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We present an alternative method for carrying out a principal-component analysis of Wilson coefficients
in standard model effective field theory (SMEFT). The method is based on singular-value decomposition
(SVD). The SVDmethod provides information about the sensitivity of experimental observables to physics
beyond the standard model that is not accessible in the Fisher-information method. In principle, the SVD
method can also have computational advantages over diagonalization of the Fisher information matrix. We
demonstrate the SVD method by applying it to the dimension-6 coefficients for the process of top-quark
decay to a b quark and a W boson and use this example to illustrate some pitfalls in widely used fitting
procedures. We also outline an iterative procedure for applying the SVD method to dimension-8 SMEFT
coefficients.
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I. INTRODUCTION

In recent years, standard model effective theory
(SMEFT) [1–4] has been a focus of activity in both the
theoretical and experimental particle-physics communities.
SMEFT has been advocated as a means to quantify
systematically deviations of the global set of experimental
measurements from the predictions of the standard model.
To this end, a number of efforts have been undertaken to
perform global fits of the Wilson coefficients of SMEFT
operators. Some examples of global fits are contained in
Refs. [5–19].
Several difficulties can arise in using data to constrain

coefficients in SMEFT. First, there are many operators in
SMEFT (59 in dimension 6) and potentially many data
points that could be used in fitting the coefficients of these
operators. Second, theoretical expressions for the SMEFT
contributions to a given set of experimental observables can
contain “flat directions” (or nearly flat directions) in the
space of SMEFT coefficients, that is, directions for which
the observables are insensitive to the values of SMEFT
coefficients. Third, for analyses involving a limited sector
of observables, there may be fewer observables than

SMEFT coefficients. This situation will necessarily result
in the existence of exactly flat directions.
All of these difficulties can pose computational problems

in fitting SMEFT coefficients to data. A global fit may be
computationally challenging because standard methods for
carrying out fits may bog down when the number of
observables and coefficients is large. When the number of
coefficients is greater than the number of observables and/
or there are flat directions, methods of fitting that minimize
χ2 numerically may not converge reliably. In addition to
these technical issues, there is also an issue of principle:
When there are more coefficients than observables and/or
flat directions, the uncertainties in the coefficients can be
highly correlated, and bounds on values of individual
SMEFT coefficients may be very misleading.
This last issue of principle can be addressed by carrying

out a principal-component analysis (PCA) of the SMEFT
coefficients. One way to do this is by finding the eigen-
values and eigenvectors of the Fisher information matrix,
which, in the case of Gaussian statistics, is the inverse of the
correlation matrix [20–25]. Since the Fisher matrix is
nonsingular, diagonalization of the Fisher matrix evades
the computational problems that arise, when there are flat
directions, in minimizing χ2 numerically.
Another approach is to regularize χ2, so that it is

nonsingular and can be minimized by numerical methods
[26]. In this approach, the regulator could potentially
introduce biases into the fit.
In this paper, we present an alternative method for

carrying out the PCA of the SMEFT coefficients that is
based on singular-value decomposition (SVD). The SVD
method has the same advantages as the diagonalization of
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the Fisher matrix in evading the computational problems
that can arise in numerical minimization of χ2. In addition,
the SVD method provides information about the sensitivity
of experimental observables to physics beyond the standard
model that is not accessible in the Fisher-information
method.
There may also be algorithmic advantages in using SVD.

Many well developed numerical methods exist both for
diagonalization and for SVD. However, because the Fisher
matrix is quadratic in the matrix to which SVD is applied,
its condition number is the square of the condition number
for the SVD matrix, and so, the precision may be worse for
diagonalization of the Fisher matrix than for SVD [27].
Furthermore, if the number of SMEFT coeffients is much
larger than the number of observables, then the matrix that
is analyzed in the SVD approach is much smaller than the
Fisher matrix, and so the computation time may be smaller
in the SVD approach. It remains to be seen whether these
advantages will be significant in extensive and/or iterated
global fits of SVD coefficients.
We demonstrate the SVD method by applying it to a

restricted class of observables that appear in decay of the
top quark to a b quark and aW boson.1 This example allows
us to show how the SVD method can be used to deal with
correlated theoretical and experimental errors and with the
difficulties of flat directions.
In fits of SMEFT coefficients in the literature, two

methods that are often employed are (1) fits in which all
of the SMEFT coefficients but one are set to zero and
(2) fits in which all of the SMEFT coefficients but one are
marginalized (profiled). It has been emphasized in Ref. [20]
that both of these approaches are misleading and are
obviated by PCA. In this paper, we demonstrate in explicit
examples involving the SMEFT coefficients in the top-
quark sector, that approach (1) leads to overly optimistic
constraints on the SMEFT coefficients, while approach
(2) leads to overly pessimistic constraints on the SMEFT
coefficients. Our ten-coefficient PCA results for the top-
quark-decay SMEFT coefficients should be considered to
supersede the one-coefficient fit results in Ref. [31], in
which approach (1) was used, and the two-coefficient fits in
Ref. [31], which do not account completely for the high
degree of correlation between the uncertainties in the
coefficients.
While we have not specifically demonstrated the utility

of the SVD method for a situation in which there is a large
number of observables and a large number of SMEFT
coefficients, we are confident that it would work reliably
and efficiently in such a situation because of experience
with an application of SVD, in a different context, that
involved the fitting of thousands of data points with
hundreds of coefficients [32].

The SVD method that we present is based on a Gaussian
uncertainty analysis. While this, of course, is not com-
pletely general, it should prove to be adequate at least for
initial exploratory studies of the bounds on SMEFT
coefficients. The SVD method also requires that the
observables depend linearly on the SMEFT coefficients.
This is the case in a computation at leading order in the
effective-field-theory expansion. As we will describe
later, the method can also be used iteratively to carry
out a PCA of the SMEFT coefficients in the case in which
higher-order contributions in the effective-field-theory
expansion are considered—provided that the expansion
itself converges.
The remainder of this paper is organized as follows. In

Sec. II, we outline the basics of SVD and present a method
for using SVD to carry out analyses of SMEFT coefficients.
Section III contains an illustration of the use of SVD
analysis in top-quark decay to a b quark and a W boson.
Here, we present examples of fits involving flat directions
and various numbers of SMEFT coefficients, and we
contrast the results from the PCA with those from the
traditional fitting approaches (1) and (2) that are mentioned
above. In Sec. IV, we discuss the extension of the SVD
approach to situations in which the theoretical expressions
for the observables depend non-linearly on the SMEFT
coefficients. Finally, in Sec. V, we summarize our results.

