
 

Probing the two-neutrino exchange force using atomic parity violation
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The exchange of two neutrinos at one loop leads to a long-range parity-violating force between fermions.
We explore the two-neutrino force in the backdrop of atomic physics. We point out that this is the largest
parity-violating long-range force in the Standard Model and calculate the effect of this force in experiments
that probe atomic parity violation by measuring optical rotation of light as it passes through a sample of
vaporized atoms. We perform explicit calculations for the hydrogen atom to demonstrate this effect.
Although we find that the effect is too small to be observed in hydrogen in the foreseeable future, our
approach may be applied to other setups where long-range parity violation is large enough to be probed
experimentally.
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I. INTRODUCTION

The fact that a pair of massless neutrinos mediate a long-
range force via one-loop diagrams, as shown in Fig. 1, has
been known for a long time [1–4]. At leading order, this
diagram gives rise to a force of the form

VðrÞ ¼ G2
F

4π3r5
; ð1Þ

where GF is the Fermi constant. The force is very weak. At
distances larger than about a nanometer its magnitude is
smaller that the gravitational force between two protons.
At this scale, the electromagnetic Van der Waals force
overpowers both. Thus, it has not been observed yet, and
furthermore, there is no realistic proposal to build an
experiment that could see it. It is, therefore, an interesting
question to ask if there is any way to probe this force that
has not been explored yet.
In many cases in the past, to observe a very small effect,

one looked for symmetries that are broken by it. For
example, the weak interaction was observed, even though it
is much weaker than the strong and electromagnetic
interactions, because it violates the flavor symmetries of

these stronger forces. Thus, one way to try to achieve
sensitivity to the two-neutrino force is to look for sym-
metries that it violates.
In this paper, we point out that the two-neutrino force is

the largest long-range parity-violating interaction in the
Standard Model (SM). This is in contrast to the parity
violation mediated by the W and the Z bosons, which is a
short-distance effect. The reason is that in the case of the
two-neutrino force the mediator is massless (or close to
massless), while in the case of the W and the Z the
mediators are massive.

FIG. 1. The four-Fermi effective diagram for two-neutrino
exchange forces between two fermions, labeled ψ1 and ψ2.
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In recent years atomic and molecular systems have
attracted considerable interest as probes of physics within
and beyond the SM. For instance, the work of Fichet [5]
explores molecular spectroscopy as a probe of dark matter.
Another example is Ref. [6], where Stadnik shows how the
long-range neutrino force can be probed using atomic and
nuclear spectroscopy. Given that parity violation in atoms
has also been suggested as a probe of new physics, for
example, in [7], a natural question to ask is whether it is
possible to see effects of the neutrino force in parity-
violation experiments done on atomic systems. In this
paper, we explore this idea in some depth.
We find that the effect of the parity-nonconserving force

on atomic systems is tiny, much smaller than what one can
hope to achieve in the near future. Yet, our approach in this
paper can be used in other setups and, while we do not have
a concrete idea where it can be practical, the hope is that a
system where long-range parity violation can be large
enough to probe experimentally will be found.
The arrangement of the paper is as follows: In Sec. II, we

briefly review the literature regarding the two-neutrino
force. Section III aims to provide some background on
atomic parity violation. We discuss parity-violating forces
in atomic systems in Sec. IV. Thereafter, we shift our focus
to the hydrogen atom and compute the parity-violating two-
neutrino force between the proton and the electron in the
hydrogen atom in Sec. V. The effects of this force on
hydrogen eigenstates are discussed in Sec. VI, while a
sample calculation to illustrate the idea has been performed
in Sec. VII. Finally, we present our concluding remarks in
Sec. VIII. More details about the calculations in Sec. Vand
Sec. VII are given in Appendixes A and B.

II. A REVIEW OF THE TWO-NEUTRINO FORCE

A classical force is mediated by a boson. The two-
neutrino exchange gives rise to a long-range force since
two fermions, to some extent, can be treated as a boson.
This force is also called “a quantum force” as it arises at
the loop level. In this section, we provide a brief review of
the literature on the long-range force generated by the
exchange of a pair of neutrinos.
Although the idea of a two-neutrino mediated force was

conceived by Feynman [8], the first calculation of the force
dates back to Ref. [1], where Feinberg and Sucher
computed the leading form of the two-neutrino force to
obtain Eq. (1). They worked in the four-Fermi approxi-
mation, that is, neglecting terms of order E=mW, E being
the energy of the interaction and mW the mass of the W
boson. The same authors repeated the calculation in
Ref. [2] to incorporate the previously ignored neutral
current interaction. In both calculations, the velocity-
dependent terms of the potential were ignored under the
assumption that the velocity of the fermions was much
smaller than the speed of light. Later, Sikivie and Hsu
performed a similar calculation in Ref. [3], employing a

different technique and keeping terms to first order in v in
the nonrelativistic limit. All these calculations assumed that
the neutrino is massless and that there is only one flavor of
neutrinos.
Despite being a very small effect, in Ref. [4], Fischbach

claimed that if neutrinos were massless, the two-neutrino
force between neutrons in a neutron star could raise the
self-energy of the system to a value that is much higher than
the mass of the star itself. Without any other mechanism to
stop this, Fischbach proposed that the neutrino is, in fact,
massive. A massive mediator would shorten the range of
the two-neutrino force and solve the problem. However,
Smirnov and Vissani [9] posited that low-energy neutrinos
created and subsequently captured in the star (the phe-
nomenon is described in [10]) fill a degenerate Fermi sea
that blocks the free propagation of the neutrinos that are
responsible for the neutrino force. In response, Fischbach in
Ref. [11] stated that more work needs to be done to
understand the capturing process and that, for low energies,
the two-neutrino force can be repulsive leading to the
neutron star actually repelling neutrinos instead of filling up
the Fermi sea. Then, Kiers and Tytgat in Ref. [12] argued
that the neutrino self-energy does not destabilize the
neutron star. Yet in a recent paper by Fischbach [13], he
does not agree with that conclusion. In our work, we do not
investigate this issue, and do not put any bound on the
neutrino mass from neutron star considerations. Our focus
is on aspects of the neutrino force that are relevant to atomic
physics.
Following Fischbach’s calculation of the potential due

to massive Dirac neutrinos, Grifols et al. [14] calculated
the same potential for massive Majorana neutrinos, which
differ from Dirac neutrinos in the nonrelativistic limit
because of the different spinor structure of Majorana
fermions. Their approach is the same as that in [1]. For
future reference, the parity-conserving form of the two-
neutrino potential to leading order in v for the case of a
single flavor of neutrinos with mass mν is given by

VDirac
νν ðrÞ ¼ G2

Fm
3
ν

4π3
K3ð2mνrÞ

r2
;

VMajorana
νν ðrÞ ¼ G2

Fm
2
ν

2π3
K2ð2mνrÞ

r3
; ð2Þ

where KnðxÞ is the nth order modified Bessel functions of
the second kind.
An additional effect in neutrino physics, due to the

nonzero masses, is flavor mixing (for a review, see, for
example, Ref. [15]). This phenomenon was incorporated
into the computation of the two-neutrino force in Ref. [16],
although a closed form for the neutrino force was not
attained. One can also look in [17] for a treatment of the
spin-independent part of the neutrino force with flavor
mixing. Last, thermal corrections to the neutrino force, in
both the Dirac and Majorana cases, were computed in [18].
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All the calculations mentioned above compute terms in
the potential that are parity conserving; i.e., parity-violating
terms have been ignored. In this work, we go beyond the
leading-order results in v and compute terms in the
potential that are spin and momentum dependent and also
parity violating. Our key results are described in Sec. IV,
and their implications are described in Sec. VI. We keep
terms to first order in v in our nonrelativistic calculation.

