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We study a nonlocal theory that combines both the pseudo quantum electrodynamics (PQED) and
Chern-Simons actions among two-dimensional electrons. In the static limit, we conclude that the
competition of these two interactions yields a Coulomb potential with a screened electric charge given
by e2=ð1þ θ2Þ, where θ is the dimensionless Chern-Simons parameter. This could be useful for describing
the substrate interaction with two-dimensional materials and the doping dependence of the dielectric
constant in graphene. In the dynamical limit, we calculate the effective current-current action of the model
considering Dirac electrons. We show that this resembles the electromagnetic and statistical interactions,
but with two different overall constants, given by e2=ð1þ θ2Þ and e2θ=ð1þ θ2Þ. Therefore, the
θ-parameter does not provide a topological mass for the gauge field in PQED, which is a relevant
difference in comparison with quantum electrodynamics. Thereafter, we apply the one-loop perturbation
theory in our model. Within this approach, we calculate the electron self-energy, the electron renormalized
mass, the corrected gauge-field propagator, and the renormalized Fermi velocity for both high- and low-
speed limits, using the renormalization group. In particular, we obtain a maximum value of the
renormalized mass for θ ≈ 0.36. This behavior is an important signature of the model and relations with
doping control of band gap size are also discussed in the conclusions.
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I. INTRODUCTION

Quantum electrodynamics (QED) is one of the most
well-succeed theories in physics, in particular, because of
the remarkable comparison between the experimental data
for the electron g-factor and its theoretical prediction.
Because the matter action is given by the Dirac theory,
hence, most of its results are connected to electrons in
particle physics. Recently, nevertheless, quantum electro-
dynamics has been shown a very useful tool in the physics
of planar materials. Indeed, the experimental realization of
graphene [1] has been an important bridge between
quantum field theory and condensed matter physics in
the last decade. The main reason is because of the low-
energy excitations that behave as massless Dirac particles,
with an effective velocity vF ≈ c=300, called Fermi veloc-
ity. This is a small fraction of the light velocity c [2].

The dynamics of electrons in graphene generates an exper-
imental setup for observing the Klein tunneling at reason-
able energy scales, in comparison with the energy scale in
particle physics [3]. Beyond this large set of applications,
new two-dimensional (2D) materials made that bridge even
bigger than before. For instance, silicene, phosphorene,
germanene, and the transition metal dichalcogenides [4]
have been described by the massive Dirac theory at low
energies. In literature, most of the applications have been
discussed within a free-particle picture. On the other hand, a
few applications have been made with some quantum-
electrodynamical approach, in particular, the pseudo quan-
tum electrodynamics (PQED) [5] has attracted great atten-
tion. The whole description of interactions, including those
due to microscopic or statistical interaction, is still an open
question in the physics of these planar materials.
It has been shown that PQED, also known as reduced

quantum electrodynamics [6], is the correct theory for
describing electronic interactions among particles in the
plane. This is a nonlocal model generated by a dimensional
reduction of QED, after constraining the electrons to the
plane [5,6]. For the sake of consistency with quantum
theory, it has been shown that PQED is unitary [7].
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Furthermore, it yields the Coulomb potential VðrÞ ∝ 1=r in
the static limit, which is a desirable feature for applications
in the physics of two-dimensional materials. Indeed, aim-
ing for applications in condensed matter physics, several
results have been obtained from this approach, for example,
dynamical mass generation [8], interaction driven quantum
valley Hall effect [9], quantum corrections of the electron
g-factor [10], Yukawa potential in the plane [11], and
electron-hole pairing (excitons) in transition metal dichal-
cogenides [12]. Nevertheless, all of these applications
neglect the interaction of the matter with the Chern-
Simons action at tree level. This interaction has been
related to the effective action of the matter current, driven
by the Chern-Simons action, after integrating out the gauge
field. This effective action has been coined statistical
interaction in Ref. [5]. The Chern-Simons model has an
intrinsic parameter θ, which yields a topological mass in the
quantum electrodynamics in (2þ 1) dimensions (QED3),
without breaking gauge symmetry [13].
In general grounds, the Chern-Simons action may be

written either as an Abelian or non-Abelian gauge field.
Here, we shall keep our attention only to the Abelian case.
The induction of the Chern-Simons action in the plane has
been derived through a dimensional reduction of the
topological action, obtained from the Maxwell field.
This topological action is given by the contraction of the
electromagnetic field and its dual field. From this approach,
it follows that the full interactions in the plane should
include the θ-parameter [5]. Another peculiar feature of the
Chern-Simons theory is its induction, in the two-rank
representation of the Dirac matrices, from one-loop quan-
tum corrections to the photon propagator in QED3. In this
case, the induction of the Chern-Simons action is a
realization of the so-called parity anomaly [9] and has
no higher-order corrections [14].
The interaction of the matter current with the Chern-

Simons action yields a field theory for theHall effect [15]. In
this case, the θ-parameter is related to the Hall conductivity
at the level of motion equations. Furthermore, applications
of the Chern-Simons action have been discussed in several
phenomena, such as superconductivity at high temperatures,
fractional quantum Hall effect, anyons (particles with frac-
tional statistics), and the Aharanov-Bohn effect [13].
Given the relevance of both PQED and the Chern-

Simons action for planar systems, it is relevant to describe
the competition between the θ-parameter and the electro-
magnetic coupling constant, namely, the fine-structure
constant α. In this work, we show that the Chern-
Simons parameter increases the dielectric constant, through
the scale α → α=ð1þ θ2Þ, in the static limit. Within the
dynamical regime, we apply the one-loop perturbation
theory in our model, where we obtain the electron mass
renormalization and the renormalization of the Fermi
velocity. This model also has been discussed in
Ref. [16] in the light of the Coleman-Hill theorem.

