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Aviolation of mirror symmetry in the η → πþπ−π0 Dalitz plot has long been recognized as a signal of C
and CP violation. Here we show how the isospin of the underlying C- and CP-violating structures can be
reconstructed from their kinematic representation in the Dalitz plot. Our analysis of the most recent
experimental data reveals, for the first time, that the C- and CP-violating amplitude with total isospin I ¼ 2

is much more severely suppressed than that with total isospin I ¼ 0.
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I. INTRODUCTION

The decay η → 3π first came to prominence after the
observation of KL → πþπ− decay and the discovery of CP
violation in 1964 [1], because it could be used to test
whether KL → πþπ− decay was generated by CP violation
in the weak interactions [2,3]. Rather, CP violation could
arise from the interference of the CP-conserving weak
interaction with a new, “strong” interaction that breaks C
andCP; this new interaction could be identified through the
appearance of a charge asymmetry in the momentum
distribution of πþ and π− in η → πþπ−π0 decay [2,4,5].
Since η → πþπ−π0 breaks G parity, isospin I and/or charge-
conjugation C must be broken in order for the process to
occur. Thus a charge asymmetry could arise from the
interference of a C-conserving, but isospin-breaking ampli-
tude with a isospin-conserving, but C-violating one [4].
Numerical estimates were made by assuming that the
isospin-violating contributions were driven by electromag-
netism [4–6]. Since that early work, our understanding of
these decays within the Standard Model (SM) has changed
completely: the weak interaction does indeed break CP
symmetry, through flavor-changing transitions character-
ized by the Cabibbo-Kobayashi-Maskawa (CKM) matrix.
Moreover, isospin breaking in the strong interaction,
mediated by the up-down quark mass difference [7–9],
is now known to provide the driving effect in mediating
η → 3π decay [10–13], with isospin-breaking, electromag-
netic effects playing a much smaller role [14–17].

Modern theoretical studies of η → 3π decay focus on
a complete description of the final-state interactions
within the SM, in order to extract the isospin-breaking,
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, with

m̂ ¼ ðmd þmuÞ=2, precisely [11–13,18–23]. There has
been no further theoretical study of CP violation in η →
πþπ−π0 decay since 1966. Since the ηmeson carries neither
spin nor flavor, searches for new physics in this system
possess special features. For example, η → πþπ−π0 decay
must be parity P conserving if the π and η mesons have
the same intrinsic parity, so that C violation in this process
implies that CP is violated as well. There has been,
moreover, much effort invested in the possibility of flavor-
diagonal CP violation via a nonzero permanent electric
dipole moment (EDM), which is P and time-reversal T
violating, or P and CP violating if CPT symmetry is
assumed. Studies of flavor-diagonal, C and CP violating
processes are largely lacking. We believe that the study of
the Dalitz plot distribution in η → πþðpπþÞπ−ðpπ−Þπ0ðpπ0Þ
decay is an ideal arena in which to search for C and
CP violation beyond the SM. Were we to plot the
Dalitz distribution in terms of the Mandelstam variables
t≡ ðpπ− þ pπ0Þ2 and u≡ ðpπþ þ pπ0Þ2, the charge asym-
metry we have noted corresponds to a failure of mirror
symmetry, i.e., of t ↔ u exchange, in the Dalitz plot.
In contrast to that C andCP violating observable, a nucleon
EDM could be mediated by a minimal P- and T-violating
interaction, the mass-dimension-four θ̄ term of the SM,
and not new weak-scale physics. The θ̄ term can also
generate η → ππ and η=η0 → 4π0 decay, breaking P and
CP explicitly, so that limits on the decay rate constrains
the square of a CP-violating parameter [24–27]. Since the θ̄
term is C even, it cannot contribute to the charge asym-
metry, at least at tree level. Moreover, SM weak interac-
tions do not support flavor-diagonal C and CP violation.
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Note that the charge asymmetry is linear in CP-violating
parameters.
The appearance of a charge asymmetry and thus of C

(and CP) violation in η → πþðpπþÞπ−ðpπ−Þπ0ðpπ0Þ decay
can be probed experimentally through the measurement of
a left-right asymmetry, ALR [28]:

ALR ≡ Nþ − N−

Nþ þ N−
≡ 1

Ntot
ðNþ − N−Þ; ð1Þ

where N� is the number of events with u≷ t, so that the πþ
has more (less) energy than the π− if u > ð<Þt in the η rest
system. A number of experiments have been conducted
over the years to test for a charge asymmetry in η →
πþπ−π0 decay, with early experiments finding evidence for
a nonzero asymmetry [29–31], but with possible systematic
problems becoming apparent only later, as, e.g., in
Ref. [32]. Other experiments find no evidence for a charge
asymmetry and C violation [28,32–36], and we note that
new, high-statistics experiments are planned [37–39]. It is
also possible to form asymmetries that probe the isospin of
the C-violating final state: a sextant asymmetry AS,
sensitive to the I ¼ 0 state [4,5], and a quadrant asymmetry
AQ, sensitive to the I ¼ 2 final state [4,28]. These asym-
metries are more challenging to measure and are only
poorly known [28]. In this paper we develop a method to
discriminate between the possible I ¼ 0 and I ¼ 2 final
states by considering the pattern of mirror-symmetry-
breaking events they engender in the Dalitz plot. Mirror-
symmetry breaking as a probe of CP violation has also
been studied in untagged, heavy-flavor decays [40–43],
with Ref. [42] analyzing how different CP-violating
mechanisms populate the Dalitz plot. We also note
Refs. [44,45] for Dalitz studies of CP violation in
heavy-flavor decays.

II. THEORETICAL FRAMEWORK

The η → 3π decay amplitude in the SM can be expressed
as [10,11]

Aðs; t; uÞ ¼ −
1

Q2

M2
K

M2
π

M2
K −M2

π

3
ffiffiffi
3

p
F2
π

Mðs; t; uÞ; ð2Þ

where we employ the Mandelstam variables u, t, and
s ¼ ðpπþ þ pπ−Þ2 and work to leading order in strong-
interaction isospin breaking. Since C ¼ −ð−1ÞI in η → 3π
decay [4], the C- and CP-even transition amplitude with a
ΔI ¼ 1 isospin-breaking prefactor must have I ¼ 1. The
amplitude Mðs; t; uÞ thus corresponds to the total isospin
I ¼ 1 component of the πþπ−π0 state and can be expressed
as [11,46]

MC
1 ðs; t; uÞ ¼ M0ðsÞ þ ðs − uÞM1ðtÞ þ ðs − tÞM1ðuÞ

þM2ðtÞ þM2ðuÞ −
2

3
M2ðsÞ; ð3Þ

where MIðzÞ is an amplitude with π − π rescattering in the
z-channel with isospin I. This decomposition can be
recovered under isospin symmetry in chiral perturba-
tion theory (ChPT) up to next-to-next-to-leading order
(NNLO), Oðp6Þ, because the only absorptive parts that
can appear are in the π − π S-and P-wave amplitudes [13].
An analogous relationship exists in η → 3π0 decay [11],
though there is no Dalitz plot asymmetry and hence no
effect linear in CP violation in that case because the final-
state particles are all identical.
Since we are considering C and CP violation, additional

amplitudes can appear—namely, total I ¼ 0 and I ¼ 2
amplitudes. The complete amplitude is thus

Aðs; t; uÞ ¼ −
1

Q2

M2
K

M2
π

M2
K −M2

π

3
ffiffiffi
3

p
F2
π

MC
1 ðs; t; uÞ

þ αM=C
0 ðs; t; uÞ þ βM=C

2 ðs; t; uÞ; ð4Þ

where α and β are unknown, low-energy constants—
complex numbers to be determined by fits to the exper-
imental event populations in the Dalitz plot. If they are
determined to be nonzero, they signal the appearance of
C- and CP-violation. To construct ALR in Eq. (1), we
compute

N� ¼ 1

256π3M3
η

Z
u≷t

dtdujAðs; t; uÞj2; ð5Þ

using Eq. (4) and working to leading order in CP violation.
Since the phase space is symmetric and the CP-violating
terms are antisymmetric under u ↔ t exchange, we see that
the CP-violating terms leave the total decay rate unchanged
in OðαÞ, OðβÞ.
We now turn to the amplitudes M=C

0;2ðs; t; uÞ. Here, too,
we introduce functions MIðzÞ for amplitudes that contain
π − π scattering in the z channel with isospin I. After using
angular-momentum conservation and the Clebsch-Gordon
coefficients for the addition of the possible isospin states, as
shown in the Appendix, we have

M=C
0 ðs; t; uÞ ¼ ðs − tÞM0

1ðuÞ þ ðu − sÞM0
1ðtÞ

− ðu − tÞM0
1ðsÞ ð6Þ

and

M=C
2 ðs; t; uÞ ¼ ðs − tÞM00

1ðuÞ þ ðu − sÞM00
1ðtÞ

þ 2ðu − tÞM00
1ðsÞ þ

ffiffiffi
5

p
½M00

2ðuÞ −M00
2ðtÞ�;