III. OBSERVING ATOMIC PARITY
VIOLATION—A REVIEW

In this section, we review the concepts of atomic parity
violation (APV) that are relevant to the present work. We
look at atomic parity violation from the perspective of
transitions in atoms, more specifically, stimulated emission
processes, wherein an emission is caused by shining light
on a sample of atoms. For a more detailed review of APV
from both theoretical and experimental perspectives, see
Refs. [19–22].
The key idea behind looking for APV is to exploit the

fact that in the presence of a parity-violating term in
the atomic Hamiltonian, the energy eigenstates have no
definite parity. As per the well-known selection rules,
electric dipole (E1) transitions happen between states of
opposite parity while magnetic dipole (M1) transitions
take place only between states of the same parity. If the
energy eigenstates, however, have no definite parity, then
both E1 and M1 transitions are allowed between them.
Since the parity-violating interactions are usually very
weak compared to the parity-conserving ones, we treat
them as perturbations to a parity-conserving Hamiltonian.
Eigenstates of the full Hamiltonian, therefore, are super-
positions of a predominant state of definite parity with
small opposite parity corrections.
A direct consequence of the presence of parity-violating

interactions is that left-polarized light has a different
refractive index from right-polarized light in a sample of
atomic vapors, which leads to optical rotation of light in the
sample. This is the property that has been exploited to
probe APV so far. An intuitive physical interpretation of
this effect is due to Khriplovich [21]: Mixing opposite
parity states in the hydrogen atom, for instance, results in
the creation of a state wherein the electron effectively has a
position-dependent spin orientation that assumes a helical
shape. Recall that helical shapes of molecules lead to
rotation of the plane of polarization of incident light on a
sample. Classically speaking, this is because the electric
field of light moving perpendicular to the helical axis
causes electrons to produce an electric field along the
helical axis, which induces a changing magnetic field
perpendicular to the electric field. The combined effect
of this is to rotate the plane of polarization of the incident
electromagnetic wave.
A stimulated emission transition is basically an electron-

photon scattering process, represented by the diagram in

Fig. 2. If both photons have the same polarization, and the
photon is incident on a sample with electron density Ne,
the scattering process can be translated into an index of
refraction [23]. The refractive index nP depends on the
polarization of the photon, labeled by the subscript P ¼ L,
R, and it is given by

n2PðkÞ ¼ 1þ 4πNe

k2
fPð0Þ: ð3Þ

Here, fPð0Þ is the forward scattering amplitude for a
photon with polarization P, and k is the magnitude of
the momentum of the photon.
When the electron is bound in the electromagnetic field

of a proton, as in hydrogen, the stimulated emission
process, in the presence of Coulombic binding, is repre-
sented by the diagram in Fig. 3. We treat the proton as an
elementary particle, since we work at energy scales small
enough that the internal substructure of the proton can be
ignored. In Fig. 2, the proton can be seen as a correction to
the electron propagator. Therefore, instead of calculating
the transition amplitude using the matrix element from
Feynman rules, we can alternatively first compute the static
potential that mimics the scattering of the electron off the
proton (in this case, the binding). This gives us, at lowest
order, the Coulomb force. Thereafter, the external photons
effectively become electromagnetic perturbations to the
Coulomb field. We can now use time-dependent perturba-
tion theory to calculate the transition amplitude. This is a
simple quantum mechanical picture [24] as opposed to a
field theoretic perspective. In this picture, we usually talk
about electric and magnetic dipole transitions, whereas

FIG. 2. Stimulated emission as electron photon scattering.

FIG. 3. Stimulated emission in a hydrogen atom. The electron
is shown to be bound to the proton by the mediation of a photon.
This is the lowest order diagram at tree level.

PROBING THE TWO-NEUTRINO EXCHANGE FORCE USING … PHYS. REV. D 101, 116006 (2020)

116006-3



from the perspective of field theory, both transitions are just
electron-photon scattering processes.
For incoming and outgoing photons with equal polari-

zation, we can compute the refractive index in hydrogen
gas using Eq. (3). Note that parity is a good symmetry of
QED, and hence fRð0Þ ¼ fLð0Þ for the process in Fig. 3.
This implies that the refractive index is the same for left-
handed and right-handed polarized photons. When parity is
violated, the amplitudes for an incoming right circularly
polarized photon and a left circularly polarized photon are
different, that is fRð0Þ ≠ fLð0Þ, and hence nRðkÞ ≠ nLðkÞ,
causing optical rotation. In the SM the leading-order effect
that violates parity is due to the Z exchange, and it arises
from a diagram similar to the one in Fig. 3 with the photon
propagator replaced by a Z propagator. We discuss this
process in the next section.
The refractive index, which we denote here by nðωÞ, of

any material in general, and a gas of atoms in particular, has
both real and imaginary components, corresponding to the
dispersive and absorptive powers of the gas, respectively.
The imaginary component is negligible for most values of
the frequency, but it is large near bound-state resonances
(i.e., when the energy of the incident photon equals the
energy difference between two energy eigenstates), which
is when the material becomes strongly absorbent. The real
part is the well-known index of refraction. The Kramers-
Kronig equations (see Ref. [25]) relate the two quantities as
shown below:

Re½nðωÞ� ¼ 1þ 2

π

Z
∞

0

dω0 ω
0Im½nðω0Þ�
ω02 − ω2

: ð4Þ

Equation (4) implies that the real part of the refractive index
has a maximum near the resonance frequency, and thus the
local maxima of the real and imaginary parts are close in
frequency; see Fig. 4.

In a sample, the rotation of the plane of polarization of
incident light is proportional to the real part of the refractive
index [26]:

Φ ¼ πL
λ
ReðnRðλÞ − nLðλÞÞ; ð5Þ

where Φ is the angle of rotation of the plane of polarization
of incident light, L is the length of the path of light through
the sample, and λ is the wavelength of incident light.
Therefore, near a resonance, there is an enhancement of
optical rotation in a material or a gas.
In time-dependent perturbation theory, one can compute

the left-right asymmetry between the dipole-transition
amplitudes (both electric and magnetic) for right-polarized
and left-polarized light [21,24]. This asymmetry is related
to the difference in the real part of the refractive indices for
the two respective polarizations. Subsequent analysis yields
Φ, for states with the same predominant parity [24] in terms
of electric/magnetic dipole transition amplitudes. In the
case that the wavelength is close to the difference in energy
between two states of predominantly the same parity, the
rotation is given by

Φ ¼ 4πL
λ

ReðnðλÞ − 1ÞR; R ¼ Im
�
E1PV
M1

�
; ð6Þ

where nðλÞ ¼ 1
2
ðnRðλÞ þ nLðλÞÞ is the average refractive

index of the sample, E1PV is the forbidden electric-dipole
transition element, andM1 is the magnetic-dipole transition
element between two states of the system with the same
predominant parity.
A few points are in order regarding Eq. (6):
(1) Note that if parity is conserved, the E1PV amplitude

is zero, and hence the angle of rotation is zero.
(2) One could also consider a situation where the two

states are of opposite parity. In this caseM1 ¼ 0 and
the effect is proportional to M1PV, and we get a
formula similar to that of Eq. (6). Magnetic-dipole
amplitudes, however, are much smaller than electric
dipole amplitudes, so probing parity-violating ef-
fects by observing parity-forbidden magnetic tran-
sitions is generally harder.

(3) To obtain the largest angle of rotation, the wave-
length λmust be close to the energy spacing between
the states that we are interested in, but far away
enough to avoid resonance, as it is clear from Fig. 4.
In other words, if ωr is the frequency at which a
resonance occurs, and ω is the frequency of the
incident light, then for a large enough effect, we
need to have jω − ωrj ∼ Γ, where Γ is the width of
the resonance.

In summary, an important consequence of APV is that,
near a resonance, the emitted light has a rotated plane of
polarization relative to the incident light. Experimentally,

FIG. 4. The real and imaginary parts of the refractive index n
near a resonance. Absorption follows the imaginary part, while
dispersion and, hence, optical rotation follow the real part.
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therefore, a measurement of this rotation is a measure of
APV. From our theoretical perspective, the important
quantity that encodes the effects of APV is R, defined
in Eq. (6).

