (and the symmetric diagram obtained by
an exchange of the internal loops).

The MB representation of these contributions may be
found in [6]. Defining ry = mj /m} and ry =m] [mj,
it reads

— A1 i T(s)L(=s)[()[(—=)['(2 = $)['(2 - 1)

IG-s)IG-nNr@-s-1)

2

where y = (Re(s),Re(7)) € — 1,0[x] — 1,0[ (see the
yellow region in Fig. 2).

From the rules described in [1,65] it is clear that we are in
a so-called degenerate case (A = 0), where several con-
vergent series representations of the integral coexist, being,
as a rule, analytic continuations of one another.

Since the MB integral is fully symmetric under the
exchange of r; and r, (or s and f) one can avoid about half
of the calculations that would be necessary to perform in
order to derive all the possible convergent series repre-
sentations in the case of a non symmetrical integral. This

4 H—
2H —
N\ N
. O N
T of !
o
i
-2
-4
‘-4III-ZIIIOIII2I“4‘
Re(s)

FIG. 2. Singular structure of the integrand of Eq. (3). The red
dots indicate points where the singularity has been canceled, and
the blue dots indicate points where the order of the singularity has
been reduced, due to factors in the denominator of Eq. (3).

; (3)

|
symmetry, which comes from the symmetry of the
Feynman diagram under the exchange of /, and I3, is also
reflected in the singular structure of the integrand (see
Fig. 2) and in the picture showing the convergence regions
of the series representations in the first quadrant of the
(r1, rp)-plane (see Fig. 4).

It is easy to find the different sets of residues (cones)
associated to each convergent series (see [1] for details on
the general procedure). There are six such cones, plotted in
Fig. 3 and, as just explained, the series representations
associated to only three of them have to be computed (the
blue cones), the others (coming from the red cones) being
obviously derived from the latter by exchanging r; and r,
in the final results.

We show in Fig. 4 the convergence regions of the series
representations deduced from each of the cones and, in
Table I, we show to which of the cones the possible
physical situations are associated. The mass independent
case can be computed from any of the cones, as can be seen
in Fig. 4.

A. The electron case (cone 1)

Let us begin with the simplest case, namely Ag: a muon

and a tau in the internal loops and an electron on the
external legs of the Feynman diagram shown in Fig. 1, and
its symmetric counterpart. We will see that the exact
analytic expression of these contributions to the anomalous
magnetic moment of the electron is more compact than the
corresponding expressions for the muon and tau cases. As
mentioned in the Introduction, we have not been able to
find any analytic result for this contribution in the g — 2
literature.

A convergence analysis to be presented below shows that
the series representation corresponding to the electron case
comes from cone 1 (or cone 4 for the symmetric diagram)
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FIG. 3. The cones associated to the MB integral of Eq. (3).

in Fig. 3. One can see on Figs. 3 and 2 that this cone is
simpler than cone 2 and cone 3, since there are only four
different subsets of residues to compute and because there
is no interference between the gamma functions of the
numerator and those of the denominator in the integrand of
Eq. (3). With m and n any non-negative integer, the
coordinates of the associated poles in Fig. 3 are

(i) Single series contributions: (=2 — m, 0), (=3 — m, 1).

(ii) Double series contributions: (—4 —m —n,2 + m),

(=1 =m,—1—n).

1. Exact result

The series representation of these contributions to
the anomalous magnetic moment of the electron is
expressed in closed form in terms of the generalized

5F J J . J ]
4_ B
3| Cone2 Cone 3 Cone 6 4
[y
2+ i
1_ B
Cone 1
Cone §
Cone 4
0 , |
0 1 2 3 4 5

n

FIG. 4. Convergence regions of the series representations of
Eq. (3) labeled by their associated cone.

hypergeometric series 4’3 and the Kampé de Fériet double
hypergeometric series F %2; and F %;% and the final

expression reads

4 2
fa m>
Ag(v" ) = _\/8_ E Ry, where rp = ot

i=1 T
2
me

=R 4)

"

TABLE 1. The different combinations of charged leptons and
corresponding cones. /; is the external lepton (see Fig. 1).

[ l, I Cones
m, m, m, 1
m, my m, 4
m, m, m, 4,5
m, m, m, 1,2
m, m, m, 4,5
m, m, m, 1,2
m, m, m, 1,4
m, m, m, 1,4
m, m, m, 2
m, m, m, 5
my, my, m, 2,3
m, m, m, 5,6
m, my, m, 4.5
m, m, m, 1,2
m, m, m, 3,6
m, m, m, 1,4
m, m, m, 3
m, m, m, 6
m, m, m, 2,3
m, m, m, 5,6
m, m, m, 2,3
m, m, m, 5,6
m, m, m, 3,6
m m m 3,6

<
=
=
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have introduced functi hg v, in the Tabl
TABLE II. Cone 1 results (simplified). Expressions for the Wwe have miroduced some TUNCHons, fg ;3. 0 e 1able,

h{yy can be found in Egs. (A1)~(A4) of the Appendix. whose explicit forms are given in the Appendix; see
Egs. (A1)—(A4).

Singularity Label Residue Due to the presence of nonsimple poles in the singu-
(=1 —m,—1—n) R, 2y ] larity structure of Eq. (3), many of its residues involve
' th , Ja {2”} a=0 polygamma functions, which come from derivatives of the
(=2-m.0) Ri12) (B + 222y gamma function. As these polygamma terms arise from an
(=3-m.1) Rii5 [a% h {1,3}](1_0 application of the residue theorem, they are derivatives of
(=4 —m—n,2+m) Riis 2 ] B gamma functions appearing in the h; ;) of the concerned
i 04 9o “{14 a0 singularity. Therefore, it is always possible to express the

residues solely in terms of gamma functions and to
The residues Ry, ;; are given in Table 1T as well as their ~ ©XPTess the polygamma factors as derivatives of those
gamma functions. As an example, the explicit form of

correspondence to the singular points listed above. As 2 8
{12} 1S

the expressions for some of the residues is lengthy,
|

2r} f: L(m +2)0(m +3)T(m +4) it

R =-
1.2} RAVE e L(m+3C(m+5) m!
9 5\2
| (= Om+2) + O (m+3) =y O(m+4) + O (m+-) —log( L) -2
2 4}"2 3
9 23]
u0n 2 =0 m43) 4y m 4 =0 (m ) + 5+ ] 5
The above was obtained by applying the following Cauchy’s theorem operator:
1 0° ? 10
295 " 55 T 307 ©)
20s* O0sOt 20t

to

Hs, 1) = —rm=s+2y51 Fl=s)I'(s+ DA - —-0)I'(t+ HI'(m—s+2)[(m—s+4)
I PTE-0)(m—s+3)T(m—s+PC(m—s—t+1)I(m—s—1+5)

xF(l—s—t)F(s+t+1)F<m—s—t+§>l“(m—s—t+3), (7)

and thereafter setting s =7 =0 (see [1] for details on the general computational procedure). Ry, can therefore be
expressed more compactly as

