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We derive the low-temperature behavior of the Casimir-Polder free energy for a polarizable atom
interacting with graphene sheet which possesses the nonzero energy gap Δ and chemical potential μ. The
response of graphene to the electromagnetic field is described by means of the polarization tensor in the
framework of the Dirac model on the basis of first principles of thermal quantum field theory in the
Matsubara formulation. It is shown that the thermal correction to the Casimir-Polder energy consists of
three contributions. The first of them is determined by the Matsubara summation using the polarization
tensor defined at zero temperature, whereas the second and third contributions are caused by an explicit
temperature dependence of the polarization tensor and originate from the zero-frequency Matsubara
term and the sum of all Matsubara terms with nonzero frequencies, respectively. The asymptotic behavior
for each of the three contributions at low temperature is found analytically for any value of the energy gap
and chemical potential. According to our results, the Nernst heat theorem for the Casimir-Polder free
energy and entropy is satisfied for both Δ > 2μ and Δ < 2μ. We also reveal an entropic anomaly arising in
the case Δ ¼ 2μ. The obtained results are discussed in connection with the long-standing fundamental
problem in Casimir physics regarding the proper description of the dielectric response of matter to the
electromagnetic field.
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I. INTRODUCTION

At the moment there is a strong interest in theoretical and
experimental investigations of the Casimir [1] and Casimir-
Polder [2] forces which act between electrically neutral
bodies spaced at short separations one from the other.
These forces are of entirely quantum nature and are caused
by the zero-point and thermal fluctuations of the electro-
magnetic field. At separations exceeding several nano-
meters the Casimir force, which acts between two
macroscopic bodies, and the Casimir-Polder force, acting
between an atom and a material surface, are of relativistic
character by depending on both the Planck constant ℏ and
the speed of light c. In fact these forces present the
relativistic generalization of the familiar van der Waals
forces [3], but take on greater significance due to multi-
disciplinary applications not only in atomic physics [4–12]
and condensed matter physics [13–15], but also in quantum
field theory [16–18], gravitation and cosmology [19–22],
and for constraining predictions of high energy physics,
supersymmetry and supergravity [23–28].
A theoretical description of the Casimir and Casimir-

Polder forces between real material bodies is based on the
semiclassical Lifshitz theory [29,30], which treats the

electromagnetic field in the framework of quantum field
theory, but uses the classical description of matter by means
of some phenomenological response functions (in certain
limits one can derive these forces without involving the
Lifshitz theory, see, e.g., Refs. [1,2,31]). In the framework
of this theory, the Casimir-Polder atom-plate interaction
is expressed via the frequency dependent atomic polar-
izability and the dielectric permittivity of a plate material.
Although the Lifshitz theory was successfully used
over a period of several decades, modern precise experi-
ments performed during the past few years revealed
serious contradictions between experiment and theory.
Specifically, for two metallic bodies the theoretical pre-
dictions obtained with taken into account relaxation proper-
ties of free (conduction) electrons were found to be in a not
so far reconcilable contradiction with the measurement data
(see Refs. [32–40] and reviews in Refs. [41–43]). The
contradiction arises if the available optical data of a metal
are extrapolated down to zero frequency by the well tested
Drude model taking the proper account of the relaxation
properties of free electrons and dies away if the lossless
plasma model is used which should be applicable only at
high frequencies.
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By an intriguing coincidence, the Casimir entropy,
calculated using the Lifshitz theory combined with the
Drude model, does not vanish with vanishing temperature
for metals with perfect crystal lattices and depends on the
volume and other parameters of a system [44–48]. Thus,
the Nernst heat theorem, which demands that for a physical
system in thermal equilibrium the entropy at zero temper-
ature must either vanish or be equal to the universal
constant independent on the system parameters [49,50],
is violated in this case. In doing so, the Nernst heat theorem
is satisfied if the plasma model is used [44–48] which is
consistent with measurements of the Casimir force, but is in
conflict with all our knowledge about the electric phenom-
ena occurring at low frequencies. It was noticed also
[51–53] that the Casimir entropy jumps to zero at a very
low temperature starting from the negative value if the
Drude model is used for metals with an imperfect crystal
lattice containing some fraction of impurities. This obser-
vation, however, does not help to bring the Drude-based
theory in agreement with the measurement results for the
Casimir force.
A somewhat similar situation was discovered for the

Casimir force between two dielectric bodies and for the
Casimir-Polder force between a polarizable atom in close
proximity to a dielectric plate. It was found that theoretical
predictions of the Lifshitz theory obtained with taken
into account conductivity at a constant current (dc con-
ductivity) of a dielectric material are in contradiction with
the measurement data of Casimir experiments [54–57]. To
bring the theoretical predictions in agreement with the
measurement data, one needs to omit in computations the
really observable dc conductivity of a material [11,54–57].
It seems meaningful that the calculated values of both the
Casimir and Casimir-Polder entropies at zero temperature
were found to violate the Nernst heat theorem if the dc
conductivity of a dielectric body is included in calculations
and in agreement with this theorem otherwise [58–62].
Thus, the theoretical approach consistent with the results of
Casimir experiments, in spite of its inconsistency with
clearly established facts in other fields of physics, was
again found in accordance with the requirements of
thermodynamics. The above contradictions have often been
called in the literature the Casimir puzzle and the Casimir
conundrum (see, e.g., Refs. [63–67]) which still remain
unresolved.
From the above reasoning it may be suggested that the

Nernst heat theorem plays an important role as a test for
different approaches to a description of the dielectric
response of matter. The weak point of existing approaches
is the use of phenomenological local dielectric permittiv-
ities given by the Drude and plasma models. It is the matter
of fact that real dielectrics and metals are too complicated
systems, so that their response to the electromagnetic field
cannot be found exactly on the basis of first principles of
thermal quantum field theory. In this regard, much attention

is currently attracted to graphene which is a 2D sheet of
carbon atoms packed in a hexagonal lattice. The remark-
able feature of graphene is that at energies below 1–2 eV it
is described by the Dirac model where the speed of light is
replaced with the Fermi velocity vF ≈ c=300 [68–70]. This
opens opportunities for a full description of the nonlocal
dielectric properties of graphene in the framework of
thermal quantum field theory in the Matsubara formulation.
It should be noted also that the Casimir-Polder interaction
of different atoms with graphene and graphene-coated
substrates attracts much recent attention [71–80]. This
raises a question on whether or not the Casimir and
Casimir-Polder entropy in graphene systems is consistent
with the Nernst heat theorem.
This question can be investigated by describing the

dielectric response of graphene in terms of its polarization
tensor. The exact expressions for the polarization tensor of
graphene with a nonzero energy gap Δ at zero temperature
have been found in Ref. [81]. In Ref. [82] they were
generalized for the case of nonzero temperature, but only at
the pure imaginary Matsubara frequencies. In Ref. [83]
another representation for the polarization tensor of gra-
phene was obtained valid over the entire plane of complex
frequencies. In Ref. [84] it was generalized to the case of
nonzero chemical potential μ. A validity of the Kramers-
Kronig relations for the obtained dielectric response has
been demonstrated in Ref. [85]. Thus, it was proven that the
dielectric response of graphene satisfies the causality
condition. Using the results of Ref. [83], it was shown
that the Casimir entropy of two parallel sheets of pristine
graphene, possessing the zero energy gap and chemical
potential, as well as the Casimir-Polder entropy for an atom
interacting with a pristine graphene sheet, satisfy the Nernst
heat theorem [86,87]. The low-temperature expansion of
the Casimir-Polder free energy for an atom interacting with
real graphene sheet possessing any values of Δ and μ was
considered in Ref. [88], and several main terms under
different relationships between Δ and μ have been found.
Some of them, however, turned out to be in disagreement
with the results of Ref. [89] obtained only in the special
caseΔ > 2μ. Thus, the issue on a validity of the Nernst heat
theorem for an atom interacting with real graphene sheet
remained open.
In this paper, we investigate the analytic behavior of the

Casimir-Polder free energy and entropy at low temperature
for an atom interacting with real graphene sheet for any
relationships between the energy gap Δ and chemical
potential μ basing on first principles of thermal quantum
field theory in the Matsubara formulation. For this purpose,
the thermal correction to the Casimir-Polder energy is
presented as a sum of three contributions. The first of them
is obtained using the polarization tensor of graphene at zero
temperature. In this case the temperature dependence arises
only due to a summation over the Matsubara frequencies.
The second and third contributions originate from an