IV. PARITY-VIOLATING FORCES IN
ATOMIC SYSTEMS

A. Generic effects

The general expression for a nonrelativistic potential
between two fermions contains only a handful of terms—
the only difference between the potentials mediated by
different mechanisms is in the numerical coefficients
coming with each term and the form of the radial
function [27].
Consider a generic atom with a nucleon of mass mN . We

are looking for the parity-violating potential due to some
Feynman diagram. To that end, we make two simplifying
assumptions:
(1) We consider a static nucleus; that is, we neglect

effects that scale like me=mN .
(2) We treat the electron velocity, ve, as a small

parameter and keep only terms linear in ve.
Under these assumptions, the most general form of
the parity-violating potential from [27] reduces to the
following:

VPNCðrÞ ¼ H1FðrÞσ⃗e · v⃗e þH2FðrÞσ⃗N · v⃗e

þ Cðσ⃗e × σ⃗NÞ · ∇⃗½FðrÞ�; ð7Þ

where σ⃗e=2 is the spin of the electron, σ⃗N=2 is the net
nuclear spin, H1, H2 (for “helicity,” since the correspond-
ing terms look like helicity) and C (for cross product) are
real constants, and FðrÞ is a radial real function.
The values of the H1, H2, C, and FðrÞ depend on the

specific diagram. In case there are several diagrams, each
diagram contributes linearly to the total potential, so we can
write

VPNCðrÞ ¼
X
i

Vi
PNCðrÞ; ð8Þ

and we add a subindex i to H1, H2, C, and FðrÞ.
In the following sections, we shall consider the special

case of the hydrogen atom. While experiments are not done
with it, it simplifies the theoretical investigation. When we
consider hydrogen, we replace the subindex N with p.

B. The tree-level process

We begin by briefly revisiting the effective parity-
violating potential due to the interaction between an
electron and a nucleus at tree level via Z exchange in
the SM as depicted in Fig. 5. In the SM, the coupling of the
Z boson to a pair of identical fermions is given by

LZψ̄ψ ¼ 1

2

g
cos θW

ψ̄ ½ðgψV − gψAγ
5Þ=Zψ �; ð9Þ

where θW is the weak angle. gψV and gψA are the vectorial and
axial couplings of the fermion ψ to the Z boson. As an
example, the coupling constants for the electron and the
proton (which can be treated as an elementary particle at
energy scales relevant to atomic physics) are given by

geV ¼
�
−
1

2
þ 2sin2θW

�
; geA ¼ −

1

2
;

gpV ¼
�
1

2
− 2sin2θW

�
; gpA ¼ GA

2
; ð10Þ

where GA ≈ 1.25 [28] is the axial form factor of the proton.
The resulting parity-violating potential is given by

Eq. (7) with the constants and the radial function given by

H1 ¼ Htree
1 ¼ g2

2cos2θW
geAg

p
V; ð11Þ

H2 ¼ Htree
2 ¼ g2

2cos2θW
geVg

p
A; ð12Þ

C ¼ Ctree ¼ g2

2cos2θW

geVg
p
A

2me
; ð13Þ

FðrÞ ¼ FtreeðrÞ ¼ e−mZr

4πr
: ð14Þ

In the APV literature, most notably in [29], the terms that
depend on nuclear spin (that is, terms that come with H2

and C) are ignored. This is because, in most heavy atoms
used in APV experiments, the nuclei have paired nucleons
with opposite spins and a net nuclear spin of zero. Thus,
terms in the potential containing the nuclear spin vanish.
This is not true for the case of hydrogen, where the nucleus
consists of just one spin-half proton.

C. Loop-level processes: The effective four-Fermi
operator with neutrinos

Now that we have discussed the tree-level diagram that
violates parity, we move on to loop-level effects. The
diagrams that contribute to atomic parity violation at one

FIG. 5. Tree-level interaction between the electron and a
nucleus.
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loop are given in Fig. 6. At atomic energy scales, the use of
the four-Fermi approximation is well justified, and so in
this section, we will derive expressions for the four-Fermi
vertices with two fermions of the same type ψ and two
neutrinos.
In the SM, the four-Fermi interactions between two

neutrinos and two fermions are obtained by integrating out
the Z and W bosons in the diagrams shown in Fig. 7.
However, since we consider massive neutrinos, we need to
incorporate flavor mixing. The Z-boson case is simple
because the interactions of neutrinos with the Z boson is
universal and thus diagonal in any basis,

LZ ¼ −
g

2cW
δijν̄i=Zνj; ð15Þ

with cW ≡ cos θW . The corresponding four-Fermi operator
for a vertex involving two fermions ψ , and two-neutrino
mass eigenstates, νi and νj, due to Z exchange is therefore

ðOZÞij ¼ −
g2

8m2
Zc

2
W
½ψ̄γμðgψV − gψAγ

5Þψ �δij½ν̄jγμð1 − γ5Þνi�;

ð16Þ

where gψA and gψV are defined above Eq. (10).
The case of the W exchange is more complicated as we

need to take into account the nondiagonal nature of the
flavor mixing. The W interaction Lagrangian in the mass
basis for the neutrinos is given by

LW ¼ −
gffiffiffi
2

p Uαil̄Lα=Wνi; ð17Þ

where the fields l represent leptons, i (αÞ represents mass
(flavor) indices, and Uαi are the elements of the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. The
operator for the case of two external ψ leptons of flavor α
and two-neutrino mass eigenstates i and j is then given by

ðOWÞij ¼ −
g2

8m2
W
UαjU�

αi½ν̄jγμð1 − γ5Þψ �½ψ̄γμð1 − γ5Þνi�

¼ −
g2

8m2
W
UαjU�

αi½ψ̄γμð1 − γ5Þψ �½ν̄jγμð1 − γ5Þνi�;

ð18Þ

where we used the Fierz transformations to obtain the
second line.
The sum of the operators in Eqs. (16) and (18) yields the

four-fermion vertex between two-neutrino mass eigenstates
and two ψ leptons. Using GF ¼ g2=4

ffiffiffi
2

p
m2

W , we obtain

Oij ¼ ðOZÞij þ ðOWÞij
¼ −

GFffiffiffi
2

p ½ψ̄γμfδijðgψV − gψAγ
5Þ

þ UαjU�
αið1 − γ5Þgψ �½ν̄jγμð1 − γ5Þνi�

¼ −
GFffiffiffi
2

p ½ψ̄γμðaψij − bψijγ
5Þψ �½ν̄jγμð1 − γ5Þνi�: ð19Þ

We emphasize that there is no sum over i, j, or α here.
In Eq. (20), we introduced the effective vectorial and
axial couplings, aij and bij, respectively, in terms of the
couplings to the Z. If ψ is a lepton and therefore has a
flavor index α, we have

aψij ¼ δijg
ψ
V þUαjU�

αi; bψij ¼ δijg
ψ
A þ UαjU�

αi: ð20Þ

If ψ were not a lepton, it would not couple to neutrinos
through the W, and therefore the PMNS matrix would not
be involved. Then we would have

FIG. 6. The loop-level diagrams that contribute to the binding
of the electron to the nucleus in an atomic system.

FIG. 7. The two diagrams that contribute to the effective four-
Fermi vertex for two neutrinos and two fermions ψ . The Z
diagram in (a) corresponds to the effective operator OZ. The W
diagram in (b) corresponds to the effective operator OW.
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aψij ¼ δijg
ψ
V; bψij ¼ δijg

ψ
A: ð21Þ

In order to compute the neutrino force between two
fermionic species ψ1 and ψ2, we need to insert the operator
Oij twice in order to obtain the diagram in Fig. 1. If both ψ1

and ψ2 are leptons, we have nine diagrams from assigning
three neutrino mass eigenstates into the two propagators.
Each diagram is labeled by two indices i and j, and we sum
over them. If ψ1 or ψ2 is a nonlepton, then the only possible
four-Fermi vertices are the ones with both neutrinos in the
same mass eigenstate. Thus, there are three diagrams over
which to sum over. We only need one label i ¼ 1, 2, 3 to
denote a diagram since the effective couplings a and b are
diagonal. We shall make use of precisely this fact to explore
APV in the simplest atomic system, i.e., the hydrogen atom,
in Sec. V.

