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White dwarfs (WD) effectively act as high-gain amplifiers for relatively small energy deposits within
their volume via their supernova instability. In this paper, we consider the ways a galactic abundance of
Oð1Þ-charged massive relics (i.e., CHAMPs) could trigger this instability, thereby destroying old WD. The
dense central core structure formed inside the WD when heavy CHAMPs sink to its center can trigger a
supernova via injection of energy during collapse phases, via direct density-enhanced (pycnonuclear)
fusion processes of carbon nuclei dragged into the core by the CHAMPs, or via the formation of a black
hole (BH) at the center of the WD. In the latter scenario, Hawking radiation from the BH can ignite the star
if the BH forms with a sufficiently small mass; if the BH instead forms at large enough mass, heating of
carbon nuclei that accrete onto the BH as it grows in size may be able to achieve the same outcome (with the
conservative alternative being simply that the WD is devoured by the BH). The known existence of old WD
that have not been destroyed by these mechanisms allows us to improve by many orders of magnitude on
the existing CHAMP abundance constraints in the regime of large CHAMP mass, mX ∼ 1011–1018 GeV.
Additionally, in certain regions of parameter space, we speculate that this setup could provide a trigger
mechanism for the calcium-rich gap transients: a class of anomalous, subluminous supernova events that
occur far outside of a host galaxy.
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I. INTRODUCTION

Charged massive particles (CHAMPs),1 defined here as
massive early-Universe relics with Oð1Þ electrical charge,
appear in many theories of physics beyond the Standard
Model; for instance, the (N)LSP in R-parity conserving
supersymmetric extensions of the SM can be electrically
charged and (meta)stable (e.g., Refs. [1,2]); theories of
universal extra dimensions may have as their lightest KK-
odd state a charged state (e.g., Refs. [3,4]); and exotic stable
composite bound states [5–8] may have an Oð1Þ net
electrical charge without their stability being dramatically
impacted. Early interest in superheavy charged particles
(e.g., Ref. [9]) long predated their proposal as an early dark
matter (DM) candidate [10,11] (since realized to be ruled

out), and they have an extremely rich phenomenology (see,
e.g., Refs. [12–15] for some recent reviews).
Across large regions of their mass range, a number of

strong observational constraints limit the abundance of
CHAMPs to at most a small fraction of the dark matter
density: for instance, limits have been considered from the
absence of anomalously heavy nuclei in bulk terrestrial
samples (e.g., Refs. [16–33], and see Ref. [13] for further
references), from their impact on big bang nucleosynthesis
[BBN] (e.g., Refs. [9,34–48]), from the absence of accel-
erated “CHAMP cosmic rays” (see, e.g., Ref. [49] for
recent work), and from a variety of astrophysical obser-
vations (e.g., Refs. [12–14,50,51]). For at least some ranges
of CHAMP masses, terrestrial bounds have been subject to
question owing to the complicated dynamics of charged
particles in galactic magnetic fields [11,49,52].
Some of the more interesting and powerful constraints on

the abundance of CHAMPs, X, at very large masses arise
from the consideration of their impact on the survival of old
neutron stars (NS) [50]. The crucial idea advanced in
Ref. [50] is that a sufficient mass of CHAMPs accumulated
inside a NS will collapse to form a black hole (BH) that can
then accrete matter from inside the NS, destroying it.
Specifically, Ref. [50] considered that halo CHAMPs will
pass through and be captured by a protostellar cloud as it
collapses to form the M ∼ 10–30 M⊙ NS progenitor star.
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1Also known more recently as charged stable massive particles
(SMPs).
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This population of CHAMPs remains in the star throughout
its lifetime, eventually contaminating the NS as it is formed.
Being extremely heavy, CHAMPs rapidly sink to the

center of the NS after its formation2 and form an approx-
imately isothermal, thermal-pressure-supported central
structure3 that is stable so long as the CHAMPs do not
locally come to dominate over the density of NS material. If
however the CHAMPs do come to dominate the NS matter,
the CHAMP structure becomes self-gravitating and unsta-
ble to collapse (the so-called “gravothermal catastrophe”;
see, e.g., Ref. [54]). For a small enough CHAMP pop-
ulation, quantum degeneracy pressure would eventually
restabilize the structure at a much smaller radius; however,
if a super-Chandrasekhar mass of CHAMPs (MX

Chand:≪M⊙
since mX ≫ GeV) is present, restabilization becomes
impossible [55], and the collapse proceeds to BH formation
on a short time scale.
If the BH thus formed has a mass MBH ≳MNS

BH;crit:;∼
4 × 10−20 M⊙, Ref. [50] found that accretion of material
from the NS onto the BH, even at Eddington-limited rates,
exceeds mass loss from the BH due to the Hawking process
[56], and the BH rapidly grows in size, consuming the
entirety of the NS on an extremely short time scale. The
existence of observed old NSs can thus strongly constrain
the abundance of CHAMPs. On the other hand, if the BH
has an initial massMBH ≲MNS

BH;crit:;, the mass loss by the BH
due to Hawking radiation dominates the mass gain from
accretion of NS matter, causing the BH to shrink in size and
eventually evaporate. This evaporation however inflicts no
externally observable structural damage to the NS. As a
result, Ref. [50] found that NS destruction bounds on the
CHAMP abundance weaken considerably as the CHAMP
mass increases above mX ≳ 1011 GeV.
Recently, there has been much interest in the literature in

white dwarfs (WD) as unconventional, large spacetime
volume, bolometric particle detectors [57–61]. It has of
course long been known that white dwarfs—“the biggest
powder keg[s] in the Universe” [62]—can be provoked into
a thermal runaway leading to a type-Ia–like (SNIa) super-
nova explosion (visible at cosmological distances) by the

concentrated local deposition of a sufficient large amount of
energy inside the WD volume [63]. For a carbon–oxygen
(CO) WD [64] in the mass range MWD ∼ 0.8–1.35 M⊙, an
energydepositionof ð5 × 1024Þ–ð8 × 1016Þ GeVis sufficient
to raise a region near the center of theWDwith a physical size
(“trigger length”) of λT∼ð6×10−2Þ–ð7×10−5Þcm to a critical
temperature of around 0.5 MeV. Such conditions result
[57,63] in the birth of a stable propagating flame front that
traverses the entire WD, burning approximately a solar mass
of CO mixture to nuclear statistical equilibrium (NSE), and
releasing ∼1054 GeV of energy.
WDs thus behave as extremely high-gain natural

amplifiers for sufficiently large local energy depositions
occurring anywhere within a large fraction of their volume.
This observation has been used to place limits on the
abundance of primordial black holes which transit thorough
WD, inducing local heating by dynamical friction [57] (but
see Ref. [65] for a recent reappraisal); on (asymmetric)
dark matter which is captured in a WD, forms a core, and
deposits energy in the WD material once the core becomes
self-gravitating and collapses [58,60]; on dark matter
(either transiting or captured) which transfers sufficient
energy locally to the WD by scattering, decay, or annihi-
lation [59]; and on dark matter that, once captured in a WD,
forms a core that collapses to a black hole, which eventually
triggers a supernova [60,61]. It is this latter work on black-
hole-induced SNIa-like supernovae that is of particular
relevance to the present work.
The results of Refs. [60,61] indicate that, with some

minor exceptions, the formation of a BH near the center of a
sufficiently massive WD will either satisfy the heating
requirements to trigger thermal runaway, or will simply
consume the WD. The former outcome can occur in one of
two ways, depending on which of accretion of matter or
Hawking radiation dominates the BH evolution. If the
accretion dominates, the BH formed will grow in mass and
size. Conservatively, this process would merely consume
the entire WD. However, an second possibility exists [61]:
the increasing mass of the BH of course leads to ever higher
surface gravity, which will eventually lead to the sufficient
acceleration of the carbon ions in the WD material in the
immediate vicinity of the BH (or, more specifically, in the
vicinity of the capture radius for accretion onto the BH) to
enable local heating the WD above the critical threshold
temperature, leading to thermal runway. Alternatively, the
increase in the local WD material density around the BH
could allow pycnonuclear fusion to proceed even absent
significant heating [61,66].4 On the other hand, if Hawking
losses dominate the accretion, the BH will shrink, but here

2It is of course conservative to assume a uniform contamina-
tion of the CHAMPs exists throughout the NS precursor stellar
material just prior to NS formation [50]; sinking of sufficiently
heavy CHAMPs during the stellar evolution will almost certainly
occur.

3Although the properties of NS material near its center are not
known with any degree of certainty, it is not entirely comprised of
neutrons: at a minimum, a sizable population of protons and
electrons coexists in equilibrium with the neutrons [53].
Although central NS temperatures and densities are much too
high to allow the formation of electrostatic bound states of the
CHAMP with any particle, the existence of these superposed
charged plasmas permits screening of the CHAMP charges,
allowing the formation of the thermal-pressure-supported
CHAMP structure despite the mutually repulsive electrostatic
forces existing between CHAMPs.

4Note that this might also occur in the dense CHAMP-
dominated BH-progenitor object that forms at the core of the
WD just prior to collapse, although the rate estimates for this
process are sufficiently uncertain that it is not clear that this can
occur. See discussion in Sec. VI E 2 b.
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the outcome is dramatically different from the BH-in-a-NS
case of Ref. [50]. As the BH evaporates, the Hawking
temperatures rises, and the energy loss rate increases.
Provided that certain minimal assumptions are met, the
energy deposition rate from the Hawking process will
eventually raise a sufficiently large volume of WD material
above the critical temperature to trigger thermal runaway
for WD in this mass range [60,61]. The authors of Ref. [61]
verify that this latter process completes within ≲Gyr of BH
formation in most regions of parameter space, with only
some minor exceptions possible.

II. EXECUTIVE SUMMARY

In this paper, we consider the scenario in which CHAMPs
have accumulated in a WD at first via a primordial contami-
nation of the protostellar gas cloud of the WD progenitor
star à la Ref. [50], and later in their evolution via direct,
gravitationally boosted accretion from a population of halo
CHAMPs over the first ∼Gyr of the WD lifetime. These
CHAMPswill settle to the center of theWD, initially forming
a thermal-pressure-supported structure.
If a sufficient total mass of CHAMPs is present in this

structure, it will become self-gravitating and undergo
gravothermal collapse. While it is possible that the energy
released by this collapse alone could trigger thermal run-
away, it is conservative to assume that the WD survives this
initial collapse phase.
Under that assumption, if a sub-Chandrasekhar mass

of CHAMPs participates in the gravothermal collapse, the
CHAMPs merely reestablish a hydrostatic equilibrium
configuration at much smaller radius, supported by the
degeneracy pressure of relativistic electrons in the WD
core, communicated to the CHAMPs by electrostatic
forces.
Later addition of further CHAMPs to this core, either

because the entire primordial CHAMP abundance in the
star did not form part of the thermal structure by the time
the gravothermal collapse was initiated, or because further
CHAMPs are accreted onto the star from the halo, will
result in its central density increasing over time, until one
of two possible instabilities (see below) occurs once the
core mass reaches the trans- or super-Chandrasekhar mass
regime.
Similarly, if a trans- or super-Chandrasekhar mass of

CHAMPs participates in the initial gravothermal collapse,
that collapse may initially be (momentarily) stalled by
electron degeneracy pressure causing the reestablishment
of a quasistatic core structure, but as the collapsing
CHAMP cloud continues to add more CHAMPs to this
core structure, its central density will also increase over
time, again until one of the two aforementioned instabilities
occurs.
For negatively charged CHAMPs, the first possible

instability is that carbon ions drawn into the core along
with the CHAMPs may begin to fuse immediately via

density-enhanced pycnonuclear fusion mechanisms of the
carbon ions once trans-Chandrasekhar masses are reached;
this would directly trigger thermal runaway.
Alternatively, if this does not occur, or if the CHAMPs are

positively charged, then the growing degenerate core simply
reaches and then eventually exceeds the maximum density
that is supportable by degeneracy pressure as its mass
reaches the trans-Chandrasekhar regime, leading inevitable
to collapse to a black hole. If this second alternative occurs,
the BH-induced WD destruction mechanisms proposed in
Refs. [60,61] become operational and can eventually trigger
thermal runaway, unless the evolutionary time scales
involved for this process are too long. Except for the caveat
about time scales, sufficiently CHAMP-contaminated, suf-
ficiently old WDs are thus destroyed.
Using the known existence of very old, high mass

WD of low surface magnetic field [67], we extend and
improve upon the upper bounds placed on the CHAMP
population in our Galaxy set by Ref. [50], finding that
much stronger constraints can be set at large CHAMP
masses (mX ∼ 1011–1018 GeV); see Figs. 4 and 5 for our
major results.
Additionally, making use of this supernova trigger mecha-

nism at lower CHAMP masses (mX∼107–1011GeV; see
Fig. 6), where the considerations advanced in, e.g., Ref. [52]
indicate that the majority of CHAMPs may possibly have
been evacuated the central regions of galaxies and magneti-
cally inhibited from reentry, we advance a speculative
explanation for a class of subluminous supernova events
that occur preferentially displaced from the center of their
host systems, the so-called calcium-rich gap transients
(CaRGT). CHAMPs, preferentially present in the outskirts
of galaxies after having been ejected from the baryon-rich
central regions by supernova shockwaves, can accrete onto
WD found in such outer regions, thereby supplying the
correct spatial morphology for these events, as supernovae of
this type are then preferentially triggered in the outskirts of
galaxies. Moreover, the CHAMP-induced thermal runaway
triggermechanismswe discusswould be able to trigger those
supernovae in the fairly abundant sub-Chandrasekhar pop-
ulation [68,69] of WD with masses MWD ∼ 0.8 M⊙; recent
modeling [70] shows that such supernovae events may give
roughly the correct luminosity and spectral characteristics for
the CaGRT.
The remainder of this paper is structured as follows: in

Sec. III we review generally the conditions for WD ignition
by local energy deposition in the WD material in order to
establish the physical conditions we will be seeking to
attain in this work. We then change tack, reviewing the
“chemistry” of CHAMPs generally in Sec. IV, before
turning to a discussion of their behavior in galaxies in
Sec. V. Following this, in Sec. VI we examine in detail the
accumulation of CHAMPs in white dwarfs and their
behavior in such dense objects generally, with a particular
focus on the dense central core structures they form in the
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WD, as well as the maximum supportable masses allowed
before such cores undergo gravothermal collapse, or
collapse to a BH. We give estimates for relevant time
scales in this discussion. This discussion of the central core
structure also includes an examination of a possible earlier
trigger mechanism of the SNIa runaway of the WD by the
compression of carbon nuclei in the core of the WD
contaminated by X−. Assuming BH formation, and that
WD survives until BH formation, in Sec. VII we review the
subsequent dynamical evolution of the BH showing that,
even in this case, the WD is still destroyed in large regions
of parameter space. We turn these considerations into limits
on the galactic abundance of CHAMPs in Sec. VIII by
virtue of the known existence of old, high mass, local WD
with low surface magnetic field. More speculatively, in
Sec. IX, we offer some observations that could allow this
WD ignition mechanism to explain the calcium-rich gap
transients. Finally, we conclude in Sec. X. There are a
number of Appendixes that offer extra information:
Appendix A is a discussion of the binding energies of
X− with positively charged nuclei; Appendix B contains an
estimate of the pycnonuclear fusion rate of carbons bound
in ðCXÞ bound states in the central dense CHAMP-
contaminated core of the WD; Appendix C gives the full
expressions we use to compute the CHAMP abundance
accreting onto a WD over its lifetime; Appendix D contains
a detailed consideration both of canonical WD structure
and CHAMP-contaminated WD structure; Appendixes E
and F contain the expressions we have used for the electron
heat conduction and free-free opacity, respectively, that are
used in computing the WD trigger conditions.

III. WHITE DWARF IGNITION

In order to understand the physical conditions required to
initiate WD destruction, we begin our discussion by
reviewing in detail the arguments advanced in a series of
papers [57–61,63,65] which have examined the conditions
required to initiate thermal runaway in a CO WD, and
which most recently culminated in the proposal of
Refs. [60,61] for a trigger mechanism for SNIa-like super-
nova events in WD due to the formation of a BH inside the
WD (or, more conservatively, for destruction of the WD by
accretion onto the BH). Section III A contains a general
discussion of ignition in a WD; we discuss the trigger
criteria in detail in Sec. III B.
While we independently reestimate here various numeri-

cal values for important physical properties, the bulk of this
section is based on the discussions in Refs. [57–61,63,65].