The outline of this paper is as follows: in Sec. II, we
show the effective action for both, electromagnetic and
statistical interactions. In Sec. III, we show the model,
PQED, with the Chern-Simons term. In Sec. IV, we
calculate the static potential. In Sec. V, we calculate the
electron self-energy for the isotropic case in one loop of
perturbation theory. In Sec. VI, we calculate the renorm-
alization of the Fermi velocity for high and low speeds
using the renormalization group method. In Sec. VII, we
review the main results obtained in this paper. We also
include three Appendixes. In Appendix A, we discuss the
Maxwell-Chern-Simons (MCS) theory. In Appendix B, we
calculate the renormalized mass and in Appendix C we
calculate the beta functions through the renormalization
group for our model.

II. EFFECTIVE ACTION FOR
BOTH ELECTROMAGNETIC AND
STATISTICAL INTERACTIONS

In this section, we calculate both the electromagnetic and
statistical interactions in the plane. In order to do so, let us
consider the Euclidean version of the Chern-Simons theory
in (2þ 1) dimensions, namely,

LCS ¼ i
θ̄

2
ϵμναAμ∂νAα þ ējμAμ þ

λθ̄

2

Aμ∂μ∂νAν

ð−□Þ1=2 ; ð1Þ

where θ̄ is the Chern-Simons parameter with mass
dimension (½θ̄� ¼ 1), Aμ is the statistical field, □ is the
d’Alembertian operator, ē is the electric charge (½ē� ¼ 1=2),
and jμ is the matter current. The last term is included
for calculating the gauge-field propagator. Equation (1)
yields an effective description for the Hall current at the
level of motion equation [5]. Furthermore, it describes
particles with an arbitrary statistics, the so-called anyons.
In this case, the arbitrary statistics emerges due to a
particular gauge transformation in the matter field. The
composite field binds with a magneticlike flux and, after
interchanging the position of two particles, the two-particle
wave function acquires a phase given by eiπΔs, where the
parameter Δs ¼ ē2=ð2πθ̄Þ describes the statistics of the
matter field [17].
Integration over Aμ in Eq. (1) yields the effective action

for the current matter jμ, i.e.,

LCS
eff:½jμ� ¼ i

ē2

2θ̄
jμðxÞϵμνα

� ∂α

2ð−□Þ
�
ðx−yÞ

jνðyÞ; ð2Þ

which represents the statistical interaction [5], obtained
after we use the conservation of the matter current.
Next, we review the effective electromagnetic interaction
in the plane.
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The PQED action reads

L3D ¼ 1

2
F̄μνð−□Þ−1=2F̄μν þ

λ

2

Āμ∂μ∂νĀν

ð−□Þ1=2 þ ejμĀμ; ð3Þ

where F̄μν ¼ ∂μĀν − ∂νĀμ with Āμ being the pseudoelec-
tromagnetic field. Note the Āμ is not the real electromag-
netic field that lives in ð3þ 1ÞD. The action of PQED is
completely defined in ð2þ 1ÞD; hence, Āμ lives in the
plane. In particular, electrons interact trough the Coulomb
potential in the static limit. Similarly, to the previous
calculation, we find

LPQED
eff ½jμ� ¼ −

e2

2
jμðxÞ

�
1

2ð−□Þ1=2
�
ðx−yÞ

jμðyÞ: ð4Þ

Equation (4) is the same effective action generated by
quantum electrodynamics with particles confined to the
plane [5]. In fact, this is the origin of the square root of□ in
PQED. Here, our main goal is to obtain a model that
describes at the same time both Eqs. (2) and (4). Perhaps,
the first attempt would be to consider the combination of
quantum electrodynamics in (2þ 1) dimensions and the
Chern-Simons theory coupled to the matter field. The
resulting effective action, however, does not correctly
describe either the electronic or the statistical interactions.
We shall discuss this attempt in Appendix A.
The desired theory has been found in Ref. [5], where it is

shown that

L½Aμ; Āμ� ¼
1

2
F̄μνð−□Þ−1=2F̄μν þ

λ

2

Āμ∂μ∂νĀν

ð−□Þ1=2

þ ejμĀμ þ i
θ̄

2
ϵμναAμ∂νAα þ ējμAμ ð5Þ

generates the statistical interaction, in Eq. (2), and the
electromagnetic interaction, given by Eq. (4). Indeed,
integration over Āμ and Aμ in Eq. (5) yields the sum of
these interactions. Note that this model interpolates two
gauge fields, which have different canonical dimensions
whether ½θ̄� ¼ 1 and ½ē� ¼ 1=2 (as it necessarily happens in
MCS theory). This, nevertheless, may be circumvented by
assuming that ē and θ̄ are dimensionless constants. In this
case, it is straightforward that ½Āμ� ¼ ½Aμ�, with ½ē� ¼ ½e� as
it is expected. Next, we propose an alternative approach for
describing these basic interactions by taking the following
ansatz Āμ ¼ Aμ for the gauge fields in Eq. (5). A similar
approach has been used in Ref. [18] for investigating
dynamical mass generation in MCS theory. Recently, this
condition also has been used for studying the parity
anomaly in MCS theory at the lattice [19].