G. L. KLIMCHITSKAYA and V. M. MOSTEPANENKO PHYS. REV. D 101, 116003 (2020)

116003-2



explicit dependence of the polarization tensor on temper-
ature as a parameter in the Matsubara term with zero
frequency and in the sum of terms with all nonzero
Matsubara frequencies, respectively. It is shown that for
Δ > 2μ the Casimir-Polder free energy at sufficiently
low temperature behaves as ∼ðkBTÞ5, where kB is the
Boltzmann constant whereas for Δ < 2μ as ∼ðkBTÞ2.
These behaviors are determined by the first contribution
to the thermal correction. The conclusion is made that for
Δ > 2μ and Δ < 2μ the Casimir-Polder free energy and
entropy for an atom interacting with graphene sheet are in
agreement with the Nernst heat theorem. The main terms of
the second and third contributions in the thermal correction
to the Casimir-Polder energy are also found. According to
the obtained results, for Δ ¼ 2μ the Casimir-Polder free
energy at low temperature is of the order of kBT and is
determined by the third contribution to the thermal cor-
rection. The physical meaning of the resulting entropic
anomaly is discussed.
The paper is organized as follows. In Sec. II, the Casimir-

Polder free energy for an atom interacting with real
graphene sheet is conveniently expressed via the polariza-
tion tensor. In Sec. III, the low-temperature behavior of the
first contribution to the thermal correction arising due to
the Matsubara summation is found using the polarization
tensor at zero temperature. Section IV considers the second
contribution to the thermal correction arising from an
explicit temperature dependence of the polarization tensor
in the zero-frequency Matsubara term. In Sec. V, the third
contribution to the thermal correction is found at low
temperature which arises in a similar manner from the
sum of all terms with nonzero Matsubara frequencies. In
Sec. VI, the reader will find our conclusions and a dis-
cussion. Appendices A and B contain some details of the
used asymptotic expansions.

II. THE CASIMIR-POLDER FREE ENERGY
FOR AN ATOM INTERACTING WITH REAL
GRAPHENE SHEET DESCRIBED BY THE

POLARIZATION TENSOR

The free energy of an atom spaced at a distance a from
real graphene sheet kept at temperature T in thermal
equilibrium with the environment has the form following
from the Lifshitz theory for an atom interacting with
any plate or some planar structure [43]. For our purposes,
it is convenient to present this equation in terms of
dimensionless Matsubara frequencies ζl ¼ ξl=ωc, where
l ¼ 0; 1; 2;…, ξl ¼ 2πkBTl=ℏ are the standard dimen-
sional Matsubara frequencies, and ωc ¼ c=ð2aÞ is the
characteristic frequency. We also use the dimensionless
integration variable y which is connected with the magni-
tude of the wave vector projection on the plane of a plate k⊥
by y ¼ 2aðk2⊥ þ ξ2l =c

2Þ1=2. Then the Casimir-Polder free
energy is expressed as

F ða; TÞ ¼ −
kBT
8a3

X∞
l¼0

0
αl

Z
∞

ζl

dye−y

× ½ð2y2 − ζ2l ÞrTMðiζl; y; TÞ − ζ2l rTEðiζl; y; TÞ�;
ð1Þ

where αl ≡ αðiωcζlÞ is the atomic electric polarizability,
the prime on the summation sign divides the term with
l ¼ 0 by two, and rTM, rTE are the reflection coefficients of
electromagnetic waves with the transverse magnetic (TM)
and transverse electric (TE) polarizations on the plate
(planar structure).
For a dielectric plate described by some phenomeno-

logical dielectric permittivity, rTM are rTE are the standard
Fresnel reflection coefficients. However, for graphene the
reflection coefficients are expressed via the polarization
tensor of graphene found on the basis of first principles of
thermal quantum field theory [81–84]. For us it is con-
venient to use the dimensionless polarization tensor
Π̃mn;lðy; T;Δ; μÞ≡ Π̃mnðiζl; y; T;Δ; μÞ, where m, n ¼ 0,
1, 2 are the tensor indices and l is the index of the
Matsubara summation defined above. The tensor Π̃mn;l is
expressed via the dimensional one by Π̃mn;l ¼ 2aΠmn;l=ℏ.
Then the reflection coefficients on a graphene sheet take the
form [81–84]

rTMðiζl; y; TÞ ¼
yΠ̃00;lðy; T;Δ; μÞ

yΠ̃00;lðy; T;Δ; μÞ þ 2ðy2 − ζ2l Þ
;

rTEðiζl; y; TÞ ¼ −
Π̃lðy; T;Δ; μÞ

Π̃lðy; T;Δ; μÞ þ 2yðy2 − ζ2l Þ
: ð2Þ

Here, the quantity Π̃lðy; T;Δ; μÞ≡ Π̃ðiζl; y; T;Δ; μÞ is not
a tensor, but the following linear combination of the trace of
the polarization tensor Π̃m

mðiζl; y; T;Δ; μÞ and its 00 com-
ponent Π̃00ðiζl; y; T;Δ; μÞ:

Π̃ðiζl; y; T;Δ; μÞ ¼ ðy2 − ζ2l ÞΠ̃m
mðiζl; y; T;Δ; μÞ

− y2Π̃00ðiζl; y; T;Δ; μÞ: ð3Þ
(Note that in the literature this combination is usually
notated by the same letter as the tensor components which
does not create confusion because it does not have the
tensor indices.) It was shown [82] that the polarization
tensor of graphene is completely determined by its 00
component and by its trace, but in numerous applications it
is more convenient [83] to use, in addition to Π̃00;l, not the
trace itself but the quantity Π̃l defined in Eq. (3).
For real graphene sheet the quantities Π̃00;l and Π̃l

depend on the energy gap Δ and chemical potential μ.
(Thus, the reflection coefficients also depend on Δ and μ,
but we do not explicitly indicate this dependence for the
sake of brevity.) Note that a nonzero energy gap in the
spectrum of electronic excitations arises under the influ-
ence of electron-electron interaction, defects of the crystal
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structure, for graphene deposited on a substrate etc.,
[70,90,91], whereas the value of the chemical potential
is connected with the doping concentration [92]. Explicit
expressions for Π̃00;l and Π̃l can be conveniently presented
as the sums of independent and dependent on μ and T
parts [80],

Π̃00;lðy; T;Δ; μÞ ¼ Π̃ð0Þ
00;lðy;ΔÞ þ Π̃ð1Þ

00;lðy; T;Δ; μÞ;
Π̃lðy; T;Δ; μÞ ¼ Π̃ð0Þ

l ðy;ΔÞ þ Π̃ð1Þ
l ðy; T;Δ; μÞ: ð4Þ

As the independent on μ and T parts on the right-hand
side of Eq. (4) we take the respective quantities from
Refs. [80,81]:

Π̃ð0Þ
00;lðy;ΔÞ ¼ α

y2 − ζ2l
pl

Ψ
�
D
pl

�
;

Π̃ð0Þ
l ðy;ΔÞ ¼ αðy2 − ζ2l ÞplΨ

�
D
pl

�
: ð5Þ

Here, D≡ Δ=ðℏωcÞ, the function ΨðxÞ is defined as

ΨðxÞ ¼ 2½xþ ð1 − x2Þ arctanðx−1Þ�; ð6Þ

α ¼ e2=ðℏcÞ [in SI units e2=ð4πϵ0ℏcÞ where ϵ0 is the
permittivity of the vacuum] and ṽF ¼ vF=c ≈ 1=300 are the
fine structure constant and the Fermi velocity normalized to
the speed of light, and

pl ¼ ½ṽ2Fy2 þ ð1 − ṽ2FÞζ2l �1=2: ð7Þ

The μ-dependent parts on the right-hand side of Eq. (4)
are more complicated. They are given by Eqs. (13) and (14)
in Ref. [80] where it is convenient to replace the integration
variable u with t ¼ ℏcplu=ð2aΔÞ:

Π̃ð1Þ
00;lðy;T;Δ;μÞ¼

4αD
ṽ2F

Z
∞

1

dtwðt;T;Δ;μÞX00;lðt;y;DÞ;

Π̃ð1Þ
l ðy;T;Δ;μÞ¼−

4αD
ṽ2F

Z
∞

1

dtwðt;T;Δ;μÞXlðt;y;DÞ; ð8Þ

where w is defined as

wðt; T;Δ; μÞ ¼ ðetΔþ2μ
2kBT þ 1Þ−1 þ ðetΔ−2μ

2kBT þ 1Þ−1 ð9Þ

and the quantities X00;l and Xl are given by

X00;lðt; y; DÞ ¼ 1 − Re
p2
l −D2t2 þ 2iζlDt

½p4
l − p2

l D
2t2 þ ṽ2Fðy2 − ζ2l ÞD2 þ 2iζlp2

l Dt�1=2 ;

Xlðt; y; DÞ ¼ ζ2l − Re
ζ2l p

2
l − p2

l D
2t2 þ ṽ2Fðy2 − ζ2l ÞD2 þ 2iζlp2

l Dt

½p4
l − p2

l D
2t2 þ ṽ2Fðy2 − ζ2l ÞD2 þ 2iζlp2

l Dt�1=2 : ð10Þ

As noted in Sec. I, we are interested to investigate the
thermal correction to the Casimir-Polder energy as a
function of temperature. For this purpose the Casimir-
Polder free energy is presented in the form