D. The photon penguin

In this subsection, we digress a little to talk about another
possible parity violating diagram in our atomic system.
Naively, the photon penguin [shown in Fig. 8(a)] is also
parity violating at long range since it has two weak
interaction vertices. However, we argue below that it does

not produce a parity-violating potential despite the presence
of the weak interaction.
Assuming that the momentum transfer is much smaller

than the Z boson mass, we can modify the photon penguin
as shown in Fig. 8(b). Instead of evaluating the matrix
element for the diagram, in this case it is sufficient to focus
on the portion of the matrix element that sits inside the
electron loop integral of this diagram. Ignoring multipli-
cative constants, and denoting the momenta in the two
propagators as k and k0, the loop integrand is

Iμν ∼ Tr

�
γμðgeV − geAγ

5Þð=kþmeÞγνð−=k0 þmeÞ
ðk2 −m2

eÞðk02 −m2
eÞ

�

¼ 4geV

�
gμνk · k0 þm2

egμν − kμk0ν − kνk0μ

ðk2 −m2
eÞðk02 −m2

eÞ
�
: ð22Þ

The γ-matrix algebra leads to no term proportional to gA.
Since parity violation is a consequence of the axial
coupling of the Z to fermions, this diagram does not
violate parity.
This can be understood as follows. Consider a correction

to the self-energy of the electron because of a Z loop.
Clearly this diagram is parity conserving, since it is a
correction of the self-energy. Now, the photon-electron
vertex in the penguin diagram is parity conserving since
QED is parity invariant. Likewise, the photon-proton vertex
is also parity conserving. Therefore, the combination of
three parity-conserving effects will also conserve parity.
The same argument works for any general parity-

violating interaction with a photon penguinlike structure,
as in Fig. 9. Therefore diagrams of this type are not relevant
to atomic parity violation.

V. THE NEUTRINO FORCE IN
THE HYDROGEN ATOM

We now apply the results obtained above to the hydrogen
atom. In the hydrogen atom, the proton does not couple to
the neutrinos through the W boson, and so the only
diagrams that contribute are the three diagrams with the

FIG. 8. The photon penguin is shown in (a), and again in (b) after integrating out the Z boson.

FIG. 9. A general photon penguin Feynman diagram. The blob
may contain parity-violating operators but the overall diagram
will not violate parity, as we argue in the text.
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same neutrino mass eigenstate on both propagators in the
loop. Using Eqs. (20) and (21), we find that in this case,
the corresponding couplings are diagonal and are
given by (superscripts refer to the electron and the proton,
respectively)

aeii ¼
�
−
1

2
þ 2s2W þ jUeij2

�
; apii ¼

�
1

2
− 2s2W

�
;

beii ¼
�
−
1

2
þ jUeij2

�
; bpii ¼

GA

2
≈ 0.625; ð23Þ

where GA is the axial form factor, as defined below
Eq. (10), and sW ¼ sin θW . Since both propagators have
the same mass eigenstate, the nondiagonal entries in aij and
bij are zero. For the same reason, we only keep one index i
from now on.
Using the couplings from Eq. (23), we calculate the

parity-violating potential from the neutrino loop, which
results in a form given by Eq. (8) (see Appendix A for
details of the calculation), with the constants and the radial
function given by (no sum over i in any of the expressions)

H1i ¼ Hloop
1i ¼ −2

api b
e
i

me
; ð24Þ

H2i ¼ Hloop
2i ¼ 2

aei b
p
i

me
; ð25Þ

Ci ¼ Cloop
i ¼

�
aei b

p
i

me
þ api b

e
i

mp

�
; ð26Þ

Fi ¼ Floop
i ðrÞ ¼ VνiνiðrÞ; ð27Þ

where VνiνiðrÞ can be found in Eq. (2).
Using the fact that s2W ≈ 0.23, so that api is very small and

that me ≪ mp, we note that H1i is negligible. The parity-
violating potential then simplifies to

V loop
PNC ≈

X
i

GA

me

�
−
1

4
þ s2W þ 1

2
jUeij2

�
× ½ð2σ⃗p · p⃗eÞVνiνiðrÞ þ ðσ⃗e × σ⃗pÞ · ∇⃗VνiνiðrÞ�:

ð28Þ
Equations (24)–(28) are the key results in our work. The
parity-violating terms obtained here have the same spin
structure as in the case of the tree-level potential, but the
radial behavior is different. Investigation of these terms in
the neutrino potential has not been carried out before.

VI. EFFECTS OF THE NEUTRINO FORCE ON
HYDROGEN EIGENSTATES AND TRANSITIONS

In this section, we treat the neutrino potential in Eq. (28)
as a perturbation to the hydrogen atom Hamiltonian.

Wework in the limitmp → ∞, so that the proton is essentially
static. We assume that the neutrino is of Dirac nature
subsequently in this paper, but one could also treat it as a
Majorana fermion and perform an analogous computation.
The neutrino force is much smaller than the fine or

hyperfine interactions, and therefore, we need to include
the fine-structure and the hyperfine splittings as well in our
calculations. As always, we should look for an operator that
commutes with the neutrino potential and use the eigen-
basis of this operator as the basis of choice in first-order
degenerate perturbation theory. Since the neutrino potential
is a scalar, we know that an operator that commutes with it
is F̂2, where

F⃗≡ L⃗e þ S⃗e þ S⃗p

is the total angular momentum of the entire system. We also
define J⃗ ≡ L⃗e þ S⃗e as the total angular momenta of the
electron alone.
The unperturbed eigenstates jn; f;mf; j;l; sp; sei with

which we work are simultaneous eigenstates of Ĥ0, F̂
2, F̂z,

Ĵ2, L̂2
e, Ŝ2p, and Ŝ2e, where Ĥ0 ¼ p⃗2=2me − e2=r is the

unperturbed hydrogen atom with only the Coulombic
interaction. The eigenvalues of F̂2, F̂z, Ĵ

2, L̂2
e, Ŝ

2
p, and

Ŝ2e are fðf þ 1Þ, mf, jðjþ 1Þ, lðlþ 1Þ, spðsp þ 1Þ, and
seðse þ 1Þ, respectively. Every state is thus described by
seven quantum numbers. But se ¼ sp ¼ 1=2 are fixed
numbers, and so we really need just five numbers to label
a state. This is indeed what we expect since the hydrogen
atom has a total of 8 degrees of freedom (dof): there are 3
position dof and 1 spin dof each for the electron and the
proton. However, we do not care about the three dof of the
center of mass, leaving us with 5 dof to describe the internal
dynamics of our system.
The angular momentum states can be constructed using

the standard procedure of angular momentum addition
using Clebsch-Gordon coefficients, as done in Ref. [30],
for instance. The orbital angular momentum of the electron
l takes values 0; 1; 2;…. Depending on l, the result of the
angular-momentum addition of one orbital angular momen-
tum and two spin-1=2 systems (the electron and the proton
are both spin-1=2) can be summarized in the following
notation:

l ⊗
1

2
⊗

1

2
¼ ðlþ 1Þ ⊕ l|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

j¼ð2lþ1Þ=2

⊕ l ⊕ ðl − 1Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
j¼ð2l−1Þ=2

: ð29Þ

These vector spaces contain eigenstates of the hydrogen
atom written in the basis of F̂2 for a given principal
quantum number n. The first two vector spaces in the direct
sum consist of states with a well-defined value of
j ¼ ð2lþ 1Þ=2, while the latter two vector spaces have
well-defined j ¼ ð2l − 1Þ=2.
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In the unperturbed hydrogen atom, all these states would
be degenerate. But with the perturbations, such as the fine
structure corrections and the hyperfine splitting interactions
included, the degeneracy is lifted, and only the degeneracy
in mf is left. The energy of an eigenstate with quantum
numbers f, j, l, se ¼ sp ¼ 1

2
, for the case where l > 0, is

given by (see Ref. [31])