II. SINGULAR-VALUE DECOMPOSITION
METHOD

A. Singular-value decomposition

The singular-value-decomposition theorem states that an
m × n matrixM that contains either real or complex entries
can always be decomposed as [33]

M ¼ UWV†; ð1Þ

where U is an m ×m unitary matrix, V is an n × n unitary
matrix, W is an m × n diagonal matrix with nonnegative
real numbers on the diagonals, and † denotes the Hermitian
conjugate (complex conjugate transpose). The diagonal
entries ofW are called the singular values. The matrixW is
unique, but the matrices U and V are not. If M is a square
matrix, then U and V are unique, up to phases that multiply
each row of V† and corresponding inverse phases that
multiply each column of U. If M is not a square matrix,
additional ambiguities in U and V can arise. Efficient
computer codes exist for carrying out the SVD decom-
position of large matrices numerically. See, for example,
Refs. [34–37].
SVD has the important property that it can be used to

solve the linear least-squares problem, as we will now
explain. Suppose that M is an m × n matrix, C is an
n-dimensional column vector, and O is an m-dimensional
column vector. Further suppose that we wish to minimize

1We note that global fits of SMEFT coefficients in the top-
quark sector have been carried out in Refs. [17,28–30].
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ðMC −OÞ2 ð2Þ

with respect to the elements of C (coefficients). Here, the
square denotes the inner product of MC −O with itself.
The solution of this problem is given by [38]

C̄ ¼ VW−1U†O; ð3Þ

where U, V, andW are the matrices that appear in the SVD
decomposition of M [Eq. (1)] and W−1 is the Moore-
Penrose pseudoinverse ofW [38–41], which is obtained by
taking the transpose of W and replacing the nonzero
elements of WT with their inverses, while leaving the zero
elements unchanged.2 Note that the solution in Eq. (3)
exists even if the matrix M is noninvertible. The solution
exists, for example, ifM is not a square matrix or ifM has a
vanishing determinant.
The matrix V† takes the elements of C from the original

basis of coefficients to the principal-component basis. Each
element of PC ¼ V†C is one of the principal components.
Similarly, the matrix U† yields the principal components of
O: PO ¼ U†O. Owing to the phase ambiguities in the SVD
in each row in V† and each row of U†, each principal
component is defined only up to an overall phase. By virtue
of the unitarity of V and of U, the principal components PC

are orthogonal to each other, and the principal components
PO are orthogonal to each other. Owing to the fact theW is
diagonal, each principal component in PC is coupled to
only a single principal component in PO, and vice versa.
The best-fit values of the principal components PC are

given by the elements of

P̄C ¼ V†C̄ ¼ W−1U†O; ð4Þ

where we have used Eq. (3). The fluctuation in MC that is
produced by a unit fluctuation in a principal component in
PC is given by the corresponding singular value in W.
Hence, the uncertainties ΔPC in the best-fit values P̄C are
given by the inverses of the diagonal values of W:

ΔPC
i ¼ W−1

ii : ð5Þ

Because W is diagonal, these uncertainties are uncorre-
lated. Furthermore, they depend on the uncertainty of only
a single principal component in PO. The principal compo-
nents that are ill constrained because of the existence of flat
directions correspond to near-vanishing diagonal values of
W. That is, the SVD sequesters linear combinations of
coefficients that are ill constrained because of the presence
of flat directions in the coefficient space.

B. Application of singular-value decomposition
to the fitting of SMEFT coefficients

The fitting of the SMEFT coefficients is carried out by
minimizing the χ2, which is defined by

χ2 ¼ ðOSMEFT −OexpÞTðσ2Þ−1ðOSMEFT −OexpÞ; ð6Þ

where Oexp is the Nobs-dimensional column vector of
experimental observables, OSMEFT is the Nobs-dimensional
column vector of theoretical predictions for the observables
in the SMEFT, σ2 is the Nobs × Nobs covariance
matrix of experimental and theoretical uncertainties, and
Nobs is the number of observables. We decompose the
theoretical predictions in the SMEFT into standard-model
(SM) contributions and beyond-the-standard-model (BSM)
contributions as

OSMEFT ¼ OSM þOBSM; ð7Þ

and rewrite χ2 as

χ2 ¼ ðOdiff −OBSMÞTðσ2Þ−1ðOdiff −OBSMÞ; ð8Þ

where

Odiff ¼ Oexp −OSM: ð9Þ

Now we wish to put χ2 in Eq. (8) into the linear-least-
squares form. First, since the covariance matrix is sym-
metric, we can diagonalize it:

U−1
covσ

2Ucov ¼ σ̂2: ð10Þ

We note that the diagonal matrix σ̂2 and the unitary matrix
Uexp can be found conveniently from the SVD decom-
position of σ2, although other diagonalization methods
could also be used. Then, we can write χ2 as

χ2¼ðOdiff −OBSMÞTUcovðσ̂2Þ−1U−1
covðOdiff −OBSMÞ: ð11Þ

Since the diagonal matrix σ̂2 is positive definite, the
quantity ðσ̂2Þ−1

2 is well defined. Therefore, we can normal-
ize the observables in the new basis to unit error by writing

Ôdiff ¼ ðσ̂2Þ−1
2U−1

covOdiff ; ð12aÞ

ÔBSM ¼ðσ̂2Þ−1
2U−1

covOBSM: ð12bÞ

Now χ2 has the form

χ2 ¼ ðÔBSM − ÔdiffÞ2: ð13Þ

Since OBSM is linear in the SMEFT coefficients, we can
write it in the form

2Throughout this paper, when we refer to the pseudoinverse of
a matrix, we mean the Moore-Penrose pseudoinverse, and we use
the −1 power of a noninvertible matrix to denote its Moore-
Penrose pseudoinverse.
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OBSM ¼ HC; ð14Þ

where C is an Ncoeff -dimensional column vector of SMEFT
coefficients, H is an Nobs × Ncoeff matrix, and Ncoeff is the
number of SMEFT coefficients. It follows that

ÔBSM ¼ MC; ð15Þ

where

M ¼ ðσ̂2Þ−1U−1
covH: ð16Þ

Hence, in order to constrain the SMEFT coefficients, we
minimize

χ2 ¼ ðMC − ÔdiffÞ2; ð17Þ

which is a linear-least-squares problem. As was described
in Sec. II A, the solution of this minimization problem can
be obtained from the SVD decomposition M ¼ UWV†:

C̄ ¼ VW−1U†Ôdiff : ð18Þ

We emphasize that the expression in Eq. (18) provides a
convenient way to obtain the values of the coefficients that
are well determined, even in the presence of flat directions
in the coefficient space. If there are flat directions, then the
formal solution of the linear least squares problem3

C̄ ¼ ½HTðσ2Þ−1H�−1HTðσ2Þ−1Odiff ð19Þ

is ill defined because the ordinary inverse of the SMEFT
covariance matrix

σ2SMEFT ¼ HTðσ2Þ−1H ð20Þ

does not exist. However, in Eq. (18), W−1 is the Moore-
Penrose pseudoinverse ofW and is well defined, even in the
presence of flat directions. Owing to the properties of the
pseusdoinverse, the expression in Eq. (18) sets the values of
the undetermined coefficients to zero.
As we will demonstrate, the best-fit values of the

individual SMEFT coefficients and their uncertainties do
not accurately characterize the constraints on the SMEFT
coefficients. The principal components in the coefficient
space and their uncertainties parametrize the best fit in a
much more meaningful form. As we have mentioned, each
element of PC ¼ V†C gives one of the principal compo-
nents of the SMEFT coefficients. The best-fit values of the
principal components are given by the elements of P̄C in
Eq. (4), and the one-standard-deviation uncertainty on each
principal component is given by the corresponding element
of ΔP̄C in Eq. (5).

