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We study the potential of future electron-ion collider (EIC) data to probe four-fermion operators in the
Standard Model effective field theory (SMEFT). The ability to perform measurements with both polarized
electron and proton beams at the EIC provides a powerful tool that can disentangle the effects from different
SMEFT operators. We compare the potential constraints from an EIC with those obtained from Drell-Yan
data at the Large Hadron Collider. We show that EIC data play an important complementary role since they
probe combinations of Wilson coefficients not accessible through available Drell-Yan measurements.
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I. INTRODUCTION

The Standard Model (SM) of particle physics has so far
been successful in describing all observed laboratory
phenomena. No new particles beyond those present in
the SM have been discovered at the Large Hadron Collider
(LHC) or in other experiments, and no appreciable
deviation from SM predictions has been conclusively
observed. Given this situation it is increasingly important
to understand how indirect signatures of new physics can
be probed and constrained by the available data. This effort
will help guide future searches for new physics by
suggesting in what channels measurable deviations from
SM predictions may occur given the current bounds.
A convenient theoretical framework for investigating

indirect signatures of heavy new physics without associated
new particles is the SM effective field theory (SMEFT)
containing higher-dimensional operators formed from SM
fields. The leading dimension-6 operator basis of SMEFT
for on-shell fields has been completely classified [1,2]
(there is a dimension-5 operator that violates lepton number
which we do not consider here). Considerable effort has
been devoted to performing global analyses of the available
data within the SMEFT framework [3–14]. There are
numerous questions that must be addressed when perform-
ing global fits within the dimension-6 SMEFT framework,
including the need for higher-order corrections in the SM
coupling constants [15], the importance of effects from

dimension-8 and beyond [16–20], and the estimation of
theoretical errors [21].
Another issue that arises in global fits to the SMEFT

parameter space is the appearance of flat directions that
occur when the available experimental measurements
cannot disentangle the contributions from different
Wilson coefficients. These flat directions may be either
exact or approximate. There are many examples of this
phenomenon. For example, it is well known that Higgs
cross section measurements alone cannot distinguish
between new-physics corrections to the Higgs couplings
to gluons and top quarks [22]. Our focus here will be on
2-lepton, 2-quark four-fermion operators appearing in the
SMEFT. The presence of operator combinations not probed
by the available low-energy data has been discussed in the
literature [23]. The expectation is that these operators are
well probed by high invariant-mass Drell-Yan distributions
at the LHC, which has both large integrated luminosity and
the requisite high energy for which we expect potential
SMEFT corrections to become important. There have
indeed been numerous studies of the importance of
Drell-Yan measurements in constraining four-fermion
operators [23,24]. However, only a few combinations of
Wilson coefficients can be probed in principle by Drell-Yan
measurements, a point made previously in the literature
[25]. In practice only a subset of even these combinations
can be probed due to the nature of the current experimental
studies, as we discuss later. Future analyses of constraints
on SMEFToperators will need to identify new data sets that
measure the combinations not determined by Drell-Yan
production at the LHC, such as flavor observables where
one-loop effects can help break degeneracies [26,27].
Our goal in this paper is to illustrate the important role

that future polarized deep-inelastic scattering (DIS) experi-
ments may play in the study of SMEFT, and in particular in
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disentangling the effects of four-fermion operators indis-
tinguishable at the LHC. In the coming decade the con-
struction of an electron-ion collider (EIC) with polarization
of both electron and proton beams is expected, and high-
precision polarized electron-proton data will become avail-
able. Some studies of new-physics searches possible with
an EIC have been performed [28]. However, we are aware
of no detailed investigation of what aspects of the SMEFT
may be probed at an EIC, and in particular its usefulness in
studying combinations of Wilson coefficients not acces-
sible at the LHC. In this paper we consider the following
points.

(i) We study the deviations induced by dimension-6
four-fermion operators in the SMEFT on both
polarized and unpolarized charged-current and
neutral-current DIS. We determine which regions
of parameter space are sensitive to dimension-6
Wilson coefficients. We show that the deviations
allowed by current constraints are larger than the
current parton distribution function (PDF) errors for
both polarized and unpolarized protons. Since the
SM DIS hard-scattering cross sections are known
through next-to-next-to-leading order in QCD
[29,30], theoretical errors should not be a limiting
factor in studies of the SMEFT at an EIC.

(ii) We review the contributions of dimension-6 SMEFT
operators to neutral-current Drell-Yan at the LHC
and analytically demonstrate the appearance of
approximate flat directions in the space of Wilson
coefficients. We show that the current experimental
measurements at the LHC are not well suited to
SMEFT studies. High invariant-mass forward-back-
ward asymmetry measurements would allow addi-
tional probes of the SMEFT parameter space, a point
also emphasized in Ref. [25]. However, even with
such observables many combinations of Wilson
coefficients remain poorly tested in LHC Drell-
Yan production and would benefit from polarized
DIS measurements.

(iii) We perform fits to Drell-Yan data from the LHC to
numerically illustrate the flat directions. We identify
several example choices of Wilson coefficients that
demonstrate the types of degeneracies that appear at
the LHC. We show how data from a future EIC is
complementary to that obtained from the LHC and
can better probe certain combinations of Wilson
coefficients. Combined fits of LHC and projected
EIC data lead to much stronger constraints than
either experiment alone. We show that the ability to
polarize both electron and proton beams at an EIC is
crucial in obtaining these projected bounds.