Enfjl ¼ ðE0Þn þ ðEfineÞnj þ ðEhyperfineÞnfjl; ð30Þ

where

ðE0Þn ¼ −
α2me

2n2
; ð31Þ

ðEfineÞnj ¼ −
α4me

2n4

�
n

jþ 1
2

−
3

4

�
; ð32Þ

ðEhyperfineÞnfjl

¼ α4gp
mp

a30
lðlþ 1Þm2

eðfðf þ 1Þ − jðjþ 1Þ − 3
4
Þ

4jðjþ 1Þ
�
1

r3

	
nl

ð33Þ

are the energies contributed by the Coulombic potential,
fine structure, and hyperfine interactions, respectively, r is
the radial coordinate of the electron, a0 ¼ ðmeαÞ−1 is the
Bohr radius, and gp ≈ 5.56 is the g factor of the proton [32].
As a reminder, in first-order perturbation theory, in

the presence of a perturbation V, the corrected states are
given by

jψ1
qi ¼ jψ0

qi þ
X
p≠q

hψ0
pjVjψ0

qi
E0
q − E0

p
jψ0

pi: ð34Þ

Here, jψ0
pi are the states in our chosen eigenbasis. Note

that in this basis our perturbation is diagonal in each
degenerate subspace. Under the perturbation, we say that
the states in this basis “mix” among themselves to give the
true eigenstates of the system.
The energy difference between states of different n is

much larger than that for those states with the same
principal quantum number. Since the corrections to the
eigenstates in perturbation theory go as ðΔEÞ−1, we keep
corrections contributed by states with the same n as our
unperturbed states when calculating opposite-parity cor-
rections to eigenstates in first-order perturbation theory.
Note that states mix among themselves under a scalar

perturbation only when they have the same value of f. But,
for any eigenstate of F̂2, the correcting states have a
different value of l if the perturbation violates parity.
Therefore, under the effect of a parity-violating perturba-
tion, a state attains an opposite parity admixture as
expected. As discussed in Sec. III, both E1 and M1

transitions are therefore allowed between the actual eigen-
states, and we can expect to see an interference of E1 and
M1 amplitudes that leads to optical rotation in a sample of
atomic hydrogen. In Sec. VII, we shall compute this effect
for certain states in hydrogen.
Parity violation in hydrogen is also manifest from the

tree-level Z potential. Intuitively, for states with l ¼ 0, this
tree-level process should completely overpower the neu-
trino loop diagram because these states have a strong
presence at the origin, which is also where the Z potential
has strong support. Thus, isolating an observable effect
from the loop is unfeasible for such states. Higher-l states
do not have strong support at the origin, and it would
appear that the Z potential does not have much effect on
them. However, special care is needed, as we discuss in the
next paragraph.
The neutrino-loop potential is highly singular. Therefore,

at very short distances, the four-Fermi theory breaks down
and we cannot trust our calculations all the way to r ¼ 0.
(In order to still use our theory at short distances, we need
to follow the methodology described in [33]. See also [34]
for a discussion of singular potentials in the Schrödinger
equation. Alternatively, we could simply compute the
diagrams in Fig. 6 explicitly without integrating out the
heavy bosons, as in the paper by Asaka et al. [35].)
However, if the momentum transfer is much smaller than
the mass of the Z boson or, in other words, the length scales
are larger than m−1

Z , then our calculations can still be
trusted. Thus, we are interested in those high-enough values
of l for which the effects of the loop potential dominate
over the Z potential, while being far enough from the origin
such that the four-Fermi theory is valid. In the next two
subsections, we select those eigenstates of hydrogen that
are suitable for the task and show that, for states with orbital
angular momentum l ≥ 2, our conditions are met. A full
computation of the loop diagrams as done in [35] would
give us finite results for l ¼ 0, 1, but it is not necessary
here since for l < 2 the effects of the tree-level Z diagram
dominates over the neutrino mediated diagrams that we are
interested in. We ultimately deal with eigenstates of F̂2,
which do not have definite l, so we need to make sure that
the eigenstate of F̂2 is a superposition of eigenstates of L̂2

with l ≥ 2.

A. Matrix elements of the tree-level potential

In order to extract some features of the tree-level parity-
violating potential, we write out the potential here as given
in Eqs. (11)–(14), but we suppress most of the dimension-
less constants for the sake of clarity:

V tree
PNC ∼

g2

me

�
e−mZr

r
σ⃗e · p⃗þ e−mZr

r
σ⃗p · p⃗

þ ðσ⃗e × σ⃗pÞ · ∇⃗
�
e−mZr

r

��
: ð35Þ
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We are interested in computing the matrix elements of this
potential in the space of hydrogen eigenfunctions. In this
section, we simply consider the radial integrals in the
matrix elements since the angular integrals simply give
some Oð1Þ number upon evaluation. We define η≡ r=a0,
where r is the radial coordinate. The radial part of the wave
function, close to the origin, behaves as uðηÞ ∼ ηl. Given
this, we can write the matrix element as an integral:

hnlmjV tree
PNCjn0l0m0i ∼

Z
∞

0

dη η2ηl
0
V tree
PNCðηÞηl: ð36Þ

Note that, although the above dependence of the wave
function is only correct near the origin, we integrate all the
way to η → ∞ because the potential drops very rapidly in
magnitude, and so the contribution far away from zero from
the wave function is negligible anyway.
Terms in the potential of Eq. (35) that have angular

dependence make the integral vanish unless l0 ¼ l� 1
(from the properties of the spherical harmonics). Without
loss of generality, we take the smaller of the two to be l and
the larger to be lþ 1. Then the matrix element goes as
(notice that the momentum operator introduces a factor of
1=η, as does a gradient)

hnlmjV tree
PNCjn0;l� 1; m0i

∼
α

mea20

Z
∞

0

dη ηlþ1 exp ð−mZa0ηÞηl

∼
α2lþ5m2lþ3

e

m2lþ2
Z

¼ meα
2lþ5

�
me

mZ

�
2lþ2

: ð37Þ

B. Matrix elements of the neutrino loop potential

There are two terms in the loop potential (28): the
“helicity” term and the spin-cross term. Once again, we
consider only the radial integrals since the angular integrals
give some Oð1Þ number. The radial dependence of the
integrands in the matrix elements is roughly the same, since
the momentum operator and the gradient operator have the
same radial structure.
The leading-order dependence of the parity-nonconserving

loop terms goes as G2
F=mer6. Matrix elements for this

operator go as

hnlmjV loop
PNCjn0l0m0i

∼
G2

F

mea60

Z
dη η2ηl

0
�
1

η6

�
ηl exp

�
−η
�
1

n
þ 1

n0

��

∼
α2

mem4
Za

6
0

Z
dη η2ηl

0
�
1

η6

�
ηl exp

�
−η
�
1

n
þ 1

n0

��
:

ð38Þ

In the expression above, ð1n þ 1
n0Þ ∼Oð1Þ number, which

yields some exponential suppression. Let us denote this

number by nsup. The angular integrals vanish unless l0 ¼
l� 1 and, as before, we can estimate a naive dependence
of the wave function on α, me, etc. We write

hn0ðlþ 1Þm0jV loop
PNCjnlmi

∼
α2

mem4
Za

6
0

Z
dη η2ηlþ1

�
1

r6

�
ηl expð−nsupηÞ

∼
α2

mem4
Za

6
0

Z
dη η2l−3 expð−nsupηÞ: ð39Þ

Now, we have the following subcases:
(1) For l ¼ 0 and l ¼ 1: The radial integral does not

converge, indicating the failure of four-Fermi theory
as we discussed previously.

(2) l ≥ 2: In this case, the integral in Eq. (39) does
converge and four-Fermi theory is suitable for such
states. The result is

α2

mem4
Za

6
0

Z
∞

0

dη η2l−3 expð−nsupηÞ ∼meα
8

�
me

mZ

�
4

;

ð40Þ

where we have ignored some Oð1Þ constants that
depend on l.

In Table I,we compare the tree-level and loop-level
matrix elements for different values of l. For l ¼ 2, the
tree-level matrix element behaves as α9ðme=mZÞ6, while
the loop matrix element goes as α8ðme=mZÞ4. Thus,
naively, for l ¼ 2,

Mtree

Mloop
∼ α

�
me

mZ

�
2

≈ 10−13: ð41Þ

In other words, the effect of the tree-level potential is much
smaller than the effect of the loop-level potential for l ≥ 2.
If we only care about powers of α and me=mZ, then our
calculations suggest that the effect of the loop remains the
same as l ≥ 2, i.e., ∼α8ðme=mZÞ4, but the powers in α and
me=mZ in the tree-level effect increase with l, rendering it
much smaller. Thus, to isolate the effects of the loop, we
need to consider states for which l ≥ 2.