In terms of the SVD quantities, the covariance matrix of
the SMEFT coefficients is obtained by using V to rotate W
back to the original basis of SMEFT coefficients:

σ2SMEFT ¼ VW−1ðW−1Þ†V†: ð21Þ

As is standard, the covariance matrix for the situation in
which one has marginalized over some of the coefficients is
obtained by striking from the full covariance matrix the
rows and columns that correspond to the marginalized
coefficients [42]. Although the covariance matrix contains
the same information as the uncertainties in the principal
components, we will see that the presentation of uncer-
tainties in principal-component form leads to a clearer
picture of the constraints on the SMEFT coefficients.
The Fisher information matrix is given by the inverse of

the covariance matrix in Eq. (20):

I ¼ σ2SMEFT ¼ HTðσ2Þ−1H; ð22Þ

from which it follows, using Eq. (21), that

I ¼ VW†WV†: ð23Þ

In Refs. [20–25], the principal components of the SMEFT
coefficients (PC) are obtained by diagonalizing the Fisher
matrix. We note that the Fisher information is the absolute
square of the matrix M ¼ UWV† that is analyzed in the
SVD approach. Indeed, one method for implementing SVD
involves finding the eigenvectors and eigenvalues of W by
diagonalizing the absolute square ofM. However, it is well
known that this method can be imprecise. Other, more
precise, methods for carrying out SVD have been devised
[27]. The reason for the possible imprecision in diagonal-
izing the Fisher matrix is that the absolute square ofM has a
condition number that is equal to the square of the
condition number of M. If the condition number is very
large, as is the case when there are nearly flat directions
such that M has eigenvalues that differ greatly in size, then
there could, in principle be practical advantages in using
SVD, rather than diagonalization of the Fisher matrix, to
obtain the principal components.
A conceptual advantage of the SVD method over the

Fisher-matrix method is that it relates the principal com-
ponents of the SMEFT coefficients (PC) to the principal
components of the observables (PO). Because W is
diagonal, the relationship is one-to-one:

PC
i ¼ WiiPO

i : ð24Þ

The relation in Eq. (24) shows which linear combination
of observables affects a given SMEFT-coefficient princi-
pal component. This insight could allow one to identify
new measurements that could further constrain a poorly
constrained SMEFT-coefficient principal component.3See, for example, Eq. (4.3) of Ref. [25].
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Conversely, the relation in Eq. (24) would allow one to
identify a linear combination of observables that would be
particularly sensitive to the existence of physics beyond the
standard model, as parametrized by a SMEFT-coefficient
principal component.

III. APPLICATION TO TOP-QUARK DECAY

In this section, we illustrate the PCA/SVD method for
fitting the SMEFT coefficients by applying it to the case of
top-quark decay to a b quark and a W boson.

A. SMEFT operators

We work in the Warsaw-basis [1] of SMEFT operators,
and our notation is similar to that of Ref. [43]. Following
Ref. [31], we fit the coefficients CtW , CbW , Cϕtb, Ctg, and
Cbg, which correspond to the operators

OtW ¼ OuW
33
;

ObW ¼ OdW
33
;

Oϕtb ¼ Oϕud
33
;

Otg ¼ Oug
33
;

Obg ¼ Odg
33
: ð25Þ

with

OuW
pr
¼ q̄pσμνurτIϕ̃WI

μν;

OdW
pr
¼ q̄pσμνdrτIϕWI

μν;

Oϕud
pr

¼ iðϕ̃†DμϕÞðūpγμdrÞ;
Ouq

pr
¼ q̄pσμνTAurϕ̃GA

μν;

Odg
pr
¼ q̄pσμνTAdrϕ̃GA

μν: ð26Þ

We also consider the coefficients Cð1Þ
qq , C

ð3Þ
qq , C

ð1Þ
qu , C

ð8Þ
qu , and

Cð3Þ
lq , which correspond to the four-fermion operators

Oð1Þ
qq ¼ ðq̄pγμqrÞðq̄sγμqtÞ;

Oð3Þ
qq ¼ ðq̄pγμτaqrÞðq̄sγμτaqtÞ;

Oð1Þ
qu ¼ ðq̄pγμqrÞðūsγμutÞ;

Oð8Þ
qu ¼ ðq̄pγμTAqrÞðūsγμTAutÞ;

Oð3Þ
lq ¼ ðq̄pγμτaqrÞðq̄sγμτaqtÞ: ð27Þ

Here, qp (lp) is a left-handed quark (lepton) isospin doublet
with generation index p, ur and dr are the up and down
right-handed isospin singlets with generation index r, lr is
the lepton right-handed isospin singlet with generation
index r, ϕ is the Higgs isospin doublet, ϕ̃ ¼ iτ2ϕ� is the
hypercharge-conjugate Higgs doublet, τ is a Pauli matrix,
WI

μν is the field-strength tensor for the SUð2ÞI gauge
bosons with isospin index I, the γ’s are Dirac matrices,

σμν ¼ i½γμ; γν�, GA
μν is the gluon field-strength tensor with

color index A, and TA is a color matrix in the fundamental
representation with color index A.

B. Experimental inputs

We take experimental values of the total top-quark decay
rate and the helicity fractions from the Particle Data Group
compilation [44]:

Γexp
tot ¼ 1.41þ0.19

−0.15 GeV;

Fexp
L ¼ 0.687� 0.018;

Fexp
− ¼ 0.320� 0.013: ð28Þ

In our analysis, we symmetrize the uncertainties in
Γexp
tot by shifting the central value. That is, we take

Γexp
tot ¼ 1.43� 0.17 GeV. The correlation matrix of the

experimental uncertainties is [45]

ρ ¼

0
B@

1.0 0 0

0 1.0 −0.87
0 −0.89 1.0

1
CA: ð29Þ

Then, the experimental inputs for our SVD analysis are
Oexp ¼ ðΓexp

tot ; F
exp
L ; Fexp

− ÞT and σ2ij ¼ σiρijσj. Here i, j ¼ 1,
2, and 3 correspond to Γexp

tot , F
exp
L , and Fexp

− , respectively,
and the σi are the experimental uncertainties.

C. Theoretical inputs

We make use of the expressions in Ref. [31] for SMEFT
contributions to Γtot, the total decay width to bW, FL, the
fractional decay rate for a longitudinally polarized W
boson, and F−, the fractional decay rate for a W boson
with negative helicity.4 We include the QCD corrections
that are given in Ref. [31]. We note that the standard-model
QCD corrections are also given in Ref. [47] and that an
analysis of the SMEFT contributions to t quark decay has
also been given in Ref. [48].
For purposes of this demonstration, we do not include

uncertainties in the theoretical predictions. They could be
incorporated into the analysis by adding the theoretical
covariance matrix to the experimental covariance matrix.5

The input parameters for the theoretical calculation are
given in Table I and are identical to those in Ref. [31],
except that we evaluate αs at the scale mt, rather than
the scale MZ. We compute the electroweak coupling ḡ
from [49]

4The expressions for these quantities in the published version
of Ref. [31] have been corrected in the second arXiv version of
that paper [46].