F ða; TÞ ¼ EðaÞ þ δTF ða; TÞ; ð11Þ

where the Casimir-Polder energy is given by

EðaÞ ¼ −
ℏc

32πa4

Z
∞

0

dζαðiωcζÞ
Z

∞

ζ
dye−y

× ½ð2y2 − ζ2ÞrTMðiζ; y; 0Þ − ζ2rTEðiζ; y; 0�; ð12Þ

and the thermal correction vanishes with vanishing
temperature

lim
T→0

δTF ða; TÞ ¼ 0: ð13Þ

The reflection coefficients in Eq. (12) are given by Eq. (2)
taken at T ¼ 0. They are expressed via the polarization
tensor of graphene calculated at zero temperature and

contain a continuous parameter ζ in place of the discrete
Matsubara frequencies ζl.
An important point is that in the limiting case of zero

chemical potential, μ → 0, the quantities Π̃ð0Þ
00;l and Π̃ð0Þ

l

defined in Eqs. (4) and (5) just have the meaning of the 00
component of the polarization tensor at zero temperature
and the combination of its components defined in Eq. (3):

Π̃ð0Þ
00;lðy;ΔÞ ¼ Π̃00;lðy; 0;Δ; 0Þ;
Π̃ð0Þ

l ðy;ΔÞ ¼ Π̃lðy; 0;Δ; 0Þ: ð14Þ

In this case the quantities Π̃ð1Þ
00;l and Π̃ð1Þ

l have the meaning
of the thermal corrections to the zero-temperature polari-
zation tensor:

Π̃ð1Þ
00;lðy; T;Δ; 0Þ ¼ δTΠ̃00;lðy; T;Δ; 0Þ;
Π̃ð1Þ

l ðy; T;Δ; 0Þ ¼ δTΠ̃lðy; T;Δ; 0Þ; ð15Þ

which goes to zero with vanishing T.

G. L. KLIMCHITSKAYA and V. M. MOSTEPANENKO PHYS. REV. D 101, 116003 (2020)

116003-4



According to the results of Ref. [80], a similar situation
holds for μ ≠ 0 satisfying the condition Δ > 2μ. Under this
condition the polarization tensor at zero temperature does
not depend on μ, so that, once again, we have

Π̃ð0Þ
00;lðy;ΔÞ ¼ Π̃00;lðy; 0;Δ; μÞ;
Π̃ð0Þ

l ðy;ΔÞ ¼ Π̃lðy; 0;Δ; μÞ; ð16Þ

and

Π̃ð1Þ
00;lðy; T;Δ; μÞ ¼ δTΠ̃00;lðy; T;Δ; μÞ;
Π̃ð1Þ

l ðy; T;Δ; μÞ ¼ δTΠ̃lðy; T;Δ; μÞ; ð17Þ

where the quantities in Eq. (17) go to zero when T goes
to zero.
Another situation takes place for μ ≠ 0 satisfying the

condition Δ < 2μ. In this case the quantities Π̃ð0Þ
00;l and Π̃ð0Þ

l

are not equal to the 00 component of the polarization
tensor at zero temperature and to the combination of its
components defined in Eq. (3). In fact under the condition
Δ < 2μ the polarization tensor at T ¼ 0 depends on μ.
The precise expressions for the quantities Π̃00;lðy; 0;Δ; μÞ
and Π̃lðy; 0;Δ; μÞ in this case have been obtained in
Eqs. (21) and (24) of Ref. [93] by direct calculation using
Eqs. (4)–(10). In terms of the dimensionless variables used
above they are given by

Π̃00;lðy;0;Δ;μÞ¼
8αμ

ṽ2Fℏωc
−
2αðy2−ζ2l Þ

p3
l

�
ðp2

l þD2ÞIm
�
zl

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2l

q �
þðp2

l −D2Þ
�
Imln

�
zlþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2l

q �
−
π

2

��
;

Π̃lðy;0;Δ;μÞ¼−
8αμζ2l
ṽ2Fℏωc

þ2αðy2−ζ2l Þ
pl

�
ðp2

l þD2ÞIm
�
zl

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2l

q �
−ðp2

l −D2Þ
�
Imln

�
zlþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2l

q �
−
π

2

��
; ð18Þ

where

zl ≡ zlðy;Δ; μÞ ¼
pl

ṽF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
l þD2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − ζ2l

q �
ζl þ i

2μ

ℏωc

�
:

ð19Þ

It is easily seen that for μ ¼ Δ ¼ 0 these equations reduce
to the result given by Eq. (5) with Δ ¼ 0.
Now we are in a position to present the reflection

coefficients (2) in the form

rTMðTEÞðiζl;y;TÞ¼ rTMðTEÞðiζl;y;0ÞþδTrTMðTEÞðiζl;y;TÞ;
ð20Þ

where the first contributions on the right-hand side are
determined by the polarization tensor at T ¼ 0:

rTMðiζl; y; 0Þ ¼
yΠ̃00;lðy; 0;Δ; μÞ

yΠ̃00;lðy; 0;Δ; μÞ þ 2ðy2 − ζ2l Þ
;

rTEðiζl; y; 0Þ ¼ −
Π̃lðy; 0;Δ; μÞ

Π̃lðy; 0;Δ; μÞ þ 2yðy2 − ζ2l Þ
; ð21Þ

whereas the second contribution has the meaning of the
thermal correction and goes to zero with vanishing T. This
equation, however, is valid in both cases Δ > 2μ [here, in
accordance to Eq. (16), the polarization tensor at T ¼ 0 is
presented in Eq. (5)] and Δ < 2μ [here it is given by
Eq. (18)]. As to the case Δ ¼ 2μ, it is discussed in the next
sections, as well as the explicit approximate expressions for

thermal corrections to the reflection coefficients on the
right-hand side of Eq. (20).
Using Eq. (11), we present the thermal correction to the

Casimir-Polder energy as

δTF ða; TÞ ¼ F ða; TÞ − EðaÞ: ð22Þ
Now we substitute Eq. (20) in the expression (1) for the
Casimir-Polder free energy and identically present the
thermal correction δTF as a sum of three contributions:

δTF ða;TÞ¼ δimpl
T F ða;TÞþδexplT;l¼0F ða;TÞþδexplT;l≥1F ða;TÞ:

ð23Þ
Here, the following notations are introduced:

δimpl
T F ða; TÞ≡ −

kBT
8a3

X∞
l¼0

0
αl

Z
∞

ζl

dye−y

× ½ð2y2 − ζ2l ÞrTMðiζl; y; 0Þ
− ζ2l rTEðiζl; y; 0Þ� − EðaÞ; ð24Þ

where EðaÞ is defined in Eq. (12), and

δexplT;l¼0F ða; TÞ þ δexplT;l≥1F ða; TÞ

≡ −
kBT
8a3

X∞
l¼0

0
αl

Z
∞

ζl

dye−y½ð2y2 − ζ2l ÞδTrTMðiζl; y; TÞ

− ζ2l δTrTEðiζl; y; TÞ�; ð25Þ

where δexplT;l¼0F and δexplT;l≥1F are equal to the term with l ¼ 0

and to the sum of the terms with l ≥ 1, respectively,
in Eq. (25).
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From Eq. (24) it is seen that the contribution to the
thermal correction δimpl

T F contains only the reflection
coefficients at zero temperature. Thus, its temperature
dependence is completely determined by a summation
over the Matsubara frequencies. For this reason, it is called
“implicit.” As to the contributions δexplT;l¼0F and δexplT;l≥1F to
the thermal correction, defined in Eq. (25), they depend on
the thermal corrections to the reflection coefficients which
vanish if the polarization tensor does not depend on
temperature as a parameter. Because of this, the contribu-
tions δexplT;l¼0F and δexplT;l≥1F are called “explicit.” In fact the
quantity in Eq. (25) could be considered as one explicit
contribution to the thermal correction. However, the
asymptotic behaviors of δexplT;l¼0F and δexplT;l≥1F with vanish-
ing T are not similar (see Secs. IV and V), and this fact
warrants a division of this contribution into two parts.
In the next sections, the low-temperature behaviors of the

thermal corrections δimpl
T F , δexplT;l¼0F and δexplT;l≥1F are inves-

tigated one after another.