1 9? 0? 1 9%
Gaw e 339) 700, o
where
Tl =a)l2-—a)l (4 —a)l'(a+ 1)I'(1 = p)T2 =BT (S + I)F(% —a-—pf)
A PG -arG-arG-ArG-a-p)
1.2—a,4—a2—a-p3—a-p
3—a,%—a,1—a—ﬂ,5—a—ﬁ rl}’

Hyoy =-

xT(3—a—-p)(a+p+ 1)5F4[ )

and where we have replaced the variables s and 7 by the parameters « and 3, and expressed the sum over m in terms of the
generalized hypergeometric function, ;4. The advantage of this notation is that it is concise, and that by expressing the
single series as ,F g Or the double series as Kampé de Fériet series one may perform analytic continuations on these results

easily if needed.
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TABLE III.  Cone 1 results (nonsimplified). Expressions for the
Hy, jy can be found in Egs. (A5)-(A8) of the Appendix.

Singularity Label Residue
(=1 —=m,—-1—n)

2 —m,0)

9
[%H{lv]}]a:o
2 2 (2
Ruzy [L5- a%ﬁ + %3772)}1{1,2}](1:/}:0

Ry13

Ry

(G5 = & H 1.3,y

(_
(=3—-m,1)
(—4—m—n,2+m)

N 2 2
Rua (G — e+ 359 H o) g0

It is in some cases possible to further simplify the results
and express them in terms of a single parameter. For
example, Ry 5, may be expressed as

272 o2
KT@)WLO’ (10)

where

Va2 — )l (a+ 2)(a + 4)

By = —
W23 TE-a)l(a+3)T(a+)

3,2—|—a,4—|—a,%
413 9 ryf- (11)
5,3+a,§+a

In the rest of this paper, we have chosen to express the
results in the most compact notation possible. However, for
illustrative purposes, we have given both forms (i.e.
simplified and nonsimplified) of the results in the electron
case (see Table II and Table III).

The hyy ;) and the Hyy ;, are given in the Appendix.

2. Convergence region: External electron

The region of convergence of the corresponding series
representation is straightforward to derive from the con-
vergence properties of generalized hypergeometric and
Kampé de Fériet series [66].

For the generalized hypergeometric series,

Z:| _ i(al)n:“(ap)ni (12)

(By)ant

they read (assuming that none of the parameters is zero or a
negative integer):
(i) Convergence for |z| < 0o if p < g,
(i) Convergence for |z| < 1if p=¢g+ 1,
(ii1) Divergence for all z#0if p > g + 1.

Furthermore, if we define

p

w:Zﬂj—Za', (13)

J=1

then the ,F_ series, with p =g + 1 is
(i) absolutely convergent for |z| = 1 if Re(w) > 0,
(i) conditionally convergent for |z| =1, z # 1 if =1 <
Re(w) <0,
(iii) divergent for |z| = 1 if Re(w) < —1.
For the Kampé de Fériet double hypergeometric series
(with the following notation in the lhs of Eq. (14):

(a,) = (ay....,a,),

Fpiq;k {

l:r;s

we have
(i) Convergence for |x| < o0 and |y| < o0 if p+¢ <
I+m+land p+hk<l+n+1
) If p+g=I+m+1and p+k<l+n-+1, the

1

convergence is for |x[77 + |y|</_1*l> <1if p>1 or
for max{|x|, |y|} < 1if p <L
From the results above and Table II it is easy to find that
the convergence region of the rhs of Eq. (4) is simply

Rg—{ﬂ
r

This region is plotted in Fig. 4 with the label “cone 1.” In

the case where the three different leptons are involved, r; =
2 2. . T .

»¢ and r, =75 is the unique possibility to satisfy these
T u

<1 and || < 1}. (15)

constraints.

Note that it is in fact possible to include the boundaries in
the convergence region of Eq. (15), i.e. for;—; =lorr =1
For this one has to consider each of the two generalized
hypergeometric series of Eqgs. (A2) and (A3) in the
Appendix and see that condition (i) after Eq. (13) applies.
A similar analysis can be performed on the double series of
Egs. (A1) and (A4) by writing each of the latter as sums of
generalized hypergeometric series in either one or the other
variable and check that condition (i) is also satisfied.

B. The muon case (cone 2)

The muon case corresponds to cone 2 in Fig. 3.
Therefore, the different sets of singularities to consider
in the (Re(s),Re(7))-plane are the following, where as
before m and n are any non-negative integers:

(i) Isolated terms: (—1,0), (=1.1), (=1.3), (=2.,1).
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(ii) Single series contributions: (=2 — m, 0), (=3 —m, 1),
(-3-m,2+m), (-2-m2+m), (-1-m,
2+m), (-1 -m,3+m).

(iii) Double series contributions: (—4 —m —n,2 + m),
(=1 =m,4+m+n).

Three of them have already been considered during the
calculation of cone 1, in the electron case. One should
however keep in mind that in cone 2, their corresponding
transformation law [1] will not be the same as in cone 1 so
that these three sets of residues will not give the same
analytic expression in cone 1 and cone 2.

1. Exact result

The series representation extracted from Eq. (3) by
summing the residues of cone 2 is

2
m
(\/_,\/_ ZR{zl} whererl—m—g,
2
m
r2:m—g. (16)

As in the electron case, the correspondence of the singu-
larity points and their residues Ry,; are presented in
Table IV, the explicit forms of some of the residues being
relegated to the Appendix for lack of space in the main
body of the paper [see Eqs. (A9)—(A16)].