ð7Þ
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where the superscripts distinguish the functions that appear
in each state of total isospin. In what follows we do not
compute M0

IðzÞ and M00
I ðzÞ explicitly, but, rather, estimate

them. With this, we can use the experimental studies we
consider in this paper to set limits on the possibilities, by
constraining α and β. For context we note that the particular
new-physics operators that would giveC- and CP-violation
are not well established, though examples have been
discussed in the literature [47–51]. From the viewpoint
of SM effective field theory (SMEFT) [52,53], we also
know that there are many more examples, even in leading-
mass dimension, than have been discussed thus far [54].
Nevertheless, we can draw conclusions about M0

IðzÞ and
M00

I ðzÞ irrespective of the choice of new-physics operator.
In particular, since the operators that mediate I ¼ 0 or
I ¼ 2 amplitudes break C, they cannot mediate a η → π0

transition, as we suppose that the neutral meson states
remain of definite C-parity in the presence of C-violation.
Thus if we were to evaluate the decay diagrams in NLO
ChPT in these exotic cases, they would have the same
decay topology as the diagrams that appear in that order in
the SM amplitude for η → πþπ−π0 decay. Thus there is a
one-to-one map of the two-body rescattering terms in the
SM to the C- and CP-violating amplitudes. To proceed, we
assume that the phases of the functions MIðzÞ, M0

IðzÞ and
M00

I ðzÞ arise from the strong-interaction dynamics of final-
state, π − π scattering of isospin I in channel z, making the
phase of each function common to all three isospin
amplitudes. Such treatments are familiar from the search
for non-SM CP violation, such as in the study of B →
πðρ → ππÞ decays [55–58]. Moreover, at the low energies
we consider here, the scattering of the two-pions in the
final state is predominantly elastic, as mixing with other
final-states can only occur through G-parity breaking.
Regardless of the total isospin of the final state pions,
the effective Hamiltonian that mediates the decay separates
into a C- and/or I-breaking piece and a C- and I-conserving
piece. Working to leading order in C- and/or I-breaking,
and assuming that the final-state interactions are two-body
only, Watson’s theorem [59], familiar from K → ππ decays
[57], also applies to this case and makes the phase of the
function MIðzÞ common to the three cases. However, the
functions MIðzÞ, M0

IðzÞ and M00
I ðzÞ could differ by poly-

nomial prefactors that depend on z. Nevertheless, we
believe these effects are relatively negligible, because the
energy release in η → πþπ−π0 decay is small. We illustrate
this explicitly later in this section.
We wish to study the possible patterns of C- and

CP-violation across the Dalitz plot, so that we now turn
to the explicit evaluation of Eq. (4) and its associated
Dalitz distribution. Much effort has been devoted to the
evaluation of the SM contribution, with work in ChPT
[10,13,60], as well as in frameworks tailored to address
various final-state-interaction effects [11,18–23,61–65]. In
what follows we employ a next-to-leading-order (NLO)

ChPT analysis [10,13] because it is the simplest choice in
which the C- and CP-violating coefficients α and β can
have both real and imaginary parts. A comparison of the
NLO and NNLO analyses of Bijnens et al. [13], noting
Table I of Ref. [32], shows that this is an acceptable choice.
We thus think it is rich enough to give a basic view as to
how our idea works. To compute the C-violating ampli-
tudes, we decompose the I ¼ 1 amplitude into the isospin
basis MIðzÞ. As well known [13,21,22,66], the isospin
decompositions involving the π − π rescattering functions
JrPQðsÞ are unique, whereas the polynomial parts of the
amplitude are not, due to the relation sþ tþ u ¼ 3s0,
where s0 ¼ ðM2

η þ 2M2
πþ þM2

π0
Þ=3. Thus there are MIðzÞ

redefinitions that leave the I ¼ 1 amplitude invariant, as
discussed in Ref. [66]. However, since we assume that
strong rescattering effects dominateMIðxÞ, we can demand
that the I ¼ 0, 2 amplitudes remain invariant also. As a
result, only the redefinition M0ðsÞ − 4