III. THE PQED-CHERN-SIMONS MODEL

We start with the action, in the Euclidean space, given by

L ¼ 1

2
Fμνð−□Þ−1=2Fμν þ

λ

2
Aμ∂μð−□Þ−1=2∂νAν

þ LM½ψ � þ i
θ

2
ϵμναAμ∂νAα þ ejμAμ; ð6Þ

where e is the electric charge, jμ ¼ ψ̄γμψ is the matter
current, LM½ψ � is the Dirac action for the matter field,
explicitly ψ̄ði=∂ −mÞψ, and λ is a gauge-fixing parameter.
Aμ is a gauge field which we call PQED-Chern-Simons
field, and θ is a dimensionless parameter that resembles θ̄ in
Eq. (1). Equation (6) is meant to describe the coupling of
PQED with the Chern-Simons action. Note that Eq. (6) is
obtained from Eq. (5) after we consider ðĀμ;AμÞ → Aμ and
ē ¼ 0 without loss of generality (the minimal coupling is
already given by ejμAμ).
Despite taking a simplest version of Eq. (5), our model

also generates the current-current correlation function
obtained in Sec. II. Indeed, after integrating out Aμ in
Eq. (6), we find

Leff ½jμ� ¼ −
e2

2
jμΔð0Þ

μν jν: ð7Þ

Note that the kind of LM½ψ � is needless for calculating

Eq. (7). Δð0Þ
μν is the gauge-field propagator, given by

Δð0Þ
μν ¼ δμν

2ð−□Þ1=2ð1þ θ2Þ −
iθϵμνα∂α

2ð−□Þð1þ θ2Þ

þ 1

λð−□Þ1=2
∂μ∂ν

□
: ð8Þ

Next, we use Eq. (8) in Eq. (7), yielding

Leff ½jμ� ¼ −
e2

2ð1þ θ2Þ j
μ

�
1

2ð−□Þ1=2
�
jμ

þ ie2θ
2ð1þ θ2Þ j

μϵμνα

� ∂α

2ð−□Þ
�
jν: ð9Þ

Comparison with Eqs. (2) and (4) shows that the first term
on the right-hand side of Eq. (9) describes the electromag-
netic interaction. Actually, for the sake of accuracy, we
should consider a screening effect for the electric charge,
namely, e2=ð1þ θ2Þ → e2 in order to obtain an exact
correspondence. On the other hand, the second term is
very similar to the statistical interaction we have discussed
in Sec. II. Equation (9) also ensures that our action provides
the same (after properly scaling the parameters e and θ)
current-current correlation functions calculated from
Eq. (5). This is relevant for calculating physical observ-
ables, for example, the dc electric conductivity, in the light
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of the Kubo formula [15], for PQED applied to graphene
[9]. Thereafter, we shall prove that the effects of the Chern-
Simons action in PQED are connected to screening effects
instead of providing a topological mass as it happens in
MCS model [18]. Here, it is relevant to comment that the
Chern-Simons action also may be obtained through a
dimensional projection, similarly to what has been done
for PQED. In this case, the corresponding theory in
ð3þ 1ÞD is given by a total derivative of a topological
current [5]. Furthermore, the model in Eq. (6) also has been
obtained through the bosonization of massless Dirac
fermions in ð2þ 1ÞD at one-loop approximation [20].
The Feynman rules for this model are the gauge-field

propagator, in momentum space, given by

Δð0Þ
μν ðpÞ ¼ δμν

2ðp2Þ1=2ð1þ θ2Þ þ
θϵμναpα

2p2ð1þ θ2Þ þ
1

λ
ffiffiffiffiffi
p2

p pμpν

p2
:

ð10Þ
In our calculations, we shall use the Landau gauge
(λ ¼ ∞). The electron-field propagator is

Sð0ÞF ¼ −1
γμpμ −m

ð11Þ

and

Γμ ¼ eγμ ð12Þ
is the vertex interaction. In the next section, we
calculate the static potential for this model. The gamma
matrix is rank 4 with ðγ0Þ2¼ðγ1Þ2¼ðγ2Þ2¼−1, satisfying
fγμ; γνg ¼ −2δμν.