Our paper is organized as follows. We review the aspects
of the four-fermion operators in the SMEFT relevant to our
analysis in Sec. II. In Sec. III we present the formulas
needed for the study of unpolarized and polarized DIS. We

study the phenomenology of SMEFT contributions to DIS
at an EIC in Sec. IV. We study neutral-current Drell-Yan
production of lepton pairs at the LHC in Sec. V, where we
also demonstrate the appearance of flat directions in the
space of Wilson coefficients. In Sec. VI we present the
main results of our paper, fits to the LHC and projected EIC
data for a range of different scenarios. We emphasize the
complementarity of the two experiments and show the
importance of polarized measurements at the EIC. Finally,
we conclude in Sec. VII.

II. REVIEW OF THE SMEFT

We review in this section aspects of the SMEFT relevant
for our analysis of DIS and Drell-Yan. The SMEFT is an
extension of the SM Lagrangian to include terms sup-
pressed by an energy scale Λ at which the ultraviolet
completion becomes important and new particles beyond
the SM appear. Truncating the expansion in 1=Λ at
dimension 6 and ignoring operators of odd dimension
which violate lepton number, we have

L ¼ LSM þ
X
i

CiOi þ…; ð1Þ

where the ellipsis denotes operators of higher dimensions.
The Wilson coefficients defined above have dimensions of
1=Λ2. When computing cross sections we consider only
the leading interference of the SM amplitude with the
dimension-6 contribution. This is consistent with our
truncation of the SMEFT expansion above since the
dimension-6 squared contributions are formally the same
order in the 1=Λ expansion as the dimension-8 terms which
we neglect. The following four-fermion operators in Table I
can affect both DIS and Drell-Yan at leading order in the
coupling constants for massless fermions, which we
assume here. Note that q and l denote left-handed quark
and lepton doublets, while u, d and e denote right-handed
singlets for the up quarks, down quarks and leptons,
respectively. In addition, τI denote the SU(2) Pauli matri-
ces. We have suppressed flavor indices for these operators,
and in our analysis we assume flavor universality for
simplicity. We note that the overall electroweak couplings
that govern lepton-pair production are also shifted in the
SMEFT by operators other than those considered above.
Such contributions are far better bounded through other
data sets such as precision Z-pole observables [24], and we

TABLE I. Dimension-6 four-fermion operators contributing to
DIS and DY at leading order in the coupling constants.

Oð1Þ
lq

ðl̄γμlÞðq̄γμqÞ Olu ðl̄γμlÞðūγμuÞ
Oð3Þ

lq
ðl̄γμτIlÞðq̄γμτIlqÞ Old ðl̄γμlÞðd̄γμdÞ

Oeu ðēγμeÞðūγμuÞ Oqe ðq̄γμqÞðēγμeÞ
Oed ðēγμeÞðd̄γμdÞ
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neglect them here. The above assumptions leave us with the
seven Wilson coefficients associated with the operators in
Table I entering the predictions for our cross sections.

III. REVIEW OF DIS FORMALISM

We review in this section the relevant formulas describ-
ing both unpolarized and polarized DIS in the process
lðkÞ þ PðPÞ → l0ðk0Þ þ X, where P denotes a proton. We
consider the leading-order partonic process lðkÞ þ qðpÞ →
l0ðk0Þ þ qfðpfÞ, including both the SM contributions and
the corrections induced by dimension-6 SMEFT operators.
Expressions for the charged-current process are also
given below. The relation between partonic and hadro-
nic momenta is p ¼ xP. It is standard to introduce the
momentum transfer q ¼ k − k0, with q2 ¼ −Q2. We
recall here some of the basic kinematic relations relevant
for DIS:

p ·k¼ xs
2
; pf ·k0 ¼

xs
2
; k ·k0 ¼Q2

2
; P ·q¼Q2

2x
;

p ·q¼Q2

2
;

P ·q
P ·k

¼p ·q
p ·k

¼ y: ð2Þ

We can use these relations to show that Q2 ¼ xys at
leading order.
The matrix elements receive SM contributions from both

photon and Z-boson exchange. In the SMEFT there is an
additional correction from four-fermion contact inter-
actions. We can split the differential cross section into
the following contributions that arise from the interference
of the relevant diagrams:

d2σ
dxdQ2

¼ 4πα2

xQ4

X
q

fq;λqðx;Q2Þ
�

d2σγγ

dxdQ2
þ d2σγZ

dxdQ2
þ d2σZZ

dxdQ2

þ d2σγSMEFT

dxdQ2
þ d2σZSMEFT

dxdQ2

�
: ð3Þ

We have used λe and λq to respectively denote the helicities
of the lepton and quark that enter the hard-scattering
process. For fully polarized states, λi ¼ �1 in our nor-
malization. The leading-order expressions for the SM
contributions are given below:

d2σγγ

dxdQ2
¼ xQ2

q

�
ð1 − yÞ þ 1 − y

2
þ λqλe

2
yð2 − yÞ

�
;

d2σγZ

dxdQ2
¼ x

eqNγZ

2
½gqLgeLð1 − λqÞð1 − λeÞ þ gqRg

e
Rð1þ λqÞð1þ λeÞ þ gqRg

e
Lð1 − yÞ2ð1þ λqÞð1 − λeÞ

þ gqLg
e
Rð1 − yÞ2ð1 − λqÞð1þ λeÞ�;

d2σZZ

dxdQ2
¼ x

NZZ

4
½ðgqLgeLÞ2ð1 − λqÞð1 − λeÞ þ ðgqRgeRÞ2ð1þ λqÞð1þ λeÞ þ ðgqRgeLÞ2ð1 − yÞ2ð1þ λqÞð1 − λeÞ