A. General discussion

In ordinary stars, the pressure support necessary to
maintain the local hydrostatic equilibrium conditions
required for a stable stellar configuration is supplied by
thermal motion (see generally Ref. [66]). An abrupt local

energy deposition occurring in the stellar material as a
result of, e.g., a high-energy particle interaction within the
stellar volume will result in a local temperature increase,
causing an increase in the highly temperature-dependent
rate of local nuclear burning, leading to further energy
deposition and heating. However, this process is self-
regulating: the temperature increase causes an initial local
overpressure condition in the heated volume, which relaxes
by causing the heated stellar material to expand quasia-
diabatically to a larger volume, lowering its temperature,
and with it the rate of nuclear burning in the perturbed
material. Ordinary stars are thus highly stable against
having their structure significantly disrupted by small local
energy depositions.
In a WD however, the hydrostatic pressure support

required for stability is supplied almost entirely by the
quantum degeneracy pressure of the (possibly quite rela-
tivistic) electrons [64], communicated to the heavier ion-
ized nuclei by electrostatic forces. This pressure is sensitive
to the electron density, but is highly insensitive to local
temperature perturbations [71].5 Local energy depositions
in WD material resulting in a local heating of the ions are
thus not subject to the self-regulating adiabatic expansion
mechanism as ordinary stellar material.
This makes WD highly susceptible to a thermal runaway

condition [62,64]: some local energy deposit leads to local
heating, which leads to a (highly) increased local nuclear
burning and further local heating, and so on. The only
temperature regulation mechanism available is thermal
diffusion, either by conduction by degenerate electrons,
or by radiative transport. If the rate of thermal energy flow
by diffusion out of some (sufficiently large) perturbed
volume is lower than the rate of energy injection from
nuclear burning in that volume, the local temperature in the
perturbed volume simply continues to rise as the nuclear
burning rate increases with increasing temperature.
Moreover, the region of increased nuclear burning will
propagate outward as a flame front,6 which eventually
traverses and consumes the whole star [62,66]. The total
energy released by the nuclear burning of an Oð1Þ fraction
of the material in the WD to NSE, ∼1051 erg, easily
exceeds the energy required to lift the electron degeneracy,
allowing the stellar material to finally violently expand as a
result of the significant heating [66]. This catastrophic
energy release, being also in excess of the total gravitational
binding energy of the star, ∼few × 1050 erg, leads to the
total disruption of the WD, manifesting itself as a SNIa

5So long as means jΔTj ≪ EF where EF is the Fermi energy of
the degenerate electrons; typically, EF ∼OðfewMeVÞ. A temper-
ature increase ΔT ≫ MeV would lift degeneracy and return the
stellar material to a normal gas phase.

6Whether this occurs subsonically (a deflagration), supersoni-
cally (a detonation), or some combination (deflagration-to-
detonation transition) remains an open problem [72].
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supernova [66], visible at cosmological distances (e.g.,
Ref. [73]).7

B. Trigger length

The energy deposition necessary for the birth of a stable
flame front in WD material is discussed in detail in
Refs. [57–61,65], following from the detailed numerical
work of Ref. [63].
As already stated, the basic criterion is that a volume of

material of a certain minimum characteristic size λT , the
trigger length, should be heated to at least a minimum
temperature Tcrit, the trigger temperature, such that the rate
of energy loss by thermal diffusion from this volume to the
surrounding medium, − _Ediff:ðTcrit; λTÞ, is smaller than the
rate of energy deposition into that volume by nuclear
fusion, _Enucl:ðTcritÞ [63]. If this criterion is not satisfied, any
localized initial temperature perturbation impressed into the
material by an external source (e.g., a high-energy particle
interaction occurring in the WD) may cause local nuclear
burning to proceed all the way to NSE locally, but will
ultimately simply diffuse away harmlessly into the bulk
WD medium without triggering the formation of a self-
sustaining, propagating nuclear flame front.
The criterion may also be alternatively phrased as requir-

ing the deposition of a certain total minimum energy ET, the
trigger energy, into the trigger volume within the character-
istic time for heat diffusion from the trigger volume τdiff .;
energy deposition into a volume larger than the trigger
volume must be proportionally larger on a volumetric basis.
We will be mostly concerned with cases where the

temperature of the trigger volume, which we assume to be
located near the center of a CO WD lying in the mass
range MWD ∼ 0.8–1.35 M⊙, is raised at least as high as
Tcrit: ∼ 0.5 MeV [63]. The corresponding densities of the
WD material are obtained by solving the Tolman-
Oppenheimer-Volkhoff (TOV) equation [75,76] to find the
WD-mass–central-density relationship, ρCðMWDÞ, which for
WDs with masses MWD ∈ ½0.1; 1.35�M⊙ can be given
approximately by8

ρC ∼ 1.95 × 106 g=cm3½αðMWDÞ−2 − 1�3=2 ð1Þ

αðMWDÞ ≈ 1.0033 − 0.3087x − 1.1652x2 þ 2.0211x3

− 2.0604x4 þ 1.1687x5 − 0.2810x6

x≡MWD=M⊙ ∈ ½0.1; 1.35�; ð2Þ

the central densities of WDs in the mass range MWD ∼
0.8–1.35 M⊙ thus vary from ∼107 g=cm3 to ∼109 g=cm3.
To evaluate the trigger criterion, we must know the rate

of diffusive heat transport. Diffusive heat flow in presence
of a temperature gradient is governed by Fourier’s Law:
Q ¼ −k∇u, where Q is the (vector) heat flow, u ¼ uðt; xÞ
is the temperature field, and k is the thermal conductivity
[78]. The heat flow mechanisms in dense WD matter are
dominantly radiative transport and electron conduction
[57,63,66],9 so the thermal conductivity is given by [66]

k ¼ krad þ kcd ¼
4π2

45

T3

ρ
ðκ−1rad þ κ−1cd Þ; ð3Þ

where κrad;cd are, respectively, the radiative and conductive
opacities; these in general depend on the density, temper-
ature, and chemical composition of the material. Electron
thermal conductivities are given in Ref. [79] and do
not have a simple scaling at all densities, although for
ρ ≳ 8 × 108 g=cm3 and at T ∼ 0.5 MeV, the scaling is
approximately κcd ∝ ρ−1.4. The radiative opacity can be
taken to be given by the free-free Kramers opacity which
scales as κrad ∝ ρ, corrected by a suitable Gaunt factor
[66,80–82] (although we ignore this correction here); see
Appendixes E and F for details. For T ∼ 0.5 MeV, the
electron conduction contribution to the thermal conduc-
tivity dominates at densities above ρ ∼ 8 × 108 g=cm3,
while the radiative contribution dominates at lower den-
sities; outside the range ρ ∼ 0.3–3 × 109=cm3 it is a good
approximation that k scales with density as implied by the
dominant of the two individual contributions.
The total rate of thermal energy loss from a spherical10

region of radius λT by heat flow through its surface is
− _Ediff:ðTcrit; λTÞ ¼ λ2T

R
dΩr̂ ·QðTcritÞ. Assuming a radial

temperature profile such that ∇u ¼ ∂rur̂ we have
− _Ediff:ðTcrit; λTÞ ¼ þ4πkλ2Tð−∂ruÞ. We approximate
−∂ru ∼ ΔT=λT for a region of radius heated λT heated
to a temperature Tcrit ¼ T0 þ ΔT above the ambient
temperature T0, so that − _Ediff:ðTcrit; λTÞ ∼ 4πkλTΔT. For
a region so heated under isobaric conditions, the excess
energy is

7The “canonical” trigger scenario for a SNIa is bymass accretion
from a nondegenerate binary companion star, resulting in the WD
mass increasing toward the Chandrasekhar limit [55], becoming
ever more unstable to perturbation in the process, with ignition
occurring shortly before the limit is reached owing to a combination
of core heating and compression as a result of the mass accretion
[66,72,74]. Alternative scenarios such as double-degenerate colli-
sions [72], in which two degenerate, sub-Chandrasekhar WD
collide and trigger the necessary runaway, have also beenproposed.

8We obtained this result assuming a fully degenerate electron
equation of state (EoS) with electrons assumed to have their full
dispersion relation (i.e., we did not use the nonrelativistic or
ultrarelativistic approximations) and exact local charge neutrality
of the WD plasma; we did not however include Coulomb
corrections to the EoS (see, e.g., Ref. [77]). We then fitted a
polynomial function to the numerical parameter α which com-
pletely dictates the WD structure. See Appendix D.

9Losses by neutrino emission are subdominant [63,65], except
during the final stages of thermal runaway [66].

10This argument applies parametrically to any convex shape,
with the radius of the sphere replaced by the smallest character-
istic scale over with the heated region has a significant temper-
ature gradient.
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ΔE¼M
Z

T0þΔT

T0

dT 0cpðT 0Þ¼ð4πλ3T=3Þρc̄pðTcritÞΔT; ð4Þ

where cpðTÞ is the constant-pressure specific (per-mass)
heat capacity, and we have implicitly defined its average
value in the relevant temperature range. The diffusive
cooling time scale is thus

τdiff: ≡ ΔE=j _Ediff:j ð5Þ

¼ ρλ2T
3k

�
1

ΔT

Z
T0þΔT

T0

dT 0cpðT 0Þ
�

ð6Þ

∼ρλ2Tc̄pðTcritÞ=ð3kÞ: ð7Þ

The isobaric specific heat capacity can be approximated
by as a sum of three terms, independently accounting for
the ionic, electronic, and radiative contributions. We treat
the ions as a free ideal gas, and keep only the leading term
in the Sommerfeld expansion [71] for the electronic
contribution, valid in the limit T ≪ EF. That is, we take

cpðT; ρÞ≡ cionsp ðT; ρÞ þ celec:p ðT; ρÞ þ crad:p ðT; ρÞ ð8Þ

cionsp ðT; ρÞ≡ 5

2μa

X
i

Xi

Ai
ð9Þ

celec:p ðT; ρÞ≡ π2

μaμe

T
EF

�
1 −

�
me

EF

�
2
�
−1

ð10Þ

crad:p ðT; ρÞ≡ 4π4

5μaμe

�
T
EF

�
3
�
1 −

�
me

EF

�
2
�
−3=2

; ð11Þ

where μa is the atomic mass unit, EF ¼ ½1þ
ð3π2ne=m3

eÞ2=3�1=2 is the electron Fermi energy, ne ¼
ρ=ðμaμeÞ is the electron number density, μe ≡
ðPi XiZi=AiÞ−1 is the mean molecular mass per electron,
and Xi, Zi, and Ai are, respectively, the mass fraction,
charge, and atomic mass number of ion species i. It follows
that

c̄pðTcritÞ≡ 1

ΔT

Z
T0þΔT

T0

dT 0cpðT 0Þ ð12Þ

≈ cionsp ðTcrit; ρÞ þ
1

2
celec:p ðTcrit; ρÞ

þ 1

4
crad:p ðTcrit; ρÞ; ð13Þ

assuming Tcrit ∼ ΔT ≫ T0.
Assuming a specific (again, per-mass) nuclear

energy generation rate of _Snucl:ðTcritÞ, the total nuclear
energy generation rate in the same volume of material
is _Enucl:ðTcritÞ ¼ M _Snucl: ¼ ð4π=3Þλ3Tρ _Snucl., so that time

scale for nuclear burning to double the excess thermal
energy in a region of mass M is

τnucl: ≡ ΔE= _Enucl: ð14Þ

¼ 1

_Snucl:

Z
T0þΔT

T0

dT 0cpðT 0Þ ð15Þ

∼c̄pðTcrit:ÞΔT= _Snucl:ðTcrit:Þ: ð16Þ

A parametric, order-of-magnitude estimate for the trigger
condition can then be phrased as

_Enucl:ðTcritÞ ∼ − _Ediff:ðTcrit; λTÞ ⇔ τnucl: ¼ τdiff: ð17Þ

⇒ _Snucl:ðTcritÞ ∼ 3kΔT=ðρλ2TÞ ∼ 3kTcrit=ðρλ2TÞ; ð18Þ

where the final expression holds in the physically relevant
limit Tcrit ≫ T0. Therefore, the trigger length estimate is
given by

λT ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kTcrit=ρ _Snucl:ðTcritÞ

q
; ð19Þ

see also Refs. [63,71].
However, Eq. (19) should be employed with great care:

the specific nuclear energy generation rates in the WD
temperature range are extremely fast functions of temper-
ature, and become also exponentially fast functions of
density not too far above the unperturbed WD central
densities for the WD we consider, owing to strong screen-
ing effects and pycnonuclear processes [66,83,84]. Since
the passage of a flame front necessarily involves rapid
changes in both temperature and density, Eq. (19) does not
necessarily give a very good numerical approximation to
the actual trigger length [71,85]. There is moreover an
ambiguity as to the exact temperature at which the nuclear
energy generation rate should be evaluated [63,71,85]:
although we have indicated this temperature as Tcrit., we
remind the reader that screened carbon fusion proceeds as a
tunneling process for T ≲MeV, and the specific nuclear
energy generation rates scale as fast as d ln _Snucl:=d lnT ∼
24 in the temperature and density range relevant for WD
flame propagation [83,84], making even Oð1Þ errors in
temperature highly relevant.
The correct procedure to determine the trigger length and

trigger mass is to perform a numerical simulation of flame
propagation in the style of Ref. [63], using a large network
of nuclear reactions to accurately evaluate _Snucl:. The results
of Ref. [63] for the trigger mass cover only a small range
of densities ρ ∈ ½0.2; 10� × 109 g=cm3 assuming XC ¼
XO ¼ 1=2, appropriate to the central densities of WD in
the mass range MWD ∈ ½1.25; 1.41�M⊙, which does not
cover the full (i.e., lower) WD mass range of interest to us.
We therefore follow the procedure of Ref. [57] and
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analytically scale the results of Ref. [63] to densities lower
than those numerically sampled in that reference by making
use of the parametric scalings implied by Eq. (19) [and
assuming11 that _Snucl:ðTcrit:Þ ∝ ρ for ρ≲ 109 g=cm3]: λT ∝
ρ−2 for ρ ≪ 8 × 108 g=cm3 [57].12 Explicitly, and although
the density scaling that results has a discontinuous slope at
the boundary of the following piecewise definition, we
scale the results of Ref. [63] for T ∼ 0.5 MeV as follows:

λ0.5MeV
T ≈

8>><
>>:
1.3×10−4 cm× ðρ=ρ1Þ−2 ρ≤ ρ1

λ1ðρ=ρ1Þlnðλ2=λ1Þ= lnðρ2=ρ1Þ ρ1< ρ< ρ2

2.5×10−5 cm ρ¼ ρ2

; ð20Þ

where in the range of numerical values sampled by
Ref. [63] we have made a simple log-log linear interpo-
lation,13 owing to the graphical results of Ref. [63] being
difficult to reliably read off in the intermediate regime.
Here, λ1;2 ≡ λTðρ1;2Þ, with ρ1 ¼ 2 × 108 g=cm3 and ρ2 ¼
1 × 1010 g=cm3 being the end points of the numerically
sampled values in Ref. [63].
Armed thus with parametrizations for the thermal

conductivity [Eq. (3)], isobaric specific heat capacity
[Eqs. (8)–(13)], trigger length assuming that Tcrit: ¼
0.5 MeV (which is likely a conservatively high value)
[Eq. (20)], WD-mass–central-density relationship [Eqs. (1)
and (2)], trigger energy [Eq. (4)], and diffusion time
scale [Eq. (7)], it is now possible to compute the trigger
energy required to be injected to initiate thermal runaway.
We show our results for the trigger energy and diffusion
time scale in Fig. 1, for WD in the mass range
MWD ∈ ½0.8; 1.35�M⊙; the trigger energy results we find
are more conservative than those in Fig. 1 of Ref. [59] by up
to 1.5 orders of magnitude.
We will be primarily interested in massive WD with

MWD ∼ 0.85 M⊙ or MWD ∼ 1.1 M⊙. We show representa-
tive physical characteristics for such WD (and one other) in
Table I. For the remainder of this paper, we will sometimes
quote results for critical masses and time scales both

generally, and also specifically for WD of these two
masses; in the latter cases, we will denote these specific
values as “WD 0.85” and “WD 1.1”, respectively.