2. Convergence region: External muon

Using the results presented in Sec. III A 2, it is easy to
conclude that the convergence region of the rhs of Eq. (16) is

R,={ln|<1 and |r|>1}. (17)

TABLE IV. Cone 2 results. Expressions for the hy, ;) can be
found in Egs. (A9)-(A16) of the Appendix. The leading con-
tributions are Ry 1y, Ry 5y, and Ry ).

Singularity Label Residue
(-=1,0) Ron 135\/—V1( —log(r,))
(-1.1) Rz NI
(-2.1) Rp3) 8 _ni

105\/7I r
(_1’ 3/2) R{2.4} 3215‘/2 ,_}

2

(=2-m,0) R{2’5} [(%dd_; - %)h{m}]azp:o
(=3-m.1) Rize) 3 26} o
(=3 -m.2+m) R [ 2] 0o
(—2 —m, 2 -+ m) R{Z.S} [% h{2-8}]a:0
(=1=m.2+4m) R (Zhpol,
(=1=m,3+m) Ri2.10) 2 [% fi{z.m}]azo
(Ammen2bm) Rawy (G, .
(-l-md+m+n)  Rpp i hi22) ey

See Fig. 4 for a plot of this region (labeled “cone 27). As in
the electron case, it is possible to include the boundaries
in this convergence region. In the case where the three
different leptons are involved, the only phenomenological

and

wN|‘§I\)

situation which satisfies Eq. (17) is when r; =

m
5.
e

r2:m

C. The 7 lepton case (cone 3)

The 7 lepton case falls in the convergence region
associated to cone 3 (see Fig. 3), and it is the hardest
from the computational point of view for two reasons: there
are a lot of different types of singularities in this cone, and
here one also has to take care of the cancellation, or
reduction of multiplicity, of different sets of singularities
due to gamma functions in the denominator of the MB
integrand (a cancellation also happened in the muon case
but only for one set of singularities).

With m and n any positive integer, one may as usual
exhibit all sets of singularities contributing to the cone.
There are 25 different sets to consider:

(i) Isolated terms: (0,0),(0,1),(0,2), (-1

(1.0). (2. 1), (1,0). (1,1). ¢.0). G. 1).

(ii) Single series contributions: (0,3 + m), (—

(=1=m,2+m), (-1=m,3+m), (
(1,2+m), (3.24m), 2+m, 1), (
(34 m,0).
(ili) Double series contributions: (=3 —m,2 +m + n),
(2+m,2+4n), G+m,2+n).

1. Exact result

The series representation extracted from Eq. (3) by
summing the residues of cone 3 is

2
m
3T(./ T2 ZRBI} whererl—m—;
i=1 H
2
mT
}’2:—2. (18)
me

As in the preceding electron and muon cases, the corre-
spondence of the singularity sets and their residues
R3;, are presented in Table V, and the explicit forms of
some of the residues is relegated to the Appendix [see
Egs. (A17)-(A31)].

2. Convergence region: External tau lepton

Once more, using the results presented in Sec. [T A 2,
one concludes that the convergence region where the series
representation associated to cone 3 is valid is

R,:{'ﬂ‘d and |r1|>1}. (19)
r
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TABLE V. Cone 3 results. Expressions for the A3 ;, can be found in Eqs. (A17)~(A31) of the Appendix. The
leading contributions are R{3_1}, R{3_4}, R{3¢6}’ R{3,7}, and R{3_10}.

Singularity Label Residue
0.0 Ry 507 (8 —log(r)) (3 — log(r2) + 5 + ]
,1) Ri3 — 5z (¢ —log(r1))? +50+ 2]
0,2) R33 hs 3
(.0) R34 —dr (5 + log(7)]
1
. 1) Ry g
rl ry
I 7[2
(1,0) Riz6) —%%[@—log(rl))(%log(é) +1) +5 -3
(3.0) Ris.) 20 3+ log (g5,
1
(1,1 Riss) — % G +log(r))
G.1) Riss) -3
1
(2,0) R3.10) hi.a0)
(=3.1) Rizany 3”32/2r:/2
r

3 /2
(=1.3) Riz.12) _342;5:;2'
(0,3 + m) R3.13) [%;ﬂh{s,mﬂa:ﬂ:o
(-3.2+m) Ri314) [(_%"‘%)h{&lﬂ]a:o
(-1=m,2+m) R.15) [% hizasy o
(]—1 —m3+m) R(3.16) [%2{3,16}1(,:0
3.2+ m) Ri317) (3 + PP LIERTI N
(1,2 4 m) Ri318) [ 13,181 aco
(G.2+m) Ri3,19) G+ 83190
(2+m,1) R320) [%h{&m}]a:o
G+ m.0) Rizony hony
(3 4+ m,0) R32) [af,)—g/; h{s.zz}}a:ﬁzo
(—% —m,2+m+n) R323 [% h{3,23}]a:0
(2+m,2 +n) R34y [#};,; h{3,24}}a:ﬁ:0
G+ m.2+n) R{325) REED)

See Fig. 4 the region labeled “cone 3.” As in the two
previous cases, it is in fact possible to include the
boundaries in this convergence region. Here we see that

) 2 2 )

with r; = Z—z and r, = % the convergence constraints of
" e

Eq. (19) are satisfied.

D. Other cones

As already mentioned, due to the symmetry of the MB
integral, it is possible to obtain the results of the other three
cones by a simple interchange of r; and r, in the results that
we have already obtained. One then sees in Fig. 4 that the
whole first quadrant of the (r, r,)-plane may be reached.
Values at the boundaries of the different cones may be
evaluated by using expressions of either cone. This is
discussed further in Secs. IV and V.

This behavior is therefore completely different from
what can be found in the examples considered in, for

instance, [1,2,67,68] where there were always white
regions in the parameter space which could not be
reached.