þ ðgqLgeRÞ2ð1 − yÞ2ð1 − λqÞð1þ λeÞ�: ð4Þ

We have introduced the following abbreviations in these expressions:

NγZ ¼ GFM2
Z

2
ffiffiffi
2

p
πα

Q2

Q2 þM2
Z
; NZZ ¼ N2

γZ: ð5Þ

For the SM left-handed and right-handed fermion couplings we follow the conventions of Ref. [31]:

gfL ¼ If3 −Qfs2W; gfR ¼ −Qfs2W: ð6Þ
We give below the expressions for the SMEFT corrections in the up-quark initial state:

d2σγSMEFT
u

dxdQ2
¼ −x

QuQ2

8πα
½Ceuð1þ λuÞð1þ λeÞ þ ðCð1Þ

lq −Cð3Þ
lq Þð1− λuÞð1− λeÞ þ ð1− yÞ2Cluð1þ λuÞð1− λeÞ

þ ð1− yÞ2Cqeð1− λuÞð1þ λeÞ�
d2σZSMEFT

u

dxdQ2
¼ −x

NγZQ2

8πα
½guRgeRCeuð1þ λuÞð1þ λeÞ þ guLg

e
LðCð1Þ

lq −Cð3Þ
lq Þð1− λuÞð1þ λeÞ þ guRg

e
Lð1− yÞ2Cluð1þ λuÞð1− λeÞ

þ guLg
e
Rð1− yÞ2Cqeð1− λuÞð1þ λeÞ�: ð7Þ
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To obtain results for the down-quark initial state, we simply
make the following replacements in the formulas above:

Qu → Qd; guL;R → gdL;R; Clu → Cld;

Ceu → Ced; Cð3Þ
lq → −Cð3Þ

lq : ð8Þ

From these formulas we can obtain the results for the
polarized and unpolarized cross sections. The unpolarized
cross section is obtained by averaging over the two quark
helicity possibilities λq ¼ �1 and setting the PDF in Eq. (3)
to the usual unpolarized one, while the polarized result is
obtained by taking the difference λq ¼ −1 minus λq ¼ þ1

and interpreting the PDF in Eq. (3) as the usual polarized
PDF. Upon forming these two combinations we obtain four
physically observable differential cross sections in neutral-
current DIS: the polarized and unpolarized cross sections
with positive or negative λe.
We briefly present here the formulas for the charged-

current process νμðkÞ þ uðpÞ → μðk0Þ þ dðpfÞ.We directly
show the results for the unpolarized and polarized partonic
cross sections. The SM differential cross sections are

dσWW
unpol

dxdQ2
¼ g4ð1 − λeÞ

64πðQ2 þM2
WÞ2

;

dΔσWW

dxdQ2
¼ g4ð1 − λeÞ

32πðQ2 þM2
WÞ2

: ð9Þ

The corrections coming from SMEFT four-fermion
operators are

dσWSMEFT
unpol

dxdQ2
¼ −

g2ð1 − λeÞCð3Þ
lq

8πðQ2 þM2
WÞ

;

dΔσWSMEFT

dxdQ2
¼ −

g2ð1 − λeÞCð3Þ
lq

4πðQ2 þM2
WÞ

: ð10Þ

We note that only the left-handed polarization state
contributes.

IV. PHENOMENOLOGY OF DIS AT THE EIC

In this section we briefly review the expected parameters
of an EIC and study the deviations induced by the four-
fermion SMEFT operators considered above on both
neutral and charged-current DIS. The recently announced
EIC at Brookhaven National Laboratory will be a high-
energy and high-luminosity tool to investigate the structure
of nucleons and nuclei. The physics potential of the EIC is
detailed in Ref. [28], as are the various machine parameters
assumed below in our study. It is planned to be tunable over
a large range of energies, different polarizations and types
of heavy ions, as well as protons. The machine is projected
to operate at a center-of-mass energy approachingffiffiffi
s

p
≈ 140 GeV, which we assume in our study. We assume

that it will collect 10 fb−1, which we split equally among
the four modes identified in the previous section (polarized
and unpolarized with both positive and negative λe). We
also study the impact of accumulating 100 fb−1. We
assume that the EIC will reach 70% polarization for both
proton and electron beams.

A. Standard Model contributions

We begin by briefly summarizing and discussing the
Standard Model predictions for the different cross sections
that will be measured at the future EIC. The expressions
in Eq. (4) are evaluated with the electroweak input
parameters [32]:

α−1 ¼ 137.036; GF ¼ 1.16638 × 10−5 GeV−2;

MZ ¼ 91.1876 GeV; MW ¼ 80.379 GeV: ð11Þ

We use the NNPDF3.1 NLO [33] PDFs in the unpolarized case
and NNPDFPOL1.1 [34] in the polarized case throughout. We
constrain the angular variable y, defined in Eq. (2), to be

FIG. 1. Comparison of unpolarized and polarized StandardModel cross sections for neutral and charged-current processes for different
values of Q2. The cross sections assume λe ¼ −0.7. The 1 − σ error band stems from the uncertainty of the corresponding PDFs.
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between 0.1 and 0.9 for both the neutral and charged-
current processes, in accordance with values quoted in the
literature [35,36]. To avoid nonperturbative QCD effects
impacting our analysis, we only consider values of Q2

above ð12 GeVÞ2. The momentum fraction x is constrained
in our fits to be below 0.2. To provide some intuition
regarding the expected evant rates at the EIC, we show the
SM cross sections for both charged- and neutral-current
processes in Fig. 1.