IV. STATIC INTERACTION

The Fourier transform of the static propagator of gauge
field given by Eq. (10), basicallyΔð0Þ

00 ðp0 ¼ 0;pÞ, generates
the static potential VðrÞ; therefore,

VðrÞ ¼ e2
Z

d2p
ð2πÞ2

exp ð−ip⃗ · r⃗Þ
2ðjp⃗j2Þ1=2ð1þ θ2Þ : ð13Þ

After solving the integration over p [21], we have

VðrÞ ¼ e2

4πð1þ θ2Þ
1

jr⃗j : ð14Þ

For θ ¼ 0, we have the Coulomb potential, but for θ ≠ 0,
we have an overall factor that behaves as an effective
electric susceptibility.
In Fig. 1, we plot this potential for some values of θ. We

conclude that for very large values of θ, the electron-
electron interaction becomes very weak in comparison with
the unscreened Coulomb potential. This effect only occurs,
within our model, because θ is dimensionless.

V. THE ISOTROPIC SELF-ENERGIES

A. The fermion self-energy and the mass
renormalization

The electron self-energy is given by

Σðp;mÞ ¼ e2
Z

dDk
ð2πÞD γμSFðp − kÞγνΔð0Þ

μν ðkÞ; ð15Þ

where D is the space-time dimension.
After using Eq. (10) in Eq. (15), we split the electron

self-energy in two terms, namely,

ΣðpÞ ¼ 1

ð1þ θ2Þ ½Σ
PQED
ISO ðpÞ þ ΣCSðpÞ�; ð16Þ

where

ΣPQED
ISO ðpÞ¼ e2μϵ

Z
dDk
ð2πÞD γ

μSFðp−kÞγνΔPQED
μν ðkÞ; ð17Þ

with

ΔPQED
μν ðkÞ ¼ δμν

2
ffiffiffiffiffi
k2

p ð18Þ

and

ΣCSðpÞ ¼ −
θ

2
e2μϵϵμαν

×
Z

dDk
ð2πÞD

ðγμpγν − γμ=kγν þmγμγνÞ
½ðp − kÞ2 þm2�

kα

k2
: ð19Þ

Equations (17) and (19) represent the effects of the
isotropic PQED and CS term for the electron self-energy,

=0
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V

Static Interaction

FIG. 1. Static potential of PQED-Chern-Simons theory. This
plot shows the behavior of the static potential Eq. (14) as a
function of the distance between the fermions, varying the
parameter θ. The solid line (blue), dashed (orange), dotted
(green), and dot-dashed (red) show the static potential as a
function of the position for θ ¼ 0, θ ¼ 0.5, θ ¼ 2, and θ ¼ 10,
respectively.
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respectively. We have also introduced the scale parameter μ
by replacing e → eμϵ=2, where ϵ ¼ 3 −D is the dimen-
sional regulator.
For calculating ΣPQED

ISO , we have used the Feynman’s
trick,

1

ab1=2
¼ 1

2

Z
1

0

dx
ð1 − xÞ−1=2

½axþ bð1 − xÞ�3=2 ; ð20Þ

where x is named Feynman’s parameter and the constants
a and b are chosen as a ¼ ðp − kÞ2 þm2 and b ¼ k2,
respectively. Thereafter, using the dimensional regulariza-
tion scheme [22], we find the isotropic electron self-energy
for PQED,

ΣPQED
ISO ðpÞ ¼ e2

8π2

Z
1

0

dxð1 − xÞ−1=2ð5ð1 − xÞp − 3mÞ 1
ϵ

þ −
e2

16π2

Z
1

0

dxð1 − xÞ−1=2·

·

��
2þ 5γ − 5 ln

�
4πμ2

δ

��
ð1 − xÞp

þ
�
3 ln

�
4πμ2

δ

�
− 3γ − 2

�
m
�
; ð21Þ

such that δ ¼ xm2 þ xð1 − xÞp2 and γ is the Euler-
Mascheroni constant (∼0.577).
The second term of Eq. (16) can be written as

Σ̄CSðpÞ ¼
1

1þ θ2
ΣCSðpÞ −

θe2μϵϵμαν
2ð1þ θ2Þ

×
Z

dDk
ð2πÞD

ðγμpγν − γμ=kγν þmγμγνÞ
½ðp − kÞ2 þm2�

kα

k2
: ð22Þ

Using the following relation:

γμγνγα ¼ ϵμνα − gμνγα − gναγμ þ gμαγν; ð23Þ

we find

Σ̄CSðpÞ ¼
θe2μϵ

2ð1þ θ2Þ
Z

dDk
ð2πÞD

ðp · k − k2 þm=kÞ
½ðp − kÞ2 þm2�k2 : ð24Þ

Next, using another Feynman parametrization,

1

ab
¼

Z
1

0

dy
1

½axþ bð1 − xÞ�2 ; ð25Þ

we may rewrite Σ̄CS as

Σ̄CSðpÞ¼
θe2μϵ

2ð1þθ2Þ

×
Z

1

0

dx
Z

dDk
ð2πÞD

xð1−xÞp2þxmp−k2

½k2þΔ�2 ; ð26Þ

where Δ ¼ xm2 þ xð1 − xÞp2. We apply the dimensional
regularization scheme for calculating the loop integral;
hence,