3
δ1 and M2ðzÞ þ δ1,

with δ1 an arbitrary constant, survives. In what follows we
adopt the NLO analyses of Refs. [10,13], and our isospin
decomposition of Ref. [10] is consistent with that in
Bijnens and Ghorbani [13]—its detailed form can be found
in the information in the Appendix. Small differences in
the numerical predictions exist, however, due to small
differences in the inputs used [10,13], and we study their
impact explicitly. Returning to the would-be NLO ChPT
computation of the total I ¼ 0, 2 amplitudes, we note that
C- and CP-violating four-quark operators are generated
by operators in mass dimension 8 in SMEFT [54], so that
these amplitudes start beyond Oðp4Þ, though this is not at
odds with pulling out a strong rescattering function. The
p2-dependence of a C- and CP-violating operator from
physics beyond the SM would in part be realized as
dimensionless ratios involving the new physics scale and
would appear in the prefactors α or β as appropriate.
Irrespective of the particular new-physics operator, we

note, by analyticity, that the MIðxÞ for the total I ¼ 0, 2
amplitudes could differ from the SM form, which is
driven by the strong π − π phase shifts, by a multiplicative

FIG. 1. Amplitudes ofMIðsÞ from Eqs. (A9), (A10) and (A11).
The solid lines represent the real part of MIðsÞ and the dashed
lines denote the imaginary part. Their s-dependence is driven by
that of the π − π phase shift [10]. Note that the M0ðsÞ and M2ðsÞ
amplitudes are dimensionless, whereas M1ðsÞ has units of
GeV−2. Since the form ðu − tÞM1ðsÞ appears in the final C-
and CP-violating amplitudes, we note that M2ðsÞ is typically a
factor of a few larger across the Dalitz plot.
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polynomial factor, nominally of form 1þCI
1x=M

2
π þCI

2x
2=

M4
π þ� � �, where CI

1 and CI
2 are constants. (We note

polynomials of similar origin appear in the time-like pion
form factor [67].) We emphasize that in assuming that
strong-interaction phases dominate we suppose these
corrections to be unimportant. We believe this to be an
excellent approximation, which we illustrate through a plot
of the functions MIðsÞ, as shown in Fig. 1. The physics of
π − π scattering make the functions MIðsÞ vary substan-
tially with s, whereas s itself only changes by about a factor
of 2 in η → 3π decay. As a result we expect that the ignored
polynomial factors are numerically unimportant, so that
their neglect does not impact the conclusions of this paper.

III. RESULTS

The Dalitz distribution in η → πþπ−π0 is usually
described in terms of variables X and Y [68]:

X ≡ ffiffiffi
3

p Tπþ − Tπ−

Qη
¼

ffiffiffi
3

p

2MηQη
ðu − tÞ; ð8Þ

Y ≡ 3Tπ0

Qη
− 1 ¼ 3

2MηQη
½ðMη −Mπ0Þ2 − s� − 1; ð9Þ

where Qη ¼ Tπþ þ Tπ− þ Tπ0 ¼ Mη − 2Mπþ −Mπ0 , and
Tπi is the πi kinetic energy in the η rest frame. The decay
probability can be parametrized in a polynomial expansion
around the center point ðX; YÞ ¼ ð0; 0Þ [32]:

jAðs; t; uÞj2 ¼ Nð1þ aY þ bY2 þ cX þ dX2 þ eXY

þ fY3 þ gX2Y þ hXY2 þ lX3 þ…Þ: ð10Þ

Since the C transformation on the decay amplitude is
equivalent to t ↔ u exchange [42], we see that the
appearance of terms that are odd in X would indicate both
C and CP violation. The KLOE-2 collaboration [32] has
provided a more precise estimate of the C-even parameters
in Eq. (10) and bounded the C-odd ones. Returning to
Eq. (4), we see that the C- and CP-violating contributions
to the decay probability are

1

ξ
jAðs; t; uÞj2=C

¼ MC
1 ½αM=C

0 þ βM=C
2 �� þ H:c:

¼ 2ReðαÞ½ReðMC
1 ÞReðM=C

0 Þ þ ImðMC
1 ÞImðM=C

0 Þ�
− 2ImðαÞ½ReðMC

1 ÞImðM=C
0 Þ − ImðMC

1 ÞReðM=C
0 Þ�

þ 2ReðβÞ½ReðMC
1 ÞReðM=C

2 Þ þ ImðMC
1 ÞImðM=C

2 Þ�
− 2ImðβÞ½ReðMC

1 ÞImðM=C
2 Þ − ImðMC

1 ÞReðM=C
2 Þ�; ð11Þ

where ξ≡ −ðM2
K=M

2
πÞðM2

K −M2
πÞ=ð3

ffiffiffi
3

p
F2
πQ2Þ, and

the existing experimental assessments of jAðs; t; uÞj2=C cor-

respond to the set of odd X polynomials in jAðs; t; uÞj2.
The parameter N drops out in the evaluation of the asym-
metries, and the parameters c, e, h, and l are taken from the
first line of Table 4.6 in the Ph.D. thesis of Caldeira
Balkeståhl [69],

c ¼ ð−4.34� 3.39Þ × 10−3; e ¼ ð2.52� 3.20Þ × 10−3;

h ¼ ð1.07� 0.90Þ × 10−2; l ¼ ð1.08� 6.54Þ × 10−3;