5If the theoretical and experimental uncertainties are corre-
lated, say, through the use of a common parameter in the
theoretical and experimental analyses, then one would need to
construct a complete covariance matrix of theoretical and
experimental uncertainties, including entries for that parameter,
and then marginalize over that parameter.
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ḡ2 ¼ 2
ffiffiffi
2

p
GFM2

Z

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4παemffiffiffi
2

p
GFM2

Z

s �
: ð30Þ

We set the SMEFT cutoff to be Λ ¼ 500 GeV.

D. Fit with one SMEFT coefficient

In Table II, we show the best-fit values of the SMEFT
coefficients and their two-standard-deviation uncertainties
that are obtained by setting all of the coefficients to zero,
except for one. This is a widely used approach for
constraining the SMEFT coefficients. However, as we will
see, it can be quite misleading.

E. Fit with three SMEFT coefficients

Now let us consider the case in which only the first three
coefficients in Table II are nonzero. Then, we can compute
the best-fit values of those coefficients and their uncer-
tainties, marginalized over the other two coefficients. As
we explained earlier, the latter can be obtained from the
diagonal values of the covariance matrix. The results of this
computation are shown in Table III. As can be seen, the
central values have shifted substantially relative to those in
Table II, and the uncertainties have increased, in some cases
by almost an order of magnitude. Clearly, the single-
coefficient values and uncertainties in Table II are not
indicative of the true constraints on the SMEFT coefficients

in the presence of three nonzero coefficients. However, the
large uncertainties in Table III paint an unduly pessimistic
picture of the constraints that can be achieved.
In order to see this, let us carry out a PCA with three

nonzero coefficients. Making use of the SVD method, we
obtain

U† ¼

0
B@

−0.273 −0.770 −0.576
−0.276 −0.511 0.814

0.922 −0.381 0.0732

1
CA; ð31aÞ

V† ¼

0
B@

−0.999 0.000697 −0.0414
0.0411 0.136 −0.990

−0.00496 0.991 0.136

1
CA; ð31bÞ

and

W ¼

0
B@

19.9 0 0

0 1.77 0

0 0 0.0315

1
CA: ð31cÞ

Here, and throughout the remainder of this paper, when we
present the array V†, the columns correspond to the
following order of the SMEFT coefficients: CtW , Ctg,

CbW , Cbg, Cϕtb, Cð1Þ
qq , Cð3Þ

qq , Cð1Þ
qu , Cð8Þ

qu , Cð3Þ
lq . When we

present the array U†, the columns correspond to the
following order of the experimental observables: Γexp

tot ,
Fexp
L , Fexp

− .
From the expression for V†, we see that the principal

components of the SMEFT coefficients are

PC
1 ¼ 0.999CtW − 0.000697Ctg þ 0.0414CbW;

PC
2 ¼ −0.0411CtW − 0.136Ctg þ 0.990CbW;

PC
3 ¼ −0.00496CtW þ 0.991Ctg þ 0.136CbW: ð32Þ

The best-fit values of the principal components are given
by the elements of P̄C in Eq. (4), and their two-standard-
deviation uncertainties are given by twice the inverse of the
corresponding diagonal element of W. The results are

P̄C
1 ¼ −0.0645� 0.100;

P̄C
2 ¼ −0.477� 1.13;

P̄C
3 ¼ 4.84� 63.4: ð33Þ

We see that PC
1 and PC

2 are much better constrained than
any of the individual coefficients and that only PC

3 is poorly
constrained. The PCA analysis clearly allows one to access
a much more powerful set of constraints than do the
analyses of individual SMEFT coefficients.
The principal components of the observables are given

by the rows of U†:

TABLE I. Input parameters for the theoretical calculation.

MZ 91.1876 GeV MW 80.379 GeV
v 246 GeV mt 173.0 GeV
mb 4.78 GeV GF 1.1664 × 10−5 GeV−2

α−1em 137.036 αsðmtÞ 0.1081

TABLE II. Best-fit values of the SMEFT coefficients and their
two-standard-deviation uncertainties computed by setting all of
the coefficients to zero, except for one.

CtW 0.0644� 0.100 Cð1Þ
qq

−4.81� 37.1

Ctg −3.65� 8.22 Cð3Þ
qq

0.656� 5.07

CbW 0.679� 1.03 Cð1Þ
qu

14.1� 56.4

Cbg −13.5� 17.9 Cð8Þ
qu

10.6� 42.3

Cϕtb 2.94� 5.56 Cð3Þ
lq

−4.35� 33.6

TABLE III. Best-fit values of the SMEFT coefficients obtained
by keeping only three coefficients nonzero. The uncertainties are
the two-standard-deviation uncertainties that are obtained by
marginalizing over two of the coefficients.

CtW 0.0209� 0.333
Ctg 4.73� 62.8
CbW 1.13� 8.72
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PO
1 ¼ −0.273O1 − 0.770O2 − 0.576O3;

PO
2 ¼ −0.276O1 − 0.511O2 þ 0.814O3;

PO
3 ¼ þ0.992O1 − 0.381O2 þ 0.0732O3: ð34Þ

As we have mentioned, each observable principal compo-
nent PO

i is coupled through W to a single coefficient
principal component PC

i , and vice versa. From the elements
of W, we see that PC

1 is highly constrained by PO
1 and,

conversely, PO
1 would be very sensitive to new physics, as

parametrized by PC
1 . This suggests that one might look for

new physics be tightening the experimental bound on PO
1 .

On the other hand, PO
2 is less strongly coupled to PC

2 , and
PO
3 is even less strongly coupled to PC

3 . This suggests that it
might be useful to search for additional SMEFT operators
that affect the linear combination of obervables in PO

2

and PO
3 .