IV. NUMERICAL ANALYSIS AND CHECKS
Using the CODATA 2018 lepton mass ratios values [69]:
m,/m,=206.7682830(46), m,/m, =5.94635(40) x 1072,
m,/m, =4.83633169(11) x 1073, m,/m, = 2.87585(19) x
1074, m,/m, = 3477.23(23) and m,/m, = 16.8170(11),

we get the following values for the Ag?;:

AY) =527737(71) x 107
AP =3.34778(17)
AP = 1.90972(25) x 10713, (20)
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We performed several internal and external checks to
ensure the validity of our expressions. The first consistency
check was to compare values obtained by a high precision
numerical integration of Eq. (3) and its Feynman para-
metrization against our analytic results. For each cone, we
have tested our expressions by ensuring that there is
agreement between the integral and our full analytic result,
both computed numerically, to at least 6 orders of magni-
tude beyond the order of magnitude of the smallest
contributing set of residues of that cone.

The second consistency check was to compare our

ZR{&,-}, but which are different in their analytic form.
These were numerically evaluated and shown to agree with
the Agiﬂ and Ag(’g computed directly from the ) Ry, ; and
>~ Ry3.y, respectively, to at least 19 decimal places. Let us
briefly describe this approach on the example of the first
electron residue Ry, (see Table II), which involves a

Kampé de Fériet series. The latter has the following Mellin-
Barnes type integral representations [70]:

0
results for cone 2 and cone 3 against another set of analytic Ry = [% h{l,l}} , (21)
expressions derived by analytically continuing the residues a=0
of cone 1, i.e., Ry p fori =1, ...,4. This results in a set of
series that are numerically equivalent to ) R, and  where
|
ds dt
h =rry T (1 —a)’l 1)? — A — (=)’ (=ry) T(=s)['(—t
oy =T =P 17 [0 ) ) T )
T(s+t+3-a)(s+t+3-a)l(s+1)°[(s +3)I(t+ DIt +1 - a)[(t +3 - a) )
X

Iis+t+1-a)(s+1+5-a)[(s+2)[ (s + (1 +2-a) (1 +1—a)

and y4 = (Re(s),Re(r)) €] — 1,0[x] — 1,0[ (for a < 0).

Solving this MB representation in appropriate cones
yields the desired analytic continuations for that particular
series.

The convergence regions of the series expansions
obtainable from a direct residue calculation of Eq. (22)
following the method of [1] are shown in Fig. 5 and labeled
by their associated cone. [Note that we use roman numerals
to label and distinguish the cones of Eq. (22) from those of

T

4}

3f| Coneiv Cone v Cone ii

[y
2+
1 -
Cone i Cone iii
OF n
0 1 2 3 4 5
r

FIG.5. Regions of convergence of the series representations of

the MB integral of Eq. (22) and associated cones.

Eq. (3)]. The sum of residues of cone i obviously reproduce
the Kampé de Fériet series of Ry ;;. For the muon case,
where r; =m%/m? ~107 and r, = m2/m?~ 10%, the
residues of cone iv have to be calculated. For the tau case
where r| = m?/mj; ~ 10% and r, = m?/mj ~ 107, those of
cone v need to be calculated.

By performing a similar calculation on Ry, 5y, Ry 3) and
Ryy 4y, and summing the results of the appropriate cones,
the results of cone 1 (external electron legs) of Eq. (3) may
be analytically continued to obtain the results of cone 2
(external muon legs) and cone 3 (external tau legs) of the
same integral; see [71] for details and results of the
complete calculation. This results in series representations
that are numerically equivalent, but different in form, to
those obtained from a direct calculation of Eq. (3). This
process did not yield expressions that were simpler than
those obtained by a direct evaluation. However, results
obtained by this analytic continuation approach could well
confer advantages, such as simplicity of form, in other
cases than the g — 2.

We also checked our results externally by numerically
comparing them with results from the literature.

For the muon, our expressions evaluated with the
CODATA 2010 [72] mass ratios yield the same value of
Agii as given in Eq. (9) of [40]. Similarly, we get agreement
with Eq. (22) of [57] evaluated using the values of the 1992
PDG [73], and with Eq. (16) of [39] evaluated using
CODATA 2002 [74] inputs, the latter of which is based on
the first few terms of the asymptotic and eikonal expansion
derived expressions of [5]. Our expression differs numeri-
cally from the value given in Eq. (33) of [36] at the sixth
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decimal place. The same integral is evaluated in [12,58]

with CODATA 2006 [75] mass ratios to yield A{), values

with which our expressions are in agreement. Our results
for Ag, however, yield a numerical value that differs from
the older literature values [9,59] but agrees with [58], as

already mentioned in the Introduction and in Sec. II. For the

electron, our AQ expression agrees numerically with the

value given in [58], based on the integral of [36] and 2004
CODATA values, as well as with the result given in Eq. (12)
of [42] that uses the PDG 2012 values as inputs. And
finally, within the latter’s uncertainty range, we obtain the
same result as [32] using the CODATA 2010 [72] mass
ratios.

Note that the diagram of Fig. 1 appears in the expansion

of a; not only as Afl) , but also as one of the several

diagrams that constitute A§6l)(ml/ my) and A§6l) Table I
gives, among others, the various mass configurations
possible for Fig. 1 with two masses, and the cones
corresponding to their evaluation. As all these cases lie
on the boundary of the convergence regions of two cones
(in passing, the mass independent case can be computed
with any of the six different series representations) the
convergence of the series can be slow. However, by
comparing the literature values of these diagrams with
our expressions, we obtain another check of the latter. Note
that for the cases where there are identical leptons in the
loops, an overall factor of 1/2 is required in front of Eq. (3).