B. SMEFT contributions

We next allow for SMEFT four-fermion operator con-
tributions to modify our observables. We assume Ci ¼
1=TeV2 in order to illustrate these effects. First we illustrate
the potential of the DIS observables by plotting the
expected relative deviation from the Standard Model over
a large part of ðx;Q2Þ space in Fig. 2 for two example
Wilson coefficients. We see that the deviations grow with

both x and Q2, indicating that these phase-space regions
will be most sensitive to the SMEFT effects. It is evident
from these plots that PDF uncertainties are subdominant to
potential SMEFT deviations, even in the case of a polarized
proton beam. We also note that the expected deviations
become large relative to the expected precision of the EIC.
We now show how different observables are sensitive to

different combinations of Wilson coefficients. This is
illustrated in Fig. 3, where we compare the relative
deviations for each of the Wilson coefficients switched
on separately for different electron polarizations. We see
that for positive electron polarization we primarily probe

Cqe and Ceu, while C
ð1Þ
lq and Cð3Þ

lq only lead to a small shift
of the cross section. For negative electron polarization we
find the opposite behavior. We will see later that this ability
of the EIC to discriminate between different Wilson
coefficients using polarized observables can help probe
SMEFT effects that are difficult to see at the LHC.

FIG. 2. Neutral-current SMEFT deviation normalized to Standard Model predictions for the Wilson coefficients Cð1Þ
lq and Ceu as a

function of Bjorken-x for different choices of Q2. The error bands illustrate the 1 − σ interval stemming from the uncertainty of the
PDFs. The SMEFT deviations for the unpolarized cross section are in blue, and for the polarized cross section, they are in red. We note
that the kinematic constraint on y leads to the turn-on of the curves at different x-values for each Q2 choice.

FIG. 3. Comparison of the size of the unpolarized SMEFT deviations for each of the Wilson coefficients Cqe, Ceu, Ced, C
ð1Þ
lq and Cð3Þ

lq
for different values of the electron polarization. The plots are for fixed Q2 ¼ ð50 GeVÞ2.
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V. NEUTRAL-CURRENT
DRELL-YAN IN THE SMEFT

We discuss here the Drell-Yan process at the LHC. Our
analysis is performed at leading order in the SMEFT. A
partial calculation of the higher-order terms is given in
Ref. [24]. Our major focus will be on identifying combi-
nations of Wilson coefficients for which the SMEFT-
induced corrections vanish. This shows that the LHC is
not sensitive to these combinations, making potential EIC
probes important. We will define four example choices of
Wilson coefficients that allow us to compare the

sensitivities of the LHC and a future EIC in different
scenarios.

A. Review of Drell-Yan formulas

We first present formulas for the partonic channel
uðp1Þūðp2Þ → lðp3Þl̄ðp4Þ. Three diagrams contribute to
this process: photon exchange, Z-boson exchange, and a
four-fermion contact interaction. It is straightforward to
derive the differential cross section for this process. We
split it into the following contributions, labeled by which
diagrammatic interference they arise from:

dσuū
dM2dYdcθ

¼ 1

32πM2s
fuðx1Þfūðx2Þ

�
dσ̂γγuū

dM2dYdcθ
þ dσ̂γZuū
dM2dYdcθ

þ dσ̂ZZuū
dM2dYdcθ

þ dσ̂γSMEFT
uū

dM2dYdcθ
þ dσ̂ZSMEFT

uū

dM2dYdcθ

�
: ð12Þ

Here, x1 and x2 are the Bjorken momentum fractions of the
partons from each proton, M2 and Y are respectively the
invariant mass and rapidity of the dilepton system, and cθ is
the cosine of the CM-frame scattering angle of the

negatively charged lepton. To obtain the full hadronic
cross section from this partonic channel, we integrate this
over x1 and x2. The separate contributions from each
diagrammatic interference are given below:

dσ̂γγuū
dM2dYdcθ

¼ 32π2α2Q2
u

3

t̂2 þ û2

ŝ2
;

dσ̂γZuū
dM2dYdcθ

¼ −
8παQug2Z

3

ðguRgeL þ geRg
u
LÞt̂2 þ ðguRgeR þ geLg

u
LÞû2

ŝðŝ −M2
ZÞ

;

dσ̂ZZuū
dM2dYdcθ

¼ g4Z
3

ððguRgeLÞ2 þ ðgeRguLÞ2Þt̂2 þ ððguRgeRÞ2 þ ðgeLguLÞ2Þû2
ðŝ −M2

ZÞ2
;

dσ̂γSMEFT
uū

dM2dYdcθ
¼ −

8παQu

3

ðClu þ CqeÞt̂2 þ ðCeu þ Cð1Þ
lq − Cð3Þ

lq Þû2
ŝ

;

dσ̂ZSMEFT
uū

dM2dYdcθ
¼ 2g2Z

3

ðguRgeLClu þ geRg
u
LCqeÞt̂2 þ ðguRgeRCeu þ guLg

e
LC

ð1Þ
lq − guLg

e
LC

ð3Þ
lq Þû2

ŝ −M2
Z

: ð13Þ

We have identified the usual partonic Mandelstam invar-
iants ŝ ¼ ðp1 þ p2Þ2, t̂ ¼ ðp1 − p3Þ2, û ¼ ðp1 − p4Þ2.
They depend upon the scattering angle cθ according to

t̂ ¼ −
ŝ
2
ð1 − cθÞ; û ¼ −

ŝ
2
ð1þ cθÞ: ð14Þ

For the SM left-handed and right-handed fermion cou-
plings we follow the conventions of Ref. [31]:

gfL ¼ If3 −Qfs2W; gfR ¼ −Qfs2W: ð15Þ

We note that we can obtain the partonic channel
ūðp1Þuðp2Þ → lðp3Þl̄ðp4Þ by interchanging t̂ ↔ û. To
obtain results for the down-quark initiated process
dðp1Þd̄ðp2Þ → lðp3Þl̄ðp4Þ we make the following changes
in Eq. (13):

Qu → Qd; guL;R → gdL;R; Clu → Cld;

Ceu → Ced; Cð3Þ
lq → −Cð3Þ

lq : ð16Þ

The sign change for Cð3Þ
lq is important as it indicates that the

down-quark channel probes the orthogonal combination of

Cð1Þ
lq and Cð3Þ

lq compared to the up-quark channel.