IV. CHAMP CHEMISTRY

In the previous section we reviewed the physical con-
ditions required to bring about thermal runaway in aWD by
localized energy deposition in the WD volume. As we will
be arguing that such conditions can be brought about by
CHAMPs contaminating a WD, we will now change tack
and consider the behavior of CHAMPs in various relevant
settings. We begin that discussion in this section by
recalling come basic properties of CHAMPs.
In this paper we consider CHAMPs to be either singly

positively (Xþ) or singly negatively (X−) charged; many of

FIG. 1. UPPER PANEL: Energy deposition required with a trigger
volume within a trigger time in order to initiate thermal runaway,
as a function of the WD mass. We assume Tcrit: ∼ 0.5 MeV and
that the BH forms near the center of the WD. LOWER PANEL:
Diffusion time scale for the trigger volume as a function of the
WD mass, under the same assumptions.

TABLE I. Physical characteristics for two representative classes
of WD. Quoted are the mass in solar masses, radius in solar radii,
central density in g=cm3, sound speed cs at center of the WD as a
fraction of the speed of light c, trigger energy in GeV, and
diffusion time for a trigger volume in seconds. RWD; ρc, and cs are
obtained using information from the solution of the TOV
equation, assuming a fully degenerate electron EoS, without
Coulomb corrections (see Appendix D).

MWD½M⊙� RWD½R⊙� ρc½g=cm3� cs=c ET ½GeV� τdiff:½s�
0.85 1 × 10−2 1.2 × 107 2 × 10−2 1 × 1024 1.5 × 10−11

1.1 7 × 10−3 5.5 × 107 2.8 × 10−2 2 × 1020 3 × 10−12

1.2 6 × 10−3 1.3 × 108 3 × 10−2 2 × 1018 3 × 10−13

11This assumption is already mildly violated at the upper
end of this density range (for T ∼ 0.5 MeV): owing to strong
screening effects that increase the parametric scaling of the
rate with increasing density, we have d ln _Snucl:=d ln ρ ∼ 1.1 by
ρ∼108g=cm3, and d ln _Snucl:=d ln ρ ∼ 1.3 for ρ ∼ 109 g=cm3; this
is actually indicative of the onset of the pycnonuclear regime,
in which the reaction rates become exponentially sensitive to
density [66,83,84].

12Note that if we had to extrapolate above the numerically
sampled range of Ref. [63], we would find λT ∝ ρ−0.8 for
ρ ≫ 8 × 108 g=cm3, in disagreement with the scaling λT ∝
ρ−0.5 used in Ref. [57]. This difference arises directly from the
difference in the scaling we find here for κcd from Ref. [79]; we
do not however need to resolve this discrepancy as extrapolation
to higher densities is unnecessary given that the numerical results
of Ref. [63] range up almost to the extremal central density of the
Chandrasekhar-mass WD.

13That is, a linear interpolation of log λT as a function of log ρ.
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our constraints in principle operate for CHAMPs with other
charges, but such particles lie beyond our explicit consid-
eration here.
The relative abundance of the population of the X�

CHAMP states depends on details of the CHAMP produc-
tion model, and whetherCP is violated in the production; as
we are entirely agnostic to the production model, in this
paper we consider any generic scenario in which the species
are produced either symmetrically or asymmetrically (but
always nonthermally, to avoid overclosure constraints [86])
in the early Universe, and survive until today. HavingOð1Þ
electric charge, CHAMPs are of course subject to rich
and complicated dynamics and “chemistry” after they are
produced; see generally Refs. [9,10,49,50,52].
Positively charged CHAMPs Xþ have quite straightfor-

ward chemistry, as the only stable negatively charged
particles available for them to bind with are electrons;
they thus have atomic-sized cross sections.
Negatively charged CHAMPs X− on the other hand have

much more complicated behavior: they are able to form
bound states [denoted ðNXÞ] directly with nuclei [generi-
cally denoted N]14 [9,10,34]. The ðNXÞ for N heavier than
He are in particular are very deeply bound, with typical
ground-state binding energies of a few MeV, and average
ground-state radii of order the nuclear size or smaller; see
Table II and Appendix A. These bound states, being net
positively charged in all cases except ðpXÞ, are thereafter
free to bind with electrons, and in general have atomic-
sized interaction cross sections with electrically charged
Standard Model particles.
The case of ðpXÞ is unique, as the state is neutral, has a

25 keV binding energy, and a ground-state Bohr radius of
rB ∼ 2

3
hri ∼ 30 fm. As such, this state behaves almost as a

heavy neutron, with a highly suppressed electromagnetic
interaction cross sectionwithmatter, of order its geometrical
size [10,11]. However, in dense environments, the ðpXÞ
state is susceptible to disruption via the energetically
favorable and classically allowed “exchange” reactions
ðpXÞ þ N → pþ ðNXÞ; combined with the fact that the
ðpXÞ are the last states to recombine as the early Universe
cools, this results in only a small fraction ∼10−4 of the total
X− abundance being bound in ðpXÞ states primordially; see,
e.g., Refs. [42,46–48]. An Oð1Þ fraction of the CHAMPs
become bound in ðHeX) primordially [42,46–48].15
In all cases however, given their extremely large mass,

CHAMPs have highly suppressed cross section-to-mass
ratios, so their dynamics are vastly simpler than those of
ordinary baryonic matter; they are more akin to those of
dark matter, with some notable exceptions. For instance,

heavy CHAMPs are prevented from collapsing into diffuse
gas clouds in galaxies [49,50,52] and can be present in
galactic haloes, distributed much like dark matter (at least
for mX ≳ 1011 GeV).
Because the vast majority of X− are bound primordially

to He, and such CHAMPs (if sufficiently heavy) do not
become bound to diffuse collapsed structures in galaxies,
the majority of X− that ever manage to enter a stellar
environment (see discussion below) will do so for the first
time as a ðHeXÞ bound state from a halo distribution of
CHAMPs. For heavy X− ðmX ≳ 1011 GeV), we will thus
make the assumption that the entire X− abundance that
contaminates or accretes onto a star will initially enter that
star as a ðHeXÞ bound state.
For lower masses, mX ∼ 105 GeV–1011 GeV, however,

baryonic dynamics such as supernova shockwaves in
galaxies can dramatically impact the spatial morphology
and momentum distribution of CHAMPs (both Xþ and X−)
[49,52], as we review in Sec. V. Even in this case, it is
highly improbable that any processes occurring outside of a
stellar environment could alter the “chemical” nature of any
X− that exist in the form ðHeXÞ: processes than can disturb
the X− chemical nature, e.g., ðHeXÞ þ N → ðNXÞ þ He
will necessarily involve a Coulomb barrier similar in size to
that for fusion of a proton onto a heavy nucleus N, which is
not a process that happens spontaneously at any appreci-
able rate outside dense stellar environments.16 Even these
lighter X− thus likely remain in the form ðHeXÞ until then
enter a dense stellar environment for the first time. For
lower masses still, the CHAMPs in the form ðHeXÞ may

TABLE II. Numerically computed ground-state binding ener-
gies EB [MeV] and average radii [fm] of the ðNXÞ system, where
the nucleus N is modeled as a uniformly charged ball of radius
R ¼ A1=3r0 with r0 ¼ 1.22 fm (see, e.g., Refs. [9,34,87]); see
Appendix A. Also shown are the naïve estimated hydrogenic
Coulomb binding energies that would be obtained ignoring the
finite charge radius of the nucleus; these significantly overesti-
mate the true binding energies for N heavier than helium, owing
to the bound state being localized within the nuclear volume.

N EB [MeV] Enaı̈ve
B [MeV] hri [fm] R [fm]

p 0.025 0.025 43 � � �
4He 0.35 0.40 6.1 1.9
8Be 1.6 3.2 2.6 2.4
12C 2.9 11 2.1 2.8
16O 4.1 25 1.8 3.1
24Mg 6.1 86 1.7 3.5
56Fe 10.0 940 4.1 4.7

14We distinguish a generic nucleus N from a nitrogen
nucleus N by the use of italic and roman fonts.

15Note that this is in contrast with claims in the earlier literature
that a much larger fractional abundance of ðpXÞ exists primor-
dially [10,50].

16Moreover, the reduced mass of the ðHeXÞ–N system is larger
than for p fusion onto N, being μ ≈mN rather than μ ≈mp; this
further suppresses the tunneling rate through the Coulomb
barrier, which is what controls the rate of escape of the X− to
the heavier nucleus in such an exchange process.
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simply collapse into the baryonic disk [49,50,52]; however,
unless these CHAMPs again enter a dense stellar environ-
ment, they too likely survive as ðHeXÞ for similar reasons.
On the other hand, CHAMPs that have been previously

processed through a stellar environment and then re-
released to the galaxy either during the late stages of
stellar evolution, or in a previous galactic supernova event,
will of course in general be bound up to heavier nuclei as
ðNXÞ: because nuclear processes with rates comparable to
reactions such as ðHeXÞ þ N → ðNXÞ þ He clearly do
occur at appreciable rates in stars, so too do such exchange
reactions; and the supernova event itself may involve many
highly energetic processes capable of overcoming any
Coulomb barriers and altering the chemical state of the
CHAMPs. Nevertheless, the fraction of the total number of
CHAMPs in any galaxy so processed will be small, for the
simple reason that the CHAMPs should be roughly
homogeneously mixed with the hydrogen and helium
gas primordially in the early Universe, and the total fraction
of hydrogen and helium in a galaxy that gets processed
through stars into heavier elements is small. In any
Population I or Population II star then, the total abundance
of CHAMPs present that may be bound to heavy nuclei as a
result of processes occurring before the birth of that
particular star will be no larger than a fraction approx-
imately at the level of the metallicity of such a star (i.e.,
roughly at the percent level), and therefore negligible. Of
course, CHAMPs that do enter a star are almost all
subsequently processed in that star itself over its lifetime,
but the above considerations imply that, as the starting
point for considering the evolution of CHAMPs in a star, it
is reasonable to assume that all CHAMPs initially enter it
either as Xþ or bound as ðHeXÞ, with some exceptions that
we discuss when they may be important.

V. CHAMPs IN THE GALAXY

As we have already mentioned, for sufficiently massive
CHAMPs (mX ≳ 1011 GeV [49,52]) the spatial morphol-
ogy and momentum distribution of CHAMPs in the galaxy
is not significantly impacted by baryonic dynamics; such
massive CHAMPs should thus have a halo distribution
akin to that of the dark matter. Lighter CHAMPs however
can be significantly impacted by such baryonic dynamics
[11,49,52]; see also discussion in Refs. [50,51,88,89]. Such
considerations are themselves subject to significant uncer-
tainty and there is some variation in the literature as to the
fate of such CHAMPs.
Reference [52] argued that efficient evacuation from,

e.g., the MilkyWay (MW) disk, of CHAMPs that are not in
the form (pX) (which are in any event a ≲10−4 fraction of
CHAMPs [42,46–48]) is possible by the combined action
of supernova shockwaves and the confining effects of
galactic magnetic fields. Their argument is that a Oð1Þ-
charged CHAMP that is heavier than mX ∼ 105Q2

X GeV,
whereQX is either the X charge, or the charge of the state in

which X finds itself bound, will be accelerated by the
periodic passage of a sufficiently intense supernova shock-
wave through the MW disk, and be unable to radiately
dissipate the kinetic energy thus gained sufficiently quickly
to avoid being accelerated above the disk escape speed on a
time scale of Oð100 MyrÞ. Moreover, the galactic disk
magnetic fields, which are mostly in the plane of the disk,
magnetically confine virialized CHAMPs in and around
the disk to within approximately their gyroradius. Given the
MW CHAMP virial speed and typical ∼1–10 μG magnetic
fields, virialized CHAMPs lighter than mX ∼ 1011QX GeV
have gyroradii smaller than the MW disk thickness.
Reference [52] thus argued that CHAMPs not in the form
ðpXÞ which thus find themselves initially in the MW disk
would be rapidly accelerated out of the disk by supernova
shockwaves, and that virialized CHAMPs in the MW halo
would be prevented from entering the disk by the confining
action of the galactic disk magnetic fields, provided their
mass is in the range 105Q2

X GeV≲mX ≲ 1011QXGeV.
Similar arguments presumably hold for other disk galaxies,
and some cognate argument is also likely to hold for the
central regions of elliptical galaxies.
We note again that since the majority of the CHAMPs

present in noncollapsed structures in a galaxy will still be in
the form Xþ or ðHeXÞ, with or without an electron bound to
them, it is appropriate to take QX ¼ þ1 for both cases X�,
when evaluating the boundaries of the region in which
Ref. [52] claims an effect.
The results of Ref. [52] are however based on a greatly

simplified picture of the dynamics of the diffuse CHAMP
plasma under the combined action of complex shockwave
dynamics, and the (turbulent) magnetic fields in galaxies.
More recent results, e.g., Ref. [49], find that although
Oð1Þ-charged CHAMPs in the mass range mX ∼
105 GeV–1010 GeV are sufficiently shock accelerated such
that an Oð1Þ fraction of those CHAMPs in the mass range
indicated above may be evacuated, their diffusive reentry
into the disk is not completely inhibited by the magnetic
fields; instead, an equilibrium between acceleration and
diffusion is reached, and the CHAMPmomentum spectrum
is significantly altered. Their results also indicate that for
mX ≳ 1010QX GeV, such CHAMPs form a DM-like halo
that is not disturbed by baryonic dynamics, and that for
mX ≲ 105Q2

X GeV, such CHAMPs will collapse into the
disk of the MW as it forms.
References [49,52] thus agree that sufficiently massive

Oð1Þ-charged CHAMPs will form a DM-like halo, but they
disagree on the details of how the CHAMP abundance,
momentum distribution, and spatial morphology for lower
CHAMP masses is impacted by baryonic dynamics. Taken
together, the conservative conclusion to draw from these
results is that any CHAMP bounds that rely on knowing the
galactic abundance or momentum distribution of CHAMPs
for mX ∼ 105 GeV–1011 GeV are subject to significant
uncertainty.
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We do however stress that those CHAMPs bound in the
form ðpXÞ and which have not undergone some reaction
that converts them to ðNXÞ [N ≠ p] would not get
significantly impacted by supernova shockwaves or mag-
netic field confinement, as they are not charged and hence
can be neither efficiently entrained in a SN shockwave, nor
deflected by a magnetic field. Hence, for a CHAMP
population which has any significant X− component, there
is always a residual fraction of X− in the galaxy; this is
however estimated to be no larger than 10−4 of the X−

abundance [42,46–48].
Finally, we note that annihilation of Xþ and X− in diffuse

structures is inhibited: the Xþ and ðHeXÞ states which are
assumed to be the dominant forms of CHAMPs in diffuse
structures at all times in the late Universe are both
positively charged. Therefore, the rate for bringing an
Xþ and a ðHeXÞ to within ∼fm of each other, in order
to allow the Xþ wave function to significantly overlap with
the highly localized X− wave function, is exponentially
suppressed by a Coulomb barrier. The suppression is
moreover exponentially more severe than the tunneling
suppression factor for pp fusion, since the tunneling
exponential is suppressed by the reduced mass (see, e.g.,
Ref. [90]), which is here μ ∼mX=2 ≫ mp=2. Combined
with intrinsically low CHAMP densities in diffuse struc-
tures, any annihilation process that would tend to remove a
symmetric component of the CHAMP abundance is simply
much too slow to be relevant, and the Xþ and X− bound as
ðHeXÞ survive independently throughout the era when they
are distributed diffusely.

VI. CHAMPs IN WHITE DWARFS

Having discussed the chemistry, history, and behavior of
CHAMPs outside stellar environments, we can now turn to
the question of how CHAMPs come to contaminate WD,
and their impact on WD dynamics. Our discussion is
guided in outline initially by that of Ref. [50].
In this section, we discuss first how CHAMPs come to be

present in WDs and their evolution over time, considering
in turn two mechanisms: (1) in Sec. VI A, we consider the
same case as Ref. [50], in which CHAMPs accumulate in
the protostellar cloud that collapses to form the stellar
progenitor of the WD, leading to a contamination of the
WD material as the WD is born. And (2), in Sec. VI B, we
consider the case where halo CHAMPs additionally accu-
mulate onto the WD as during the first ∼1 Gyr of the WD
existence (time scale to be discussed below).