III. THERMAL CORRECTION TO THE
CASIMIR-POLDER ENERGY DUE TO

MATSUBARA SUMMATION USING THE
ZERO-TEMPERATURE REFLECTION

COEFFICIENTS

In this section, we find the behavior of the first
contribution to the thermal correction, δimpl

T F , at low
temperature under different relationships between the
energy gap and chemical potential. As defined in Eq. (24),
δimpl
T F is given by the difference of the sum over the
discrete Matsubara frequencies with the reflection coeffi-
cients rTMðTEÞðiζl; y; 0Þ, and the integral with respect to
continuous imaginary frequency containing the reflection
coefficients rTMðTEÞðiζ; y; 0Þ. Using the Abel-Plana for-
mula, this difference can be written in the form [43,87]

δimpl
T F ða; TÞ ¼ −i

α0kBT
8a3

Z
∞

0

dt
ΦðitτÞ −Φð−itτÞ

e2πt − 1
; ð26Þ

where ΦðxÞ ¼ Φ1ðxÞ þΦ2ðxÞ,

Φ1ðxÞ¼ 2

Z
∞

x
dyy2e−yrTMðix;y;0Þ;

Φ2ðxÞ¼−x2
Z

∞

x
dye−y½rTMðix;y;0Þþ rTEðix;y;0Þ� ð27Þ

and the dimensionless temperature parameter is defined
as τ ¼ 4πakBT=ðℏcÞ ¼ 2πkBT=ðℏωcÞ.
In Eq. (26), we have preserved only the static atomic

polarizability α0 ¼ αð0Þ in the expansion of αðitτÞ ¼ αðixÞ
in the powers of x. This is because we are looking for the
main term in the expansion of the Casimir-Polder free
energy F at low T (τ ≪ 1). Note also that care must be

exercised when expanding the functions Φ1 and Φ2 in the
powers of x. It may happen that an expansion of the
reflection coefficients in the powers of x with subsequent
integration leads to incorrect results because common
powers of x arise from different expansion orders of the
reflection coefficients (see below).
We begin with the case of a slightly doped graphene

Δ > 2μ. In this case the polarization tensor at zero temper-
ature does not depend on μ [see Eq. (16)] and is given by
Eq. (5). The reflection coefficients entering the thermal
correction δimpl

T F ða; TÞ are given by Eq. (21). For the
function Φ1, defined in Eq. (27), it is not productive to
expand the reflection coefficient rTM in powers of x with
subsequent integration as noted above. Instead, an expan-
sion ofΦ1 in the Taylor series in powers of x using Eqs. (5)

and (21) results in Φ0
1ð0Þ ¼ Φð3Þ

1 ð0Þ ¼ Φð5Þ
1 ð0Þ ¼ 0. Then

we conclude that the leading contribution of Φ1 to
δimpl
T F ða; TÞ is of higher order than T6 because the even
powers in x do not contribute to Eq. (26).
An expansion of the function Φ2 defined in Eq. (27) in

powers of x can be found by expanding the sum of the
reflection coefficients rTM and rTE in powers of x with
subsequent integration with respect to y. This is done under
an assumption D > 1 which is valid at sufficiently large
separations a > 1 μm. Taking into account that the main
contributions to the integrals in Eq. (27) are given by y ∼ 1
and that ζl ¼ τl, at low temperature the quantity pl defined
in Eq. (7) satisfies the inequality pl ≪ 1, so thatD=pl ≫ 1.
Then the main contribution to the functionΨ in Eqs. (5) and
(6) is given by

Ψ
�
D
pl

�
≈
8

3

pl

D
: ð28Þ

With account of this equation one obtains [89]

Φ2ðxÞ ¼
ℏcαð1þ ṽ2FÞ

3ṽ2FaΔ
x4Eið−xÞ þ Cx4 þOðx5Þ; ð29Þ

where EiðzÞ is the exponential integral and C is a constant
which does not contribute to Eq. (26).
Substituting Eq. (29) in Eq. (26), one finds [89]

δimpl
T F ða; TÞ ¼ −

α0ðkBTÞ5
ðℏcÞ3Δ

8αð1þ ṽ2FÞ
ṽ2F

: ð30Þ

Thus, under a condition Δ > 2μ the thermal correction
δimpl
T F vanishes with temperature faster than for a pristine
graphene where it is of the order of ðkBTÞ4 [87].
We are coming now to the case of Δ < 2μ. In this case

the thermal correction δimpl
T F is again given by the differ-

ence of the sum Eq. (1) with the zero-temperature reflection
coefficients rTMðTEÞðiζl; y; 0Þ and the integral (12) resulting
in Eq. (26). It is convenient, however, to present the
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functionΦðxÞ in an equivalent formΦðxÞ ¼ χ1ðxÞ þ χ2ðxÞ,
where

χ1ðxÞ ¼
Z

∞

x
dye−yð2y2 − x2ÞrTMðix; y; 0Þ;

χ2ðxÞ ¼ −x2
Z

∞

x
dye−yrTEðix; y; 0Þ: ð31Þ

The reflection coefficients are again given by Eq. (21),
but the polarization tensor is now presented in Eqs. (18)
and (19) where the discrete Matsubara frequencies ζl ¼ τl
are replaced with x. Then the polarization tensor in Eq. (21)
is replaced with Π̃00ðx; y; 0;Δ; μÞ. The low-temperature
expansion of the quantity χ1ðxÞ can be performed in the
same way as of Φ1ðxÞ, i.e., by expanding χ1ðxÞ in the
Taylor series in powers of x. Using Eqs. (31) and (21), one
obtains

χ01ð0Þ¼ 2

Z
∞

0

dye−yy2
∂
∂x

yΠ̃00ðx;y;0;Δ;μÞ
yΠ̃00ðx;y;0;Δ;μÞþ2ðy2−x2Þ

				
x¼0

¼ 4

Z
∞

0

dye−yy3
∂
∂xΠ̃00ðx;y;0;Δ;μÞjx¼0

½Π̃00ð0;y;0;Δ;μÞþ2y�2 : ð32Þ

In what follows we use the condition

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ2 − Δ2

q
> ℏωc; ð33Þ

which is valid at sufficiently large separations. Then from
the first formula in Eq. (18) we have

Π̃00ð0; y; 0;Δ; μÞ ¼
8α

ṽ2F

μ

ℏωc
≡Q0: ð34Þ

By calculating the derivative of the first formula in
Eq. (18) at x ¼ 0, we obtain

∂
∂xΠ̃00ðx;y;0;Δ;μÞ

				
x¼0

¼−
4α

ṽ3Fy
4μ2− ðℏωcṽFyÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4μ2− ðℏωcṽFyÞ2−Δ2
p :

ð35Þ

Taking into account the condition (33), the inequality
ṽF ≪ 1 and the fact that the main contribution to Eq. (32)
is given by y ∼ 1, Eq. (35) can be simplified to

∂
∂x Π̃00ðx; y; 0;Δ; μÞ

				
x¼0

¼ −
16α

ṽ3Fy
μ2

ℏωc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ2 − Δ2

p : ð36Þ

Substituting Eqs. (34) and (36) in Eq. (32), one finds

χ01ð0Þ ¼ −
16αμ2

ṽ3Fℏωc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ2 − Δ2

p Z
∞

0

dye−y
4y2

ð2yþQ0Þ2

¼ −
16αμ2

ṽ3Fℏωc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ2 − Δ2

p �
2þQ0

2
þQ0ðQ0 þ 4Þ

4
eQ0=2Ei

�
−
Q0

2

��
: ð37Þ

Now we have the desired result

χ1ðxÞ ¼ χ1ð0Þ þ χ01ð0ÞxþOðx2Þ; ð38Þ

where χ1ð0Þ does not contribute to Eq. (26) and the value of
the first derivative at x ¼ 0 is presented in Eq. (37). From
Eq. (31) it is easily seen that χ2ð0Þ ¼ χ02ð0Þ ¼ 0 and similar
expansion for the function χ2ðxÞ takes the form

χ2ðxÞ ¼ Cx2 þOðx3Þ; ð39Þ

where C is a constant which does not contribute to Eq. (26).
Thus, from Eq. (38)

ΦðiτtÞ −Φð−iτtÞ ¼ 2iχ01ð0Þτt ð40Þ

and, after substitution to Eq. (26) with account of Eq. (37),
one obtains

δimpl
T F ða;TÞ¼−

α0μ
2ðkBTÞ2

ðℏcÞ2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ2−Δ2

p 16α

ṽ3F

×

�
2þQ0þ

Q0ðQ0þ4Þ
2

eQ0=2Ei

�
−
Q0

2

��
:

ð41Þ

It is seen that in the case Δ < 2μ the behavior of the
thermal correction δimpl

T F at low temperature is different
from the case of graphene with Δ > 2μ [see Eq. (30)] and
from the case of pristine graphene.
Nowwe consider the low-temperature behavior of δimpl

T F
for the case Δ ¼ 2μ. This case cannot be considered by the
limiting transitionΔ → 2μ from our result (41) obtained for
Δ < 2μ because it was derived under the condition (33).
Below we show that in the case Δ ¼ 2μ the low-

temperature behavior of δimpl
T F is again given by Eq. (30)

derived in the case Δ > 2μ. We start from the polarization
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tensor at zero temperature (5) where ζl ¼ τl is replaced
with x. To be specific, we consider

Π̃ð0Þ
00 ðx; y;ΔÞ ¼ α

y2 − x2

pðxÞ Ψ
�

D
pðxÞ

�
; ð42Þ

where Ψ is defined in Eq. (6) and pðxÞ ¼ ½ṽ2Fy2þ
ð1 − ṽ2FÞx2�1=2. Under the condition D > 1, we consider

the value of Π̃ð0Þ
00 at zero x:

Π̃ð0Þ
00 ð0; y;ΔÞ ¼

αy
ṽF

Ψ
�

D
ṽFy

�
: ð43Þ

Expanding this quantity in powers of the small parameter
ṽFy=D, one arrives at

Π̃ð0Þ
00 ð0;y;ΔÞ¼

8αy
ṽF

X∞
k¼0

ð−1Þk kþ1

ð2kþ1Þð2kþ3Þ
�
ṽFy
D

�
2kþ1

:

ð44Þ

This equation is also valid at Δ ¼ 2μ. To make sure that
this is the case, we consider the first formula in Eq. (18)
expressing the zero-temperature polarization tensor in the
case Δ < 2μ, replace there ζl with x, put μ ¼ Δ=2, x ¼ 0
and obtain

Π̃00ð0;y;0;Δ;Δ=2Þ

¼ 4αD
ṽ2F

−
2α

ṽ3Fy

�
ṽFyDþðṽ2Fy2−D2Þ

×

�
ImlnðiDþ ṽFyÞ−

π

2

��
: ð45Þ

Expanding this equation in powers of ṽFy=D, one
again obtains the right-hand side of Eq. (44) with a
conclusion that

Π̃ð0Þ
00 ð0; y;ΔÞ ¼ Π̃00ð0; y; 0;Δ;Δ=2Þ: ð46Þ

In a similar way, it is easy to show that

Π̃ð0Þð0; y;ΔÞ ¼ Π̃ð0; y; 0;Δ;Δ=2Þ ð47Þ

and also

∂Π̃ð0Þ
00

∂x
				
x¼0

¼∂Π̃00

∂x
				
x¼0

¼0;
∂Π̃ð0Þ

∂x
				
x¼0

¼∂Π̃
∂x

				
x¼0

¼0: ð48Þ

We conclude that the polarization tensor at zero
temperature (5) and (18) is continuous at the point
Δ ¼ 2μ, and the thermal correction δimpl

T F at this point
is really given by Eq. (30).
For a more lively presentation of the obtained results, we

include them in Table I as new information becomes
available. The first column in this Table specifies the
relationship between the values of Δ and 2μ. Columns
2, 3, and 4 contain up to an order of magnitude asymptotic
expressions at low T for the contributions to the thermal
correction, δimpl

T F , δexplT;l¼0F , and δexplT;l≥1F , respectively, and
indicate the reflection coefficients from which they are
obtained. Columns 5 and 6 demonstrate the resulting
behaviors of the thermal correction to the Casimir-Polder
energy and entropy, respectively, at low temperature. At the
moment column 2 includes the results found above in
Eqs. (30), (40) and again (30).

IV. THE ROLE OF EXPLICIT TEMPERATURE
DEPENDENCE OF REFLECTION COEFFICIENTS:

ZERO-FREQUENCY CONTRIBUTION

In this section we consider the low-temperature behavior
of the second contribution δexplT;l¼0F to the thermal correction
defined by the term of Eq. (25) with l ¼ 0. It is given by

TABLE I. Up to an order of magnitude asymptotic behaviors at low temperature for the magnitudes of three different
terms in the thermal correction to the Casimir-Polder energy (columns 2–4), thermal correction itself (column 5), and the Casimir-
Polder entropy (column 6) for different relationships between the energy gap and the chemical potential (column 1). See the text for
further discussion.

Δ rαðiζl; y; 0Þ δTrαðiζl; y; TÞ rαðiζl; y; TÞ
versus l ≥ 0 l ¼ 0 l ≥ 1 l ≥ 0
μ jδimpl

T F ða; TÞj jδexplT;l¼0F ða; TÞj jδexplT;l≥1F ða; TÞj jδTF ða; TÞj Sða; TÞ

Δ > 2μ α0ðkBTÞ5
ðℏcÞ3Δ

α0ðkBTÞ2
ℏca2 e−

Δ−2μ
2kBT α0kBT

a3 e−
Δ−2μ
2kBT

α0ðkBTÞ5
ðℏcÞ3Δ

α0kBðkBTÞ4
ðℏcÞ3Δ

Δ < 2μ α0μ
2ðkBTÞ2

ðℏcÞ2að4μ2−Δ2Þ1=2
α0kBT
a3 e−

2μ−Δ
2kBT α0ℏc

a4 e−
2μ−Δ
2kBT

α0μ
2ðkBTÞ2

ðℏcÞ2að4μ2−Δ2Þ1=2
α0μ

2k2BT
ðℏcÞ2að4μ2−Δ2Þ1=2

Δ ¼ 2μ α0ðkBTÞ5
ðℏcÞ3Δ

α0ðkBTÞ2
ℏca2

α0kBT
a3

α0kBT
a3

α0kB
a3
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δexplT;l¼0F ða;TÞ¼−
α0kBT
8a3

Z
∞

0

dye−yy2δTrTMð0;y;TÞ: ð49Þ

To find δTrTM, we substitute the representation for the
polarization tensor

Π̃00;lðy;T;Δ;μÞ¼ Π̃00;lðy;0;Δ;μÞþδTΠ̃00;lðy;T;Δ;μÞ ð50Þ

in the first formula in Eq. (2) and expand the obtained
expression up to the first power in small parameter

δTΠ̃00;lðy; T;Δ; μÞ
Π̃00;lðy; 0;Δ; μÞ

: ð51Þ

The result is

δTrTMðiζl;y;TÞ¼
2yðy2−ζ2l ÞδTΠ̃00;lðy;T;Δ;μÞ
½yΠ̃00;lðy;0;Δ;μÞþ2ðy2−ζ2l Þ�2

: ð52Þ

In this section we use Eq. (52) at l ¼ 0, but in Sec. V below
it is used at all l ≥ 1.
We start with the case Δ > 2μ where, according to

Eq. (17), δTΠ̃00;0 ¼ Π̃ð1Þ
00;0. The latter quantity is contained

in Eqs. (8)–(10) taken at l ¼ 0. We restrict ourselves by
only the second contribution to the right-hand side of
Eq. (9) (below it is shown that the first one leads to an
additional exponentially small factor in the result). Thus,
the thermal correction to the polarization tensor has the
form

δTΠ̃00;0ðy; T;Δ; μÞ

¼ 4αD
ṽ2F

Z
∞

1

dtðetΔ−2μ
2kBT þ 1Þ−1

×

�
1 − Re

ṽ2Fy
2 −D2t2

ṽFy½ṽ2Fy2 −D2ðt2 − 1Þ�1=2
�
: ð53Þ

The integral of the first term on the right-hand side of this
equation is given by

4αD
ṽ2F

Z
∞

1

dtðetΔ−2μ
2kBT þ 1Þ−1 ¼ 8α

ṽ2F

kBT
ℏωc

ln ð1þ e−
Δ−2μ
2kBTÞ

≈
8α

ṽ2F

kBT
ℏωc

e−
Δ−2μ
2kBT ð54Þ

at kBT ≪ Δ − 2μ.
As shown in Appendix A, for the integral of the second

term on the right-hand side of Eq. (53) one has

4αD
yṽ3F

Z
fðyÞ

1

dtðetΔ−2μ
2kBT þ 1Þ−1 D2t2 − ṽ2Fy

2

½ṽ2Fy2 −D2ðt2 − 1Þ�1=2

<
4α

ṽ2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ ṽ2Fy

2

q
e−

Δ−2μ
2kBTe−

ðℏωcṽFyÞ2
4kBTΔ ; ð55Þ

where

fðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ṽ2Fy

2

D2

r
: ð56Þ

The quantity in Eq. (55) contains an additional factor
exponentially small at T → 0, as compared to Eq. (54), and,
thus, can be neglected. As a result, we have

δTΠ̃00;0ðy; T;Δ; μÞ ¼
8α

ṽ2F

kBT
ℏωc

e−
Δ−2μ
2kBT : ð57Þ

Note that the first contribution on the right-hand side of
Eq. (9) omitted above would lead to an additional expo-
nentially small factor of the order of e−2μ=ðkBTÞ.
From Eqs. (5) and (28) one also obtains

Π̃00;0ðy; 0;Δ; μÞ ¼
8

3

αℏωc

Δ
y2: ð58Þ

Substituting Eqs. (57) and (58) in Eq. (52) taken at l ¼ 0,
we find

δTrTMð0; y; TÞ ¼
4α

ṽ2F

kBT
ℏωc

e−
Δ−2μ
2kBT

1

yð1þ qyÞ2 ; ð59Þ

where q ¼ 4αℏωc=ð3ΔÞ.
Substituting this equation in Eq. (49) and calculating the

integral, one obtains

δexplT;l¼0F ða; TÞ ¼ −α0
αðkBTÞ2
a2ṽ2Fℏc

e−
Δ−2μ
2kBT

Z
∞

0

dye−y
y

ð1þ qyÞ2

¼ α0
αðkBTÞ2
a2ṽ2Fℏc

e−
Δ−2μ
2kBT

×
1

q2

�
1þ

�
1þ 1

q

�
e1=qEi

�
−
1

q

��
: ð60Þ

Then under the condition D > 1 (Δ > ℏωc) we arrive at

δexplT;l¼0F ða; TÞ ≈ −α0
αðkBTÞ2
a2ṽ2Fℏc

e−
Δ−2μ
2kBTð1 − 4qÞ

≈ −α0
αðkBTÞ2
a2ṽ2Fℏc

e−
Δ−2μ
2kBT : ð61Þ

This is quite different behavior at low T than that obtained
in Eq. (30) for the thermal correction δimpl