B. Flat directions in Drell-Yan

The fact that seven Wilson coefficients contribute to the
SMEFT correction but fewer kinematic combinations
appear in the matrix elements implies that only certain
combinations of Wilson coefficients can be probed with
Drell-Yan measurements, a point already made in previous
work [25]. We can identify the following features from the
above formulas.
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(i) The deviations from dimension-6 operators in the
SMEFT are expected to be largest at high invariant
mass, when ŝ ≫ M2

Z. When we make this approxi-
mation in the denominator of the Z − SMEFT
interference in Eq. (13), we find that only two
combinations of Wilson coefficients proportional
to t̂2 and û2 respectively contribute. In the up-quark
channel the following combinations appear:

−
8παQu

3
½ðClu þ CqeÞ� þ

2g2Z
3

½guRgeLClu þ geRg
u
LCqe�;

−
8παQu

3
½ðCeu þ Cð1Þ

lq − Cð3Þ
lq Þ�

þ 2g2Z
3

½guRgeRCeu þ guLg
e
LC

ð1Þ
lq − guLg

e
LC

ð3Þ
lq �: ð17Þ

In the down-quark channel similar combinationswith
thereplacementsofEq.(16)appear. Inthehigh-energy
limit only these combinations can be probed.

(ii) In principle, these combinations can be separately
probed by measurements dependent on the lepton
kinematics. We note that measurements of the
dilepton system such as the invariant mass or
rapidity do not allow these coefficient combinations
to be separately determined. These distributions are
obtained by integrating inclusively over cθ, and in
the high-energy limit they depend on only a single
combination of Wilson coefficients. However, an-
other limitation becomes apparent if we express the
differential cross section in terms of the CM-frame
angle cθ. In the ŝ ≫ M2

Z limit the SMEFT correction
to the cross section takes the form

Aðgi; CiÞð1þ c2θÞ þ Bðgi; CiÞcθ; ð18Þ

where gi and Ci denote the SM couplings and
dimension-6 Wilson coefficients respectively.
Aðgi; CiÞ is the same combination of couplings that
appears in the dilepton invariant mass and rapidity
distributions, while Bðgi; CiÞ is a different combi-
nation. In order to probe B an experimental meas-
urement must integrate over an asymmetric range of
cθ, otherwise the B term will integrate to zero.
Existing high-mass differential Drell-Yan measure-
ments that go beyond the dilepton invariant mass
and rapidity distributions, such as Ref. [37], focus on
quantities such as jΔηllj, the absolute value of the
pseudorapidity distribution between leptons. We can
express this variable in terms of the CM-frame
scattering angle as

jΔηllj ¼ 2jarctanhðcθÞj: ð19Þ

Since this variable is symmetric under cθ → −cθ, the
B term vanishes. Other measurements of quantities

such as the forward-backward asymmetry that could
distinguish the B term focus primarily on the Z-pole
region or only slightly above it [38–40]. A similar
point was made in Ref. [25]. At the Z-pole all terms
except for ZZ interference are suppressed by a factor
ΓZ=MZ and are negligible. The only sensitivity to B
comes from acceptance cuts on the leptons which
have a small effect on the measured cross section.

We conclude that the existing Drell-Yan measurements at
the LHC can probe only a limited combination of SMEFT
Wilson coefficients. This occurs both because of the limited
kinematic information available in the unpolarized Drell-
Yan cross section and also because of the specific mea-
surements performed. To illustrate this discussion numeri-
cally we will consider four representative combinations of
nonzero Wilson coefficients.

(i) Case 1: Ceu, Ced, Cð1Þ
lq ≠ 0: These coefficients

contribute to the t̂2 term in Drell-Yan and can
therefore only be distinguished by an invariant-mass
measurement. They can be separated in DIS by
choosing different electron polarizations according
to Eq. (7).

(ii) Case 2: Cqe, Ceu, Ced ≠ 0: These are proportional to
t̂2 and û2 and can therefore in principle be distin-
guished in Drell-Yan but not with existing high-mass
LHC measurements. They can be separated by a
combination of polarization and differential mea-
surements in DIS.

(iii) Case 3: Cqe, Cð1Þ
lq ≠ 0: In this case separate flat

directions appear for the up-quark and down-quark
channels that cannot be simultaneously satisfied. We
will study this case as a contrast to Cases 1 and 2 in
order to determine how much better the relevant
Wilson coefficients can be probed.

(iv) Case 4: Cð1Þ
lq , C

ð3Þ
lq ≠ 0: This is similar to Case 3 in

that flat directions appear separately in the up-quark
and down-quark channels. We study this case to
determine how well these coefficients can be deter-
mined in DIS, where the charged-current channel

allows a separate measurement of Cð3Þ
lq .