ð12Þ
which fleshes out Ref. [32]—the results emerge from a
global fit to the Dalitz distribution. There is a typographical
error in the sign of c in Ref. [32]. We now turn to the
extraction of ReðαÞ, ImðαÞ, ReðβÞ, and ImðβÞ using the
experimental data and Eqs. (3), (6), (7) using the MIðzÞ
amplitudes from Oðp4Þ ChPT [10,13]. We evaluate the
denominators of the possible charge asymmetries by com-
puting ξ2jMC

1 ðz; t; uÞj2 only.
Herewith we collect the parameters needed for our

analysis. We compute the phase space with physical
masses, so that sþ tþ u ¼ 3s0, but the decay amplitudes
[10,13] on which we rely, namely, Mðs; t; uÞ in Eq. (2),
should be in the isospin limit, implying some adjust-
ment of the input parameters may be needed. We
adopt the hadron masses and

ffiffiffi
2

p
Fπ ¼ ð130.2� 1.7Þ ×

10−3 GeV from Ref. [70] for both amplitudes. For the
Gasser and Leutwyler (GL) amplitude [10] we use Mπ ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2M2

π� þM2
π0
Þ=3

q
, MK≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

Kþ þM2
K0Þ=2

q
, where we

discuss our treatment of the two-particle thresholds in the
supplement, with F0 ¼ Fπ , FK=Fπ ¼ 1.1928� 0.0026
[70], and L3 ¼ ð−3.82� 0.30Þ × 10−3 from the NLO fit
with the scale μ ¼ 0.77 GeV [71]. We use these parameters
in the prefactor in Eq. (2) also, as well as Q ¼ 22.0 [22], to
find ξ ¼ −0.137. For the Bijnens and Ghorbani (BG)
amplitude through Oðp4Þ [13], we use Mðs; t; uÞ ¼
Mð2ÞðsÞ þMð4Þðs; t; uÞ and multiply the prefactor in
Eq. (2) by −ð3F2

πÞ=ðM2
η −M2

πÞ to yield that in Ref. [13].
In the Oðp2Þ term, which contributes to M0ðsÞ,
Mð2ÞðsÞ ¼ ð4M2

π − sÞ=F2
π , and we use Mπ and Fπ as

defined for the GL amplitude [10]. In the Oðp4Þ term,
we use Mπ0 and MK0 as indicated, as well as Δ ¼ M2

η −
M2

π0
and L3, L5, L7, L8 from fit 10 of Ref. [72].

We solve for α and β in two different ways for each of the
decay amplitudes [10,13]. We begin with the GL amplitude
[10], first making a Taylor expansion of Eq. (11) to cubic
power in X and Y about ðX; YÞ ¼ ð0; 0Þ. We then equate
coefficients associated with the X, XY, XY2, and X3 terms
to c, e, h and l, respectively, and then solve the four
equations to obtain ReðαÞ, ImðαÞ, ReðβÞ, and ImðβÞ. The
resulting values of α and β are
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ReðαÞ ¼ 16� 24;

ReðβÞ ¼ ð−1.5� 2.7Þ × 10−3;

ImðαÞ ¼ −20� 29;

ImðβÞ ¼ ð−1.3� 4.7Þ × 10−3: ð13Þ

In the first row of Fig. 2 we compare the resulting
assessment of Eq. (11) with the KLOE-2 results. Large
discrepancies exist, particularly at large values of X and/or
Y, where the empirical Dalitz plot [32] shows considerable
stength. Thus we turn to a second procedure, in which we
make a global fit of α and β in Eq. (11) to the KLOE-2
results. That is, we assess the Dalitz distribution NðX; YÞ
and its error by using the Dalitz plot parameters in Eq. (12),
discretized onto a ðX; YÞ mesh with 682 points. To
determine NðX; YÞ and its error we use the odd-X terms
in Eq. (10) with the normalization factorN ¼ 0.0474 as per
the GL amplitude [10] and compute the covariance matrix
using Eq. (12) and the correlation matrix given in Table 4.3
of Ref. [69]. We then fit jAðs; t; uÞj2=C using the GL

amplitude [10] to NðX; YÞ using a χ2 optimization to find

ReðαÞ ¼ −0.65� 0.80;

ImðαÞ ¼ 0.44� 0.74;