T F under the
condition Δ > 2μ.
Now we turn to the case Δ < 2μ for the thermal

correction δexplT;l¼0F . In this case the thermal correction
δTΠ̃00;0 is given by

δTΠ̃00;0ðy;T;Δ;μÞ¼ Π̃ð1Þ
00;0ðy;T;Δ;μÞ− Π̃ð1Þ

00;0ðy;0;Δ;μÞ;
ð62Þ
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where Π̃ð1Þ
00;0 is defined in Eqs. (8)–(10). For l ¼ 0

one has

Π̃ð1Þ
00;0ðy; T;Δ; μÞ ¼

4αD
ṽ2F

ðI1 þ I2Þ; ð63Þ

where

I1¼
Z

∞

1

dtðetΔ−2μ
2kBT þ1Þ−1;

I2¼
1

ṽFy
Re

Z
∞

1

dtðetΔ−2μ
2kBT þ1Þ−1 D2t2− ṽ2Fy

2

½ṽ2Fy2−D2ðt2−1Þ�1=2 :

ð64Þ

Similar to the case of Δ > 2μ, the first exponential term
on the right-hand side of Eq. (9) leads to additional
exponentially decreasing factors when the temperature
vanishes. For this reason, we do not consider it below.
Thus, according to Eqs. (62)–(64), the thermal correction to
the polarization tensor takes the form

δTΠ̃00;0ðy;T;Δ;μÞ

¼ 4αD
ṽ2F

�Z
∞

1

dt
�
e
tΔ−2μ
2kBT þ1

�
−1

−
Z

2μ=Δ

1

dtþ I2− lim
T→0

I2

�

¼ 4α

ṽ2F
e−

2μ−Δ
2kBT

�
2kBT
ℏωc

−1

�

≈−
4α

ṽ2F
e−

2μ−Δ
2kBT ð65Þ

at sufficiently low temperature.
Substituting Eq. (65) in Eq. (52) with l ¼ 0 and taking

into account that Π̃00;0ðy; 0;Δ; μÞ ¼ Q0, where Q0 is
defined in Eq. (34), one finds

δTrTMð0; y; TÞ ¼ −
8α

ṽ2F
e−

2μ−Δ
2kBT

y
ðQ0 þ 2yÞ2 : ð66Þ

Finally from Eqs. (49) and (66) we obtain

δexplT;l¼0F ða; TÞ ¼ α0
αkBT
4a3ṽ2F

e−
2μ−Δ
2kBT

Z
∞

0

dye−y
4y3

ð2yþQ0Þ2

¼ α0
αkBT
4a3ṽ2F

e−
2μ−Δ
2kBT

�
1 −

Q0

4
ð4þQ0Þ

−
Q2

0

8
ðQ0 þ 6ÞeQ0=2Ei

�
−
Q0

2

��
: ð67Þ

By comparing Eqs. (61) and (67), one can conclude that
in the case Δ < 2μ the thermal correction δexplT;l¼0F at low
temperatures again decreases with T exponentially fast.
Let us now consider the last case Δ ¼ μ. Similar in

Sec. III, it can be considered starting from the results

obtained for Δ > 2μ. Now, however, the last transforma-
tion in Eq. (54) is not allowed because exp½ð−Δþ2μÞ=
ð2kBTÞ�¼1. As a result, Eq. (57) should be replaced with

δTΠ̃00;0ðy; T;Δ; μÞ ¼
8α

ṽ2F

kBT
ℏωc

ln 2: ð68Þ

Substituting Eqs. (58) and (68) in Eq. (52), we have

δTrTMð0; y; TÞ ¼
4α ln 2
ṽ2F

kBT
ℏωc

1

yð1þ qyÞ2 : ð69Þ

Then, from Eq. (49), in place of Eq. (61) we finally obtain

δexplT;l¼0F ða; TÞ ¼ −α0
α ln 2ðkBTÞ2
a2ṽ2Fℏc

; ð70Þ

i.e., the same behavior with T as was found for δimpl
T F in the

case Δ < 2μ [see Eq. (41)].
The results presented in Eqs. (61), (67), and (70) are

illustrated in column 3 of Table I.

V. EXPLICIT TEMPERATURE DEPENDENCE OF
REFLECTION COEFFICIENTS: SUMMATION

OVER THE NONZERO MATSUBARA
FREQUENCIES

Here we consider the low-temperature behavior of the
last, third, contribution δexplT;l≥1F to the thermal correction in
Eq. (23) which is determined by an explicit dependence of
the polarization tensor on T in all Matsubara terms with
l ≠ 0. In accordance to Eq. (25), it is given by

δexplT;l≥1F ða;TÞ¼−α0
kBT
8a3

X∞
l¼1

Z
∞

ζl

dye−yGðζ2l ;y;T;Δ;μÞ;

Gðζ2l ;y;T;Δ;μÞ¼ ð2y2−ζ2l ÞδTrTMðiζl;y;TÞ
−ζ2l δTrTEðiζl;y;TÞ: ð71Þ

An expression for the thermal correction δTrTM is already
given in Eq. (52). To derive a similar expression for δTrTE,
we substitute the representation

Π̃lðy; T;Δ; μÞ ¼ Π̃lðy; 0;Δ; μÞ þ δTΠ̃lðy; T;Δ; μÞ ð72Þ

in the second formula in Eq. (2) and expand the obtained
expression up to the first power in small parameter

δTΠ̃lðy; T;Δ; μÞ
Π̃lðy; T;Δ; μÞ

: ð73Þ

The desired result is given by
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δTrTEðiζl; y; TÞ ¼ −
2yðy2 − ζ2l ÞδTΠ̃lðy; T;Δ; μÞ
½Π̃lðy; 0;Δ; μÞ þ 2yðy2 − ζ2l �2

: ð74Þ

We start with the case Δ > 2μ where, according to

Eq. (17), δTΠ̃00;l ¼ Π̃ð1Þ
00;l and δTΠ̃l ¼ Π̃ð1Þ

l with Π̃ð1Þ
00;l and

Π̃ð1Þ
l defined in Eqs. (8)–(10). According to Eq. (16),

Π̃00;lðy; 0;Δ; μÞ ¼ Π̃ð0Þ
00;l and Π̃lðy; 0;Δ; μÞ ¼ Π̃ð0Þ

l , where
the right-hand sides of these equations are given by
Eqs. (5)–(7), and under the condition D > 1 the quantity
ΨðD=plÞ can be replaced with 8pl=ð3DÞ [see Eq. (28)].
Then, in the lowest order of the small parameter pl=D,

Eqs. (52) and (74) take the form

δTrTMðiζl; y; TÞ ¼
2yδTΠ̃00;lðy; T;Δ; μÞ
ðy2 − ζ2l Þð8αy3D þ 2Þ2

≈
yδTΠ̃00;lðy; T;Δ; μÞ

2ðy2 − ζ2l Þ
;

δTrTEðiζl; y; TÞ ¼ −
2yδTΠ̃lðy; T;Δ; μÞ

ðy2 − ζ2l Þð8αp
2
l

3D þ 2yÞ2

≈ −
δTΠ̃lðy; T;Δ; μÞ
2yðy2 − ζ2l Þ

: ð75Þ

Note that we have omitted two small terms, 8αy=ð3DÞ
and 8αp2

l =ð3DÞ, in the denominators because, similar to
Eqs. (59)–(61), they lead to the thermal corrections of
higher orders which can be neglected in the result. The
function G in Eq. (71), which depends on ζ2l , can be
expanded in the powers of ζ2l ¼ ðτlÞ2:

Gðζ2l ; y; T;Δ; μÞ ¼ 2y2δTrTMð0; y; TÞ þ ζ2l
∂G
∂ζ2l

				
ζl¼0

þ � � � :

ð76Þ

Substituting this expansion in Eq. (71), one obtains

δexplT;l≥1F ða; TÞ ¼ −α0
kBT
8a3

ðJ1 þ J2Þ; ð77Þ

where

J1 ¼ 2
X∞
l¼1

Z
∞

ζl

dye−yy2δTrTMð0; y; TÞ;

J2 ¼
X∞
l¼1

ζ2l

Z
∞

ζl

dye−y
∂G
∂ζ2l

				
ζl¼0

þ � � � : ð78Þ

From Eqs. (57) and (75) we find

δTrTMð0; y; TÞ ¼
8αkBTa
ṽ2Fℏcy

e−
Δ−2μ
2kBT : ð79Þ

Taking this into account, we rewrite the quantity J1 in
Eq. (78) as

J1 ¼
16αkBTa
ṽ2Fℏc

e−
Δ−2μ
2kBT

X∞
l¼1

Z
∞

ζl

dye−yy

¼ 16αkBTa
ṽ2Fℏc

e−
Δ−2μ
2kBT

�
1

eτ − 1
þ τeτ

ðeτ − 1Þ2
�

≈
16αkBTa
ṽ2Fℏc

e−
Δ−2μ
2kBT

2

τ
¼ 8α

ṽ2Fπ
e−

Δ−2μ
2kBT : ð80Þ

As shown in Appendix B, the integral J2 contains the
same exponentially fast decreasing with T factor and differs
from Eq. (80) only by the preexponent coefficient. Because
of this, using Eq. (80), we obtain from Eq. (77)

δexplT;l≥1F ða; TÞ ∼ −α0
kBT
a3

e−
Δ−2μ
2kBT : ð81Þ

It is seen that here the factor in front of the exponent
decreases slower than in δexplT;l¼0F [see Eq. (61)].
The case Δ < 2μ can be considered in a similar manner.