By settin;g all masses equal, we obtain the scaleless
diagram Agf’l, which corresponds to the “triple point” (1.0,
1.0) in Fig. 4. Despite the slow convergence of our series at
this point, we find that as the number of terms in the sums is
increased, the results of all cones numerically tend to the
value given by Egs. (8) or (9) of [57] or more explicitly by
Eq. (4.43) of [44]: 8£(3) — 42 — 943 The same equations of
the paper [57] give the closed form result for the cases
where both leptons in the internal loops are identical, but
different from the one on the external legs, and where only
one of the leptons in the internal loops is the same as the
one on the external legs. And Egs. (12), (13), (16), and (17)
of [57] give the expansions in the mass ratio of Egs. (8) and
(9). For the case where the muon is on the external legs,
with two internal electron loops, we get from our expres-
sion a fast converging numerical agreement with the value
calculated using Eq. (8) of [57]. With two internal tau loops
the agreement is also very good, but we use Eq. (16) of [57]
to compare because imaginary contributions appear when
using Eq. (8). With only one internal electron or tau loop,
we get values that are converging in a slower way to those
obtained using Eq. (9) of the aforementioned paper as we
increase the number of terms in the sum. The same is true in
case of tau external legs, where we get very good and fast
converging numerical agreement with Egs. (8) or (9) of [57]
for loops with two electrons or two muons, and slower

convergence towards the literature values otherwise. For the
case with electron masses in the external legs, we do not use
the closed form expressions of Egs. (8) and (9) of [57], but
rather the expansion in the mass ratios given in Egs. (16)—
(17) of the same paper. As with the other cases, we get very
good agreement when the two fermionic loops carry the
same mass, and slower convergence otherwise. All these
“two masses” results are also in agreement with the
numerical integration of the Mellin-Barnes representations
given in Egs. (4.23) and (4.25) of [44].

V. CONVERGENCE AND ANALYTIC
CONTINUATION PROPERTIES OF KAMPE
DE FERIET SERIES DERIVED FROM
MELLIN-BARNES INTEGRALS

The analysis of the previous sections showed that, for
all possible numerical values of the mass ratios r; and r,,
at least one of the six different series representations
derived from the MB representation can be used. As
already briefly mentioned, this fact is unusual since in
general Feynman diagrams having N-fold MB represen-
tations with N > 1, depending on some parameters
1, ..., Py, result in cones and series representations whose
associated convergence regions do not collectively cover
the entire possible (ri,...,ry)-space: some (“white”)
regions exist such that none of the series representations
extracted from a standard residues computation of the MB
integral will converge (nor be diverging asymptotic
expansions). We recall that a few examples of such
integrals can be found for instance in [1,2,67,68] and
that for this kind of integrals, it is necessary to analytically
continue the results of a particular cone with an alternative
method in order to derive results valid in the unreachable
white region, as done for instance in [3].

The white regions do not appear for Feynman diagrams
whose MB representation is onefold, because in this case
the corresponding series are made of generalized hyper-
geometric series whose analytic continuations can be
trivially derived from the MB integral and cover the entire
parameter space (except possibly when the absolute value
of the parameter is equal to unity).

In our present case of study, where N = 2, it is then clear
that the lack of white regions is related to the particular
properties of the double series that appear in the series
representations derived in the previous sections. A quick
look in the Appendix shows that there are two different
types of double series in all the mathematical expressions
derived from the different cones, namely the Kampé de
Fériet series,

F233 ay,ay.by, by, bsy;cy,cr, 05

2:2;2 . .
a17a2'ﬂl’ﬁ2’ylv7/2

X, y} (23)

and
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a17a21b17b27b3;clac2

F358
ay, 0 By, Pasri

X, y] L4

These Kampé de Fériet double series also appear in our
formulas with different arguments, but one can perform the
analysis of this section to these cases also and the
conclusions will be the same. Note that Eq. (24) can in
fact trivially be transformed to the form of Eq. (23) by

including a E 2 factor in the sum over 7 of the definition of

Eq. (24) glven in Eq. (14). Therefore, let us focus
on Eq. (23).

From Sec. III A 2, one can deduce that the convergence
region of F:33 is the simple region |x| < 1 A |y| < 1. And
in Sec. [V we have seen that from the MB representation of
F%;; [given in Eq. (22) for specific values of its coef-
ficients, which have no consequence on the convergence
properties], one can show that the convergence regions
associated to each of the possible series representations
derived from the MB integral are those of Fig. 5, where
there is no white region.

In fact, the convergence and analytic continuation
properties of the Kampé de Fériet F% 5 22 double hyper-
geometric series are exactly the same as those of the Appell
F, double hypergeometric series. It is easy to show this
from the MB representation of the latter. The similarity
between the Appell F; and the Kampé de Fériet F %;g
series should not come as a complete surprise because
Kampé de Fériet series are generalizations of Appell series
in the same way as generalized ,F g hypergeometric series

are generalizations of the Gauss , F'; hypergeometric series.
|

14it 14k 1+1 (ar4:):(biyx)s (c144)

Obviously, in the latter case there is only one series to
generalize, whereas in the Appell case, there are four
different ones which do not satisfy the same convergence
and analytic continuation properties. In particular, F; is the
only Appell function whose MB integral representation
gives birth to some series representations, analytic contin-
uations of one another, whose convergence regions are able
to collectively cover the whole (|x|, |y|)-space (except
possibly on some boundary lines at which the convergence
depends on the values of the coefficients). Indeed, for the
other Appell F,, F3 and F, functions, there are white
regions in each of the corresponding convergence regions
plots of their series representations derived from the usual
residue evaluation of their MB representations.

From the similarities between the representation of F'; as
a Kampé de Fériet function,

1 [ aibse
Fi(a,b,c;a;x,y) = Fiip xyl, (25
)

’

and Eqgs. (23) and (24), it is natural to conjecture that the
more general Kampé de Fériet function of the type,

xyy:| )

(26)

ap, ...,a1+i:bl, ""bl+k;clv ey Cryy

a,,...,aHi:ﬂ], ...,ﬁk;}’l,...,yl

14 14k 141
F1+1 kil

do not have white regions in their convergence picture,
which we now prove.

The Mellin-Barnes representation of the Kampé de Fériet
function shown in Eq. (26) can be easily derived from [70]
and reads

’ } ()

14i:kil (a14):(Br)s (r1)

iT(a )H”kf( ) ,'*fF(C)

(=2)*(=y) T (=5)I'(~1)

LiR2 2iz " 2in

(ﬂ) (}’])/ ds A dt

Jl+i F( s+ t) H1+k F(bj + s) ]1:{ F(Cj + t) (27)
H(a+ s+ O[T T8 + ) T Ty + 1)

where we recall that (a;,;) = (a,...,a;4;).