ReðβÞ ¼ ð−6.3� 14.7Þ × 10−4;

ImðβÞ ¼ ð2.2� 2.0Þ × 10−3; ð14Þ

and we show the results of this method in the second row of
Fig. 2. Enlarging the ðX; YÞ mesh to 1218 points incurs
changes within �1 of the last significant figure. The
comparison with experiment shows that the fitting pro-
cedure is the right choice. We draw the same conclusion
from the use of the BG amplitude [13], noting that the
global fit in that case (with N ¼ 0.0508) gives

ReðαÞ ¼ −0.79� 0.91;

ImðαÞ ¼ 0.61� 0.93;

ReðβÞ ¼ ð−1.4� 2.3Þ × 10−3;

ImðβÞ ¼ ð2.3� 1.4Þ × 10−3; ð15Þ

so that the results are compatible within errors. Using
these solutions, we obtain ALR ¼ ð−7.18� 4.51Þ × 10−4

using Ref. [10] and ALR ¼ ð−7.20� 4.52Þ × 10−4 using
Ref. [13]. These compare favorably with ALR ¼ ð−7.29�
4.81Þ × 10−4 that we determine using the complete set
of Dalitz plot parameters and the covariance matrix we
construct given the information in Ref. [69]. We note
that our ALR as evaluated from the Dalitz plot parameters,
which are fitted from the binned data, is a little different
from the reported value using the unbinned data, i.e.,
(−5.0� 4.5þ5.0−11 Þ × 10−4, reported by KLOE-2 [32]. The
discrepancy is not significant, and we suppose its origin
could arise from the slight mismatch between the theoreti-
cally accessible phase space and the experimentally probed
one, or other experimental issues. Although NLO ChPT
does not describe the CP-conserving Dalitz distribution
well [13], we find it can confront the existing CP-violating
observables successfully.
We have shown that the empirical Dalitz plot distribution

can be used to determine α and β. These, in turn, limit the
strength of C-odd and CP-odd operators that can arise from
physics beyond the SM [47–51,54]. That β is so much
smaller than α can be, in part, understood from the differing
behavior of the MIðzÞ, as illustrated in Fig. 1, which

FIG. 2. Results for the C- and CP-violating (CPV) interference
term, jAðs; t; uÞj2=C in Eq. (11), using the GL amplitude [10] and

two methods for the determination of α and β: (i) a Taylor
expansion (top row) and (ii) a global fit (bottom row) as described
in text using the GL decay amplitude [10]. The blue dashed lines
with a one-σ error band (dark) are our results, and the red solid
lines with a one-σ error band (light) are the KLOE-2 results, as
per Eq. (12) [69].

FIG. 3. The Dalitz plot geometry in η → πþπ−π0 decay, broken
into regions for probes of its symmetries. The solid line is the
boundary of the physically accessible region. The asymmetry ALR,
Eq. (1), compares the population Nþ (X > 0) with N− (X < 0).
The quadrant asymmetry AQ probes I ¼ 2 contributions,
NtotAQ ≡ NðAÞ þ NðCÞ − NðBÞ − NðDÞ [4], and the sextant
asymmetry AS probes I ¼ 0 contributions, NtotAS ≡ NðIÞ þ
NðIIIÞ þ NðVÞ − NðIIÞ − NðIVÞ − NðVIÞ [4,5]. All asymmetries
probe C and CP violation.
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follows because the L ¼ 0, I ¼ 2 π − π phase shift is larger
than the L ¼ 1, I ¼ 1 one for the kinematics of interest
[10,73–75], making it easier to veto the I ¼ 2 operators.
Crudely, the ratio of β to α we have found is that of the SM
electromagnetic interactions that would permit a I ¼ 2
amplitude to appear in addition to a I ¼ 0 one. The utility
of our Dalitz analysis is underscored by our results for the
quadrant asymmetry AQ and sextant asymmetry AS defined
in Fig. 3. Using Ref. [10] and Eq. (14), e.g., we find
AQ ¼ð2.85�3.72Þ×10−4, and AS ¼ ð3.87� 4.04Þ× 10−4;
the asymmetries by themselves hide the nature of the
underlying strong amplitudes. For reference we note the
KLOE-2 results using unbinned data [32]: AQ ¼ ð1.8�
4.5þ4.8−2.3Þ × 10−4 and AS ¼ ð−0.4� 4.5þ3.1−3.5Þ × 10−4, with
which our results are compatible within errors.