F. Fit with five SMEFT coefficients

Now suppose that we keep only the first five SMEFT
coefficients in Table II nonzero. In this case, we have more
SMEFT coefficients than observables, and so the individual
coefficients cannot be fit unambiguously. Furthermore,
because there are necessarily flat directions, the margin-
alization over some sets of SMEFT coefficients is ill-
defined. Nevertheless, the PCA/SVD approach allows us to
find meaningful constraints. We obtain

U† ¼

0
B@

−0.273 −0.770 −0.576
0.275 0.512 −0.814
−0.922 0.381 −0.0720

1
CA; ð35Þ

V†¼

0
BBBBBB@

−0.999 0.000698 −0.0414 0.00390 −0.00316
0.0411 0.134 −0.969 0.0443 −0.196
0.00282 −0.931 −0.0541 0.0222 −0.361
0.00199 0.0163 0.0453 0.999 0.0128

0.00647 −0.340 −0.231 0.00431 0.912

1
CCCCCCA
;

ð36Þ

and

W ¼

0
B@

19.9 0 0 0 0

0 1.80 0 0 0

0 0 0.0339 0 0

1
CA: ð37Þ

The coefficients of the SMEFT coefficients of a given
principal component are given by the entries in the
corresponding row in V†. The best-fit values for the first
three principal components and their two-standard-
deviation uncertainties are

P̄C
1 ¼ −0.0645� 0.100;

P̄C
2 ¼ −0.467� 1.11;

P̄C
3 ¼ −4.46� 59.0: ð38Þ

The linear combinations of SMEFT coefficients that are
unconstrained have been sequestered by the SVD pro-
cedure. Comparing Eq. (38) with Eq. (33), we see that the
best-fit values and uncertainties in the first two principal
components are remarkably stable as new SMEFT con-
tributions are introduced. This reflects the fact that the
observables are relatively insensitive to the SMEFT con-
tributions that are proportional to Cbg and Cϕtb, as can be
seen from the small coefficients of Cbg and Cϕtb in the first
two principal components. We see that the principal
components of the observables, which are given by the
rows ofU†, are almost unchanged in comparison with those
from the three-coefficient fit.

G. Fit with ten SMEFT coefficients

Next we apply the SVD method to the complete set of
ten SMEFT coefficients in Table II. We list only the three
principal components that are constrained. They are

PC
1 ¼ −0.999CtW þ 0.000698Ctg − 0.0414CbW þ 0.00390Cbg − 0.00316Cϕtb

þ 0.000737Cð1Þ
qq − 0.00540Cð3Þ

qq − 0.000570Cð1Þ
qu − 0.000760Cð8Þ

qu þ 0.000815Cð3Þ
lq ;

PC
2 ¼ 0.0406CtW þ 0.134Ctg − 0.967CbW þ 0.0442Cbg − 0.196Cϕtb

− 0.00856Cð1Þ
qq þ 0.0628Cð3Þ

qq − 0.00550Cð1Þ
qu − 0.00733Cð8Þ

qu − 0.00947Cð3Þ
lq ;

PC
3 ¼ 0.00819CtW − 0.0753Ctg − 0.0672CbW þ 0.00484Cbg − 0.0452Cϕtb

þ 0.131Cð1Þ
qq − 0.964Cð3Þ

qq þ 0.0854Cð1Þ
qu þ 0.114Cð8Þ

qu þ 0.145Cð3Þ
lq : ð39Þ

The best-fit values and two-standard-deviation uncertainties for these principal components are
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P̄C
1 ¼ −0.0645� 0.100;

P̄C
2 ¼ −0.465� 1.11;

P̄C
3 ¼ −0.432� 5.32: ð40Þ

As can be seen, the first two principal components remain
quite stable in best-fit value and uncertainty as additional
SMEFT coefficients are introduced, reflecting the relative
insensitivity of the observables to the additional SMEFT
coefficients.
The principal components of the observables can be

obtained from U†, which is given by

U† ¼

0
B@

−0.273 −0.770 −0.576
0.287 0.507 −0.813
−0.918 0.387 −0.0829

1
CA: ð41Þ

This result for U† is not very different from the results from
the three- or five-coefficient fits.
The results in Eq. (40) express precisely the constraints

on the 10-coefficient fit that follow from the input top-
quark decay rates. As such, they should be considered to
supersede the results from the one- and two-coefficient fits
that were given in Ref. [31], since those fits fail to account
for the high degree of correlation between uncertainties in
the SMEFT coefficients, and, consequently, are quite
misleading.

H. Fit with a flat direction in coefficient space

Next, we examine the case in which the number of
SMEFT coefficients and the number of observables are
equal, but there is a hidden flat direction. In order to
construct an example of this situation, we keep three
SMEFT coefficients, CtW , Ctg, and CbW , nonzero and set
the remaining SMEFT coefficients to zero. Let atW , atg, and
abW be the coefficients of CtW , Ctg, and CbW in OSMEFT.
Then, the following replacement creates an approximate
artificial flat direction in the space of Ctg and CbW :

atg → ϵatg þ ð1 − ϵÞrabW: ð42Þ

In the limit ϵ → 0, there is an exact flat direction in the
space of SMEFT coefficients.
As a numerical example, we take scale factor r in

Eq. (42) to be −3.2. As ϵ approaches zero, conventional
fitting procedures that use gradients of χ2 to find a
minimum in χ2 have numerical difficulties. Let us consider,
for example, the situation for ϵ ¼ 10−6. The Mathematica
routine FindMinimum can be used to minimize the χ2. This
routine comes with a number of options for the method to
be used in finding the minimum. Using Mathematica
version 11.3 [34], we find that the conjugate-gradient
method algorithm yields

CtW ¼ 0.0445;

Ctg ¼ 0.236;

CbW ¼ 1.24; ð43Þ

Newton’s method yields

CtW ¼ 0.0410;

Ctg ¼ 7.00 × 105;

CbW ¼ 2.24 × 106; ð44Þ

and the principal-axis method yields

CtW ¼ 0.0445;

Ctg ¼ 0.161;

CbW ¼ 1.00: ð45Þ

Owing to the existence of a nearly flat direction, the results
vary wildly, depending on the algorithm that is used in
minimizing χ2. While this behavior is to be expected in
under-determined problems, it is difficult to draw any
conclusion from such results. In contrast, meaningful
constraints can be found by using PCA. From SVD, we
obtain

V† ¼

0
B@

−0.988845 0.142167 −0.0444274
−0.148947 −0.943833 0.294948

−1.49286 × 10−9 0.298275 0.95448

1
CA
ð46Þ

and

W ¼

0
B@

20.1307 0 0

0 5.80765 0

0 0 9.49318 × 10−9

1
CA . ð47Þ

The coefficient principal components are

PC
1 ¼ −0.989CtW þ 0.142Ctg − 0.0444CbW;

PC
2 ¼ −0.149CtW − 0.944Ctg þ 0.295CbW;

PC
3 ¼ −1.49 × 10−9CtW þ 0.298Ctg þ 0.954CbW . ð48Þ

From the result for W, it follows that only PC
1 and PC

2 are
well constrained, while PC

3 is not, as is evident from the
near-vanishing of the corresponding diagonal value of W.6

The observable principal component PO
3 has essentially no

sensitivity to the physics beyond the standard model that is

6We keep more significant digits than usual in the results for
V† and W in Eqs. (46) and (47) for purposes of later comparison
with the results for V† and W when ϵ ¼ 0.
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embodied in PC
3 . We see that the SVD/PCA method has

constrained the principal components that contain
a contribution that is proportional to −3.2Ctg þ CbW

and has identified as unconstrained the principal compo-
nent that contains a contribution that is proportional to
Ctg þ 3.2CbW , which corresponds to the flat direction. The
best-fit values of the principal components and their
two-standard deviation uncertainties are

P̄C
1 ¼ −0.0655� 0.0994;

P̄C
2 ¼ 0.136� 0.344;