To simplify our presentation, we suppose that the a;, b;
and c; are nonzero positive numbers. This allows us to deal
with straight contours and y = (Re(s),Re(#)) therefore
belongs to the non empty fundamental polygon defined
by the positivity constraint of each of the real parts of the
gamma functions in the integrand. We also suppose that the
singular structure of the integrand has no poles of multi-
plicity greater than 1, and that the values of the a;, f; and y;
cannot make the gamma functions of the denominator
interfere with those of the numerator.

Following the method of [1] it can be shown that this
MB integral has five different cones and therefore five
different double series representations. We list the sets of

|
singularities for each cone in Table VI (m and n can be any
positive integer or zero).

In the g — 2 case, the MB integral of Eq. (3) is symmetric
under the exchange of r; and r,, and therefore of the total
number of series, three of them could be trivially obtained
from the three others using that symmetry. Here, one can
still use this symmetry, although since k # [ and b; # c;
generally in Eq. (27) one has to exchange, in addition to r,
and r,, the values of the coefficients b; and c; as well as k
and /. Since cone 1 obviously gives the common series
representation of the Kampé de Fériet functions given in
Eq. (26), it is sufficient to compute the series representa-
tions associated with cone 2 and cone 3, the two others
being deduced from them.
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Let us begin with cone 2 which has only two different types of contributions (see Table VI). In this case, one obtains
plti kI { (a14:): (1) (c141)

ik (a140)(Br)s (r1) x,y}
1) [y T8 (i T T =) T T, —a)
iT(a )H”"F( )(,ZF( 2 AT, = a) [T T, — a))

o (— ks L a;, ((1 —ﬂ+aj)k>3(01+1)§((1—a‘f'aj)m) y 1
(=it | (1= b+ @)y (0 (1= + @) p)’ o
1+k | Hl+k*r(b —b) 1+z F(a —b)
+;1F(bj) DB, = b)) ”’ 1 D(a, — b))
—x —b; ke 1 1 " n ;l*:i(ar_bj)n—m(bj)m k ( _ﬂr'l'b) 12{(6»
72 OF 5@ = by T2 (1= by 1 b)) T (70, )

where the * superscript means that, for instance, the » = j case is not considered in the product Hiii* I'(a, — a;), and
that (1-a+a;), ;)" = -a +a;1-ay+a;,....1-a;_+a;,1-a;, +a;..1-a.; +a).

It is easy to see, in the analytic continuation formula Eq. (28), that the first series, being a Kampé de Fériet double
hypergeometric series, converges in the region || < 1 A |%| < 1.

The second series in Eq. (28) is not a Kampé de Fériet series, but by the cancellation of parameters method [66], one finds
that it converges as a Horn G, double hypergeometric series, i.e. in the region |%| <1 A |y| <1, so that the convergence
region of the analytic continuation of Fj7% **'*" associated to cone 2 and given in Eq. (28) converges for

|1] <1 A |y| < 1. This region corresponds to the green region plotted in Fig. 5.
One can now proceed to the presentation of the results associated with cone 3. In this case, one gets
Pl I+k: m[(“m) (b11); (Cr41)

(ar0): (B): () x’y]
i) T, T8 (44 T T, - )H”"F(b—a,)
T [T ><Zr( D N, —ay) [ T, —a)

o L

Rt & e e o e
e T bt s - e
+§ir(bj)l“(—bj+a,,)nij£ i((z:c;i))%gf ?Zr__bb)]) = fy(rc:bb ))

oo S () C) e S e

X(bj) (1_ﬂr+b') iﬂl(l_ar—’_a ) )) (29)

1+k*(1_b +b) 1+z*<1_ar+a)

A convergence study similar to the one performed above shows that one finally obtains, for the series representation
presented in Eq. (29), the same convergence region as the one plotted in orange in Fig. 5, i.e. the region
HESPSHESPAHESE
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TABLE VI. The different sets of singularities of the five cones of Eq. (27).
Cone 1 Cone 2 Cone 3
(m,n) (maj—m—n,m), je[l,141] (maj—m—n,m), je 1,141
. . L o B jell, 14k
(=bj—m.n), jE[1,1+K (=bj—m,b;—a, +m n){pe[l,l—i-i}
e jE [ 1+Kk
(=bj = m. =c, ”)’{pe[1,1+l}
Cone 4 Cone 5

(m,—a;—m—n), je[l,1+1i

3 o JeE[L1+]]
(= a+m=m=¢ m)’{P€[1,1+i]

I jell, 1 +k
( bj m, (’[1 n)’{pe[l,l—i-l]

i—m—n), jE[l,1+1]

(m, —a

(m,—c;—n), je 1,141

It is straightforward to show that the series associated
with cone 4 and cone 5 will converge, respectively, in the
purple and in pink regions of Fig. 5, and one can check that
our conjecture that there are no white regions for the class
of Kampé de Fériet functions considered in Eq. (26) is
correct. Therefore, we see that if one finds these objects in
some Feynman diagrams calculations, one will not need to
perform nontrivial analytic continuations in white regions,
such as is needed for those of [3] (see also [76]).

We conclude this section by noting that a similar
analysis can be performed in order to extract other
classes of Kampé de Fériet series that have common
convergence and analytic continuation properties to the
three other Appell series (and therefore also the same
white regions, at the function level). We do not perform
such an analysis here but instead give two examples of
Feynman diagrams taken from some of our recent work
where there are similarities between the Kampé de
Fériet series found in their analytic expressions and
the Appell F; and F, series. The two-loop box diagonal
calculation presented in [77] involves a Kampé de Fériet
F§(2)(2) function which has the same white region as the
Appell F5 function. Let us recall that

mn—ra,b;c,d
Fy(a,b,c,d;ayx,y) = F?%)(z){

x, y] . (30)

il

The example related to the Appell F, function comes
from the chiral perturbation theory sunsets studied in [67]. In
the H, pion and H}, eta sunsets analytic expressions,
one can find the Kampé de Fériet F f;; double hyper-
geometric function, which has the same white region as

o00la@ bi——
Fyla.b;a.Bix.y) :FS;?;?[ )
—ap

vl 6

These two examples related to F; and F, need analytic
continuation procedures alternative to the traditional MB
representation in order to be analytically computed using
convergent series representations in their white regions.