IV. SUMMARY

We propose an innovative way of probing C- and
CP-violation in the η → πþπ−π0 Dalitz plot. Working to
leading order in charge conjugation C and isospin I break-
ing, we have shown that the strong amplitudes associated
with the appearance ofC- andCP-violation can be estimated
from the SM amplitude for η → πþπ−π0 if the decompo-
sition of Eq. (3) holds [11]. We have illustrated this in NLO
ChPT, though the use of more sophisticated theoretical
analyses would also be possible. New-physics contributions
that differ in their isospin can thus be probed through the
kinematic pattern they imprint in the Dalitz plot. Our method
opens a new window on the study of C- and CP-violation in
η → πþπ−π0 decay, and it holds promise for the high-
statistics experiments of the future [37–39].
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APPENDIX: CALCULATIONAL DETAILS

We begin by showing how Eqs. (6) and (7) emerge from
elementary considerations. Working in the isospin limit, a
jπþπ−π0i state with J ¼ 0 must obey Bose symmetry, so
that it is proportional to

jπþπ−isjπ0i þ jπþπ0isjπ−i þ jπ−π0isjπþi; ðA1Þ

where “s” denotes a symmetrized combination of distinct
pion states. In what follows, as in the CP-conserving case,
Eq. (3) [11], we consider S- and P-wave π − π amplitudes

only. The symmetrized two-pion states can be written as a
S-wave I ¼ 0 or I ¼ 2 state or as a P-wave I ¼ 1 state. We
choose jπii≡ jI ¼ 1; I3 ¼ ii. For S-waves, we write

jπiπjis ≡ 1ffiffiffi
2

p fjπiπji þ jπjπiig; ðA2Þ

whereas for P-waves we note

jπiπjiI¼1;L¼1jπki|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
L¼1

ðA3Þ

with iþ jþ k ¼ 0 contributes to the J ¼ 0 state. Defining

jπiπjia ≡ 1ffiffiffi
2

p fjπiπji − jπjπiig; ðA4Þ

we see, e.g.,

jðπþπ−ÞI¼1isjπ0i ¼ jπþπ−iaðpπþ − pπ−Þ · pπ0 jπ0i: ðA5Þ

We can also label particular η → πþπ−π0 decay amplitudes
by the isospin of the two-pion state, as used in Eq. (3).
Enumerating the possibilities, we find

jðπþπ−ÞI¼0ijπ0i → M0ðsÞ; ðA6Þ

which contributes to the total I ¼ 1 amplitude,MC
1 , only, as

well as

jðπþπ−ÞI¼1ijπ0iðpπþ − pπ−Þ · pπ0 → M1ðsÞ
u − t
2

;

jðπþπ0ÞI¼1ijπ−iðpπþ − pπ0Þ · pπ− → M1ðuÞ
s − t
2

;

jðπ−π0ÞI¼1ijπþiðpπ0 − pπ−Þ · pπþ → M1ðtÞ
u − s
2

; ðA7Þ

which contribute to the amplitudes with total I ¼ 0, 1, and
2, and

jðπþπ−ÞI¼2ijπ0i → M2ðsÞ;
jðπþπ0ÞI¼2ijπ−i → M2ðuÞ;
jðπ−π0ÞI¼2ijπþi → M2ðtÞ; ðA8Þ

which contribute to the total I ¼ 1 and 2 amplitudes. Using
the Clebsch-Gordan coefficients tabulated in Ref. [70], we
find, after redefiningM1=2

ffiffiffi
2

p
→M1 andM2

ffiffiffiffiffiffiffiffiffiffi
3=10

p
→M2,

that MC
1 ðs; t; uÞ, M=C

0 ðs; t; uÞ, and M=C
2 ðs; t; uÞ are precisely

as given in Eqs. (3) [11], (6), and (7). Note that only the
C-odd amplitudes are odd under t ↔ u as needed. Adding
the possible total I amplitudes in leading order in C,
CP, and I violation, with their associated coefficients,
yields Eq. (4).
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We now turn to our isospin decomposition of the η → πþπ−π0 amplitude of Gasser and Leutwyler through Oðp4Þ [10]:

M0ðsÞ ¼
�
2ðs − s0Þ

Δ
þ 5

3

�
1

2F2
π
ð2s −M2

πÞJrππðsÞ þ
1

6F2
πΔ

ð4M2
K − 3M2

η −M2
πÞðs − 2M2

πÞJrππðsÞ

þ 1

4F2
πΔ

�
−6s2 þ sð5M2

π þ 4M2
K þ 3M2

ηÞ − 4M2
K

�
M2

η þ
1

3
M2

π

��
JrKKðsÞ

þ M2
π

3F2
πΔ

�
2s −

11

3
M2

π þM2
η

�
JrπηðsÞ −

M2
π

2F2
π
JrηηðsÞ −

3s
8F2

π

ð3s − 4M2
KÞ

ðs − 4M2
KÞ

�
JrKKðsÞ − JrKKð0Þ −

1

8π2

�

þ
�
1þ a1 þ 3a2Δþ a3ð9M2

η −M2
πÞ þ

2

3
d1þ

8M2
π

3Δ
d2

��
1þ 3

s − s0
Δ

�
þ a4 −

8

3

M2
π

Δ
d1

−
3

Δ
ð2μπ þ μKÞðs − s0Þ þ

�
4L3

F2
0Δ

−
1

64π2F2
πΔ

��
4

3
s2 − 9s0sþ 9s20

�

−
1

64π2F2
πΔ

3ðs − s0Þð4M2
π þ 2M2

KÞ; ðA9Þ

M1ðzÞ ¼
1

4ΔF2
π

�
ðz − 4M2

πÞJrππðzÞ þ
�
1

2
z − 2M2

K

�
JrKKðzÞ

�
; ðA10Þ

and

M2ðzÞ ¼
�
1 −

3

2

z − s0
Δ

��
−

1

2F2
π
ðz − 2M2

πÞJrππðzÞþ
1

4F2
π
ð3z − 4M2

KÞJrKKðzÞ þ
M2

π

3F2
π
JrπηðzÞ

�

þ
�

1

64π2F2
πΔ

−
4L3

F2
0Δ

�
z2; ðA11Þ

where Δ ¼ M2
η −M2

π , M2
π ¼ ð2M2

πþ þM2
π0
Þ=3, and M2

K ¼
ðM2

Kþ þM2
K̄0Þ=2. We refer to Ref. [76] for JrPQðzÞ, noting

Eqs. (8.8–8.10) and (A.11), where P and Q denote the
mesons π, K, or η, and to Ref. [10] for ai and di. We
note that the JrPQðzÞ carry renormalization-scale μ depend-
ence, though cancelling that dependence is beyond the
scope of our current approach—we note a similar issue
arises in the use of the pion form factor in the analysis
of B → πðρ → ππÞ decay [58]. For this choice of Mπ and
the use of physical phase space we need to evaluate the
possible two-particle thresholds with care. The rescattering
function JrππðzÞ contains σðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π=z
p

. If we use
m2

π ¼ M2
π , then for MIðzÞ with z ¼ t or u evaluated at

its minimum value the argument of the square root is
less than zero. To avoid this problem, we use σðzÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðMπ� þMπ0Þ2=z

p
for z ¼ t or u. For MIðsÞ,

though, smin ¼ 4M2
πþ and this problem does not occur.

However, for consistency we use σðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

πþ=s
q

for MIðsÞ. Moreover, we note JrπηðsÞ contains νðsÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs−ðMη−mπÞ2Þðs−ðMηþmπÞ2Þ

q
. If we use mπ ¼Mπ ,

then forMIðsÞ at the maximum of s, we once again find the
argument of the square root to be less than zero. To avoid

this, we use νðsÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs− ðMη−Mπ0Þ2Þðs− ðMηþMπ0Þ2Þ

q
for MIðsÞ. To be consistent, we use νðzÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − ðMη −MπþÞ2Þðz − ðMη þMπþÞ2Þ

q
for MIðzÞ with

z ¼ t or u. As a check of our assessments we have extracted
the C- and CP-conserving Dalitz plot parameters from
this amplitude. Describing the CP-conserving piece of
jAðs; t; uÞj2 by Nð1þ aY þ bY2 þ dX2 þ fY3 þ gX2YÞ,
recalling Eq. (10), we find using a global fit that a ¼
−1.326, b¼ 0.426, d¼ 0.086, f ¼ 0.017, and g ¼ −0.072.
These results compare favorably to the global fit results of
Ref. [21]; namely, a ¼ −1.328, b ¼ 0.429, d ¼ 0.090,
f ¼ 0.017, and g ¼ −0.081. That work also uses the decay
amplitude of Ref. [10] through Oðp4Þ and the same value
of L3 but includes electromagnetic corrections through
Oðe2p2Þ as well.
In evaluating the BG amplitude [13] we note that an

overall 2 should not appear on the second right-hand side of
Eq. (3.23); this is needed for the result to agree with that
of Ref. [10].
Values of the strong functions associated with the CP-

violating parameters ReðαÞ, ImðαÞ, ReðβÞ, ImðβÞ in Eq. (11)
on our analysis grids in ðX; YÞ are available upon request.
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