Σ̄CSðpÞ ¼
θe2

16πð1þ θ2Þ
Z

1

0

dx
4xð1 − xÞp2 þ xmðpþ 3mÞ

½xm2 þ xð1 − xÞp2�12

¼ θe2

16πð1þ θ2Þ fAmþ Bpg; ð27Þ

where

A ¼ 1

m

Z
1

0

dx
4xð1 − xÞp2 þ 3xm2

½xm2 þ xð1 − xÞp2�12 ð28Þ

and

B ¼
Z

1

0

dx
xm

½xm2 þ xð1 − xÞp2�12 : ð29Þ

To obtain a finite amplitude, we use the minimal sub-
traction method, which consists of introducing counter-
terms (CT) in Eq. (19). Therefore, the renormalized
electron self-energy reads

ΣR ¼ lim
μ;ϵ→0

ðΣðp; μ; ϵÞ − CTÞ ¼ CpþDm; ð30Þ

where the coefficients C and D are expressed by

C ¼ −
e2

16π2ð1þ θ2Þ

×
Z

1

0

dx

��
2þ 5γ þ 5 ln

�
δ

m2

�� ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
þ

−
xmπθ

½xm2 þ xð1 − xÞp2�12
�

ð31Þ

and

D ¼ e2

16π2ð1þ θ2Þ
Z

1

0

dx

�½3γ þ 2þ 3 lnð δ
m2Þ�ffiffiffiffiffiffiffiffiffiffiffi

1 − x
p

þ πθ½4xð1 − xÞp2 þ 3xm2�
m½xm2 þ xð1 − xÞp2�12

�
: ð32Þ

The renormalized mass mR is given by the pole of the
corrected propagator. Similarly, to the calculation that has
been done in [11], we found that the renormalized mass
ratio is (for more details, see Appendix B)
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mR

m
¼ 1þ CþD;

¼ 1 −
αISOeff

4π

Z
1

0

dx

�½γ þ 2 lnðxÞ�ð2 − 5xÞ − 2xffiffiffiffiffiffiffiffiffiffiffi
1 − x

p þ

−
4x2πθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x − x2

p
�
; ð33Þ

where m is the bare mass of the electron and αISOeff ¼
e2=4πð1þ θ2Þ. Graphically, the renormalized mass ratio is
shown in Fig. 2, where the global maximum value of
renormalized mass was obtained at θ ≅ 0.36. Furthermore,
for large values of θ, the mass does not renormalize.

B. The photon self-energy and screened
static interaction

From now on, let us assume that the matter field is
massless. Hence, the full propagator of the gauge field,
considering the insertion of the photon self-energy [8,23],
is given by

ΔFull
μν ðpÞ ¼

ffiffiffiffiffi
p2

p
½2ð1þ θ2Þ þ e2

8
�Pμν þ 2θð1þ θ2Þϵμνλpλ

p2½2ð1þ θ2Þ þ e2
8
�2 ;

ð34Þ

where Pμν is called the transverse operator, given by
Pμν ¼ δμν − pμpν=p2. Note that we have used the four-
rank representation of the Dirac matrices in Eq. (34).
In the static limit, within the Landau gauge, the gauge-

field propagator reads

ΔFull
00 ðpÞ ¼ 1

2
ffiffiffi
p

p ð1þ θ2 þ e2
16
Þ : ð35Þ

After solving the Fourier transform of the static propagator,
we find the potential

VðrÞ ¼ e2

4πð1þ θ2 þ e2
16
Þ
1

jr⃗j : ð36Þ

Equation (36) yields the total screening effect of the
potential. Therefore, we have shown that the whole
description of the screening depends on both the statistical
parameter θ and the quantum corrections given by the
factor e2=16.
In the next section, we calculate the anisotropic self-

energy and the Fermi velocity renormalization for high- and
low-speed regimes.

VI. THE ANISOTROPIC SELF-ENERGY AND THE
FERMI VELOCITY RENORMALIZATION

Let us consider a soft breaking of the Lorentz symmetry
[24] in the massless fermionic sector given by the following
Lagrangian:

L¼ 1

2
Fμνð−□Þ−1=2Fμνþ

λ

2
Aμ∂μð−□Þ−1=2∂νAν

þ ψ̄ðiγ0∂0þ ivFγi∂iÞψþ i
θ

2
ϵμναAμ∂νAαþejμAμ: ð37Þ

Note that in the model of Eq. (37) a possible mass term,
such as mψ̄ψ , does not change the renormalization of
vF [25].
From Eq. (37), we conclude that the fermion propagator

is given by

Sð0ÞF ðpÞ ¼ γμp̄μ

p̄2
; ð38Þ

where p̄μ ¼ ðp0; vFpÞ and p̄2 ¼ p2
0 þ v2Fp

2. On the other
hand, the photon propagator reads

Δð0Þ
μν ðpÞ ¼ δμν

2ðp2Þ1=2ð1þ θ2Þ þ
iθϵμναpα

2p2ð1þ θ2Þ ; ð39Þ

where we have adopted the Landau gauge (λ ¼ ∞),
pμ ¼ ðp0;pÞ with p2 ¼ p2

0 þ p2, and the vertex structure
of Eq. (12) becomes

Γμ ¼ eðγ0; vFγiÞ: ð40Þ

Note that in this section we consider c ¼ 1 for the sake of
simplicity.
The quantum corrections to vF are obtained from the

electron self-energy, which is given by

ΣðpÞ ¼
Z

dDk
ð2πÞD ΓμSFðp̄ − k̄ÞΓνΔμνðkÞ: ð41Þ

0 2 4 6 8 10
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1.0035
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.(
m
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Renormalized Mass Ratio