P̄C
3 ¼ 1.58 × 107 � 2.11 × 108: ð49Þ

We can invert the relations in Eq. (48), using the rows of V
to obtain the coefficients. The result is

CtW ¼ −0.989PC
1 − 0.149PC

2 − 1.49 × 10−9PC
3 ;

Ctg ¼ 0.142PC
1 − 0.944PC

2 þ 0.298PC
3 ;

CbW ¼ −0.0444PC
1 þ 0.295PC

2 þ 0.954PC
3 ; ð50Þ

From Eq. (50), it is easily seen that, to good approxi-
mation, the differences between the three results from
FindMinimum correspond to differences in the value of PC

3 .
When ϵ ¼ 0 and there is an exact flat direction, numeri-

cal minimization of χ2 with respect to the SMEFT
coefficients would fail to converge to a result. However,
the SVD method still yields meaningful constraints.
Specifically, we have

V† ¼

0
B@

−0.988845 0.142168 −0.0444274
−0.148948 −0.943833 0.294948

1.29707 × 10−17 0.298275 0.95448

1
CA
ð51Þ

and

W ¼

0
B@

20.1307 0 0

0 5.80765 0

0 0 0

1
CA; ð52Þ

which are very close to the results for ϵ ¼ 10−6.

I. Comparison of SVD with diagonalization of the
Fisher matrix

Finally, let us compare the speed and accuracy of the
computation of the eigenvalues and eigenvectors of the
Fisher matrix through direct calculation and through the use
of SVD. We consider the case of ten SMEFT coefficients,
which is the most challenging computationally. In that case,
when we evaluate expressions in Mathematica 12 [50],
the direct-diagonalization and SVD methods lead to

eigenvalues of W (square roots of the eigenvalues of the
Fisher matrix) whose relative differences are no more than
4 × 10−16 and eigenvectors whose nonzero components
have relative differences that are no more than 6.8 × 10−14.
Clearly, these are insignificant in comparison with other
uncertainties in the fits, although they might become more
significant in fitting programs that use single-precision
arithmetic. Differences in computation time are also
insignificant for matrices of this size, as computation times
for both methods are on the order of 10−5 seconds on a
modern laptop.
In the case of three nonzero coefficients with an artificial

nearly flat direction, the accuracy of the smallest eigenvalue
suffers in the case of the Fisher-matrix method, as it
becomes negative (−7 × 10−15 for the eigenvalue of the
Fisher matrix versus 9 × 10−9 for the eigenvalue of W).
However, this unphysical result that arises from the Fisher-
matrix method has no practical consequences for a SMEFT
analysis because large excursions of SMEFT coefficients
from zero can be bounded by appealing to power counting
arguments [20].
The issue of computation time might become more

significant in the analysis of larger matrices, such as those
that would appear in a full fit of the dimension-8 SMEFT
coefficients. In particular, if the number of SMEFT
coefficients is much greater than the number of observ-
ables, then the Fisher matrix is much larger than the matrix
that is analyzed in SVD. In this situation, the computation
time for an SVD analysis can be much less than for
diagonalization of the Fisher matrix. For example, if one
takesM to be a random matrix 100 × 3000matrix, then the
computation time to find eigenvalues and eigenfunctions is
about 1 second for SVD and 11 seconds for the Fisher-
matrix method in Mathematica 12 on a modern laptop.
These computation-time differences would be magnified if
many fits need be performed, for example, in varying input
parameters or in using the iterative approach that is
described in Sec. IV. This computational advantage of
the SVD method over the Fisher-matrix method arises only
when the number of SMEFT coefficients is much greater
than the number of observables, and, in fact, the Fisher-
matrix method has the computational advantage when the
situation is reversed and the number of observables is much
greater than the number of SMEFT coefficients. That
advantage would be significant only when the number of
observables is very large (≳1000).

IV. EXTENSION TO HIGHER ORDERS
IN THE SMEFT EXPANSION

The SVD method that we have presented is limited to
fitting problems in which the observables depend linearly
on SMEFT coefficients. This is the case for fits at the
leading nontrivial order in the effective-field-theory
expansion, in which one considers only the contributions
of the interference of the dimension-6 SMEFT-operator
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amplitudes with the dimension-4 standard-model-operator
amplitudes. At the next order in the SMEFT expansion, one
would need to consider not only the contribution from the
square of the dimension-6 SMEFT-operator amplitudes, but
also the interference of the dimension-4 standard-model-
operator amplitudes with the thousands of dimension-8
SMEFT-operator amplitudes—a task that is not likely to be
undertaken soon.
Nevertheless, beyond leading order, one might still apply

the SVD method by making use of an iterative procedure.
One could first carry out a fit that retains only the
interference of the dimension-6 amplitude with the dimen-
sion-4 amplitude. Then, one could compute the contribu-
tion of the square of the dimension-6 amplitude, subtract it
from the experimental values of the observables, and carry
out a new fit, including the dimension-8 operators. This
last step could be iterated to produce fits of the desired
accuracy. The iteration process should converge if the
effective-field-theory expansion is valid, that is, if the
square of the dimension-6 amplitude is less than the inter-
ference of the dimension-6 amplitude with the dimension-4
amplitude.
This method would yield best-fit values of the coeffi-

cients, but would not give accurate results for the principal
components. Instead, one could compute the principal
components as follows. First one could obtain the
Fischer matrix (inverse covariance matrix) by computing
analytically two derivatives of χ2 with respect to the
SMEFT coefficients and evaluating the result at the best-
fit values of the coefficients from the iterative procedure.
The Fischer matrix could be diagonalized by standard
methods, and the principal components could then be
obtained from the elements of the unitary transformation
that effects the diagonalization. The uncertainties would be
given by the inverses of the square roots of the diagonal
components of the Fischer matrix. Although the Fischer-
matrix method is used in the last step, this step occurs only
once in the procedure. The “heavy-lifting,” involving the
repeated, iterative principal-component analysis of large
matrices, can be carried out by making use of SVD.

V. SUMMARY

In using experimental data to constrain the Wilson
coefficients in standard model effective field theory
(SMEFT), a difficulty that often arises is that observables
may be insensitive to certain linear combinations of
SMEFT coefficients. That is, there may be “flat directions”
in the space of SMEFT coefficients. This difficulty can
arise because, in a partial analysis that is restricted
to a particular set of physical processes, the number of
experimental observables may be less than the number of
SMEFT coefficients. In this case, it is clear that some linear
combinations of SMEFT coefficients would not be con-
strained. However, it can happen that some linear combi-
nations of SMEFT coefficients are poorly constrained even

when the number of observables is equal to or greater than
the number of SMEFT coefficients to be fit.
A standard approach for dealing with this difficulty is to

carry out a principal-component analysis (PCA) of the
SMEFT coefficients by diagonalizing the Fisher informa-
tion matrix [20–25]. In this paper, we have presented an
alternative approach for carrying out the PCA that is based
on singular-value decomposition (SVD). As we have
shown, the SVD method provides information about the
sensitivity of experimental observables to SMEFT coef-
ficients that is not accessible in the Fisher-matrix method.
That information could be used to identify new measure-
ments that could improve the constraint on a poorly
constrained SMEFT-coefficient principal component. It
could also be used to target particular linear combinations
of observables in searches for new physics.
In principle, SVD may offer superior precision in