Having considered the population of CHAMPs that can
be present in a WD, we then estimate the time scale for that
population to sink to the center of the WD [Sec. VI C], and
the evolution of the initial structure formed by the CHAMPs
at the center of the WD [Sec. VI D]. We then consider in
turn the fate of the CHAMPs in the cases of sub- or trans-
Chandrasekhar [Sec. VI E], and super-Chandrasekhar
[Sec. VI F] total CHAMP masses. For the latter case, this
discussion will naturally evolve into a discussion of black
hole dynamics in a WD, which is the topic of the immedi-
ately following section [Sec. VII].

A. Primoridal CHAMP contamination

We consider first the case where CHAMPs accumulate in
the protostellar cloud from which the WD progenitor
forms. We begin with a review of the arguments advanced
in Ref. [50] leading to the population estimate, and then
turn to the question of how the CHAMPs behave as the star
evolves.

1. Population estimate

The X, in whatever state they find themselves after
recombination, will collapse into galaxies during early-
Universe structure formation. For both the Xþ and ðNXÞ
[i.e., ðHeXÞ] forms of CHAMPs, σSM−X=mX will be small
enough, if mX ≳mdiffuse capture

X , that even the multiple orbits
executed through the MW galactic disk since galaxy
formation would not be efficient in capturing the
CHAMPs into diffuse disk gas clouds [50]. Estimate for
mdiffuse capture

X vary from mdiffuse capture
X ∼ 105 GeV [49] to

mdiffuse capture
X ∼ 107 GeV [50]. For lighter X, such trapping

would be efficient, but magnetic heating effects could
conceivably eject from the disk any such X which are
trapped in diffuse clouds [50]. It is therefore unclear if a
significant fraction of the X in, e.g., the MWend up trapped
in parts of the disk containing only diffuse gas if
mX ≲mdiffuse capture

X . On the other hand, X can be trapped
by denser collapsing protostellar clouds; Ref. [50] esti-
mates that a protostellar cloud of molecular gas of mass
Mcloud would capture a total mass MX� of the respective
charge species of CHAMP, X�, giving rise to star frac-
tionally polluted at birth by each of X� by an amount η� ≡
MX�=Mcloud given by (see below for further discussion of
the net contamination) [50],

η� ≈

8>><
>>:

192
ffiffi
2

p
π3=2

7e
α1=2MPl:

v3rot:m
2
pm

3=2
e

f�ρXM
1=4
cloud
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X

gðycrit:Þ ycrit: ≥ ymin :

313=622=3π1=3

7e
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e
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1 − 7
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3
y7min :
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; ð21Þ
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where

gðxÞ≡ ½lnðx−1Þ�−7=4
�
1 −

7

3
x4 þ 4

3
x7

þ 7

Z
1

ymin=x
dq

�
x
q

�
4

½x−4q4 − 1�
�
;

ð22Þ
ycrit is defined by the equation

ycrit: exp ½βy4crit:� ¼ 1 ð23Þ

β ¼ 4α2M4
Pl:=ðm2

pmXMcloudÞ; ð24Þ

whose solution is given in terms of the Lambert
W-function17: ycrit: ¼ ½ð4βÞ−1Wð4βÞ�1=4; ymin : dictates the
onset of X-capture when the cloud reaches nH ¼ nmin

H ∼
102 cm−3, becoming sufficiently UV-shielded to be
molecular,

ymin : ≡
�
4π

3

�
1=6m2=3

p ðnmin
H Þ1=6M1=3

cloud

MPl:m
1=2
e α

; ð25Þ

vrot: ∼ 220 km=s is the local circular speed in the MW; ρX
is the total CHAMP mass density at the location of cloud
collapse; and f� are the fractions of the total CHAMP
abundance in the forms X�, respectively. In computing f−,
we include all X− bound in ðNXÞ states, except for ðpXÞ
[50], for which this specific estimate does not apply
because it is based on an electromagnetic interaction
between the CHAMP and the diffuse gas which is absent
for the neutral ðpXÞ state; however, they only constitute
≲10−4 of the total X− abundance [42,46–48] and can thus
be ignored.
The transition between the low-mX regime (ycrit: < ymin.)

where η is independent of mX, and the high-mX regime
(ycrit: ≥ ymin.) where η ∝ m−7=4

X occurs because the phase-
space available for capture of more massiveX is suppressed
relative to that for lighter X until the cloud grows somewhat
denser than nmin

H and is hence physically smaller at the onset
of efficient capture [50].
Note that since the majority of the CHAMPs present in

noncollapsed structures in a galaxy will still be in the form
Xþ or ðHeXÞ, it is appropriate to take qX ¼ þ1 for both
cases X�, when evaluating η�.
For anMcloud ¼ 4 M⊙ protostellar cloud (appropriate for

an MWD ∼ 0.8 M⊙ WD [91]), the numerical estimate for
η�;4 ≡ η�ðMcloud ¼ 4 M⊙Þ is

η�;4 ≈

(
2.2 × 10−2 f�ρX

ρhalo
mX ≲ 1.7 × 104 GeV

2.2 × 10−2 f�ρX
ρhalo

	
mX

1.7×104 GeV



−7=4

ĝðmXÞ mX ≳ 1.7 × 104 GeV
; ð26Þ

where ρhalo ∼ 0.3 GeV=cm3 is the local MW DM halo
density, and ĝðmXÞ≡g½ycrit:ðmXÞ�=g½ycrit:ð1.7×104GeVÞ�.
Given the asymptotic scalings of ycrit., it follows that—for
this size cloud—ĝðmXÞ supplies only a log correction for
mX≲1012GeV, but that ĝðmXÞ∝m3=4

X for mX ≳ 1014 GeV,
which changes the power-law scaling of η for large mX.
CHAMPs that accumulate in protostellar clouds will

inevitably be incorporated fairly uniformly into the stars
formed by such clouds, as they are fairly well mixed; as a
result, those stars are born with a baked-in CHAMP
contamination fraction η as estimated by Eq. (21) [50].
To turn this estimate into an estimate for the total
abundance of CHAMPs that are present in the WD at
the end of the stellar evolution, we however need to make
further assumptions. Since we assume thatmX ≫ mp, some
gravitational sinking of the population of Xþ and ðNXÞ
toward the center of the star will undoubtedly occur during

the lifetime of the WD-progenitor star leading up to the
formation of a WD-progenitor CO core, which would
potentially boost the fractional mass contamination of that
core relative to that of the initial protostellar cloud.
However, large-scale convective processes that can operate
in certain regions, and during certain phases of the
evolution, of stars that actively burn nuclear fuel make it
challenging to give a quantitative estimate of this effect, and
we follow Ref. [50] in making the conservative assumption
that the fractional mass pollution of the WD-progenitor CO
core, and hence the WD itself upon formation, is just that of
the initial protostellar cloud. Under this assumption, the
total abundance of CHAMPs that are expected to be present
in the WD from this primordial contamination can be
estimated as

Mprim:
X� ≈ η�MWD: ð27Þ

We assume further [50] that the X contamination is
approximately uniform throughout the WD core at the
time of its formation.

17The asymptotic expansions of which are given by x−1WðxÞ ≈
1 − xþ 3

2
x2 for x ≪ 1 and WðxÞ ∼ lnðxÞ − lnðlnðxÞÞ for x ≫ 1.
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In the next subsection, we examine further aspects of the
behavior of the CHAMPs between the time of protostellar
capture and WD birth that can impact the validity of the
approximation Eq. (27).

2. Behavior of CHAMPs after protostellar
cloud contamination

Xþ will merely reside in the star without much change,
whereas ðNXÞ [mostly beginning as ðHeXÞ] bound states
can undergo significant processing in the core of the star, as
the nuclear reactionQ-values for a large number of steps in
a large number of different stellar burning reactions exceed
the ðNXÞ binding energies for the nuclei involved [e.g., the
modified CNO cycle reaction pþ ð14NXÞ → 15Oþ X is
possible with Q ≈ 3.8 MeV], which would enable ejection
and subsequent recapture of the X− by a different nuclear
species. Catalyzed nuclear such as ð4HeXÞþ14N→ 16OþX,
or exchange reactions such as ð4HeXÞþ14N→ 14ðNXÞþ4He
are also in principle energetically allowed (although they
proceed as tunneling processes through a Coulomb barrier),
and could result in the transfer the X out of ð4HeXÞ and into
heavier bound states. However, note that even if the X−

bound to helium do not exchange onto other heavier nuclei,
the limits we will ultimately set will still conservative; see
discussion in Sec. VI E 2.
As it is most energetically favorable for an X− to bind

with nuclei of higher charge (and hence greater mass) the
natural end result of these processes would be the eventual
accumulation in old, highly evolved stellar cores of ðN0XÞ
bound states where N0 is the heaviest nucleus present in
significant quantity. The approach to the final distribution
of X in various heavy nuclei is in general complicated,
and detailed study would require extensive numerical
modeling utilizing a large reaction network populated
with rates for all the reactions including the X in addition
to the usual nuclear reaction rates, as is done in ordinary
solar modeling (e.g., Refs. [92–94]); such an effort is
far beyond the intended scope of this work. In particular,
in the highly evolved M ∼M⊙ WD-progenitor CO stellar
core of a red giant with an initial mass in the appropriate
range (i.e., Mstar ≲ 9 M⊙ [95]), the X− will be present
in the form ð12CXÞ, ð16OXÞ, or possibly bound to some
heavier trace species (e.g., Ne, Mg, etc.) that was able to
form in smaller quantity during the stellar evolution; all
these ðNXÞ bound states have binding energies of at
least 3 MeV.
Moreover, even if we were to assume that some

significant population of ð4HeXÞ were to survive unscathed
during earlier burning phases in the stellar evolution, once
such states become part of the dense He core of an old,
massive red giant shortly before the helium flash that leads
to the formation of the WD-progenitor core of CO material,

the X present in ðHeXÞ can catalyze fusion reactions such
as ðHeXÞ þ He → ðBeXÞ þ γ, which is allowed since
ð84BeXÞ is stable (EB ≈ 1.6 MeV; see Table II), in contrast
to 8

4Be, which is famously unstable (EB ≈ −92 keV) [96].
Such stable ðBeXÞ can then fuse with a further He nucleus
giving a pathway to ðCXÞ that is unsuppressed by the three-
body nature of the triple-α process; it is thus highly likely
that even X still bound as ðHeXÞ after the earlier stellar
burning phases get into ðCXÞ bound states quite early via
this ersatz triple-α route, even before the full degenerate CO
core itself forms as a result of the helium flash. Such X will
be unlikely to escape to other nuclei until the WD thermal
runaway since the binding energy of the ðCXÞ state,
∼3 MeV, is much larger than the temperature in the CO
core (T ≲ 10 keV; reaching T ≲ 60 keV only in a near
extremal CO WD just before thermal runaway [97]).
Moreover, even though the degenerate electrons at the
center of the near-extremal core WD do become relativistic
as the Chandrasekhar mass is approached and thus have
Fermi energies that can exceed the ðNXÞ binding energies,
they are of course still Pauli blocked from transferring
energy much larger than the temperature to (and thereby
disrupting) the ðCXÞ bound states.
Although it would of course be energetically favorable

for, e.g., ðCXÞ þ O → Cþ ðOXÞ exchange reactions (or
exchange reactions with heavier nuclei) to occur after
ðCXÞ formation, such reactions are highly tunneling sup-
pressed: the C wave function of the ðCXÞ bound state
(treating the X is stationary as it is so heavy) is localized
within ∼fm of the X position, so the incoming O must also
approach to within ∼fm of the X to be captured. But since
the O nucleus simply sees a Q ¼ þ5 object until it is
within ∼fm of the ðCXÞ bound state, there is a Coulomb
barrier of ∼ few MeV for this to occur. Moreover, since the
reduced mass of the ðCXÞ þ O system is about twice that
of a Cþ O system, the tunneling suppression is much
more pronounced that even for Cþ O fusion (even though
the charge is slightly lower, the reduced mass change
more than compensates; see the discussion of Gamow
energies in, e.g., Ref. [90]), which is itself suppressed
compared to the Cþ C fusion probability. Since the
majority of C-ions in a nonextremal WD have not under-
gone a fusion reaction since CO core formation (else the
core would have already burned), this implies that reac-
tions like ðCXÞ þ O → Cþ ðOXÞ are exceedingly unlikely
to have occurred.
We do however mention that a CNO-like reaction such as

pþ ð12CXÞ → 13Nþ X could still lead to the ionization of
the X; however, in highly evolved stellar cores (either in the
He-rich environment where the ersatz triple-α processes
occurs, or already in the degenerate CO core) the p
abundance has already been almost completely depleted
by ordinary stellar burning [66], making this possibility
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rare.18 Thus, even if such reactions were to occur in the He-
rich core prior to the He flash, the X would still likely be
recaptured by another He nucleus, and the cycle would
repeat until the X got stuck in another heavy nucleus such
as C or O. If, on the other hand, such reactions occurred in
the CO core after the He flash, the X− would again simply
be recaptured by another heavy nucleus, likely C or O. All
of which is by way of saying that once a X− is bound to C
or O, it is highly unlikely to be ionized again; or, if it is, it is
likely to end up bound to another C or O nucleus.
In this paper, we will for simplicity therefore assume that

the entirety of the X− population in the WD is bound to the
heaviest nuclei that make up an Oð1Þ fraction of the CO
core of the WD-progenitor object that forms at the center of
the red giant: that is, they will be bound to either 12C or 16O,
forming ðCXÞ or ðOXÞ, respectively.
We also note that Ref. [50] explicitly considers only the

net residual contamination of Xþ and X− present in the star
after an assumed annihilation of the accumulated Xþ and
X−; that is, their result for the CHAMP contamination,
which we claimed to have stated above as Eq. (21), is
actually given only in terms of the net residual contami-
nation η≡ jηþ − η−j [i.e., per Ref. [50], η≡MX;net=Mcloud

is given by the same expression as at Eq. (21), but with
f� → jfþ − f−j]. Since Ref. [50] is ultimately interested in
CHAMPs accumulating in stars whose evolved cores later
collapse to form neutron stars, in the cores of which the
ambient temperatures are T ∼MeV [98] and the ambient
densities are nuclear, this is a justified assumption in their

case as the X− are then unable to bind to nuclei and are free
to annihilate with Xþ when the CHAMPs collapse to an
extremely dense state at the center of the star.
However, we will be concerned with CHAMP contami-

nation of WDs, the interiors of which can only reach
maximum temperatures (just prior to triggering thermal
runaway in a near-extremal WD resulting in a full
“ordinary” Type-Ia SN) of T ∼ 7 × 108 K ≈ 60 keV (see
Ref. [97] and references therein) and much lower densities.
This is much smaller than the ≳3 MeV binding energies of
typical [e.g., (CX), (OX)] states into which X− are bound.
As a result, the ðNXÞ bound states which are formed in the
WD core will not be disrupted by the ambient conditions.
Therefore, similar to the argument already advanced for the
diffuse galactic CHAMPs, the X− will be shielded (during
the periods when they most densely accumulate) from
annihilating against the Xþ by the presence of the large
Coulomb barrier between the Q ¼ þ1 state Xþ, and the
Q ¼ þðQN − 1Þ ∼ 5–7 state ðNXÞ. As such, we will not
assume annihilation of the symmetric CHAMP component
and continue to track both the Xþ and X− contaminations
independently; see further discussion in Secs. VI E 4 and
VIII C on this point and how it impacts the final limits we
are able to set, which are in principle stronger than those of
Ref. [50] in the CP-symmetric case.
An important caveat to the discussion in the preceding

paragraph is that since individual nuclear processes that
occur during the active nuclear burning phases of the stellar
lifetime do have reaction Q-values large enough to poten-
tially disrupt all the likely ðNXÞ bound states involved in
various reactions, the X− will spend some portion of their
lifetime during the active burning phases outside the
protection of the positively charged nucleus and would
during such periods be susceptible to annihilation with Xþ.
However, the dilute distribution of the X� in the ordinary
stellar matter (assuming fairly uniform distribution in the
WD-progenitor star) makes annihilation a much less likely
scenario than, e.g., the X− just being immediately recap-
tured by another nearby nucleus. To judge the complete
implausibility of any alternative outcome, consider a simple
Γ ∼ nσv argument: if the CHAMPs were to constitute
100% of the local dark matter abundance (a deeply
excluded possibility), the maximum mass of CHAMPs
primordially present in the WD for a mX ∼ 1011 GeV
CHAMP (which maximizes η in the regime where we
know that the CHAMP halo abundance is undisturbed by
galactic dynamics) is of order MX ∼ 10−13 M⊙, which
yields an average number abundance in a MWD ∼ 1.2 M⊙
CO WD of nX ∼ 10−23nion, where nion is the number
density of the C and O ions in the COWD. Even charitably
allowing vX as large as the WD escape speed
∼10−2 ∼ 10vtherm:

C , it would still require an enormous ratio
of the CHAMP annihilation cross section to the radiative
capture cross section of the carbon ion on the CHAMP on
the order of 1022 for the rate for an annihilation to be equal

18Incidentally, we note that catalyzed fusion reactions such as
ðpXÞ þ 14N → 15Cþ X could ostensibly dramatically speed up
certain steps in the CNO solar energy generation cycle in our own
Sun. This is because the Coulomb barrier for the p to fuse onto
the 14N nucleus only becomes apparent at distances on the order
of tens of fermi [the ðpXÞ bound state size], rather than at a
couple of thousand fermi [the normal classical turning point
under the thermodynamic conditions prevalent in the Sun]. In
principle this change could be expected to dramatically alter the
relative neutrino yields from CNO vs pp cycles to be expected
from the Sun. However, this fails for subtle reasons. Many of the
steps in the CNO cycle have sufficient energy to directly eject the
X in the final state; such an ejected X will find and bind with
another nucleus, which is most likely a p (on number-abundance
grounds alone), which would allow a cycle of rapid fusions to
proceed. However, there is a regulator: on number-abundance
arguments alone, once every ∼104 times the X is ejected, it will
find and bind with an 16O nucleus (present in ∼10−4 number-
abundance in the Sun), where it will remain until a proton fuses
with the ðOXÞ nucleus in a sidebranch of the CNO cycle, possibly
ejecting the X in the final state. Unfortunately, we estimate that
the rate for that latter process is roughly as slow as the rate-
limiting pþ 14N step in the main uncatalyzed CNO cycle.
Therefore, given the small number of X in the Sun and the fact
that any one X can only catalyze a limited number of reactions
before being captured by a contaminant that keeps it bound up
and unable to catalyze further fusions for about as long as the
slowest CNO cycle step, we estimate that the overall impact on
the CNO cycle neutrino output is negligible.
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to the rate for radiative capture in any one instance when the
X− is thus liberated in a nuclear reaction in the star. Of
course, the other way around this is if theX− participates in a
truly enormous number of nuclear interactions in the lifetime
of the star and therefore spends a large amount of time
outside the protection of the positively charged ion nuclear
charge cloud; this appears exceedingly unlikely on the
grounds of the sheer number of nuclear reactions required
for this to be an issue. Once again, detailed evolutionary
stellar modeling beyond the intended scope of this work
would be required to fully resolve this issue; but on the
arguments advanced here, we will simply state our results
assuming that anyXþ–X− annihilation which occurs during
the active burning phases will be a small effect.

B. Accumulated CHAMP contamination

An additional mechanism exists to populate WD with
CHAMPs: accumulation of CHAMPs from the halo which
pass within the gravitational capture radius of the WD after
its formation. In this subsection, we discuss the population
estimate, estimate when this process is efficient, and
discuss the subsequent behavior of the CHAMPs.

1. Population estimate

Owing to their unit charge, even very heavy CHAMPs
can be stopped efficiently by stellar plasma, particularly the
extremely dense CO plasma that exists in WD in the
appropriate mass range. Given the total WD mass MWD,
radius RWD, and fractional efficiency ϵðvÞ in capturing
a CHAMP with speed v in the WD rest frame passing
within the gravitational capture radius RcaptureðvÞ ∼
Rstar½1þ v2esc;WD=v2�1=2 where vesc: ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GMstar=Rstar

p
is

the WD escape velocity, the total accumulated X�
CHAMP masses obtained within an accumulation time
τaccum: are given by

Maccum:
X� ðτaccum:Þ¼

Z
τaccum:

0

dt
Z

d3vfðvÞϵðvÞf�ρXðtÞ

×πR2
WD

�
1þv2esc;WD

v2

�
v;

ð28Þ
where fðvÞ is the CHAMP velocity distribution far from the
star (see below), normalized to

R
∞
0 4πv2fðvÞdv≡ 1, and

the ½� � ��-factor captures the gravitational focusing enhance-
ment to the geometrical capture cross section.
We again assume that the symmetric CHAMP abundance

is prevented from annihilating away by the large Coulomb
barrier between ðNXÞ and Xþ, so we will still track the
individual contamination abundances. Note that f− here
should count the ðpXÞ abundance, as the transfer mecha-
nisms of X− from ðpXÞ to ðNXÞ are likely quite efficient
given WD densities; this will be relevant if we discuss
accumulation of CHAMPs for masses mX ≲ 1011 GeV

where it is possible that CHAMPs other than ðpXÞ have
been evacuated from the galaxy [52] (although, as we
have already noted, this is subject to some controversy
[49]). The contamination fraction of the WD from this
accumulation of haloCHAMPs is given by η� ¼MX�=MWD.
We will assume that the star experiences a roughly

constant CHAMP density throughout its lifetime so that
ρXðtÞ ≈ const. Moreover, we will assume that CHAMPs are
distributed in momentum space in the same way as fully
virialized dark matter, which applies for mX ≳ 1011 GeV
[49,52]; it turns out (see Sec. VIII) that this is the only mass
range in which these additional accumulated CHAMPs are
relevant for setting limits, so this is not a very strong
additional assumption. More specifically, we will take fðvÞ
to be given by a truncated Maxwellian speed distribution in
the MW galactic rest frame [99],

fðvÞ¼N −1 exp

�
−
jvþvWDj2

v20

�
Θ½vesc;MW− jvþvWDj� ð29Þ

N ¼ π3=2v30

�
erf

�
vesc;MW

v0

�
−
2vesc;MWffiffiffi

π
p

v0
exp

�
−
v2esc;MW

v20

��
;

ð30Þ

where v0 ≈ 220 km=s is the local circular speed in the MW;
vesc;MW ≈ 540 km=s is the MWescape speed; and vWD is the
WD velocity in the galactic rest frame, which we will take
to have a magnitude vWD ∼ v0.
We take

ϵðvÞ ¼ Θðvmax − vÞ; ð31Þ

where we estimate the maximum speed (in the WD rest
frame), vmax, of a CHAMP far from the WD that will
become gravitationally bound to the WD after one passage
through the WD as follows: a CHAMP hitting the surface
of the WD carries energy Ei ∼ 1

2
mXðv2esc;WD þ v2X;0Þ where

vX;0 ≲ 10−3 is the CHAMP speed far from the WD in the
halo (in the WD rest frame). This energy is lost to ions in
the WD via elastic scattering events, each of which carries
away a momentum of order Δp ∼mionvrel where vrel is the
relative CHAMP-ion speed, and which can be approxi-
mated by vrel ∼max½vX; vion;therm:�. In order to become
gravitationally bound to the star, the CHAMP must lose
enough energy that its energy drops below Ef ∼ 1

2
mXv2esc;WD

after traversing an average distance of order RWD within
the WD. Approximating the WD as a uniform sphere of

density ρ̄ ∼MWD=ð4πR3
WD=3Þ, and noting that vesc;WD¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MWD=M2
Pl:RWD

q
∼2×10−2 while vhalo∼vion;therm:∼10−3

(assuming T ∼ keV), we are in the regime where
vrel ∼ vX, and so the CHAMP energy decreases ex-
ponentially with distance traveled through the WD:
EðxÞ ∼ Ei expð−2ρ̄σx=mXÞ. The largest initial speed the

FEDDERKE, GRAHAM, and RAJENDRAN PHYS. REV. D 101, 115021 (2020)

115021-14



CHAMP can have far from the WD and still be captured
after traversing an average distance ∼RWD

19 inside the WD
is thus,

vmax ∼ vesc;WD

�
exp

�
2ρ̄σ

mX
RWD

�
− 1

�
1=2

; ð32Þ

where σ is the total cross section for momentum transfers of
order Δp ∼mionvrel, which we very conservatively20 esti-
mate to be approximately the geometrical nuclear cross
section σ ∼ πð1.22 fm × A1=3Þ2 ∼ 170 mb ∼ 200 mb, with
A ∼ 7 consistent with the mean-ion approach we utilize
throughout; see Ref. [59] for a more detailed discussion of
cross sections for stopping in WD material. Demanding
that vmax ≳ vesc;MW þ v0 conservatively guarantees that the
CHAMP will become bound after one passage through a
distance RWD of WD material; a conservative estimate for
the maximum CHAMP mass that is thus guaranteed to
become bound to the WD is given by

mmax
X ∼

2ρ̄σRWD

ln ½1þ ðvesc;MWþv∘
vesc;WD

Þ2�
∼ 1.5 × 1016 GeV ×

σ

200 mb
; ð33Þ

where we again remind the reader that the cross section
assumed is conservatively small given that the CHAMPs
are electrically charged. While Eq. (33) is a good estimate
for where these effects will begin to become relevant, an
Oð1Þ fraction of CHAMPs that traverse the WD will still be
efficiently captured even for CHAMP masses somewhat
above mmax

X ; see Fig. 2.
For CHAMPs lighter than mmax

X , it is safe to assume
ϵ ¼ 1 in Eq. (28) and to perform the integral without regard
to the maximum stopping speed; this actually suffices for
the majority of the mass range where we will be interested
in the accumulation mechanism (see discussion below and
in Sec. VIII). For heavier CHAMPs, we are required to take
account of the maximum stopping speed, which imposes an
upper bound v ≤ vmax : of the dv integral in Eq. (28), as
implied by Eq. (31).
The final result of a careful treatment of the integrals in

Eq. (28) is a set of complicated functions for the accreted
CHAMPabundance, whichwe show inAppendix C; we use
the full expressions Eqs. (C1)–(C3) for all quantitative
results in this paper. It is however useful to develop a simple
approximate estimate for the accreted mass; this can easily

FIG. 2. The CHAMP abundance that becomes gravitationally
bound to a WD, Maccum:

X� ðτaccum:Þ [Eqs. (C1)–(C3)], compared to
the naïve estimateMapprox;III

X� given at Eq. (34), when the CHAMP
speed distribution and maximum stopping speed are taken into
account. This plot assumes that the CHAMP passes through a
distance ∼RWD of WDmaterial with a density equal to the average
WD density for aMWD ∼ 1 M⊙ WDwith RWD ∼ 0.01R⊙, and that
the CHAMP velocity distribution far from the WD is given by a
truncated Maxwellian distribution, Eq. (29). We assume that the
WD moves with respect to the CHAMP distribution at the local
circular speed in the MW, vWD ∼ v0 ∼ 220 km=s, and that the
MWescape speed is vesc;MW ∼ 540 km=s. We further assume that
σ ¼ 200 mb; see text. Note that the accumulated mass only
begins to significantly deviate from its maximum value once
mX ≳ 3 × 1016 GeV ∼ 2mmax

X .; because the estimate at Eq. (33)
was conservative in requiring all CHAMPs to accrete, a signifi-
cant fraction still accrete even somewhat about this mass.

19This is of course approximate; a more refined computation
would solve for the trajectory of the incoming CHAMPs
(specified completely by their initial speed far from the WD,
and their initial direction of motion relative to the WD velocity)
from infinite distance up to the surface of the WD, and then from
that surface onward as they pass through the WD losing energy,
following a nonconservative trajectory which would likely need
to be solved for numerically; such a computation could also make
use of the true density profile of theWD to refine the estimate. We
expect however that such a computation would yield results that
are not dramatically different from the result we give here, and we
have not performed such a refined computation.

20While energy loss by charged particles in dense, degenerate
WD material is in general a fairly complicated problem [59], an
alternative estimate for the linear stopping power of the WD
material can be obtained from considering elastic electromagnetic
scattering of the CHAMPs off the CO ions, represented by a
Thomas-Fermi screened potential [59]. For particles which are on
the borderline between becoming bound to the WD and not
becoming bound, we would have vX ∼ vesc;MW fairly constant
within Oð1Þ factors during the traverse of the WD since vX;0 ∼
10−3 is smaller than vesc;MW ∼ 2 × 10−2; as such, the Coulomb
stopping power can be estimated as dE=dxjCoulomb ∼
−ð2πnionZ2

ionα
2Þ=ðmionv2XÞ × Λ [59] where Λ is a Coulomb log

of order Λ ∼ 10–15 for the relevant parameters. By comparison,
the linear stopping power we have estimated with the geometric
cross section is dE=dxjgeometric ∼ −nionmionσv2X . The ratio is
ðdE=dxjCoulombÞ=ðdE=dxjgeometricÞ ∼ ð2πZ2

ionα
2Þ=ðm2

ionv
4
XσÞ × Λ.

Consistent with the mean-ion approach, if we take Zion ∼ 7,
mion ∼ 7μa, vX ∼ 2 × 10−2, and Λ ∼ 15, we find
ðdE=dxjCoulombÞ=ðdE=dxjgeometricÞ ≈ 70 × ðσ=200 mbÞ−1. Our
geometrical cross section estimate is thus perhaps too
conservative by about a factor of 70. Taking the more aggressive
cross section estimate would increase the maximum stopping
mass linearly by the same factor; see Eq. (33). The only change to
the limits would be that the correction factor estimated in Fig. 2
would remain ∼1 until mX ∼ 1 × 1018 GeV, so the limits we
present in Figs. 4 and 5 would be slightly stronger at the largest
masses we consider.
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be done directly from Eq. (28) in the case of mX ≪ mmax :
X .

Supposewe ignore the fact that theCHAMPshave a velocity
distribution, and approximate fðvÞ ¼ δðv − v0Þ=4π, and
also take ϵ ¼ 1; then we have that

Maccum:
X� ðτaccum:Þ ≈Mapprox;III

X�

≡ τaccum:f�ρXπR2
WD

v2esc;WD

v0
; ð34Þ

wherewe taken v2esc;MW ≫ v20. Numerically, this estimate is a
factor of roughly 1=erfð1Þ ∼ 1.2 larger than the full result
given at Eq. (C2) [which is well within the uncertainty on the
estimate itself]; normalized to this approximate result
Mapprox;III

X� , we plot the full result Eq. (C2) in Fig. 2. The
fractional suppression of the accumulating CHAMP abun-
dance at large mass scales21 roughly as m−1

X .
Suppose we consider either a M ∼ 0.85 M⊙ WD or a

M ∼ 1.1 M⊙ WD, take the accumulation duration
to be the time scale for cooling of a WD to the point of
crystallization (see discussion below) τaccum: ∼ 109 yr
[100], and normalize to the local MW DM density
ρhalo ∼ 0.3 GeV=cm3, then for mX ≲ 1.5 × 1016 GeV,
we have

η�;accum:ð0.85 M⊙WDÞ ∼ 1.9 × 10−13
�
f�ρX
ρhalo

�
ð35Þ

η�;accum:ð1.1 M⊙WDÞ ∼ 1.3 × 10−13
�
f�ρX
ρhalo

�
; ð36Þ

which exceeds the CHAMP contamination fraction
obtained via the protostellar channel (for a Mcloud ¼
7 M⊙ protostellar cloud, as appropriate for a MWD ∼
1.1 M⊙ WD [91])22 for mX ∼ 1.6 × 1011 GeV, assuming
for the sake of argument the same ρX (and ignoring any
differences in ðpXÞ accumulation).
Note that this estimate will be subject to large Poisson

uncertainties once the CHAMP mass becomes large
enough that, given the CHAMP density, the number of

CHAMPs that pass through the capture area in the
stellar lifetime, Naccum:

X� ¼ Maccum:
X� =mX� , becomes small.

Demanding conservatively that the fractional 1=
ffiffiffiffiffiffiffiffiffi
NX�

p
uncertainty in the estimate is less than 10% demands that
NX� ≳ 102. In order not to be subject this Poisson uncer-
tainty, we must require that

�
f�ρX
ρhalo

�
Poisson

≳

(
6×10−38 mX

105GeV
mX≲1017GeV

1.2×10−22
m2

X
m2

Pl:
mX≳1018GeV

; ð37Þ

with a small transition region in the scaling in the
intermediate mass range. See further discussion in
Sec. VIII where we consider the limits the accumulation
of CHAMPs imposes on the galactic abundance of
CHAMPs.