Using Eqs. (34) and (52), we have

δTrTMðiζl; y; TÞ ¼
2yðy2 − ζ2l ÞδTΠ̃00;lðy; T;Δ; μÞ

½yQ0 þ 2ðy2 − ζ2l Þ�2
: ð82Þ

Substituting here Eq. (65) and taking into account that
under the condition (33) the inequality Q0 ≫ 1 holds, one
can neglect by 2y as compared to Q0 and obtain

δTrTMð0; y; TÞ ¼ −
8α

ṽ2FQ
2
0

e−
2μ−Δ
2kBTy: ð83Þ

Then the quantity J1 defined in Eq. (78) is

J1 ¼ −
16α

ṽ2FQ
2
0

e−
2μ−Δ
2kBT

X∞
l¼1

Z
∞

ζl

dye−yy3

¼ −
16α

ṽ2FQ
2
0

e−
2μ−Δ
2kBT

�
τ3
eτð1þ 4eτ þ e2τÞ

ðeτ − 1Þ4

þ 3τ2
eτð1þ eτÞ
ðeτ − 1Þ3 þ 6τ

eτ

ðeτ − 1Þ2 þ
6

eτ − 1

�

≈ −
16α

ṽ2FQ
2
0

e−
2μ−Δ
2kBT

24

τ
¼ −

96αℏc
ṽ2FQ

2
0πakBT

e−
2μ−Δ
2kBT : ð84Þ

Similar to Appendix B, it can be shown that the integral J2
leads to the same, up to a factor, dependence on T, as in
Eq. (84). Thus, from Eq. (77) one finds

δexplT;l≥1F ða; TÞ ∼ α0
ℏc
a4

e−
2μ−Δ
2kBT : ð85Þ
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This dependence should be compared with that given by
Eq. (81) for the case Δ > 2μ.
Now we consider the behavior of δexplT;l≥1F at low temper-

ature in the case Δ ¼ 2μ. Similar to the correction δexplT;l¼0F
in Sec. IV, this behavior can be investigated using the
results obtained for Δ > 2μ. For this purpose, we take into
account that Δ ¼ 2μ and from the next to last trans-
formation in Eq. (65) obtain

δTΠ̃00;0ðy; T;Δ; μÞ ¼
8αkBT
ṽ2Fℏωc

ln 2: ð86Þ

Then from Eq. (75) we have

δTrTMð0; y; TÞ ¼
8αkBT
ṽ2Fℏc

ln 2
y

: ð87Þ

Repeating the same derivations as in the case Δ > 2μ, one
arrives at

J1 ¼
16αkBTa ln 2

ṽ2Fℏc
2

τ
¼ 8α ln 2

ṽ2Fπ
ð88Þ

and for the thermal correction δexplT;l≥1F for Δ ¼ 2μ finally
finds

δexplT;l≥1F ða; TÞ ∼ −α0
kBT
a3

: ð89Þ

The results given by Eqs. (81), (85), and (89) are
presented in column 4 of Table I. A summary of columns
2, 3, and 4 in column 5 demonstrates the leading term in
the asymptotic behavior of the thermal correction to the
Casimir-Polder energy at low T for any relationship
between Δ and 2μ.
It is seen that Eq. (89) differs fundamentally from the

behaviors of all thermal corrections considered above.
According to the obtained results, in the cases Δ > 2μ
and Δ < 2μ the Casimir-Polder entropy

Sða; TÞ ¼ −
∂F ða; TÞ

∂T ; ð90Þ

where the Casimir-Polder free energy F ða; TÞ is defined in
Eqs. (1) and (11), vanishes with vanishing T. In the case
Δ ¼ 2μ the contribution to the entropy determined by the
thermal corrections δimpl

T F and δexplT;l¼0F vanishes with
vanishing temperature

−lim
T→0

∂
∂T ½δimpl

T F þ δexplT;l¼0F � ¼ 0: ð91Þ

However, according to Eq. (89), the contribution to the
entropy determined by the thermal correction δexplT;l≥1F in the
case Δ ¼ 2μ gives rise to some kind of entropic anomaly

−lim
T→0

∂
∂T δexplT;l≥1F ða; TÞ ≠ 0: ð92Þ

As a result, in the case Δ ¼ 2μ the entropy at zero
temperature is not equal to zero and depends on the
parameters of a system which means a violation of the
Nernst heat theorem (see column 6 of Table I for the low-
temperature behavior of the Casimir-Polder entropy in
different cases). These results are discussed in Sec. VI in
connection with similar problems of the Casimir physics
arising for metallic and dielectric materials.

VI. CONCLUSIONS AND DISCUSSION

In the foregoing, we have found the behavior of the
Casimir-Polder free energy and entropy at low temperature
for a polarizable atom interacting with real graphene sheet
possessing nonzero energy gap and chemical potential. As
discussed in Sec. I, this subject is of much fundamental
interest in connection with problems arising in Casimir
physics when using the commonly accepted local models
of the dielectric response for both metallic and dielectric
materials. The distinctive feature of graphene is that its
nonlocal dielectric response, described by the polarization
tensor, is found exactly on the basis of first principles of
thermal quantum field theory. At the same time, the
dielectric responses of conventional materials, described,
e.g., by the Drude or plasma models, are partially the
phenomenological ones. They are well confirmed exper-
imentally only for real electromagnetic fields on a mass
shell, although in the Lifshitz theory the integration is made
over all momenta both on and off a mass shell.
According to our results, the contribution δimpl

T F to the
thermal correction to the Casimir-Polder energy, originat-
ing from a summation over the Matsubara frequencies
using the zero-temperature polarization tensor, behaves as
∼ðkBTÞ5 and ∼ðkBTÞ2 at low temperature under the
conditions Δ > 2μ and Δ < 2μ, respectively. The contri-
bution δexplT;l¼0F to the Casimir-Polder energy, which is
caused by an explicit temperature dependence of the
polarization tensor in the zero-frequency Matsubara term,
behaves as

δexplT;l¼0F ∼

8<
:−ðkBTÞ2e−

Δ−2μ
2kBT ; Δ > 2μ;

kBTe
−2μ−Δ
2kBT ; Δ < 2μ:

In the case Δ ¼ 2μ, one has δexplT;l¼0F ∼ −ðkBTÞ2.
The most interesting situation arises for the thermal

correction δexplT;l≥1F originating from an explicit temperature
dependence of the polarization tensor in the sum of all
Matsubara terms with nonzero frequencies. As shown in
this paper, a summation over all nonzero Matsubara
frequencies reduces by one the power of the leading
temperature dependence in each of the cases Δ > 2μ,
Δ < 2μ, and Δ ¼ 2μ. As a result, one obtains that
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δexplT;l≥1F ∼