FIG. 2. The variation of renormalized mass ratio with θ. This
plot shows the behavior of the variation of renormalized mass
ratio Eq. (33) as a function of θ, considering e2=4π ¼ 1=137.
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From Eq. (41), it is possible to split the electron self-energy
into two terms. The first one contains the effects of PQED,
with the overall factor 1=ð1þ θ2Þ, and the second one is the
additional Chern-Simons contribution. Hence,

ΣðpÞ ¼ ΣPQED
ANI

ð1þ θ2Þ þ
θe2

ð1þ θ2Þ

× ϵμαν

Z
dDk
ð2πÞD

ðγμ=̄pγν − γμ=̄kγνÞ
½ðp̄ − k̄Þ2�

kα

k2
: ð42Þ

In what follows, we will calculate these diagrams using the
dimensional regularization procedure as a way to obtain
finite Feynman amplitudes. First, we perform the integra-
tion over k0 and, after that, the remaining integral over k.
We use standard formulas of dimensional regularization in
spatial dimension d ¼ 2 − ϵ, and that e → eμϵ=2, which
keeps the correct dimensionality of the integrals.
Note that the integrals in the second term of Eq. (42) are

finite. Hence, using the method of renormalization group
(see Appendix C), we conclude that this term does not
contribute to the Fermi velocity renormalization. ΣPQED

ANI is
the anisotropic electron self-energy for PQED, given by

ΣPQED
ANI ðpÞ ¼ e2μϵ

Z
dDk
ð2πÞD γμSFðp̄ − k̄ÞγνΔμνðkÞ

¼ e2μϵ

8π2
f−ð1 − 2v2FÞγ0p0I1 þ vFγipiI2g

1

ϵ

þ finite terms; ð43Þ

where

I1 ¼
Z

1

0

dx
ð1 − xÞ1=2

xð1 − v2FÞ − 1
;

I2 ¼
Z

1

0

dx
ð1 − xÞ−1=2

	
1þ xv2F

xð1−v2FÞ−1



xð1 − v2FÞ − 1
: ð44Þ

Therefore, the running Fermi velocity βvF may be written as

βvF ¼
e2

8π2ð1þθ2Þ½vFI2þð1−2v2FÞI1�

¼−
e2

8π2ð1þθ2Þ

×
Z

1

0

dx

ffiffiffiffiffiffiffiffiffiffi
1−x

p

1−xð1−v2FÞ
�
1−2v2Fþ

1

1−xð1−v2FÞ
�
; ð45Þ

where βvF ¼ μð∂vRF=∂μÞ.
In the low-velocity regime vF ≪ 1, the lowest order term

in Eq. (45) reads

βvF ¼ −
e2

16πð1þ θ2Þ : ð46Þ

By solving Eq. (46), we find the renormalized Fermi
velocity, namely,

vRF ðμÞ ¼ vFðμ0Þ
�
1 −

αeff
4

ln

�
μ

μ0

��
; ð47Þ

where

αeff ¼
e2

4πvFðμ0Þð1þ θ2Þ : ð48Þ

From Eq. (47), it is clear that for this theory, the Fermi
velocity renormalization is controlled by Chern-Simons
parameter. For θ equal zero, the vRF is the well-known result,
calculated in Ref. [26]. Nevertheless, for large values of θ,
the Fermi velocity does not renormalize, remaining close to
its bare value; see Fig. 3.
In the high-velocity regime vF ∼ 1, until the first order in

(1 − vF), βvF becomes

βvF ¼ −
2e2

5π2ð1þ θ2Þ ð1 − vFÞ: ð49Þ

Hence, the Fermi velocity for vF ∼ 1 is

vRF ðμÞ ¼
�
1 − ð1 − vFðμ0ÞÞ

�
n
n0

�γ
2

�
; ð50Þ

where γ ¼ 8vFαeff
5π and we have used the relation μ=μ0 →

ðn=n0Þ1=2 [27], with n and n0 being the density of states.

FIG. 3. The renormalized Fermi velocity for vF ≪ 1. This plot
shows the behavior of the renormalized Fermi velocity, Eq. (47),
as a function of μ=μ0, varying the parameter θ, where the solid
line (blue), dashed (orange), dotted (green), and dot-dashed (red)
are for θ ¼ 0, θ ¼ 0.5, θ ¼ 2, and θ ¼ 10, respectively.
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In the limit of large values of θ, the Fermi velocity does
not renormalize; see Fig. 4. Note also that for n → 0 [20],
the low-density regime, the Fermi velocity renormalizes to
c ¼ 1. This result implies that the renormalized Fermi
velocity does not diverge at zero doping, instead of the
corresponding result in Eq. (47).