comparison with diagonalization of the Fisher matrix
because SVD involves the analysis of a matrix that is
better conditioned than the Fisher matrix. The condition
number of the Fisher matrix is the square of the condition
number of the matrix that is analyzed in the SVD method,
and it may become large if there are nearly flat directions in
the space of SMEFT coefficients. In practice, very small
eigenvalues of the Fisher that are associated with nearly flat
directions are of little physical consequence because the
excursions of the corresponding coefficient eigenvectors
are limited by SMEFT power-counting arguments [20].
In the situation in which the number of SMEFT

coefficients is very large and the number of observables
is much smaller, as might occur in an analysis of dimen-
sion-8 SMEFT coefficients, the matrix that is analyzed in
the SVD method is much smaller than the Fisher matrix,
and the SVD method may accrue advantages in computa-
tional speed.
As we have pointed out, the SVDmethod also provides a

convenient way to compute the central values of the
SMEFT coefficients for constrained directions, even in
the presence of flat directions.
We have demonstrated the application of the SVD

method to the process of top-quark decay to a W boson
and a b quark. In this demonstration, we give specific
illustrations of the pitfalls in two widely used fitting
approaches, namely, (1) setting all of the coefficients to
zero except for one and (2) marginalizing over all of the
coefficients except for one.We show that approach (1) leads
to shifted central values of the coefficients and under-
estimated uncertainties, while approach (2) leads to an
overly pessimistic assessment of uncertainties, which can
be ameliorated through the use of PCA. Our fit for the case
of ten SMEFT coefficients should be considered to super-
sede both the one- and two-coefficient fits in Ref. [31],
which do not account for the highly-correlated uncertainties
in the SMEFT coefficients.
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In the example of top-quark decay to a W boson and a b
quark, the matrices involved are of too small to reveal the
putative computational advantages of the SVD method.
However, the advantages might become significant in fits
involving the many dimension-8 SMEFT coefficients if
multiple fits were needed, for example, in varying input
parameters or in using the iterative fitting procedure that we
have described.
Although the method that we have presented is limited to

the case in which the observables depend linearly on the
SMEFT coefficients, we have outlined in Sec. IV an
iterative extension of the method that can be applied to
the nonlinear situation, provided that the contributions of
the nonlinear terms to the observables are small in
comparison with the contributions of the linear terms.
This is the case if the SMEFT expansion converges.
Finally, the method that we have presented relies on a

Gaussian probability analysis. While one might ultimately
want to improve on a Gaussian approach, it should
certainly be adequate for the purpose of carrying out
exploratory studies in SMEFT.

ACKNOWLEDGMENTS

We are grateful to Christopher Murphy for pointing out
to us Ref. [26], as well as several recent papers on global

fitting of SMEFT coefficients. We thank Radja Boughezal,
Chien-Yi Chen, Frank Petriello, and Daniel Wiegand for
providing us with a version of Ref. [31] that contains
corrected expressions for the total width and helicity
fractions in top-quark decay to a b quark and a W boson.
We also thank Xiang-peng Wang for checking some of
our Mathematica expressions. The work of G. T. B. is
supported by the U.S. Department of Energy, Division
of High Energy Physics, under Contract No. DE-AC02-
06CH11357. The work of H. S. C. is funded by the
Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence
Strategy—EXC-2094–390783311. The submitted manu-
script has been created in part by University of Chicago
Argonne, LLC, Operator of Argonne National Laboratory.
Argonne, a U.S. Department of Energy Office of Science
laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and
others acting on its behalf, a paid-up nonexclusive, irrevo-
cable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf
of the Government.

[1] W. Buchmuller and D. Wyler, Nucl. Phys. B268, 621
(1986).

[2] K. Hagiwara, S. Ishihara, R. Szalapski, and D. Zeppenfeld,
Phys. Rev. D 48, 2182 (1993).

[3] G. F. Giudice, C. Grojean, A. Pomarol, and R. Rattazzi,
J. High Energy Phys. 06 (2007) 045.

[4] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek,
J. High Energy Phys. 10 (2010) 085.

[5] Z. Han and W. Skiba, Phys. Rev. D 71, 075009 (2005).
[6] A. Pomarol and F. Riva, J. High Energy Phys. 01 (2014)

151.
[7] C. Y. Chen, S. Dawson, and C. Zhang, Phys. Rev. D 89,

015016 (2014).
[8] J. Ellis, V. Sanz, and T. You, J. High Energy Phys. 07 (2014)

036.
[9] J. D. Wells and Z. Zhang, Phys. Rev. D 90, 033006

(2014).
[10] A. Falkowski and F. Riva, J. High Energy Phys. 02 (2015)

039.
[11] J. de Blas, M. Ciuchini, E. Franco, S. Mishima, M. Pierini,

L. Reina, and L. Silvestrini, Proc. Sci., EPS-HEP2017
(2017) 467 [arXiv:1710.05402].

[12] J. de Blas, O. Eberhardt, and C. Krause, J. High Energy
Phys. 07 (2018) 048.

[13] J. Ellis, C. W. Murphy, V. Sanz, and T. You, J. High Energy
Phys. 06 (2018) 146.

[14] J. Aebischer, J. Kumar, P. Stangl, and D. M. Straub, Eur.
Phys. J. C 79, 509 (2019).

[15] E. da Silva Almeida, A. Alves, N. Rosa Agostinho, O. J. P.
Éboli, and M. C. Gonzalez-Garcia, Phys. Rev. D 99, 033001
(2019).

[16] A. Biekötter, T. Corbett, and T. Plehn, SciPost Phys. 6, 064
(2019).

[17] N. P. Hartland, F. Maltoni, E. R. Nocera, J. Rojo, E. Slade,
E. Vryonidou, and C. Zhang, J. High Energy Phys. 04
(2019) 100.

[18] M. Cepeda et al., Report from Working Group 2: Higgs
Physics at the HL-LHC and HE-LHC, CERN Yellow Rep.
Monogr. 7, 221 (2019).

[19] I. Brivio, S. Bruggisser, F. Maltoni, R. Moutafis, T. Plehn, E.
Vryonidou, S. Westhoff, and C. Zhang, J. High Energy
Phys. 02 (2020) 131.

[20] L. Berthier and M. Trott, J. High Energy Phys. 02 (2016)
069.

[21] L. Berthier, M. Bjørn, and M. Trott, J. High Energy Phys. 09
(2016) 157.

[22] I. Brivio and M. Trott, J. High Energy Phys. 07 (2017) 148;
05 (2018) 136(A).

[23] J. Brehmer, F. Kling, T. Plehn, and T. M. P. Tait, Phys. Rev.
D 97, 095017 (2018).

[24] J. Brehmer, F. Kling, I. Espejo, and K. Cranmer, Comput.
Software Big Sci. 4, 3 (2020).