VI. FITS TO DRELL-YAN AND DIS DATA

In order to compare the sensitivities of the EIC and the
LHC to four-fermion Wilson coefficients in the SMEFT,
and in particular to study the ability of the EIC to break the
degeneracies present with only Drell-Yan measurements,
we consider fits to the data for the four scenarios
defined above.
For the Drell-Yan process we consider the data set of

Ref. [37], which measures the following differential cross
sections for invariant masses up to 1.5 TeV:

dσ
dmll

;
d2σ

dmlldYll
;

d2σ
dmlldjηllj

: ð20Þ
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We choose this set because it goes to high invariant masses
and it measures the jηllj distribution, allowing us to
illustrate our point above that distributions symmetric
under cθ → −cθ offer no discriminatory power beyond
the inclusive invariant-mass distribution. The measurement
of dσ=dmll in Ref. [37] contains twelve bins of invariant
mass as compared to five bins of invariant mass for the two
double-differential distributions. Since the invariant mass
provides the most discriminatory power between Wilson
coefficients, we use dσ=dmll in our fits. We restrict the
invariant-mass range to mll < 700 GeV in order to have a
consistent EFT expansion for UV scales of Λ ∼ 1 TeV.
When performing our fit we use the full experimental
correlation matrix given in Ref. [37].1

We investigate the same combinations of Wilson coef-
ficients for DIS observables and contrast the projected EIC
bounds with the ones derived from the Drell-Yan data. We
study the DIS cross sections in nine separate bins in ðx;Q2Þ
space and assume that the projected 10 fb−1 of collected
data are distributed evenly between the four possible
polarized observables: unpolarized and polarized protons
with either choice of electron polarization. We assume 70%
polarization for both proton and electron beams. The
binning is chosen so that the statistical error is of the
same order as the expected systematic error. To obtain
the expected cross sections at the EIC we simply evaluate
the formulas in Sec. III. Assuming uncorrelated errors for
simplicity we can define a χ2 statistic according to

χ2 ¼
X
λe¼�0.7

P¼pol=unpol

X
i;j

�
σλe;PSMEFTðxi; QjÞ
Δσλe;Pðxi; QjÞ

�2

: ð21Þ

The outer sum accounts for the different polarized observ-
ables while the inner sum runs over all bins in ðx;Q2Þ
space. The numerator denotes the SMEFT-induced
deviation in the cross section under consideration. For

the fits involving Cð3Þ
lq we also include the charged-current

observables. The error Δσλe;P for each of the observables
consists of systematic and statistical errors that we add in
quadrature. We assume the systematic error to be 1% in
each bin, consistent with assumptions in the literature [35].
The statistical error scales with the collected data. We
assume 2.5 fb−1 to be collected for every observable. To
study which of the parameter choices impact our fit most
strongly, we also present auxiliary fits where we study the
effects of increasing the systematic error, increasing the
luminosity, and removing beam polarizations. A potential
third source of error comes from the uncertainties of the
PDFs, as discussed earlier. We choose to omit the PDF
errors from our projection since they may ultimately need
to be determined in a simultaneous fit of PDFs and SMEFT

coefficients, as discussed in Ref. [41]. They are omitted in
our analysis of LHC data as well for consistency.

A. Case 1

We begin by studying the behavior of the Drell-Yan cross
section for Case 1 with Ceu, Ced and Cð1Þ

lq nonzero. All
coefficients contribute to the û2 term in the matrix element,
and therefore only the invariant-mass distribution can
discriminate between them. By studying the formulas in
Eq. (13) we see that the SMEFT correction to the up-quark
channel of the Drell-Yan cross section vanishes for the
following combination of Wilson coefficients in the high
invariant-mass limit:

Cð1Þ
lq ¼ −Ceu

Que2 − g2Zg
u
Rg

e
R

Que2 − g2Zg
e
Lg

u
L
≈ −0.69Ceu: ð22Þ

In the down-quark channel the correction vanishes for the
combination

Cð1Þ
lq ¼ −Ced

Qde2 − g2Zg
d
Rg

e
R

Qde2 − g2Zg
e
Lg

d
L
≈ −0.42Ced: ð23Þ

To simplify our analysis of this case we will assume the
relation

Ced ¼ Ceu
Que2 − g2Zg

u
Rg

e
R

Que2 − g2Zg
e
Lg

u
L

Qde2 − g2Zg
e
Lg

d
L

Qde2 − g2Zg
d
Rg

e
R
;≡Cð1Þ

ed ; ð24Þ

which allows both Eqs. (22) and (23) to be satisfied. We

then allow Cð1Þ
lq and Ceu to vary. This choice allows us to

more easily visualize the results of our fits in a two-
dimensional space. For values of Ced and Ceu that are close
to but do not exactly satisfy the relation in Eq. (24), the
vanishing of the SMEFT-induced correction in the high
invariant-mass limit will be approximate.
As discussed in the previous section the flat direction for

Drell-Yan becomes exact only when ŝ ≫ M2
Z. In order to

check how quickly this limit is approached we plot in Fig. 4

the value of the ratio Cð1Þ
lq =Ceu for which the SMEFT-

induced deviation vanishes as a function of the invariant-
mass bin, compared to the ŝ ≫ M2

Z prediction. We have
assumed Ceu ¼ 1=ðTeVÞ2 when making this plot. The
actual zero crossing approaches the predicted value quickly
as a function of the invariant mass. This suggests that this
measurement will not strongly probe deviations along this
flat direction, as the high-energy limit where the dimen-
sion-6 operators become important coincides with the
region where the flat direction relation is satisfied.
To demonstrate that no additional information is

obtained from the jΔηllj distribution as argued in the
previous section, we show in Fig. 5 the SMEFT-induced
deviation for this distribution as a function of the ratio