VII. DISCUSSION

Planar-field theories are the ideal platform for inves-
tigating electronic interactions in two-dimensional materi-
als at low energies. The well-developed methods of
quantum field theory for calculating quantum corrections,
dynamical symmetry breaking, and anomalies make this
idea more exciting yet. However, the full description of
these systems is a hard task, mainly because of several
kinds of interactions that emerge due to the lattice vibra-
tions, disorder, and impurities just to cite a few. Aiming to
this direction, PQED has been investigated together with a
Gross-Neveu interaction, which is expected to describe
either phonons or impurities at low energies [8]. Beyond
all of these microscopic interactions, we also have the
challenge of describing the topological effects driven by the
Chern-Simons action.
In the present work, we have shown that, after including

the dynamics of the Chern-Simons action in PQED, the
θ-parameter becomes dimensionless and most of its effects
may be absorbed by a simple scaling of the electric charge
at the static limit. Therefore, our model provides any
dielectric constant ϵ depending on the value of θ, i.e.,
we may always write ϵ ¼ 1þ θ2 for fitting ϵ. The different
values of ϵ may be obtained experimentally either by
placing the material above some substrate or by changing
the doping n of the material. Because ϵ is a function of n
[10], hence, we may assume that our θ-parameter only

encodes the effects of n, i.e., ϵðnÞ ¼ 1þ θ2ðnÞ. This is
likely to be a relevant effective description for such effect.
Furthermore, within the dynamical limit, the θ-parameter
changes the renormalized electron mass mR, yielding a
maximal value at θ ≈ 0.36. It is worth to mention that this
renormalized mass (also called band gap) has been shown
to be dependent on the doping for a 2D material, such as the
transition metal dichalcogenide monolayers [28]. Finally,
we also have calculated the renormalized Fermi velocity in
both static and dynamical regimes.
It should be noted that the normalization of Fermi

velocity does not depend if Āμ ≠ Aμ or Āμ ¼ Aμ. In fact,
according to Eq. (5) [or Eq. (19)], the CS term contribution
to the electron self-energy is finite; therefore, this term does
not change the vF renormalization.
All of these results are dependent on the one-loop

perturbation theory, but the model in Eq. (6) is likely to
provide new physics in other regimes, for instance, in the
strong-coupling limit or when fermions are coupled to an
external magnetic field. These limits are relevant for
investigating a dynamical symmetry breaking and frac-
tional quantum Hall effect [29], respectively. Recently,
nonperturbation aspects of this model were investigated in
the context of the Dyson-Schwinger equations where it is
shown that the dynamically generated Dirac mass is also
suppressed when the Chern-Simons parameter θ increases
[30]. Dynamical effects of PQED, related to topological
phases and dynamical mass generation, have been calcu-
lated in Ref. [9].
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APPENDIX A: MAXWELL-CHERN-SIMONS
ACTION

In this Appendix, we calculate the effective action for the
matter current coupled to the MCS gauge field. Thereafter,
we investigate the static limit of this model. We start with
the action, given by

LQED ¼ 1

4
F̃μνF̃μν þ λÃμ∂μ∂νÃ

ν

þ LM½ψ � þ i
θ

2
ϵμναÃ

μ∂νÃα þ ejμÃμ; ðA1Þ

where Ãμ is the MCS field [18,19]. Integration over Ãμ

yields

FIG. 4. The renormalized Fermi velocity for vF ∼ 1. This plot
shows the behavior of the renormalized Fermi velocity Eq. (50) as
a function of μ=μ0, varying the parameter θ, where the solid line
(blue), dashed (orange), dotted (green), and dot-dashed (red) are
for θ ¼ 0, θ ¼ 0.5, θ ¼ 2, and θ ¼ 10, respectively.
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LQED
eff ½jμ� ¼ −

e2

2
jμ
�

1

−□þ 4θ2

�
jμ

þ i
e2θ
2

jμϵμνα∂α

�
1

□ð−□þ 4θ2Þ
�
jν: ðA2Þ

It is not surprising that the first term in the rhs of Eq. (A2)
does not provide the proper electromagnetic effective
action, which is given by PQED. The effect on the
statistical interaction, nevertheless, is more dramatic.
Indeed, this interaction is proportional to □

−1 in Eq. (2).
Here, it is modified to □

−1ð−□þ 4θ2Þ−1, which yields
some different kind of interaction. This occurs because θ
has the dimension of mass in Eq. (A1). For PQED coupled
to the Chern-Simons action, nevertheless, θ is dimension-
less. We may estimate the effect of a massive θ by
calculating the static limit. In this case, the static potential
generated by the model in Eq. (A1) is

VðrÞ ¼ e2

2π
K0ðrθÞ; ðA3Þ

where K0ðrθÞ is the modified Bessel function of the second
kind. For rθ ≪ 1, we have VðrÞ ∝ lnðrθÞ, while for
rθ ≫ 1, we find VðrÞ ∝ e−rθ=

ffiffiffiffiffi
rθ

p
. It is clear that 1=θ

plays the role of an interaction length, wherein the short-
range limit we have a logarithmic-confining potential. On
the other hand, in the long-range limit, we find an
exponential potential which quickly goes to zero. This
resembles the Meissner effect in superconductors.
The main goal of this Appendix is to clarify the relevance

of our model in Eq. (6). Indeed, it is remarkable that PQED
coupled to the Chern-Simons action provides a simulta-
neous description for both electromagnetic and statistical
interactions in the light of the effective action for the matter
current.