NEW METHOD FOR FITTING COEFFICIENTS IN STANDARD … PHYS. REV. D 101, 115039 (2020)

115039-11

https://doi.org/10.1016/0550-3213(86)90262-2
https://doi.org/10.1016/0550-3213(86)90262-2
https://doi.org/10.1103/PhysRevD.48.2182
https://doi.org/10.1088/1126-6708/2007/06/045
https://doi.org/10.1007/JHEP10(2010)085
https://doi.org/10.1103/PhysRevD.71.075009
https://doi.org/10.1007/JHEP01(2014)151
https://doi.org/10.1007/JHEP01(2014)151
https://doi.org/10.1103/PhysRevD.89.015016
https://doi.org/10.1103/PhysRevD.89.015016
https://doi.org/10.1007/JHEP07(2014)036
https://doi.org/10.1007/JHEP07(2014)036
https://doi.org/10.1103/PhysRevD.90.033006
https://doi.org/10.1103/PhysRevD.90.033006
https://doi.org/10.1007/JHEP02(2015)039
https://doi.org/10.1007/JHEP02(2015)039
https://doi.org/10.22323/1.314.0467
https://doi.org/10.22323/1.314.0467
https://arXiv.org/abs/1710.05402
https://doi.org/10.1007/JHEP07(2018)048
https://doi.org/10.1007/JHEP07(2018)048
https://doi.org/10.1007/JHEP06(2018)146
https://doi.org/10.1007/JHEP06(2018)146
https://doi.org/10.1140/epjc/s10052-019-6977-z
https://doi.org/10.1140/epjc/s10052-019-6977-z
https://doi.org/10.1103/PhysRevD.99.033001
https://doi.org/10.1103/PhysRevD.99.033001
https://doi.org/10.21468/SciPostPhys.6.6.064
https://doi.org/10.21468/SciPostPhys.6.6.064
https://doi.org/10.1007/JHEP04(2019)100
https://doi.org/10.1007/JHEP04(2019)100
https://doi.org/10.23731/CYRM-2019-007.221
https://doi.org/10.23731/CYRM-2019-007.221
https://doi.org/10.1007/JHEP02(2020)131
https://doi.org/10.1007/JHEP02(2020)131
https://doi.org/10.1007/JHEP02(2016)069
https://doi.org/10.1007/JHEP02(2016)069
https://doi.org/10.1007/JHEP09(2016)157
https://doi.org/10.1007/JHEP09(2016)157
https://doi.org/10.1007/JHEP07(2017)148
https://doi.org/10.1007/JHEP05(2018)136
https://doi.org/10.1103/PhysRevD.97.095017
https://doi.org/10.1103/PhysRevD.97.095017
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1007/s41781-020-0035-2


[25] R. Aoude, T. Hurth, S. Renner, and W. Shepherd,
arXiv:2003.05432.

[26] C. W. Murphy, Phys. Rev. D 97, 015007 (2018).
[27] See, for example, D. Kalman, College Math. J. 27, 2

(1996).
[28] A. Buckley, C. Englert, J. Ferrando, D. J. Miller, L. Moore,

M. Russell, and C. D. White, J. High Energy Phys. 04
(2016) 015.

[29] V. Cirigliano, W. Dekens, J. de Vries, and E. Mereghetti,
Phys. Rev. D 94, 034031 (2016).

[30] J. A. Aguilar-Saavedra et al., arXiv:1802.07237.
[31] R. Boughezal, C. Y. Chen, F. Petriello, and D. Wiegand,

Phys. Rev. D 100, 056023 (2019).
[32] G. T. Bodwin, H. S. Chung, and J. Repond, J. Instrum. 14,

P07002 (2019).
[33] See, for example, C. L. Lawson and R. J. Hanson, Solving

Least Squares Problems (Society for Industrial and Applied
Mathematics, Philadelphia, 1995).

[34] Wolfram Research, Inc., Mathematica, version 11.3
(Wolfram Research, Inc., Champaign, IL, 2018).

[35] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes in C (Cambridge University
Press, Cambridge, England, 2002).

[36] S. van der Walt, S. C. Colbert, and G. Varoquaux, Comput.
Sci. Eng. 13, 22 (2011).

[37] M. Galassi et al., GNU Scientific Library Reference
Manual, 3rd ed. (Network Theory Ltd., 2009), http://
www.gnu.org/software/gsl/.

[38] A. Bjerhammar, Trans. R. Inst. Tech. Stockholm 49, 1
(1951).

[39] E. H. Moore, Bull. Am. Math. Soc. 26, 394 (1920).
[40] R. Penrose, Proc. Cambridge Philos. Soc. 51, 406 (1955).
[41] R. Penrose, Proc. Cambridge Philos. Soc. 52, 17 (1956).
[42] T. B. Schön and F. Lindsten, Manipulating the multivariate

Gaussian density, Technical Report No. TR3, Division of
Automatic Control, Linköping University, 2011.

[43] A. Dedes, W. Materkowska, M. Paraskevas, J. Rosiek, and
K. Suxho, J. High Energy Phys. 06 (2017) 143.

[44] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,
030001 (2018).

[45] V. Khachatryan et al. (CMS Collaboration), Phys. Lett. B
762, 512 (2016).

[46] D. Wiegand (private communication).
[47] M. Fischer, S. Groote, J. G. Korner, and M. C. Mauser,

Phys. Rev. D 63, 031501 (2001).
[48] C. Zhang, Phys. Rev. D 90, 014008 (2014).
[49] S. Dawson and P. P. Giardino, Phys. Rev. D 101, 013001

(2020).
[50] Wolfram Research, Inc., Mathematica, version 12.1

(Wolfram Research, Inc., Champaign, IL, 2020).

GEOFFREY T. BODWIN and HEE SOK CHUNG PHYS. REV. D 101, 115039 (2020)

115039-12

https://arXiv.org/abs/2003.05432
https://doi.org/10.1103/PhysRevD.97.015007
https://doi.org/10.1080/07468342.1996.11973744
https://doi.org/10.1080/07468342.1996.11973744
https://doi.org/10.1007/JHEP04(2016)015
https://doi.org/10.1007/JHEP04(2016)015
https://doi.org/10.1103/PhysRevD.94.034031
https://arXiv.org/abs/1802.07237
https://doi.org/10.1103/PhysRevD.100.056023
https://doi.org/10.1088/1748-0221/14/07/P07002
https://doi.org/10.1088/1748-0221/14/07/P07002
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
https://doi.org/10.1017/S0305004100030401
https://doi.org/10.1017/S0305004100030929
https://doi.org/10.1007/JHEP06(2017)143
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1016/j.physletb.2016.10.007
https://doi.org/10.1016/j.physletb.2016.10.007
https://doi.org/10.1103/PhysRevD.63.031501
https://doi.org/10.1103/PhysRevD.90.014008
https://doi.org/10.1103/PhysRevD.101.013001
https://doi.org/10.1103/PhysRevD.101.013001