2. Efficiency of accretion

We note that in order for CHAMPs accumulated by this
mechanism to sink to the center of the WD and possibly
feed a dense central core object, we should assume that the
accretion is occurring while the interior of the WD is still in
a liquid/nonsolid phase, otherwise the sinking of the X� is
likely significantly inhibited (see, e.g., Ref. [100], in which
the diffusion coefficient for 22Ne contamination in a CO
WD is set to zero after crystallization). Since WD cooling
models (e.g., Ref. [101]) indicate that that crystallization
only occurs at ages τ ≳ 109 yr for CO WDs with masses
around MWD ∼ 0.85 M⊙, we restrict our attention to
CHAMP accretion occurring within at most the first
τaccum: ∼ Gyr after formation. Note that it is not necessarily
the case that sufficiently heavy CHAMPs would be
prevented from sinking even after crystallization,23 so this
is conservative.
Note that a short initial interval of CHAMP accumulation

may be complicated by the persisting existence of an ionized
planetary nebula blown off by the late-stage evolution of the
WD progenitor star. Given that planetary nebulae do not
remain ionized for much more than ∼few × 104 years (see,
e.g., Ref. [102])—orders of magnitude shorter than the

21The integral scales as
R vmax
0 dvv2 × v × v−2 ∝ v2max ∝ m−1

X ,
where the factor of v2 comes from the integration measure, the
factor of v comes converting the CHAMP abundance to a flux,
and the factor of v−2 comes from the enhanced gravitational
capture radius for slow-moving CHAMPs. The final scaling
with mX is obtained by expanding the exponential in Eq. (32)
for mX ≫ 1.5 × 1016 GeV [see Eq. (33)].

22Note that while the mass of the WD progenitor star will be
comparable to the collapsing protostellar cloud mass we input,
significant shedding of the outer envelope of a highly evolved red
giant occurs after the helium flash reduces the associated WD
progenitor CO core mass to something ∼M⊙ [95]; see Ref. [91]
for a discussion of this initial-mass–final-mass relationship.
Our results are actually relatively insensitive to the exact assumed
value of Mcloud, as η ∝ M−1=3

cloud for large mX [see Eq. (21) for
ycrit: < ymin].

23If the differential gravitational force acting on theCHAMPand
a neighboring ion exceeds the electrostatic repulsive force exerted
by the ion on the CHAMP at approximately the lattice spacing
then, in a lattice configuration, the CHAMP would likely sink
through the lattice. To get an idea of the mass scale involved,
consider anXþ located in a coldMWD ∼ 1.2 M⊙ WD, approximate
the lattice spacing by a ∼ ð3mion=ð4πρÞÞ1=3, and approximate
ρ ∼ 3MWD=ð4πR3

WDÞ; taking mion ∼ 12μa and Qion ∼ 6, we find
that this criterion is reached formX ≳ 1017 GeV, so while the very
heaviestXþ CHAMPs could potentially sink through a solid lattice
in a WD, lighter CHAMPs may be prevented from doing so. The
cognate mass estimate for X− bound as ðNXÞ is higher by the
charge of the ðNXÞ state. Note however that this estimate is very
rough, which is whywe conservatively truncated our accumulation
at a time scale such that the WD has not yet crystallized.
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crystallization time for the WD—this will likely be a
negligible effect; we have not attempted to account for it.
Relatedly, the results of Ref. [49] indicate accumulation

of CHAMPs (here, onto the WD) in the presence of stellar
winds and magnetic fields can be complicated by the
entrainment of inwardly diffusing CHAMPs in magnetic
field lines moving outward with the charged wind.
However, an absence of solar winds is expected for cooling
WD with sufficiently high surface gravity g ≳ 107 cm=s2

and Teff ≲ 5 × 104 K surface temperatures [103]; the sur-
face gravity of a MWD ≳ 0.8 M⊙ WD is g ≳ 2 × 108 cm=s2

(and higher for more massive WD, which have smaller
radii), so as long as the WD we are interested in have low
enough surface temperatures, no winds should be expected.
On the other hand, certain WD are known to possess

high magnetic fields [104] (see also Ref. [67] and refer-
ences therein). Moreover, even if the Xþ or ðNXÞ bound
state are neutral by virtue of having captured electrons, we
estimate that the UV luminosity of even an old WD is
sufficient to ionize at least one or more electrons from the
Xþ or ðNXÞ state24; as a result, the WD magnetic fields
could deflect incoming CHAMPs, making the accumula-
tion estimate too aggressive. However, this depends on the
rigidity of the CHAMPs: we estimate that if a Xþ or singly
ionized ðNXÞþ of mass mX ∼ 1011 GeV moving at a speed
v ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GMWD=ð2RWDÞ

p
were to experience a ∼7.5 MG

magnetic field roughly one WD radius from the surface of a
MWD ∼ 1.1 M⊙ WD, its Larmor radius rL ∼ p=qB would
be of order the WD radius, which would likely result in the
particle being deflected enough to miss the WD surface.
Much weaker magnetic fields at this radius would not
deflect the particle sufficiently to cause it to miss the
surface; moreover, since any magnetic field drops off at
large distance from the WD at least as rapidly as a dipole
field B ∝ r−3, the Larmor radius at large distance grows
much more rapidly than the distance from the WD, so it
would likely not cause the particle to miss the WD owing to

its effect further out from the WD. Although it is not
necessarily the case that fields much stronger than the one
estimated here would cause the particle to miss the WD
either (in a very strong field, the CHAMP would likely
simply spiral down the magnetic field lines, still likely
hitting the WD surface) this is a much more challenging
situation to analyze. Wewill thus wish to consider onlyWD
with low magnetic field ≪ 7.5 MG when considering
mX ≳ 1011 GeV CHAMPs accumulating onto a MWD ∼
1.1 M⊙ WD. On the other hand, if we were to consider a
mX ∼ 3 × 107 GeV CHAMP (about as light a CHAMP as
we will concerned with in the accumulating case) accu-
mulating onto aMWD ∼ 0.85 M⊙ WD, a B field of 1.1kG at
one WD radius above the surface would be problematic;
very low magnetic field WD are thus required for bounds
based on such accumulating WD to be robust.
Finally, note that if all the above caveats about this

process being efficient are satisfied then, until such time as
the WD crystalizes, this accumulation of CHAMPs is in
addition to any primordial abundance of CHAMPs that
may already have been present in the WD.

3. Behavior of accumulated CHAMPs

An Xþ incident on the WD is simply stopped, then
diffusively sinks to the core of the WD (see the following
sections). The fate of an X− may be different: if it is
incident as ðpXÞ, it can first be stopped and then rapidly
undergo an exchange reaction, becoming bound to a heaver
nucleus ðNXÞ, where N is either He (in the WD atmos-
phere, if any) or is most likely C or O, which form the bulk
of the WD. Alternatively, the exchange reaction can occur
during the stopping process. In either case, after exchange,
the heavier nucleus bound state will, after perhaps having
undergone some further stopping, merely diffusively sink
to the core of the WD. If the incoming X are in bound states
ðNXÞ where N is heavier than He, it is possible that the X
remains bound to that nucleus, and merely gets stopped
and sinks.

C. Sinking, stratification, and time scales

CHAMPs, whether Xþ or X− bound as ðNXÞ, have a
much smaller charge-to-mass ratio QX=mX than the CO
material in which they are interspersed when the WD is
born. As such, they would be expected to sink (diffusively)
in the WD toward the center of the star. Moreover, once
formed, a WD experiences no internal large-scale nuclear
burning processes that would trigger convection until/
unless thermal runaway is triggered, so convective mixing
of the WD contents is unlikely to disrupt this sinking. In
this subsection, we discuss the time scale for the sinking
process.
A very rough argument for why q=m is the relevant

quantity [100,105–107] when considering sinking is that
the (nondegenerate) ions present at some radius in the WD

24Consider a WDwith a luminosity of LWD ∼ 10−3L⊙, which is
typical for a MWD ∼M⊙ WD less than ∼Gyr old [66], and
conservative for the luminosity at an earlier age in the
WD existence since WD cool over time. The surface temperature
is then of order T ∼ eV, and so the fraction of the number of
photons emitted from the WD that have an energy sufficient
to ionise the outer electron from the CHAMP state (which
we take to be ∼10 eV) is, conservatively, f>10 eV ∼ 10−3.
Approximating the hydrogenic photoionization cross section
as σ ∼ 4παr2B where rB ∼ 5 × 10−11m is the Bohr radius,
we find that at a distance of R ¼ 10RWD from the WD
surface, the time scale for an ionization interaction to
occur is τ−1ionize ∼ nγσ ∼ ðf>10 eVLWD=ð4πR2Þ=TÞð4παr2BÞ ∼
10−10ðL⊙=eVÞðrB=RWDÞ2 ∼ 1=ð0.05sÞ. However, even moving
at escape speed, a CHAMP would take a time t ∼ R=vesc ∼
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RWDM2

Pl:=2MWD

p
∼ 8s ≫ τionize to traverse the remaining dis-

tance to the WD. Therefore, we estimate that the UV luminosity
of the WD is sufficient to ionize electrons from the CHAMP state
at least a distance R ≳ 10RWD from the surface of the WD.
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would sink compared to the electrons absent a very small
net positive charge overdensity interior to that radius
which, in hydrostatic equilibrium, supplies exactly the
correct electric field to balance the gravitational force on
the ions at that radius. However, since FE ∼ q and Fg ∼m,
such a bulk electrostatic force balance can only work for
one value of q=m: particles with smaller than average q=m
at a given radius must sink, while those with a larger q=m
must rise. Indeed, the 12

6 C − 16
8 O (q=m ¼ 0.5) mixture in a

WD does not stratify (while it remains liquid), but con-
taminants, e.g., 22

10Ne (q=m ¼ 0.45 < 0.5) sink on cosmo-
logically long time scales [100,106,107].
Here we follow the discussion of Refs. [100,107] (see

also Refs. [105,106,108,109]) to provide an estimate of
the time scale for the sinking. A first very approximate
estimate for the time scale τð1Þsink for sinking anOð1Þ fraction
of the WD radius is τð1Þsink ∼ RWD=wXðRWDÞ, where wXðRWDÞ
is the CHAMP diffusion velocity at the surface of the WD.
Assuming that the CHAMPs are only a trace constituent in
the WD background (easily satisfied during the initial
sinking phase), and that the charge-to-mass ratio of the
X is very small, the (terminal) diffusion velocity can be
estimated as25

jwXðrÞj ≈ gDmX=T; ð38Þ

where g ¼ MðrÞ=ðr2M2
Pl:Þ is the local acceleration

due to gravity, and D is a diffusion coefficient, which
Refs. [100,107] indicate can be estimated as the self-
diffusion coefficient for the CO plasma,

D ≈ 3ωpa2Γ−4=3; ð39Þ

where

ω2
p ¼ 4πZ2

ionρα=m
2
ion ð40Þ

a≡ ð3mion=4πρÞ1=3 ð41Þ

Γ ¼ αZ2
ion=ðaTÞ; ð42Þ

⇒ D ≈
9

2π11=18

�
3

4

�
1=9 m1=9

ion T
4=3

Z5=3
ion α

5=6ρ11=18
; ð43Þ

where “ion” here refers to an ion in the mixture through
which the CHAMPs are sinking. We will adopt the widely

used “mean ion” approach and set mion ∼ 14μa and
Zion ∼ 7, assuming roughly equal abundances of C and O.26

For the purposes of an initial rough estimate, we will take
T ∼ 107K ∼ 1 keV (WD are approximately isothermal, and
this is a typical WD core temperature), MWD ∼ 1.1 M⊙,
RWD ∼ 7 × 10−3R⊙, and we will approximate the density
with the average WD density: ρ ≈ ρ̄≡ 3MWD=ð4πR3

WDÞ≈
4.5 × 106 g=cm3. The sinking time scale we then estimate
is [clearly for mX ≪ 1021 GeV],27

wXðRWDÞ ∼ 1 × 10−7m=s ×

�
mX

105 GeV

�
ð44Þ

≈3 × 10−16c ×

�
mX

105 GeV

�
ð45Þ

τð1Þsink ∼ 1.6 × 106 years ×

�
mX

105 GeV

�
−1
: ð46Þ

For mX ≳ 103 GeV, this is less than the old WD lifetimes
and/or crystallization times of ∼Gyr we consider, but the
estimate here is crude because we have taken g and hence
wX to be radially independent.
A better but still highly approximate analytically tractable

estimate is obtained by taking into account the radial depend-
ence of wX, making the assumption that the WD is a sphere
of uniform density (see, e.g., Ref. [50]). Then, we have
that gðrÞ¼Menc:ðrÞ=ðr2M2

Pl:Þ¼½MWDðr=RWDÞ3�=ðr2M2
Pl:Þ¼

gðRWDÞ×ðr=RWDÞ, implying that

wXðrÞ ¼ wXðRWDÞ ×
r

RWD

; ð47Þ

so that the time scale estimate to move from radius
r ¼ Ri ∼ RWD to r ¼ Rf becomes

25Note that there is no QX dependence in wX. For X a trace
element of mass mX sinking through a background plasma with
q=m ¼ 2, the full expressions of Ref. [100] give jwXj ¼j2QX −mX=μajðmpgD=TÞ, which yields Eq. (38) in the limit
mX ≫ μa regardless of QX (if we approximate mp ≈ μa, which is
allowed at the level of accuracy of these computations).

26At this level of approximation, it is irrelevant whether we
assume the number or mass abundances are equal. Technically,
this assumes the number abundances are equal.

27We note that the terminal velocity estimate, and hence
sinking time, are dramatically different from the naïve estimates
obtained from setting the viscous drag force Fdrag ∼ ρionvionσwX
equal to the gravitational force [50], which would yield
wX ∼ gmX=ðρionvionσÞ. If we take vion ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=mion

p
and estimate

σ ∼ 200 mb as we have throughout, we would obtain wX ∼
15 cm=s × ðmX=105 GeVÞ, assuming the same average WD
density as in the main text. The difference is likely ascribable
to the WD interior being a strongly coupled plasma which acts
like a liquid, instead of a rarefied gas, so that the low ∼ nuclear
cross section estimate we have used up to now (always in a way
thus far that was conservative) potentially supplies a dramatic
underestimate of the viscous drag force on the CHAMPs and
yields a much too aggressively short estimate of the sinking time.
The extreme discrepancy between these estimates does however
give some pause, and we note that the time scales we give here are
possibly conservatively long.
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τð2Þsink ∼
Z

RWD

Rf

dr
wXðrÞ

¼ τð1Þsink ln

�
RWD

Rf

�
; ð48Þ

which is longer than the previous estimate by a logarithmic
factor that depends on the final radius. In the next subsection,
we estimate the initial radius of the CHAMP structure that
forms at the core of the WD as a result of the sinking, which
will show that this logarithmic factor is never large enough to
cause the sinking time scale to become unacceptably long.
Moreover, as we are also interested in the case of sinking

where the star also contains an extremely compact core
object (i.e., a BH) at the center of the WD, it is worth
considering how the above estimate is modified in the
case where Menc ¼ MWDðr=RWDÞ3 þMcoreð1 − ðr=RWDÞ3Þ
for Mcore ≪ MWD. This implies that

wXðrÞ ¼ wXðRWDÞ
�

r
RWD

�
1 −

Mcore

MWD

�

þMcore

MWD

�
RWD

r

�
2
�
: ð49Þ

If Mcore ≪ MWD, then for r ≳ rcross ≡ RWDðMcore=MWDÞ1=3,
the dynamics are still dominated by the WD material
enclosed at radius r, and the estimate at Eq. (48) holds;
however, for r≲ rcross, the dynamics are dominated by the
core, implying that wX ∼ r−2, which regulates the loga-
rithmic divergence in the total sinking time estimate at
Eq. (48),

τð3Þsink ∼
Z

RWD

Rf

dr
wXðrÞ

ð50Þ

∼τð1Þsink × min

�
ln

�
RWD

Rf

�
; ln

��
MWD

Mcore

�
1=3

��
: ð51Þ

The maximum total time to sink to the center of the star in
this case is thus

max τð3Þsink ≈ τð1Þsink ln

��
MWD

Mcore

�
1=3

�
ð52Þ

∼ 2.5 × 107 years ×

�
mX

105 GeV

�
−1

×

�
1þ 1

15
ln

��
10−20 M⊙

Mcore

�
1=3

��
; ð53Þ

which for mX ≳ 103 GeV is less than WD lifetimes and/or
crystallization times of ∼Gyr.
Moreover, Eqs. (48) and (53) are still overestimates of

the sinking time scale because the density of the WD
increases significantly above the average density as the core
is approached, which makes MencðrÞ and hence wXðrÞ (in
the region r > rcross) larger than that estimates assuming

the uniform sphere. Indeed, for a WD of mass MWD ¼
0.8–1.2 M⊙, the density exceeds the average density
for r=RWD ≲ 0.6–0.7, with the central density eventually
reaching a value roughly a factor of 9–16 larger than the
average density. Recomputing the time scale estimate
with a realistic WD density profile, we find that for a
MWD ¼ 1.1 M⊙ WD we have, within a factor of ∼2 for
Rf ≲ 10−2RWD, that