APPENDIX B: MASS RENORMALIZATION

In this Appendix, we derive Eq. (33) that yields the
physical mass. This renormalized mass mR is given by the
pole of the corrected propagator, given by

SRF ¼ −1
p −m − ΣRðp;mÞ : ðB1Þ

Using Eq. (30) in Eq. (B1), we find

SRF ¼ −1
ð1 − CÞp − ð1þDÞm ; ðB2Þ

where C andD are functions of p andm given by Eqs. (31)
and (32), respectively. Furthermore, they are proportional to
e2 within our one-loop approximation. From Eq. (B2),
we conclude that the pole of the propagator reads p2 ¼
m2ð1þDÞ2=ð1 − CÞ2. Within the one-loop approximation,

this can be rewritten as p2 ¼ M2ðp;mÞ, where Mðp;mÞ ¼
1þ CþD is called mass function. Therefore, the renor-
malized mass, in the mass shell, is given by

mR ¼ Mðp2 ¼ −m2Þ ¼ 1þ CþD; ðB3Þ

which is our desired result in Eq. (33). Note that to find the
renormalized mass it is necessary to return to Minkowski
space; for more details regarding this approximation,
see [11].

APPENDIX C: RENORMALIZATION
GROUP FUNCTIONS

The vertex functions, which have been made finite by the
subtraction of the pole terms in the dimensionally regu-
larized amplitudes, satisfy a ’t Hooft-Weinberg renormal-
ization group equation [31]

�
μ
∂
∂μþ βe

∂
∂eþ βvF

∂
∂vF − NFγψ − NAγA

�
ΓðNF;NAÞ ¼ 0;

ðC1Þ

where ΓðNF;NAÞ ¼ ΓðNF;NAÞðpi; μ; e; vFÞ denotes the renor-
malized vertex function of NF fermion fields and NA gauge
fields, and pi denotes the external momenta. We have
introduced the renormalization scale μ through the sub-
stitution e → μϵ=2e, where ϵ ¼ 2 − d. The βi’s for i ¼ e; vF
are the beta functions which describe how the electric
charge, Fermi velocity change with the scale parameter μ
and are usually defined as βe ¼ μ ∂e

∂μ, βvF ¼ μ ∂vF∂μ .
The functions γψ and γA are the anomalous dimensions

of the fields ψ and Aμ and given by γψ ¼ μ ∂
∂μ ðln

ffiffiffiffiffiffi
Zψ

p Þ and
γA ¼ μ ∂

∂μ ðln
ffiffiffiffiffiffi
ZA

p Þ, where Zψ and ZA are the wave function
renormalization of the fields ψ and Aμ, respectively.
To remove the pole term in the amplitudes IðNF;NAÞ

contained in ΓðNF;NAÞ, we use the following prescription:

ð1 − T ÞμxϵIðNF;NAÞ ¼ FiniteðNF;NAÞ þ x ln μResðNF;NAÞ;

where T is an operator used to remove the pole term. In the
above expression, ResðNF;NAÞ means residue of the diagram
that is given by the coefficient of the term 1=ϵ, and
finiteðNF;NAÞ is the finite part of the amplitudes IðNF;NAÞ.
By performing the calculations up to one loop, we find

Γð2;0ÞðpÞ ¼ γ0p0 þ vFγipi þ ΣðpÞ; ðC2Þ

where ΣðpÞ ¼ ½Finiteð2;0Þ þ ln μResð2;0Þ�, and Resð2;0Þ ¼
A1γ

0p0 þ A2γ
ipi.

After writing the RG functions perturbatively as,

βi ¼
P

2
j¼1 β

ðjÞ
i ej, we find that in order of e,
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γð1Þψ ¼ 0; βð1ÞvF ¼ 0; βð1Þe ¼ 0:

On the other hand, in order e2, we find

γð2Þψ ¼ 1

2
A1; βð2ÞvF ¼ A2 − vFA1; βð2Þe ¼ γð1ÞA :

However, the polarization tensor is finite in one loop
(order e2) and accordingly βe ¼ 0.
Finally, we may identify from the Feynman diagrams

that

A1 ¼ −
e2

8π2ð1þ θ2Þ ð1 − 2v2FÞI1;

A2 ¼
e2

8π2ð1þ θ2Þ vFI3;

and we obtain

βvF ¼
e2

8π2ð1þ θ2Þ ½vFð1 − 2v2FÞI1 þ vFI3�: ðC3Þ

The flow of the effective Fermi velocity can be written as

∂vRFðμÞ
∂t ¼ βvFðβÞ; ðC4Þ

where vFðt ¼ 0Þ ¼ vFðμ0Þ, and we have introduced a
logarithmic scale t ¼ lnðμ=μ0Þ, with μ0 a reference scale
where the parameter v0F has been defined.
By solving Eq. (C4) for vF ≪ 1 and vF ∼ 1 regime, we

get the Eqs. (47) and (50).
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