(
−kBTe

−Δ−2μ
2kBT ; Δ > 2μ;

e−
2μ−Δ
2kBT ; Δ < 2μ;

and δexplT;l≥1F ∼ −kBT for Δ ¼ 2μ.
The above results for all three contributions to the

thermal correction combined together lead us to a con-
clusion that in both cases Δ > 2μ and Δ < 2μ the Casimir-
Polder free energy and entropy satisfy the Nernst heat
theorem. In doing so, the leading terms in the Casimir-
Polder free energy at low temperature behave as ∼ðkBTÞ5
and ðkBTÞ2 for Δ > 2μ andΔ < 2μ, respectively. Thus, our
results do not support the statement of Ref. [88] that “the
first order correction is quadratic over temperature ∼T2.”
This is true for the case Δ < 2μ but not for Δ > 2μ where
the total free energy F ∼ ðkBTÞ5. Also, if the exact equality
Δ ¼ 2μ is valid, the Casimir-Polder free energy is linear in
temperature F ∼ kBT. In this case the Casimir-Polder
entropy at zero temperature is equal to a nonzero constant
depending on the parameters of a system and, thus, the
Nernst heat theorem is violated. Note for a pristine
graphene where F ∼ ðkBTÞ3 the Nernst heat theorem is
satisfied [87].
As discussed in Sec. I, for dielectrics and metals the

models of dielectric response leading to a violation of the
Nernst heat theorem also result in contradictions between
the theoretical predictions and the experimental data for the
Casimir and Casimir-Polder forces. Up to date there is a
single experiment on measuring the Casimir interaction
between a Au-coated sphere and a graphene sheet depos-
ited on a substrate [94], and its data are in good agreement
with theoretical results obtained using the polarization
tensor of graphene [95]. In fact the values of Δ and μ
for a graphene sample used in the experiment are not
known precisely so that from the practical standpoint the
equality Δ ¼ 2μ cannot be satisfied exactly. For compari-
son purposes, the character of the real part of conductivity
of graphene as a function of frequency also changes
qualitatively depending on whether Δ > 2μ or Δ < 2μ
[96], so that the condition Δ ¼ 2μ defines a singular point.
One can conclude that with the only exception of a

physically unrealizable case Δ ¼ 2μ the Casimir-Polder
free energy and entropy for an atom interacting with real
graphene sheet characterized by nonzero energy gap and
chemical potential satisfy the Nernst heat theorem. This
result provides further support to the assumption that the
widely known problems in Casimir physics discussed in
Sec. I may be connected with the phenomenological
character of local response functions used for both metallic
and dielectric materials.
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APPENDIX A: BOUND FOR THE
CONTRIBUTION TO δTΠ̃00;0 IN THE

CASE Δ > 2μ

In this Appendix, we consider the integral used in
Eq. (55) and for Δ > 2μ and restrict it as follows:

Z
fðyÞ

1

dtðetΔ−2μ
2kBT þ 1Þ−1 D2t2 − ṽ2Fy

2

½ṽ2Fy2 −D2ðt2 − 1Þ�1=2

< D2

Z
fðyÞ

1

dtðetΔ−2μ
2kBT þ 1Þ−1

×
t2

½ṽ2Fy2 −D2ðt2 − 1Þ�1=2 ≡ I; ðA1Þ

where fðyÞ is defined in Eq. (56).
The integral on the right-hand side of Eq. (A1) can be

integrated by parts

I¼−
Z

fðyÞ

1

tðetΔ−2μ
2kBT þ1Þ−1d½ṽ2Fy2−D2ðt2−1Þ�1=2

¼ðeΔ−2μ
2kBT þ1Þ−1ṽFy

þ
Z

fðyÞ

1

d½tðetΔ−2μ
2kBT þ1Þ−1�½ṽ2Fy2−D2ðt2−1Þ�1=2: ðA2Þ

The square root on the right-hand side of Eq. (A2) only
increases when we replace it with ṽFy. Then Eq. (A2)
transforms to

I < ṽFyfðyÞ½e
fðyÞΔ−2μ
2kBT þ 1�−1: ðA3Þ

Now we take into account that, according to Eq. (56),

fðyÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ṽ2Fy

2

D2

r
≈1þ ṽ2Fy

2

2D2
¼ 1þ ṽ2Fy

2ðℏωcÞ2
2Δ2

ðA4Þ

and that for sufficiently low T the inequality Δ − 2μ ≫
2kBT holds. Then one can neglect by the unity in Eq. (A3)
as compared to the exponent and, substituting Eq. (A4) to
its power, obtain

I <
ṽFy
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ ṽ2Fy

2

q
e−

Δ−2μ
2kBTe−

ðℏωcṽFyÞ2
4kBTΔ : ðA5Þ

Multiplying Eqs. (A1) and (A5) by the factor
4αD=ðyṽF3Þ, we arrive at Eq. (55).
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APPENDIX B: ESTIMATION FOR THE
CONTRIBUTION TO δexplT;l≥1F IN

THE CASE Δ > 2μ

Here, we estimate the contribution J2 to the thermal
correction to the Casimir-Polder free energy (77) defined
by the second expression in Eq. (78).
According to Eq. (71), the value of the first derivative of

G, entering Eq. (78), is given by

∂G
∂ζ2l

				
ζl¼0

¼ −δTrTMð0; y; TÞ þ 2y2
∂
∂ζ2l δTrTMðiζl; y; TÞ

				
ζl¼0

− δTrTEð0; y; TÞ; ðB1Þ
where expressions for the thermal corrections to the
reflection coefficients are contained in Eq. (75).
The derivative of the thermal correction δTrTM is

calculated using the first expression in Eq. (75),

∂
∂ζ2l δTrTMðiζl;y;TÞ

				
ζl¼0

¼ 1

2y3
δTΠ̃00;0ðy;T;Δ;μÞþ

1

2y
∂
∂ζ2l δTΠ̃00;lðy;T;Δ;μÞ

				
ζl¼0

:

ðB2Þ
Using Eq. (17) and Eqs. (8)–(10), where only the second

term contributes in Eq. (9), one obtains at sufficiently low T

∂
∂ζ2l δTΠ̃00;lðy; T;Δ; μÞ

				
ζl¼0

¼ 4αD
ṽ2F

Z
∞

1

dtðetΔ−2μ
2kBT þ 1Þ−1∂χ00;l∂ζ2l

				
ζl¼0

≈
b1
y4

kBT
ℏωc

e−
Δ−2μ
2kBT ; ðB3Þ

where the numerical value of the constant b1 is of no
concern for us now.
As to the thermal correction δTΠ̃00.0 in Eq. (B2), at low T

it is contained in Eq. (57) and can be written in the form

δTΠ̃00;0ðy; T;Δ; μÞ ¼ b2
kBT
ℏωc

e−
Δ−2μ
2kBT : ðB4Þ

Substituting Eqs. (B3) and (B4) in Eq. (B2), one obtains

∂
∂ζ2l δTrTMðiζl; y; TÞ

				
ζl¼0

¼ kBT
2ℏωc

�
b1
y5

þ b2
y3

�
e−

Δ−2μ
2kBT : ðB5Þ

Now we return to Eq. (B1) where the first term on the
right-hand side is found from Eqs. (75) and (B4):

δTrTMð0; y; TÞ ¼
b2
2y

kBT
ℏωc

e−
Δ−2μ
2kBT : ðB6Þ

The remaining term δTrTEð0; y; TÞ in Eq. (B1) is given
by the second expression in Eq. (75) where, in accordance
to Eq. (17), the quantity δTΠ̃0 is expressed by Eq. (5). The
following result is found with the help of Eqs. (8)–(10):

δTrTEð0; y; TÞ ¼
4αD3y
ṽF

Z
fðyÞ

1

dtðetΔ−2μ
2kBT þ 1Þ−1

×
t2 − 1

½ṽ2Fy2 −D2ðt2 − 1Þ�1=2 ; ðB7Þ

where fðyÞ is defined in Eq. (56). This quantity is similar to
that considered in Appendix A. By repeating the deriva-
tions of Appendix A, it is easy to see that it contains an
exponentially decreasing with T factor in addition to that
one contained in Eq. (B6). Thus, we can neglect by the
quantity (B7) in Eq. (B1) as compared to other terms.
Using Eqs. (B5) and (B6), one obtains from Eq. (B1)

∂G
∂ζ2l

				
ζl¼0

¼ kBT
2ℏωc

e−
Δ−2μ
2kBT

�
b2
y
þ 2b1

y3

�
: ðB8Þ

Substituting this equation to the second expression in
Eq. (78), we find

J2¼
kBT
2ℏωc

e−
Δ−2μ
2kBT

X∞
l¼1

Z
∞

ζl

dye−y
�
b2
y
þ2b1

y3

�
ζ2l þ�� � : ðB9Þ

Introducing the integration variable v ¼ y=ζl, one
obtains from Eq. (B9)

J2 ¼
kBT
2ℏωc

e−
Δ−2μ
2kBT

Z
∞

1

dv

�
b2
v

X∞
l¼1

ζ2l e
−vζl þ 2b1

v3
X∞
l¼1

e−vζl
�
þ � � �

¼ 2kBT
ℏωc

e−
Δ−2μ
2kBT

�
b2τ2

Z
∞

1

dveτvðeτv þ 1Þ
vðeτv − 1Þ3 þ 2b1

Z
∞

1

dv
v3ðeτv − 1Þ

�
þ � � �

¼ kBT
ℏωc

e−
Δ−2μ
2kBT

b1 þ b2
τ

Z
∞

1

dv
v4

þ � � � ¼ kBT
ℏωc

e−
Δ−2μ
2kBT

b1 þ b2
3τ

þ � � � ∼ e−
Δ−2μ
2kBT þ � � � : ðB10Þ

Thus, a summation in nonzero l again results in the additional factor ∼1=τ. The same holds for all expansion terms in the
higher powers of ζl notated by dots in Eq. (B10). Thus, J2 contains the same exponentially decreasing with T factor as J1,
and the result (81) remains valid with account of J2.
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