The discussion of the present section draws attention to the
fact that the “Appell F,” class of Kampé de Fériet double
hypergeometric series presented in Eq. (26) has a particularly
simple analytic continuation behavior, and it suggests that
these nice properties are also very probably satisfied by
extensions of Kampé de Fériet series. Such a higher order
class of Kampé de Fériet multiple series would then include

the F g” Lauricella series as the simplest series of its set.

VI. CONCLUSION AND DISCUSSION

The aim of this work was twofold: to present complete
analytic results for the three loop contributions to leptonic
g-2 with two internal loops, and to use these calculations to
further our understanding of the convergence and analytic
continuation properties of multiple hypergeometric series
that can appear in quantum field theory calculations.

In the first part of this work, we have calculated and
presented complete analytic results for the three-loop QED
contributions to the g —2 of all charged leptons with two
internal loops, i.e. for all three possibilities of external legs in
the Feynman diagram of Fig. 1, denoted in the literature by

Ag?l) forl = e, p, v. In the muon case, this was the last missing
piece in the puzzle of the exact results at three loop level [4].
Furthermore, to our knowledge, in the electron and 7 lepton
cases, analytic results were unknown but for the leading term
in a double expansion in the mass ratios for the z lepton case
given in [8,9]. Therefore, this work presents the first complete
and exact analytic result for Ag?l) foralll =e, u, 7.

We have performed several checks of the expressions
given in this paper. These included numerical comparisons
with values from the literature, as well as consistency
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checks. One such consistency check involved the calcu-
lation of the diagram of Fig. 1 with two or three of the

leptons being identical, i.e. the contributions of Fig. 1 to

A(fl) and ASI) . The use of only two distinct masses, or one

single mass, in expressions consisting of two mass ratios
lands us on the boundaries of the convergence regions,
which may be reached by two or more distinct series.
Finding numerical agreement for expressions that were
different in form was one consistency check (note that for
these cases we have also found agreement with numerical
results derived from the analytic expressions given in [57]
and from the numerical integration of the Mellin-Barnes
representations of [44]). The same principle was the basis
for our other self-consistency check. In this check, we have
calculated a second set of expressions by analytic continu-
ation of the results obtained in the electron case (see [71]
for a complete listing of these expressions) and then
compared them to Eq. (16) and Eq. (18), which are
numerically equivalent but have a different form.

Our tool for performing the calculation was the Mellin-
Barnes representation, which produced results in the form
of a linear combination of isolated terms and infinite single
and double series consisting of products of gamma and
polygamma functions, that can then be expressed in terms
of generalized hypergeometric and Kampé de Fériet series
and their derivatives. These series in turn become the
objects of study of the second part of this paper.

The second part of our work involved studying the
analytic continuation of a class of Kampé de Fériet series.
Indeed, the generalized hypergeometric and Kampé de
Fériet series converge in a range of values of their variables.
By analytic continuation, one is able to extend this range.
But for the double hypergeometric series, when this
analytic continuation is performed by means of the series
derived from standard residues computations of MB
representation, there usually exists a range of values (the
white region) for which it is still not possible to derive some
converging series. However, for the series appearing in the
g — 2 calculation of this paper, we find no white regions.

Inspired by this unusual analytic continuation property, in
this paper we prove that for a class of Kampé de Fériet series,

namely those of type F %i;é,ljk;““l, no white region can
|

appear, and that it is possible to analytically continue these
series using their MB representation to obtain convergent
series for all values of their variables (except possibly,
depending on the values of the parameters, on the boundaries
of the convergence regions). The convergence and analytic

continuation properties of the F !, *'*! series parallel

those of the Appell F; series. We also give examples of some
Feynman diagrams that indicate that other classes of the
Kampé de Fériet series, whose convergence and analytic
continuation properties mimic those of the other Appell
series, may be found in physical situations.

In this work, therefore, we present complete analytic
results at the three-loop level for the Ag l) contribution to the
important physical quantity g — 2, and in the process of the
calculation extend our understanding of the convergence
and analytic continuation properties of the Kampé de Fériet
series. Further investigating these properties for other
classes of Kampé de Fériet series and multiple series of
higher order, of which relatively little is known, is an
important direction for future research.
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APPENDIX: hy; ;, AND H{; ;, EXPRESSIONS OF
TABLES II, III, IV AND V

1. Electron case (simplified results, see Table II),

16 r I'G-a)l(3-a)? S—a,3-a:,1,3;1,1—a,3—a
h{l,l} all : 1_ _ F%%,; ’ 7 7 Ty, T2 (Al)
15/ ' T2 - )T - a)l'(5 - a) l-a.5-a:2,12-al-a
7T —a)l(a+2)(a+4 3.2+a,4+a,3
hm}:_i - (5 )T (a +2)I( )4F3{ R rl} (A2)
32 15 TG-a)l(a+3)(a+3) 53+a3+a
A N (e +3)(a +5) [3,3+a,5+a,§ } (a3)
= - r
B 706 TG -l (@+ 2)0(a+ 4@+ 5440l 4a |
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N 1 r4 T(a+ H(a+ 2)I(a+ 4)I(a + 6) F2 4+a6+ali+a2+m3.3]|r, Ad
U9 730 Ta+ D (a+3)Ma+5Ma+5) > | staBtail+a3+a5 EJJ' (A9
2. Electron case (nonsimplified results, see Table III),
Hyy = hgy (A5)
g = T -al2-al@-alle+ DI -Hr2-ArEp+ Hr G-a-p)
=y Fr3-a)f3-alG-Ar(5-a-p)
(3 s 2-—ad4—ad-—a—-p3 A6
Boamplatpenen| P (A6)
oo T =alB-a)l'(5 - a)l(a+ DI(1 =BT+ 1)T(G —a—p)
3 = T p T(4—a)T(L—a)lG - +2)0(5—a—-p)

1.3-a,5—a,3—a-p3
4—a a,l—a—-p5—a-p

I3 —a—-pl(a+p+1)F, {

MY (A7)