TABLE I. Tree-level and loop-level matrix elements for differ-
ent values of l.

l From V tree
PNC V loop

PNC

l ¼ 0 ∼α5ðme
mZ
Þ2 Does not converge

l ¼ 1 ∼α7ðme
mZ
Þ4 Does not converge

l ≥ 2 ∼α2lþ5ðme
mZ
Þ2lþ2 ∼α8ðme

mZ
Þ4
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VII. A SAMPLE CALCULATION

Note that while calculating matrix elements of the
potential between two states of definite orbital angular
momenta, we took the lesser of the two to be l and the
higher to be l0. In order for the matrix element to converge
in the four-Fermi approximation, we need l ≥ 2. In other
words, the lowest angular momentum state that we can
work with in a matrix element calculation is l ¼ 2. Based
on this, we explore parity-violating corrections to some of
the l ¼ 3 states of the hydrogen atom. Because of a parity-
nonconserving potential, l ¼ 3 states can only mix with
l ¼ 2 and l ¼ 4 states, which both satisfy the convergence
criterion. At the same time, the wave function of these
states falls to zero at the origin faster than the s or the p
states, and so one could hope that, in states with l ¼ 3,
some parity-violation effect can be brought about predomi-
nantly by the neutrino loop instead of by the Z interaction.
We emphasize here that we could not have chosen l ¼ 2
states for this task, because these states mix with l ¼ 1
states when there is parity violation, which do not satisfy
the convergence criterion that l ≥ 2.
As discussed in Sec. I, parity violation in atoms is

measured in optical rotation experiments, wherein the
degree of rotation of the plane of polarization of light is
proportional to R defined in Eq. (6). In this section, we
study a particular interference process between two eigen-
states of hydrogen and its effect on the plane of polarization
of linearly polarized incident light on a hydrogen sample.
Note that M1 transitions between states of different

principal quantum number n do not occur in hydrogen
because of the orthogonality of states with different n. To
observe this effect, we therefore need to look for two states
with the same parity and the same principal quantum
number. To this end, we consider the following states of
definite n, f, mf, j, l in the notation jn; f;mf; j;li:

jAi ¼ j4; 3; 3; 5=2; 3i≡ 4F5=2;F¼3; ð42Þ

jBi ¼ j4; 3; 3; 7=2; 3i≡ 4F7=2;F¼3; ð43Þ

jΔi ¼ j4; 3; 3; 5=2; 2i≡ 4D5=2;F¼3: ð44Þ

jAi and jBi are eigenstates of F̂2 which, in the presence of
the neutrino potential, mix with all other states with f ¼ 3
and mf ¼ 3 to form a true energy eigenstate of hydrogen.
Before adding the neutrino potential, these states have the
same l, and hence there can be an M1 transition between
them, but no E1 transition. However, once these states are
corrected by the neutrino potential, the resulting eigenstates
can have both E1 andM1 transitions between them because
of the small parity-violating correction, from which we can
calculate R, as in Eq. (6).
Consider now the state jΔi. This state has different parity

than the two base states jAi and jBi while having the same

f andmf quantum numbers and, hence, can mix with them.
Before we proceed, we note that other states with the same
values of f and mf, such as j5; 3; 3; 7=2; 4i, mix very
weakly with our base states because the quantum number n
puts these states much farther away in energy than jΔi. We
therefore ignore the contribution of these states in the
perturbation expansion. Last, we must keep in mind that
the matrix element of a parity-violating operator between
states with the same parity is zero. Therefore, the base
states do not get any corrections from each other since they
have the same l ¼ 3.
Our aim is to compute

hA0jElectric DipolejB0i
hA0jMagneticDipolejB0i ≈

hA0jElectric DipolejB0i
hAjMagneticDipolejBi ; ð45Þ

where jA0i and jB0i are the true eigenstates of hydrogen,
obtained from jAi and jBi using the perturbation expansion
as in Eq. (34). For details of the calculation, see
Appendix B. The approximation in Eq. (45) holds because
the selection rules permit magnetic transitions to occur
between states of the same parity, so perturbative correc-
tions, which are much smaller than the unperturbed
transition amplitude, can be ignored.
Using the electric and magnetic dipole moment operators

(details in the Appendix B), we compute the inner products
by performing the integrals involving the hydrogen atom
wave functions. We define a small parameter νi by

νi ≡ 1

α

mνi

me
: ð46Þ

The final result, up to leading order in νi, is

R ¼ −7αm3
empGAG2

Fð− 1
4
þ s2W þ 1

2
jUeij2Þ

302778777600π3gpð29gpme − 21609000mpÞ
× ½ð24335gpme − 17503290000mpÞ
þ ν2i ð3858gpme þ 84015792000mpÞ� þOðν4i Þ; ð47Þ

where there is an implicit sum over the neutrino flavor i.
Using the standard values of the quantities above, we find

R ¼ Im
�
E1PV
M1

�
≈
�
−
1

4
þ s2W þ 1

2
jUeij2

�
× ð−7.7 × 10−33 þ 3.7 × 10−32ν2i Þ: ð48Þ

The result above shows that the leading-order contribution
to R is a number of order Oð10−32Þ. The next-to-leading-
order term depends on the neutrino mass through the
parameter νi. Using current experimental bounds on the
neutrino mass ðmν < 0.12 eVÞ, we see that the next-to-
leading-order term has a magnitude of Oð10−41Þ radians.
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Upon completing the calculation of the specific rotation
here, let us provide some perspective on the result. We first
compare the value of R obtained from a neutrino loop
diagram to the typical values obtained from a Z diagram.
To this end, we choose the states j2; 1; 1; 1

2
; 1i and

j2; 1; 1; 3
2
; 1i. Both of these states have f ¼ 1 and l ¼ 1,

and both are corrected by the state j2; 1; 1; 1
2
; 0i. Note that

we have picked low l states since we show in Sec. VI that
the Z diagram dominates for such states. The precise choice
of states is not completely without motivation: We have
picked p-wave states with n ¼ 2 because these states
experience relatively large corrections from the s-wave
states with the same principal quantum number. Had we
picked s-wave states with n ¼ 1, the corrections would be
rather small. This is because they would come from l ¼ 1
states which are much farther separated in energy, since the
n ¼ 1 shell does not possess any l ¼ 1 states.
We repeat the process outlined in this section with only

the first term in Eq. (35) for these two states and obtained

R ¼ Im
�
E1PV
M1

�

¼ 27g2mp½gpmeð4323ηZ þ 1730Þ − 162mpð2ηZ þ 1Þ�
6904πcos2θWα3gpmeðηZ þ 1Þ3ð865gpme − 81mpÞ

;

ð49Þ

where ηZ ¼ mZðmeαÞ−1 ≫ 1. After plugging in the stan-
dard numerical values, we have

R ¼ Im
�
E1PV
M1

�
∼ 10−10: ð50Þ

It turns out, therefore, that the Z diagram gives an optical
rotation for l ¼ 1 states that is about 1022 times larger than
the optical rotation obtained from the neutrino loops for the
higher l ¼ 3 states.

VIII. FINAL REMARKS

From the results in Sec. VII, it is clear that the
measurement of optical rotation due to the neutrino loop
is extremely challenging given the resolutions we can
achieve today. In that regard, there is another obstacle
in the path to measuring this effect—that of statistical
suppression. Since we are looking at high-l states, they
necessarily occur at high n, which means that these are
high-energy states and are thermally suppressed. We saw
earlier that, for the lower energy states, the parity-violating
interaction via the Z exchange dominates over the neutrino
process. Hence, at low temperatures, the chances of
isolating the neutrino-mediated transition are pretty low.
Nonetheless, this calculation, performed for other sys-

tems, could lead to somewhat larger quantities, and the next
step would most likely be an application of this idea to

many-electron atoms, beyond the simple hydrogen case.
Multielectron atoms are important to explore particularly
because the matrix elements in these atoms are amplified by
an additional Z3 factor [29], Z being the atomic number of
the heavy atom in question. The Z3 amplification is present
only when one considers low-l states of heavy atoms—one
factor of Z comes in through the weak nuclear charge and
the other two factors appear out of the relativistic behavior
of low-l electrons near the nucleus. It might be worthwhile
to try to explore the long-range parity violation in heavier
atoms, but it is still very unlikely that we may be able to
isolate the effect of the neutrino loop since the Z3

amplification factor acts on both the tree-level and loop-
level effects.
To conclude, we highlight the merits and demerits of the

calculation: Although the effects of the neutrino force on
the hydrogen atom are extremely small to measure in an
experiment, the neutrino force is the largest long-range
parity-violating force there is.
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APPENDIX A: CALCULATION OF THE
PARITY-VIOLATING FORCE BETWEEN
THE ELECTRON AND THE PROTON