τð4Þ;1.1 M⊙
sink ∼

Z
RWD

Rf

dr
wXðrÞ

ð54Þ

∼2τð1Þsink ×
ρ̄

ρC

×min

�
ln

�
RWD

Rf

�
; ln

��
ρC
ρ̄

MWD

Mcore

�
1=3

��
ð55Þ

∼4×106 years×

�
mX

105 GeV

�
−1

×

�
1þ 1

13
ln

��
ρC=ρ̄
13

10−20 M⊙

Mcore

�
1=3

��
ð56Þ

assuming always that Rf ≪ RWD, and where we took
ρC=ρ̄ ≈ 13 for this WD. Again, for mX ≳ 103 GeV this is
less than WD lifetimes and/or crystallization times of
∼Gyr. Similar estimates hold for WD throughout the range
of masses in which we are interested in this paper. Note that
the logarithmic factor shown at Eq. (56) differs from that at
Eq. (51) because the increased central density of WD
material implies a smaller crossover radius if a massive core
is present. Finally, note that the core mass assumed here is,
within an order of magnitude or so, the Chandrasekhar
mass for a mX ∼ 1010 GeV CHAMP, and that the loga-
rithmic factor is clearly not very sensitive to the exact
assumed core mass.
We must also consider whether it is actually possible

to achieve the terminal diffusion velocity under the
gravitational acceleration prevailing in the WD; if not,
then the above estimates could be incorrect. To see that this
is easily possible, consider that the maximum velocity
achievable by a particle free falling through a uniform
density sphere of mass M and radius R is given up to

Oð1Þ factors by vmax : ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=ðRM2

Pl:Þ
q

. For the MWD ∼M⊙

WD discussed above, this estimate is vmax : ∼ 10−2c,
which is much greater than the terminal diffusion velocity
for all mX ≲MPl.; the terminal velocity is thus always
reached.
Note that we will conservatively elect not to consider

CHAMPs lighter than mX ≲ 103 GeV, where the sinking
time estimates given here approach WD lifetimes and/or
crystallization times of ∼Gyr; see Figs. 4 and 5.
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D. Thermally supported CHAMP-contaminated WD
structure: Self-gravitating collapse and time scales

The Xþ and ðNX−Þ present will sink diffusively to the
center of the newly formedWD in a characteristic time τsink
(see Sec. VI C), until (or if) they encounter sufficient
pressure to halt this collapse/sinking process and establish
a stable hydrostatic equilibrium (should such an equilib-
rium exist). In this subsection, we consider the initial
formation of a CHAMP structure at the center of the WD;
see also the discussions in Refs. [50,60,61].
Initially, so long as the WD material still dominates

the central mass density of the WD, the CHAMPs will
form an approximately isothermal thermal-pressure-
supported structure28 at the center of the WD ρXðrÞ∼
ρXð0Þ exp½−ðr=r�Þ2�, with a characteristic scale height [50],

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3TM2

Pl:

2πmXρWD

s
ð57Þ

∼ 350m×

�
T

1 keV

�
1=2

×

�
mX

105 GeV

�
−1=2

×

�
ρWD

5.5 × 1010 g=cm3

�
−1=2

; ð58Þ

and total mass,

MX� ¼ π3=2ρXð0Þr3� ð59Þ

∼6×10−12 M⊙×
ρXð0Þ
ρWD

×

�
T

1 keV

�
3=2

×

�
mX

105 GeV

�
−3=2

×

�
ρWD

5.5×1010 g=cm3

�
−1=2

; ð60Þ

whereρWD is the centralWDdensity, forwhichwehave taken
the fiducial value for aMWD ∼ 1.1 M⊙ WD(see Table I).T is
the central WD temperature, which we conservatively
estimate as T ∼ 1 keV (a higher temperature increases the
self-gravitating mass and would weaken our constraints; see
Sec. VIII): Ref. [110] indicates that aMWD ∼ 1 M⊙ WDwith
an age in the range τWD ∼ 108 − 109 yrs has a luminosity
LWD=L⊙ ∼ 10−2.25 − 10−3.5 (see their Fig. 1, “with neutri-
nos”), corresponding to a core temperature in the range
T ∼ 107–106.3 K, or T ∼ 0.8–0.2 keV.
Note that r� also supplies an alternative natural cutoff to

the logarithmic divergence in Eq. (48): even for mX ∼
1018 GeV (as massive a CHAMP as we consider; see
Sec. VIII), r�∼10−4m∼10−11RWD (for RWD∼7×10−3R⊙),
yielding a logarithmic enhancement of the sinking time
by a factor of logðr�=RWDÞ ∼ 25; the sinking time estimate
Eq. (48) for a CHAMP of this mass thus becomes
∼102 s. On the other hand, for mX ∼ 105 GeV, we have
logðr�=RWDÞ ∼ 10, so the sinking time scale Eq. (48) is
∼107 years. In both cases, these time scales are sufficiently
short, and are within a factor of ∼5–10 of the shorter
estimate Eq. (56).
This thermal-pressure-supported structure is stable as

long as ρXð0Þ≲ ρWD; at densities above this, the CHAMP
structure will begin to dominate the mass density at the
center of the WD, and the CHAMP structure becomes
unstable to a collapse mode in which the CHAMP
configuration loses total energy, heats up, and contracts
[50,61], also known as the “gravothermal catastrophe”
[54].29 This implies a maximum stable mass for the core,

Ms:g:;X ¼ π3=2ρWDr3� ¼
�
3TM2

Pl:

2mXρ
1=3
WD

�
3=2

ð61Þ

∼ 6 × 10−12 M⊙ ×

�
T

1 keV

�
3=2

×

�
mX

105 GeV

�
−3=2

×

�
ρWD

5.5 × 1010 g=cm3

�
−1=2

ð62Þ

[i.e., Eq. (60) with ρXð0Þ ¼ ρWD]; core masses above this
value will collapse spontaneously (see discussion in fol-
lowing sections).

28There is a significant caveat to this discussion. For the picture
of the thermal-pressure-supported structure that we advance in
this section to be correct, the X must contribute an ideal gas term
to the pressure P ⊃ nXðrÞT, and this must be the only term in the
pressure acting on the CHAMPs that varies significantly over the
length scale r� (only pressure gradients hydrostatically support
structures against gravitational collapse). The X� are however
electrically charged and immersed in strongly coupled, charged
nondegenerate CO and degenerate electron plasmas, so this
assumption is likely a gross approximation. It is therefore
possible that the X are not stalled in this thermal structure, but
instead simply continue to diffusively sink toward the center of
the star, directly forming the denser core structure at the center of
the WD that we discuss in Sec. VI E, which has a maximum
Chandrasekhar mass before it too must collapse. However,
because we will set limits (see Sec. VIII) requiring the presence
of the larger of the self-gravitating mass or the Chandrasekhar
mass of CHAMPs in the core structure, and because the self-
gravitating mass exceeds the Chandrasekhar mass for large mX
[Eq. (68)], it is conservative to assume that this thermal structure
must form and become self-gravitating before the CHAMPs can
sink further.

29A virial population of N self-gravitating particles with
average total kinetic energy hEKi, and temperature T ∼
hEKi=N obeys the virial theorem hEKi ∼ −ð1=2ÞhUi where
hUi ∼ −GM2=R is the average total potential energy of the
particles if their total mass isM and the characteristic radius of the
configuration is R. The average total energy of the system is thus
hEi∼ hEKi þ hUi ∼ ð1=2ÞhUi∼−hEKi∼−NT ∼ −GM2=ð2RÞ.
The configuration thus has negative heat capacity dE=dT ∼ −N,
so an energy decrease causes a temperature increase and a
decrease in R for fixed M, implying a contraction.
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The time scale for this collapse could be limited either by
the time scale for the CHAMPs to lose energy to the WD
material to allow the collapse to occur, or by the drift time
for the CHAMPs to sink inwards from r�. The energy
transfer time scale is extremely short: assuming that
vX ≪ vion, our discussion of energy loss in Sec. VI B 1
is applicable, and the energy loss rate for a single CHAMP
can be estimated as dE=dt ∼ −ρionσv2Xvion. The character-
istic time scale for the CHAMP to lose Oð1Þ of its kinetic
energy is thus τenergy ∼mXv2X=ðdE=dtÞ ∼mX=ðρionσvionÞ∼
1.5 × 10−16 s × ðmX=105 GeVÞ × ðσ=200 mbÞ−1, where
we used the same cross section estimate as in Sec. VI B 1;
see also Refs. [50,61].
On the other hand, if we track a particle collapsing

inward with the collapsing distribution of CHAMPs of
fixed total mass Ms:g:;X from r� to smaller distances, we
find that the time scale for infall assuming the estimate of
the diffusive sinking speed given by Eq. (38)30 with gðrÞ ¼
Ms:g:;X=ðr2M2

Pl:Þ is given by

τcorecoll: ∼
Z

r�

Rf

dr
wXðrÞ

¼ TM2
Pl:

3π3=2ρWDmXD

�
1 −

�
Rf

r�

�
3
�

ð63Þ

≈
TM2

Pl:

3π3=2ρWDmXD
½Rf ≪ r�� ð64Þ

∼ 1.5 × 105 yr ×

�
mX

105 GeV

�
−1
; ð65Þ

indicating that the diffusive sinking time is by some orders
of magnitude the limiting time scale for all masses of
interest to us (mX ≲ 1018 GeV; see Sec. VIII). Note also
that this is much shorter (by a factor of ∼25) than the total
diffusive sinking time Eq. (56) for CHAMPs distributed
throughout the WD volume, so ifMprim:

X ≫ Ms:g:;X, the core
shrinking process completes more rapidly than any remain-
ing CHAMPs distributed throughout the WD in excess of
Ms:g:;X sink to the core.
We note in passing that if the energy released in the self-

gravitating collapse is sufficient to heat the star above the
trigger criteria, this is an opportunity for early destruction
of the WD.
The end point of the self-gravitating collapse phase

depends on the total mass of CHAMPs and the CHAMP
mass;we survey thepossibilities in the following subsections.

E. Degeneracy supported CHAMP-contaminated
WD structure: Sub-Chandrasekhar case

Assuming that the self-gravitating collapse discussed in
the previous subsection proceeds, the end point of that

collapse depends on the total mass of CHAMPs present in
the star, and also the CHAMP mass (see Sec. VI E 3 for a
detailed discussion of when the discussion in this section is
applicable).
We begin in this subsection by considering the casewhere

degeneracy pressure can restabilize the collapse of the
thermal structure, examining the impact on the mechanical
structure of a WD and explaining important evolutionary
changes in the CHAMP chemistry that occur.

1. Positively charged CHAMPs: X +

We discuss first the Xþ case. At typical (nonextremal)
CO WD core temperatures of T ∼ 107 K ∼ 1 keV,
the Xþ have thermal de Broglie wavelengths λth:dB ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=ðmXTÞ

p
∼ 2 × 10−15m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
105 GeV=mX

p
which are

much smaller than the typical inter-ion spacing
δ≡ ð3=ð4πnÞÞ1=3 ∼ 2 × 10−13 m. Here, we have used the
particle number density at the core of an M ∼M⊙ WD,
nion ∼ 3 × 1031 cm−3, neglecting that the Xþ themselves
will impact the mechanical structure of the WD, increasing
the central number density and decreasing δ. Nevertheless,
these estimates indicate that the central density would have
to be increased by a factor of ∼106 × ðmX=105 GeVÞ3=2
over that for a normal WD before Xþ degeneracy begins to
be a concern. Such density increases are however not
observed to occur in numerical solutions of WD structure
(see Appendix D): assuming that the CHAMPs form a
stratified core structure inside the WD, the maximum
supportable number density in that core structure scales
up from the ordinary WD density as n ∝ mX as the
core becomes more and more extremal, causing the inter-
Xþ spacing to decrease as δ ∼m−1=3

X . Assuming n ∼ 3 ×
1031 cm−3 × ð105 GeV=mCÞ ∼ 3 × 1035 cm−3 implies that
δ ∼ 10−14 m, so the de Broglie wavelength computed
above is still smaller than the inter-ion spacing at the center
of the denser core for mX ¼ 105 GeV. Moreover, because
λth:dB ∝ m−1=2

X , which is faster than the inter-ion spacing
decreases under these circumstances, this hierarchy persists
to highermX, and we can thus safely take theXþ themselves
to be nondegenerate in the WD at all times.
Being charged, the Xþ are however electromagnetically

tightly coupled to the highly degenerate electron plasma
(for a typical M ∼M⊙ CO WD, λeth:dB ∼ 40δe), which thus
supplies electron degeneracy pressure support to the Xþ, in
exactly in the same fashion as it does for the ordinary
positive C and O ions in a WD. The electron degeneracy
pressure scales as Pdeg : ∝ n4=3e in the relativistic limit,31 but

30This estimate is appropriate to use in this context, provided
that mX ≫ GeV, since the CHAMPs can then still dominate the
mass density in the core while still being a trace element at the
onset of the sinking.

31The degeneracy pressure scales as n5=3e for nonrelativistic
electrons, which increases parametrically even faster with
increasing ne; the electrons at the center of even a M ∼M⊙
WD already have EF ¼ 2.5me, which is already into a fairly
relativistic regime, where E scales approximately linearly with
increasing p.
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is independent of the mass of the heavy ion to which this
pressure support is communicated. At the onset of self-
gravitating collapse, when the central mass fraction of the
CHAMPs and CO mixture are approximately equal,
XX ∼ XC=O, the Xþ constitute only a small number fraction
of the central ions: xX ≪ xC=O because mX ≫ mC=O. As
such, the mean molecular mass per free electron
[Eq. (D10)] is almost unperturbed by the presence of
the CHAMPs, and the electron density and spatial dis-
tribution in the WD is similarly undisturbed. However, as
the self-gravitating collapse proceeds, the number frac-
tions of the CHAMPs and C/O ions eventually become
comparable at the center of the WD. At this point, the
electron number density and radial distribution begin to
respond, increasing the pressure support to the Xþ and,
provided the total Xþ CHAMP contamination MXþ is
sufficiently small (to be quantified below), restabilizing
the Xþ configuration at a much smaller radius. We expect
that the end point of the self-gravitating collapse in this
scenario is the formation of a core at the center of the
WD comprised of the two-fluid Xþ=e− mixture, with an
overburden of the multifluid 12C=16O=e− mixture of
the canonical CO WD, with a transition region between

these two stratified layers whose thickness is dictated by
thermal effects.32

We can roughly estimate the thickness h of the transition
region by setting the thermal kinetic energy of a CHAMP
EK ∼ ð3=2ÞT equal to the gravitational potential energy
gained upon rising a distance h ≪ Rcore above the core
boundary ΔE ∼ hmXMcore=ðM2

PlR
2
coreÞ, leading to the esti-

mate h=Rcore ∼ ð3=2ÞTRcoreM2
Pl:=ðmXMcoreÞ. For instance,

with mX ∼ 105 GeV, an Mcore ∼ 4 × 10−10 M⊙ core
(about 70% of the Chandrasekhar mass for this CHAMP
mass) with Rcore ∼ 4.7 × 10−8R⊙ ∼ 30 m (see, e.g., Fig. 3)
inside a MWD ∼M⊙ WD gives h ∼ 30 cm ≪ Rcore for
T ∼ 10 keV. If the core is near-extremal, Mcore ∝ m−2

X ,
while Rcore decreases roughly as m−4=3

X (see Appendix D),
so it will always be the case that h ≪ Rcore for near-
extremal cores. To give just one more explicitly computed
set of values to verify this scaling, for mX ∼ 1013 GeV, an

FIG. 3. The number density of ions as a function of radius, normalized to the core number density (nion ≈ 2.0 × 1032 cm−3), of an
M ¼ M⊙ pure-CWDwith fractional Xþ contamination η ¼ 4 × 10−10, for anmX ¼ 105 GeV CHAMP (red, solid curve). We assume as
input that the Xþ have all settled to the core of the star (complete stratification), forming an inner core of pure-Xþ with mass
MXþ ≈ 0.8MChand:;X , which is found to have radius RX ≈ 5.4 × 10−6RWD (indicated by the vertical dotted black line); the whole star is
found to have radius RWD ¼ 8.2 × 10−3R⊙. We ignore thermal effects, which would presumably mildly smooth out the discontinuity in
ion number density at r ¼ RX (see text). Also shown are (a) the ion number density profile for an equal-mass pure-C WD without Xþ
contamination (green, short-dashed line), which is found to have an almost identical radius to the contaminated star, and (b) the ion
number density for a pure Xþ=e− WD of mass equal to the core mass (blue, long-dashed line). Note that, for ease of comparison, the
latter two profiles are shown here normalized to the central density and radius of the Xþ-contaminated star, and not to their own central
number densities. A comparison of these results indicates that, because MXþ ≪ MWD, the Xþ have very little impact on the mechanical
structure of the star outside the core (see inset). Moreover, because this particular core is not quite extremal, it does not well approximate
the profile of the isolated, equal-mass, pure Xþ=e− WD, as we expect a more extremal core would; see discussion in Appendix D.