1We thank F. Ellinghaus for assistance in understanding the
experimental results.
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Cð1Þ
lq =Ceu for the mass bin Mll ¼ ½200; 300� GeV and

several choices of jΔηllj bins from Ref. [37]. The deviation
vanishes near the predicted ratio for all choices of jΔηllj
bins in the experimental analysis. Measuring this distribu-

tion therefore does not resolve the flat direction in Cð1Þ
lq

and Ceu.
We now perform separate χ2 fits to the LHC Drell-Yan

and anticipated EIC data, fixing Ced as discussed above and

allowing Cð1Þ
lq and Ceu to vary. The 68% confidence level

(CL) allowed regions are shown in Fig. 6. In order to more
directly compare the sensitivities of the two experiments,
which is our major goal in this paper, we shift the best-fit
values of the Wilson coefficients at the LHC to the origin.
As we can see in Fig. 6 the Drell-Yan data are only able to

constrain the absolute values of Cð1Þ
lq and Ceu to be smaller

than 3.0 and 4.0 respectively, in units of 1=TeV2. The
projected EIC bounds are more stringent, 1.5 and 1.0
respectively. Increasing the integrated luminosity from
10 fb−1 to 100 fb−1 moderately tightens the expected
bounds. The plot illustrates that the two Wilson coefficients
are highly correlated in the case of Drell-Yan observables,
as evident from the tight but elongated ellipse. With DIS
data the ellipses are less correlated. The approximate flat
direction is broken through the interplay of different
polarized observables.
Ultimately we wish to combine the results from both

experiments to provide the strongest probes of the Wilson
coefficients. This would approximately constrain the pos-
sible parameter space to the overlap of the two respective
ellipses. This is indeed what we find in Fig. 7, where a
combined fit to both the EIC and LHC data sets is
compared to each experiment alone. Each Wilson coef-
ficient is separately constrained to have a magnitude below
one. The allowed parameter values along the flat direction
poorly probed by the LHC are reduced by more than a
factor of 3 in this combined fit.

B. Case 2

We next consider the case when Ceu, Ced and Cqe are
nonzero. Since the Cqe dependence of the Drell-Yan matrix
element occurs in the t̂2 term while the other Wilson
coefficients contribute to the û2 terms, these coefficients are
in principle distinguishable. However, as argued above the
nature of the studied experimental measurement at the LHC

FIG. 6. The 68% confidence level ellipse in the Cð1Þ
lq versus Ceu

space for Case 1. Note that Ced has been set to the value indicated
in the text. We contrast the confidence levels derived from the
Drell-Yan data with the projected regions for a 10 fb−1 and
100 fb−1 EIC.

FIG. 5. Deviation from the SM as a function of the ratio

Cð1Þ
lq =Ceu for the choice Ceu ¼ 1=TeV2 for three different jΔηllj

bins from Ref. [37]. The ratio for which no deviation is predicted
is also shown.

FIG. 4. Value of the ratio Cð1Þ
lq =Ceu for Case 1 for which the

SMEFT correction to dσ=dmll vanishes as a function of the
invariant-mass bins considered in Ref. [37]. This is compared to
the predicted value in the ŝ ≫ M2

Z limit. The horizontal bars
indicate the width of the experimental mass bins.
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cannot distinguish between these coefficients. To demon-
strate this we show in Fig. 8 the SMEFT-induced deviation
for the jΔηllj distribution as a function of the ratio Cqe=Ceu

for the mass binMll ¼ ½200; 300� GeV. By integrating over
cθ we can find the predicted high-energy flat direction:

Cqe ¼ −Ceu
Que2 − g2Zg

u
Lg

e
R

Que2 − g2Zg
e
Rg

u
R
≈ −0.23Ceu;

Cqe ¼ −Ced
Qde2 − g2Zg

d
Lg

e
R

Qde2 − g2Zg
e
Rg

d
R
≈ 0.54Ced: ð25Þ

As before we set Ced ¼ Cð2Þ
ed with

Cð2Þ
ed ¼ Ceu

Que2 − g2Zg
u
Lg

e
R

Que2 − g2Zg
e
Rg

u
R

Qde2 − g2Zg
e
Rg

d
R

Qde2 − g2Zg
d
Lg

e
R

ð26Þ

the value required to simultaneously satisfy both equations
above. We see in Fig. 8 that the SMEFT-induced deviation
for all bins vanishes near the predicted value, again
demonstrating that this distribution cannot discriminate
Wilson coefficients near the flat direction.
We perform similar χ2 fits as done for Case 1 above. The

resulting bounds can be seen in Fig. 9. Similar to Case 1 the
Drell-Yan data constrain the absolute values of Cqe and Ceu

to be smaller than roughly 7 and 2.5 respectively in units of
1=TeV2. The EIC ellipses are similar in magnitude with a
projected constraint for Cqe between about −4 and 4 and
−2.5 and 2.5 for Ceu. Once again, since there is a flat
direction present in the Drell-Yan expressions, the corre-
sponding ellipse is highly correlated, which is not the case
at the EIC. Combining both experiments would allow us to
constrain both parameters to roughly unity. We show this in
Fig. 10 with a combined fit to both the EIC and LHC data
sets, compared to each experiment alone. The ellipse
indicating the allowed region is still elongated along the
direction poorly probed by the Drell-Yan data, but the
allowed parameter values are reduced by nearly a factor
of 3.

C. Case 3

We now consider Case 3, where both Cqe and Cð1Þ
lq are

nonzero. In the high-energy limit of the Drell-Yan cross
section, flat directions exist separately in the up-quark and

FIG. 7. The 68% confidence level ellipse in the Cð1Þ
lq versus Ceu

space for Case 1 with only LHC data, only EIC data, and after
combining both experiments.