Our approach here closely follows the methodology
of [2]. For the sake of simplicity, we start by assuming just
one flavor for the neutrino. In that case we find the
following four-Fermi operator for two fermions of type
ψ and two neutrinos by summing over the Z and W
diagrams:

O4 ¼ −
GFffiffiffi
2

p ½ψ̄γμðaψ − bψγ5Þψ �½ν̄γμð1 − γ5Þν�; ðA1Þ

where aψ and bψ are the effective couplings to the Z as
defined in Eqs. (20) and (21). They depend on the particular
fermion in question, depending on whether theW exchange
contributes, the Z exchange contributes, or both.
The two-neutrino potential can be calculated by a double

insertion of this operator, and the evaluation of the resulting
amplitude, and by taking the Fourier transform of the
amplitude. The Feynman diagram that is relevant is given in
Fig. 1. The corresponding matrix element is given by

iM ¼ −
ð−iGFÞ2

2
ē N̄ ½Γe

μΓN
ν �
Z

d4kd4k0

ð2πÞ4 δ4ðq − k − k0Þ

× Tr

�
iΓμ ið−=k0 þmÞ

k02 −m2
iΓν ið=kþmÞ

k2 −m2

�
eN: ðA2Þ
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Here, Γf
μ ¼ γμðaf − bfγ5Þ, with af and bf depending on the type of fermion in question. N stands for nucleus, which in our

case is just the proton. We can write the matrix element as iM ¼ ēN̄iFeN, where

F ¼ −i
G2

F

2
½Γe

μΓN
ν �
Z

d4kd4k0

ð2πÞ4 δ4ðq − k − k0ÞTr
�
Γμ ð−=k0 þmÞ

k02 −m2
Γν ð=kþmÞ

k2 −m2

�
: ðA3Þ

We then evaluate the trace, and consider only the symmetric part, since the antisymmetric part is odd in k, and hence
evaluates to 0 in the loop integral,

F ¼ i
G2

F

2
½Γe

μΓN
ν �2Tr½γμγργνγσ�

Z
d4kd4k0

ð2πÞ4 δ4ðq − k − k0Þ kσk0ρ
ðk2 −m2Þðk02 −m2Þ ;

¼ i
G2

F

2
½Γe

μΓN
ν �Cμν;ρσIσρ; ðA4Þ

where

Cμν;ρσ ≡ 2Tr½γμγργνγσ�; ðA5Þ

Iσρ ≡
Z

d4kd4k0

ð2πÞ4 δ4ðq − k − k0Þ kσk0ρ
ðk2 −m2Þðk02 −m2Þ ¼ A0gρσ þ B0qσqρ: ðA6Þ

We can therefore write, after contracting Iσρ with gρσ and qσqρ, respectively,

4A0 þ B0t ¼
Z

d4kd4k0

ð2πÞ4 δ4ðq − k − k0Þ k:k0

ðk2 −m2Þðk02 −m2Þ≡ J0; ðA7Þ

A0tþ B0t2 ¼
Z

d4kd4k0

ð2πÞ4 δ4ðq − k − k0Þ ðq:kÞðq:k0Þ
ðk2 −m2Þðk02 −m2Þ≡ J1; ðA8Þ

where t is the Mandelstam variable.
To calculate the force, we find the discontinuity in the matrix element across the branch cut in the complex t plane, using

the Cutkosky cutting rules, which yields

J̃0 ¼ −
1

ð2πÞ2
Z

d4kd4k0δ4ðq − k − k0Þθðk0Þθðk00Þδðk2 −m2Þδðk02 −m2Þðk · k0Þ; ðA9Þ

J̃1 ¼ −
1

ð2πÞ2
Z

d4kd4k0δ4ðq − k − k0Þθðk0Þθðk00Þδðk2 −m2Þδðk02 −m2Þðk · qÞðk0 · qÞ: ðA10Þ

Here, the tilde denotes the discontinuity of a quantity across the branch cut. Writing

Cμν;ρσðA0gρσ þ B0qσqρÞ ¼ Agμν þ B0qμqν;

we obtain

A ¼ −8ð2A0 þ B0tÞ; B ¼ 16B0: ðA11Þ

We have then

F ¼ i
G2

F

2
ðΓe · ΓNAþ qμqνΓe

μΓN
ν BÞ; ðA12Þ

F̃ ¼ i
G2

F

2
ðΓe · ΓNÃþ qμqνΓe

μΓN
ν B̃Þ: ðA13Þ
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What we need is to calculate the discontinuity in the matrix
element since the spectral function ρ is given by

ρ ¼ M̃
2i

: ðA14Þ

We evaluate the integrals above in the center-of-mass
(CM) frame of momentum transfer, i.e., the frame where
q¼ ð ffiffi

t
p

;0;0;0Þ, and hence k ¼ ðω; k⃗Þ, k0 ¼ ðω0;−k⃗Þ.
Performing the integrals, in the case of equal masses of

the neutrino in both propagators of the loop, we have

J̃0 ¼ −
1

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

t

r
ðt − 2m2Þ;

J̃1 ¼ −
t2

32π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

t

r
; ðA15Þ

which yields

Ã0 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

t

r �
t − 4m2

96π

�
;

B̃0 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

t

r �
t2 þ 2m2t
32πt2

�
; ðA16Þ

and translates to

Ã ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

t

r �
t −m2

3π

�
;

B̃ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

t

r �
1þ 2m2

t

3π

�
: ðA17Þ

We now need to deal with Eq. (A13) and evaluate the
spinor products in the nonrelativistic limit. For the purpose
of calculating the velocity-dependent terms in the potential,
it is necessary to evaluate the spinors up to first order in
momentum p⃗. This calculation seems most convenient in
the Pauli-Dirac basis where the nonrelativistic limit is much
easier to work with. In the Pauli-Dirac basis, a Dirac spinor
is given by

usðp⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 þm

q  
ξs

σ⃗·p⃗
p0þm ξs

!
: ðA18Þ

The gamma matrices, in this basis, are given by

γ0 ¼
�
1 0

0 −1

�
; γi ¼

�
0 σi

−σi 0

�
; γ5 ¼

�
0 1

1 0

�
:

ðA19Þ

In the nonrelativistic limit, p0 þm → 2m, and therefore,
for the electron,

usðp⃗Þ ≈
ffiffiffiffiffiffiffi
2m

p  
ξs

σ⃗·p⃗
2m ξs

!
¼

ffiffiffiffiffiffiffi
2m

p  
ξs

σ⃗·v⃗
2
ξs

!
; ðA20Þ

where ξs is a two-component vector that encodes the spin
state. For the nucleus, which has mass M ≫ m, we can
write

urðp⃗Þ ≈
ffiffiffiffiffiffiffi
2M

p �
ξr

0

�
: ðA21Þ

We use the above approximation for evaluating M. Our
plan is to evaluate the integral that gives us the long-range
potential from the spectral function.
The qμqν term does not give a parity-violating term when

evaluated explicitly using spinors. Thus, we only need to
evaluate the Γe · ΓN term. We suppress writing the spin
states ξ and assume that the incoming and outgoing
electrons have three-momenta p⃗ and p⃗0, respectively, while
the incoming and outgoing nuclei have three-momenta k⃗
and k⃗0 (note as usual that q ¼ p − p0 ¼ k0 − k; let us not
confuse the k’s here with the integration variables used
before—those k’s have no relevance in the upcoming
discussion). To compute the leading radial dependence
of the potential, we need the spin and momentum inde-
pendent parity-conserving term in F. This is found to be
2imeMaeaNG2

FA. The discontinuity in the matrix element
for the spin-independent part is

M̃ ¼ 2meMiaeaNG2
FÃ

¼ 2meMiaeaNG2
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

t

r �
t −m2

3π

�
: ðA22Þ

The spectral function is therefore (ignoring the spin states)

ρðtÞ ¼ M̃
2i

¼ meMaeaNG2
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

t

r �
t −m2

3π

�
: ðA23Þ

Thus, the spin-independent parity-conserving potential is
given by the formula

VðrÞ ¼ 1

16π2meMr

Z
∞

t0

dt ρðtÞe−
ffiffi
t

p
r

¼ meMaeaNG2
F

16π2meMr

Z
∞

4m2

dt e−
ffiffi
t

p
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

t

r �
t −m2

3π

�

¼ aeaNG2
F

4π3
m3K3ð2mrÞ

r2

¼ aeaNVννðrÞ; ðA24Þ

where VννðrÞ is given in Eq. (2) (the Dirac case).
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We also calculate the parity-violating parts, as below:

ē N̄ Γe:ΓNeN
4meM

⊃ aNbe

�
1

2me
þ 1

2M

�
σ⃗e · q⃗ − aebN

�
1

2me
þ 1

2M

�
σ⃗N · q⃗þ aebN

me
σ⃗N · p⃗

−
aNbe
me

σ⃗e · p⃗þ i

�
aebN
2me

þ aNbe
2M

�
σ⃗e · ðσ⃗N × q⃗Þ: ðA25Þ

The parity-violating parts of F are therefore given by

F
2iG2

FmeM
⊃
�
aNbe

�
1

2me
þ 1

2M

�
σ⃗e · q⃗

�
A −

�
aebN

�
1

2me
þ 1

2M

�
σ⃗N · q⃗

�
A

þ
�
aebN
me

σ⃗N · p⃗

�
A −

�
aNbe
me

σ⃗e · p⃗

�
A

þ i

��
aebN
2me

þ aNbe
2M

�
σ⃗e · ðσ⃗N × q⃗Þ

�
A: ðA26Þ

VννðrÞ is basically the Fourier transform of the spin-independent part of the matrix elementM; i.e., it can be thought of
as the Fourier transform of A, up to the nonrelativistic normalization of the Dirac spinors. But observe that the spin-
dependent part of the matrix element is obtained by multiplying the spin independent term A to the terms in Eq. (A25).
Thus, to obtain the spin dependent parts of the potential, we need to take the Fourier transforms of quantities such as
ðσ⃗ · q⃗ÞA and so on. In essence, we replace q⃗ ’s by gradients.
Let us look at the particular case of the hydrogen atom. We incorporate flavor mixing as in Sec. IVand get the couplings

aeii, b
e
ii, a

p
ii, and bpii as in Eq. (23).

For the sake of cleanliness, below we drop one index i from the above couplings, since no sum is assumed anyway. The
analog of Eq. (A25) in the hydrogen atom is therefore (the Hermitian conjugate is implicitly added)

ē P̄Γe:ΓPeP
4memp

¼ api b
e
i

�
1

2me
þ 1

2mp

�
σ⃗e · q⃗ − aei b

p
i

�
1

2me
þ 1

2mp

�
σ⃗p · q⃗þ aei b

p
i

me
σ⃗p · p⃗

−
api b

e
i

me
σ⃗e · p⃗þ i

�
aei b

p
i

2me
þ api b

e
i

2mp

�
σ⃗e · ðσ⃗p × q⃗Þ

≈
aei b

p
i

2me
½2σ⃗p · p⃗ − σ⃗p · q⃗þ iσ⃗e · ðσ⃗p × q⃗Þ�

¼ GA

2me

�
−
1

4
þ sin2θW þ 1

2
jUeij2

�
½2σ⃗p · p⃗ − σ⃗p · q⃗þ iσ⃗e · ðσ⃗p × q⃗Þ�:

Here, we used the fact that sin2 θW ≈ 0.23 so that api ∼ 0 and thatme ≪ mp. The parity-violating potential that comes out of
this with a Fourier transform is given by (we remember to add in the Hermitian conjugate and implicitly sum over i)

V loop
PNC ¼ GA

me

�
−
1

4
þ sin2θW þ 1

2
jUeij2

�
½ð2σ⃗p · p⃗ÞVνiνiðrÞ þ σ⃗e · ðσ⃗p × ∇⃗ÞVνiνiðrÞ�

¼ GA

me

�
−
1

4
þ sin2θW þ 1

2
jUeij2

�
½ð2σ⃗p · p⃗ÞVνiνiðrÞ þ ðσ⃗e × σ⃗pÞ · ∇⃗VνiνiðrÞ�: ðA27Þ

APPENDIX B: DETAILS OF THE CALCULATION IN Sec. VII

In Sec. VII, we computedR for theE1 andM1 transitions between the “base” states jAi and jBi. Both of these states were
corrected by the “correction state” jΔi. Other corrections were ignored because they are much smaller than the correction
due to jΔi.
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Using the machinery of angular-momentum addition, we can write

jAi ¼ j4; 3; 3; 5=2; 3i≡ −
1ffiffiffi
7

p ψ432j↑↑i þ
ffiffiffi
6

7

r
ψ433j↓↑i;

jBi ¼ j4; 3; 3; 7=2; 3i≡ −
1

2

ffiffiffi
3

7

r
ψ432j↑↑i þ

1

2

ffiffiffi
7

2

r
ψ433j↑↓i −

1

2
ffiffiffiffiffi
14

p ψ433j↓↑i;

jΔi ¼ j4; 3; 3; 5=2; 2i≡ ψ422j↑↑i; ðB1Þ

where ψnlm are the unperturbed energy eigenstates of hydrogen, given by

ψnlm ¼ hr; θ;ϕjnlmi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

2

na0

�
3 ðn − l − 1Þ!
2n½ðnþ lÞ!�3

s
e−r=na0 ½L2lþ1

n−l−1ð2r=na0Þ�Ym
l ðθ;ϕÞ: ðB2Þ

Using these three states, we can write the corrected states
in the spirit of Eq. (34) as

jA0i ¼ jAi þ hΔjVPNCjAi
EA − EΔ

jΔi þ � � � ¼ jAi þCAΔjΔi þ � � � ;

ðB3Þ

where CAΔ is the correction coefficient. Similarly,

jB0i ¼ jBi þ hΔjVPNCjBi
EB − EΔ

jΔi þ… ¼ jBi þCBΔjΔi þ � � � :

ðB4Þ

In the end, we add the contributions from both terms in the
potential. Our states therefore become

jA0i ¼ jBi þ ðCsc
AΔ þ Ch

AΔÞjΔi þ � � � ; ðB5Þ

jB0i ¼ jBi þ ðCsc
BΔ þ Ch

BΔÞjΔi þ � � � : ðB6Þ

Here Csc is the correction coefficient for the spin-cross term
alone, whileCh is the coefficient for the “helicity” term alone.
Using the two terms in V loop

PNCðrÞ, we compute the
corrections up to second order in the small parameter νi.
To calculate the energy differences between the states, we
use Eq. (30). We obtain (sW ≡ sin θW)

Csc
AΔ ¼ i

GAG2
Fmpm3

eα
2

π3gp

�
−
1

4
þ s2W þ 1

2
jUeij2

��
21

ffiffiffi
7

p
ν2i

10816
−
35

ffiffiffi
7

p

64896

�
; ðB7Þ

Csc
BΔ ¼ i

GAG2
Fmpm4

eα
2

π3ð29gpme − 21609000mpÞ
�
−
1

4
þ s2W þ 1

2
jUeij2

�
×

 
−
7
ffiffi
7
3

q
ν2i

64
þ
35

ffiffi
7
3

q
1152

!
; ðB8Þ

Ch
AΔ ¼

�
−
1

4
þ s2W þ 1

2
jUeij2

�
7i

ffiffiffi
7

p
α2m3

eð36ν2i − 5ÞmpGAG2
F

129792π3gp
; ðB9Þ

Ch
BΔ ¼

�
−
1

4
þ s2W þ 1

2
jUeij2

� 7i
ffiffi
7
3

q
α2m4

eð1122ν2i − 115ÞMGAG2
F

27648π3ð29gpme − 21609000mpÞ
: ðB10Þ

We are interested in the ratio between the electric and
magnetic dipole moment matrix elements for the states jA0i
and jB0i. These two transitionmatrix elements have the same
dependence on themagnetic quantum numbers in hydrogen,
and so the ratio is independent of the orientation of the atom.
As such, inour calculations,weonly lookat themagnetic and
electric dipole moments along the z direction,

P̂ ¼ −ez ¼ −ð4παÞ1=2r cos θ;

M̂ ¼ e
2me

ðL̂z þ 2ŜzÞ ¼
ð4παÞ1=2
2me

ðL̂z þ 2ŜzÞ:

Using this form of electric and magnetic dipole moment
operators in Eq. (45) leads to the final result in Eq. (48).
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