LT =@l = a)l(6 — )l (a + DI(1 = pT(F + DI+ 290G~ a =)
a2 I(5-a)l(G—a)(G-ArB+3rE-a-p)
a.6-a:li+p2+p15-a-p3-a-p
—a——a1+ﬂ3+ﬂ1—a p.5—a—-p

2334
xT(B—a-p)l(a+p+1)F;5, 5

o rl]. (A8)

3. Muon case (see Table IV),

P eT(1=a)l(2—a)l (4 —a)l' (1 + a)[(1 = L2 = H)T(1 + ST (G- a—p)

h = -
e FG-arG-arG-ArEs -a-f)
r3 (1 )1@"[12_0‘4_()(3 ] (A9)
-—a-— +a+ r
g P)sFs 3—a,%—a1 a—ﬂ,S—a—ﬁ 1
IG-a)l(3-a)T(a+1) [1,3 ald-ai-a }
h N r Al0
{26} J‘l ST@—alG-a) | 1—ad4-all-al' (A10)
256riI(3 - ) 1,3.5.3+a, 2+alr
h{2-7} = 2+ayp(1 11 (All)
945\/wr; T (3 — a)T'(4 — a)'(a + 3)° 45 1+a3+a

16 r% F(l—a)zr(a+2)2 {124 sta2+alr

hipgy = — Fy
B TSz TG -l (@+3) > * 39 1+ a3 +a

m] (A12)

B __8 ri T(=a=3I(1 —a)’T(a+ I (a+2) [LLi%+W2+“
RN ENZ ri-ar2-a) Y 221 4a3+a

rq (A13)

)
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ri T(=a=3)I(1 —a)’T(a+1)°T(a+3) L133+a3+alr
h{Z 10} = 3 1 2 sFs - (A14)
: 15\/7_17r"+ I—a—-$)T(a+2) 21 2+ad4+a |n
5 r (1 =)l (4 =)l (6 —a)T(a+ DI(1 = )T (F+ 1O+ 2)TE — a—f)
2,11
i = (5 -a)l(5—arG-pT(B+3)T(5—a—p)
. 4—a6—a12+ I+p13-a-p3—a-
r(3—a—ﬁ)r(1+a+ﬂ)F§:§:§[ Path 4 / ﬂ,rl] (A15)
- 5(1 —a:l+pB3+p1l—-a-p5—a—-p |2
16 r D(—a-3(a+ )(a+4) ,.54 Stad+al, 1.3 1+a5+alr 1
h{2-12}:]5\/“ d+a 2 2:2:2 7 7 PR (A16)
T, F(—a—i)F(a+3) 3ta5+a2,5:3+a5+a |2
4. Tau case (see Table V),
i 5L (~og2(r) 1og(rs) - +log(ry) log(rs) — 2 2 log(r13) + log* (1))
= ——=— | —log“(r;)log(r,) — zlog(ry)log(r,) — 7" log(r,r —log’(r
{33} 3\/7—”% g1g23g1g23ﬂg123g1
13 25 68 572 301
—Flog (r) = lglog(rl)—jlog(”z)+12§(3)—T—T> (A17)
8 1 14 2 1
Praso) = =3 (~108() og(rs) = 5 og(ry og(r) = 3 og(ryr) + 5o ()
13 5 88 572 1847
+310g2(}’]) +610g<1"1) —?log(rz) + 12C(3) —T—m> (AIS)
o — a3 rQ-a)l(f+3)I(—a—p-3)
(.13} e TG —a)l(—f =Y (B + 2T (B + 4T (a+ f +3)
EE) 1
INa+p+Dl(a+p+5 F{ —] Al19
( T )5y 248,4+p83+a+pl+a+p |n (A19)
45;; P Dla+ Y (a+2 L-11+al2+al1
b = e ] e ] (320)
42732 T(a+ 1)MNa + 3) 1+a,§,3—|—a,2 g)
2 ri™*(a+1) {1,;—&—05 r]]
P 't A21
.13} = \/Er§+“[‘( %)2 2—|—a ) ( )
4 A T(a+ e+ )M(@+3)>  [Ll1+as+a3+ad+alr
hziey = === 2 7 574 - (A22)
VE P T(a+2)T(a+ )T (a + 4) L 2+a2+ait+ad+a |
357 7 Tla+da+2)  [lital.2+ad|1
hany = Ty sFa| 27 (A23)
8 4 rst (e + DI(a+3)° 1+a,§,3+a3
2 T(a+HT(a+2)I(a+5) Li+a2+a5+a
h{3v18} =~ a+2 r 3)2T 7 4 7 o (A24)
Ve r§ (@ +3)T(a+3) 3+al3+tajta |
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x4 T+ hra+2) {1’% 2atelta i} (A25)
BOFT 8 40 2T+ D@ +3)% Y| 141+ a3 +a |12
) 2 1 T(-a-l(a+2)(a+5) [1 2+aStazta 1} (A26)
{320} = \/7_rr2r?+2 F(%—a)l“(a+3)2 4 3+a, 3+a,2+a r
14732 [1,1,%,% 1]
b P x A27
R YETEI S N A A2
h = et K@ +3)r2-pr(-a=p -3
B2y = 2 T(—a-Y(a+2)T(a+ OG- )T (a+f +3)
3 1
F(a+ﬂ+1)F(a+ﬂ+5)5F4{ 2+ad+ad3ta+pfit+a+p ”_1] A2
) ’ 2
a3y = -1/ r(le D(a+ )T (a+ )M (a+2)T(a +7)
3 P2 TE - a)l(a—3)(a + I)F(a +3)0 (e +3)0(a + 4)
5
xF%% { lta2+aldtal+a-33 _l,i] (A29)
l+al3+a3+ad+ai [N
\ (1 =)l (a+2)T(1 = BT (B + )T (—a = f =)l (a + B+ 2)T(a+ S+ 6)
324y = rM T —a)(a+ 3= AT+ 3)T(a+f+4)
F232[2+a+ﬂ,6+a+ﬁ:1’+a2+all+ﬁ2+ﬂ 1} (A30)
5 21
P2 dqa+pitatpiltadtal+p3+4 |1
99”3/2 2:32 %,%:1,1,%;%72 1 1
O Ry —,—. A3l
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