FIG. 8. Deviation from the SM as a function of the ratio
Cqe=Ceu for the choice Ceu ¼ 1=TeV2 for three different jΔηllj
bins from Ref. [37]. The ratio for which no deviation is predicted
is also shown.

FIG. 9. The 68% confidence level ellipse in the Cqe versus Ceu
space for Case 2. Ced has been set to the value indicated in the
text. We contrast the confidence levels derived from the Drell-Yan
data with the projected regions for a 10 fb−1 and 100 fb−1 EIC.
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down-quark channels. Assuming a symmetric integration
over cθ they can be found to be as follows:

(i) Up-quark:

Cð1Þ
lq ¼ −Cqe

Que2 − g2Zg
u
Lg

e
R

Que2 − g2Zg
e
Lg

u
L
≈ −0.16Cqe: ð27Þ

(ii) Down-quark:

Cð1Þ
lq ¼ −Cqe

Qde2 − g2Zg
d
Lg

e
R

Que2 − g2Zg
e
Lg

d
L
≈ 0.22Cqe: ð28Þ

These two equations for Cð1Þ
lq and Cqe cannot be simulta-

neously satisfied, indicating that Drell-Yan measurements
should be able to better probe this choice of parameters than
the two cases considered previously. We show the projected

bounds in Fig. 11. The EIC bounds derived forCð1Þ
lq andCqe

are similar to the ones in Cases 1 and 2 and constrain the
absolute values of the coefficients to be smaller than about
1.5 and 2.5 respectively. There is very little correlation
between the coefficients, as evident from the ellipses. The
Drell-Yan bounds are significantly tighter than the DIS
bounds in Case 3. This is expected since there is no flat

direction involving Cð1Þ
lq and Cqe in Drell-Yan. This case

illustrates the power of the Drell-Yan data in the absence of
flat directions; the bounds obtained are nearly an order of
magnitude stronger than the Drell-Yan bounds found for
Cases 1 and 2.

D. Case 4

Finally, we consider Cð1Þ
lq and Cð3Þ

lq to be nonzero. The
Drell-Yan up-quark channel depends on the combination

Cð1Þ
lq − Cð3Þ

lq while the down-quark channel depends on

Cð1Þ
lq þ Cð3Þ

lq . In principle these two Wilson coefficients

FIG. 10. The 68% confidence level ellipse in the Cqe versus Ceu
space for Case 2 with only LHC data, only EIC data, and after
combining both experiments.

FIG. 11. The 68% confidence level ellipse in the Cqe versus

Cð1Þ
lq space for Case 3. We contrast the confidence levels derived

from the Drell-Yan data with the projected regions for a 10 fb−1

and 100 fb−1 EIC.

FIG. 12. The 68% confidence level ellipse in the Cð3Þ
lq versus

Cð1Þ
lq space for Case 4. We contrast the confidence levels derived

from the Drell-Yan data with the projected regions for a 10 fb−1

and 100 fb−1 EIC.
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are distinguishable through the different kinematics of

these two channels. In DIS we can directly access Cð3Þ
lq

through charged-current scattering. At the LHC this would
be possible if an analysis similar to Ref. [37] were
performed for off-shell W-boson production. We are not
aware of such an analysis. We present the bounds obtained
for the LHC and EIC in Fig. 12. The bounds obtained from
the Drell-Yan data are stronger than in Cases 1 and 2. This
finding is consistent with the absence of a flat direction due

to the different dependences on Cð1Þ
lq and Cð3Þ

lq . The con-

straint on Cð1Þ
lq reaches below 1. The bounds can be

improved through the inclusion of EIC charged-current

data which are exclusively sensitive to Cð3Þ
lq .

E. Effects of parameter choices on EIC fits

We study here the impact of EIC systematic error and
polarization on the results obtained above, using Case 3 as
a representative example. Our results are shown in Fig. 13.
We see that increasing the systematic error from 1% to 2%
has little impact on the analysis. However, it is clear that
the ability of the EIC to measure polarized observables is
crucial in obtaining strong probes of Wilson coefficients.
The projected bounds weaken by a factor of 4 if polarized
observables are removed from the fit. We have addition-
ally investigated the effect of increasing the polarization of
the electron beam to λe ¼ 0.85 and λe ¼ 0.95. The impact
on the bounds and the correlation of the ellipses is
negligible.

VII. CONCLUSIONS

We have studied in this paper the potential of future
EIC measurements to probe dimension-6 operators in the

SMEFT. The possibility of measuring polarized cross
sections at an EIC provides a powerful handle on four-
fermion operators in the SMEFT. In particular, the ability
to measure both the unpolarized and polarized proton
cross sections with different electron polarizations allows
the effects of different Wilson coefficients to be disen-
tangled. This discrimination between dimension-6 effects
is not possible with just Drell-Yan data at the LHC,
where only limited combinations of Wilson coefficients
are accessible. In addition, the absence of high invariant-
mass measurements of quantities such as a forward-
backward asymmetry at the LHC further limits the ability
of the Drell-Yan data to disentangle the various dimen-
sion-6 effects. We demonstrate these points by example
fits to both available LHC data and projected EIC data in
four different scenarios that illustrate the flat directions
present with only Drell-Yan invariant-mass data available.
We show that fits including both LHC and future EIC
data provide much stronger constraints on the Wilson
coefficients than fits to either experiment separately.
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FIG. 13. Example 68% CL ellipses for different choices of the systematic error (left) and upon removing polarized observables (right).
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