32Note in the alternative that if the thermal-pressure-supported
structure does not form for any reason (see, e.g., footnote 28),
then the CHAMPs sinking out of the full WD will simply
accumulate in the core, and give rise to this stratified structure
directly, once sufficiently many CHAMPs are present.
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Mcore ∼ 3.7 × 10−26 M⊙ core (about 70% of the
Chandrasekhar mass for this CHAMP mass) with Rcore ∼
4.6 × 10−16R⊙ ∼ 3 × 10−7 m gives h ∼ 3 × 10−9m ≪ Rcore
for T ∼ 10 keV. Since the transition layer is thin, we will
ignore it and approximate the transition as immediate.
Note that the picture of near-complete stratification

depends on (a) the very different charge-to-mass ratios
[105] of the CO mixture and the Xþ (see Sec. VI C), and
(b) the fact that the Xþ will “use up” (for lack of better
terminology) the ability of the electrons in the center of the
WD to supply pressure support, making them unavailable
to supply pressure support to the CO mixture, which
must then be displaced upwards to maintain overall
charge neutrality of the plasma (this is again in contrast
to the neutron star case, where both the neutron star
matter and the X can coexist without one displacing the
other [50]). Since the mean molecular weight per free
electron μe [Eq. (D10)] of the Xþ=e− fluid mixture is
larger than for the CO mixture, this core will have a
central ion number density higher than the central
number density of the pure canonical CO WD (indeed,
the extremal core [see below] central number density
scales as nX ∝ mX). See Fig. 3 for an example number
density profile for such a cored WD, obtained by
numerical solution of the Tolman-Oppenheimer-Volkoff
(TOV) equation [75,76] assuming as input to the
computation that complete stratification has occurred
(see Appendix D). Note that the unphysical discontinuity
in the ion number density at the core boundary shown in
Fig. 3 arises due to the continuity of the electron number
density ne (and hence degeneracy pressure) at the
interface, combined with the abrupt change of charge
per ion from þ6 for r > RX to þ1 for r < RX, which
allows 6 times more ions to be present per unit volume
just below the interface, compared to just above; this
discontinuity would be smoothed by the thermal thick-
ness of the transition region, which we have have
approximated to be zero consistent with our esti-
mates above.
While less extremal Xþ=e− cores are “squashed” to

some extent by the overburden of CO WD material (see,
e.g., Figs. 3 and 9), as the central core becomes more
massive, it more and more closely approximates the
physical structure of an isolated WD comprised of
a pure Xþ=e− mixture; see Appendix D for a detailed
discussion. In particular, the stratified core has a
maximum stable Chandrasekhar mass [55], which is
equal to the Chandrasekhar mass for a isolated, pure
Xþ=e− WD: MChand:;Xþ≈5.7ðμXþ

e Þ−2M⊙≪M⊙, where
μX

þ
e ¼ mXþ=μa ≫ 1; see again Appendix D for a detailed

technical argument as to why the Chandrasekhar mass
scales in this fashion for μe ≫ 2. Therefore, if MXþ >
MChand:;Xþ , the central core cannot be sufficiently pres-
sure supported and, in the most conservative possible
picture, will inevitably collapse to form a BH at the core
of the WD.

2. Negatively charged CHAMPs: X−

For sufficiently small total X− CHAMP contamination,
MX− (again to be quantified below), the X− case is naïvely
broadly similar to the Xþ case, but a detailed consideration
of the putative stable structure that would form at the center
of the WD in this case leads to another possible avenue for
triggering WD runaway upon BH formation.
Aswe have already discussed,X− in the Universe take the

form of ðNXÞ, where inside a WD we can assume that N is
either 12Cor 16O, in roughly equal fractions; see discussion in
Sec. VI A 2. For the first part of this subsection, wemake the
assumption that the X− remain immutably bound in such
structures even when a CHAMP core forms inside aWD. In
the second part of this subsection, we will comment on the
ions densities reached by such a configuration and whether
modifications to this picture are required.

X− bound as ðNXÞ.—Since the ðCXÞ and ðOXÞ bound
states have charge-to-mass ratios that differ by only 40%, it
is not guaranteed that they will stratify within the lifetime of
the WD in the sameway as the CHAMP core stratifies from
the CO overburden. As such, we will assume that the ðCXÞ
and ðOXÞ bound states form an approximately homo-
geneous mixture in the core of the WD. This means that
for the ðNXÞ case, we have the mean molecular mass per
free electron [Eq. (D10)],

1

μX
−

e
¼ 5XC

mX=μa
þ 7XO

mX=μa
≈
6μa
mX

≈
6

μX
þ

e
; ð66Þ

where we assumed that the WD has composition
XC ≈ XO ≈ 0.5. This is approximately equivalent to assum-
ing that theX− is bound to the “mean ion”with charge Q̄ ∼ 7,
implying QðNXÞ ¼ 6. As such, the Chandrasekhar mass for
the homogeneous ðNXÞ core at the center of the WD is
≈62 ¼ 36 times larger than that for an Xþ CHAMP of the
same mass; essentially this can be understood by virtue of
that fact that, on average, each electron in the core contributes
pressure support for only 1=6 of the mass of the CHAMP, as
compared to theXþ case,where the average electron supplies
pressure support for the full CHAMP mass.
The mechanical structure of the ðNXÞ core is however

largely similar to that shown in Fig. 3, except that the
discontinuity in ion number density across the core
boundary is reduced, since the average charge-per-ion in
the CO mixture if 7, whereas that in the ðNXÞ mixture is 6.
We conclude that ifMX− , the total mass of X− in the WD

core exceeds the Chandrasekhar mass for the ðNXÞ=e−
fluid: MChand:;X− ≈ 5.7ðμX−

e Þ−2 M⊙ ≪ M⊙, where μX
−

e ≈
mX−=ðQðNXÞμaÞ ≫ 1 is the mean molecular weight per
free electron for the ðNXÞ=e− fluid and QðNXÞ ¼ 6 is the
“mean-ion charge”, a central core of ðNXÞ cannot be
sufficiently pressure supported and, in the most
conservative possible picture, will inevitably collapse to
form a black hole at the core of the WD; see also the
discussion in Appendix D.
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We are also finally able to see why any limits we
ultimately set would be conservative (see comment in
Sec. VI A 2) even if we were to assume that the X− that
enter the star bound to He were not to exchange onto a
heavier nucleus: the Chandrasekhar mass for a ðHeXÞ core
is a factor of Q2

ðHeXÞ=Q
2
ðNXÞ ¼ 62 ¼ 36 smaller than the

Chandrasekhar mass for an ðNXÞ core (assumingQðNXÞ ¼6

in the mean-ion approach), because (by the same argument
as we have just made above for the Xþ state) the ðHeXÞ
state receives less pressure support than the ðNXÞ statewhile
retaining approximately the same mass (in the limit
mX ≫ μa), all other things being equal. As such, if we take
as our limit criterion that a Chandrasekharmass of CHAMPs
are present (see Sec. VIII for further discussion), then we
are clearly conservative in assuming that the CHAMPs are
all on the high-charge nuclei. On the other hand, if33 the self-
gravitating collapse is required to access this dense core
structure per the discussion in Sec. VI D, and the self-
gravitating mass is larger than the Chandrasekhar mass [see
discussion aroundEq. (68) below], then the charge of the ion
in which the X− is bound is irrelevant anyway.

High-sub-Chandrasekhar/trans-Chandrasekhar mass of
X−: The density of ions and pycnonuclear processes.—
The results of Appendix D make clear that the central ion
density of the fully stratified core of ðNXÞ material at
the central of the N star always exceeds both the central ion
density of an equal-mass isolated pure ðNXÞ WD, and the
central density of the uncontaminated pure N star (see
Fig. 8); in particular, the central density of the core can
increase to be some orders of magnitude above the central
density of the CO star as the core becomes more and more
extremal: nmax

X ∝ mX. This however raises the possibility
that, as the core mass becomes trans-Chandrasekhar, it is no
longer self-consistent to compute the structure of the
contaminated WD assuming the core is comprised immu-
tably of ðNXÞ material.
Already in an ordinary CO WD, it is the case that three

distinct outcomes can occur as the central density of the
WD material increases [74]: (1) carbon-carbon fusion
reactions can become so efficient as the core approaches
the Chandrasekhar mass that the supernova instability is
triggered before the Chandrasekhar mass is actually
reached, (2) the core can exceed the Chandrasekhar mass
and collapse (likely triggering the supernova instability as it
collapses), or (3) the core can begin to neutronize, which
modifies the equation of state. In an ordinary CO WD,
outcome (1) is believed to prevail at densities around
nC ∼ 5 × 1032 cm−3, although the central densities at
which (2) and (3) occur—nC ∼ 1.3 × 1033 cm−3 and nC ∼
2 × 1033 cm−3 [74], respectively—are both within a factor
of 3–4 of the central density at which (1) occurs [74].

In our modified case, we have a similar concern:
once the central ion density becomes too large, other
processes may begin to occur that would disrupt the
structure we have computed here assuming hydrostatic
equilibrium and a fixed equation of state. Similar to the
ordinary CO WD, pycnonuclear fusion of carbon ions
brought into close proximity by the increased density
caused by the CHAMPs is the process most likely to
disrupt the picture we have already outlined. Obtaining an
accurate rate for this process is challenging, as it occurs
as a tunneling process between carbon nuclei, each
individually bound to a CHAMP, within a larger ion
lattice in which other nuclear species (e.g., O) are
also present; moreover, electron screening enhancements
of the fusion rate are also present. In Appendix B we
develop a very simple estimate of when this process
may become important, finding [cf., Eq. (B25)] that the
density at which it becomes relevant is roughly

nboom½CX� ∼ 0.2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nnuclnboom½C�

q
, where nnucl ∼ 2 × 1037 cm−3 is

a nuclear number density, nboom½C� ∼ 5 × 1032 cm−3 is the

number density at which pycnonuclear processes become
important in ordinary CO WD material [74], and nboom½CX� ∼
1034 cm−3 is our estimate of when they become relevant in
the ðNXÞ core of the WD.
We thus see, in the trans-Chandrasekhar mass regime,

the increasingly dense core may first undergo fusion
processes that would trigger thermal runaway, destroying
the WD before the core could even collapse to a BH.
However, as there is significant uncertainty in the estimate
of the density at which these fusion processes first become
relevant, we will in the following sections also proceed
conservatively to discuss in detail the case in which the core
will proceed to collapse to a BH before it can be disrupted
by fusion events (we must in any event discuss that case, as
these pycnonuclear processes are inapplicable to the case of
a Xþ core). In this way, we will show that the inevitable
outcome (with some minor exceptions in some regions of
parameter space) is destruction of the WD, whether or not
the pycnonuclear fusion process discussed here can trigger
the runaway.
Note also that other processes would of course occur at

higher central core densities still but, again, these would
still lead to early destruction of the WD: for instance, by the
time the ion density reaches nuclear density, fusion would
be almost entirely unsuppressed, but there is additionally
the consideration that, at such large densities, the X− would
essentially no longer be individually associated with
single positively charged nuclei, as the radii of the ðNXÞ
bound states are of order the nuclear radius. Instead, the
nuclei N may become delocalized in an X− lattice, akin to a
metal structure. In this case, if any Xþ are present, they
would no longer be automatically prevented by a large
Coulomb barrier from annihilating with an X−, which could
lead to an additional large energy deposition in the core,33See footnote 28.
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again increasing the likelihood of triggering the supernova
runaway.
Finally, we comment that we have not included any

Coulomb corrections to the EoS of the material in the WD,
or in the CHAMP-contaminated core; at the extremely high
charge densities implied by nX ∝ mX, this may be a poor
approximation, which adds additional uncertainty to any
rate estimate we could give for any of these processes (it
could not however modify the ultimate existence of a
Chandrasekhar limit).

3. Comment on applicability

We can now finally quantify our earlier caveats in
Secs. VI E 1 and VI E 2 that the discussion of the equilib-
rium structure in those preceding sections is applicable
“[f]or sufficiently small total X� CHAMP contamination.”
We have now discovered that this condition is MX� ≤

MChand:;X� , where the Chandrasekhar mass here is the one
applicable for the X�, and MX� is the total mass of X� in
the stratified core at the time t at which the structure is
considered. In particular, this discussion definitely holds
if Mprim:

X� þMaccum:
X� ðτaccum:Þ < MChand:;X� .

To understand where else the discussion might hold,
consider that there is a CHAMP mass ms:g:

X such that for

mX ≳ms:g:
X ≈ 0.85π

ρWD

T3
Q4

X ð67Þ

∼ 6.4 × 108 GeV ×Q4
X ×

�
T

1 keV

�
−3

×
ρWD

5.5 × 107 g=cm3
ð68Þ

(with the numerical coefficient found using the results of
Appendix D), the mass required for the initial thermal-
pressure-supported structure34 to undergo self-gravitating
collapse exceeds the Chandrasekhar mass for the same
mX: i.e., Ms:g:;XðmX ≳ ms:g:

X Þ ≥ MChand:;X�ðmX ≳ ms:g:
X Þ.

However, the discussion of the core structure in this
subsection can still hold instantaneously for this case, as
the time scale for the thermal-pressure-supported structure
to collapse is reasonably long [Eq. (65)] compared to the
sound-crossing time of the core (which sets the dynamical
time scale over which significant structural alterations can
be compensated for), and a sub-Chandrasekhar core will
still form at some point during this collapse, before the
accretion of the additional mass from the thermal-pressure-
supported structure onto the core drives the core mass over
the Chandrasekhar limit; see Sec. VII for further discussion
of the subsequent dynamics.
Therefore, the discussion in Secs. VI E 1 and VI E 2 also

holds instantaneously for times t < t� where t� is the time
at which the mass of X� in the stratified core equals the

Chandrasekhar mass, Mdeg :
X� ðt�Þ ¼ MChand:;X� , under the

following circumstances: (1) mX < ms:g:
X , and Mprim:

X� >
MChand:;X� [implying t� < τsink]; and (2) mX < ms:g:

X , and

Mprim:
X� < MChand:;X� , and Mprim:

X� þMaccum:
X� ðτaccum:Þ >

MChand:;X� [implying that τsink ≲ t� ≲ τaccum.].
It additionally holds for ts:g: ≲ τstrat: < t < t� where ts:g:

is the time for the onset of self-gravitating collapse, τstrat: is
the time for the formation of a stratified core during the
self-gravitating collapse, and t� is as above, under the
following circumstances: (3) mX > ms:g:

X , and Mprim:
X� >

Ms:g:;X > MChand:;X� [implying t� < ts:g: þ τcorecoll: ≲ τsink];

and (4) mX > ms:g:
X , and Mprim:

X� < Ms:g:;X [implying

ts:g: > τsink], and Mprim:
X� þMaccum:

X� ðτaccum:Þ > Ms:g:;X >
MChand:;X� [implying t� < ts:g: þ τcorecoll: ≲ τaccum:].

4. Combined X+ and X− case

Absent a near-complete charge asymmetry between Xþ
and X− (which could occur in some production mecha-
nisms, or if all but a small residual charge asymmetric
population of CHAMPs annihilates away), it is highly
likely that the physical case will correspond to a WD that is
contaminated by some abundance of both Xþ, and X−

bound as ðNXÞ. As we have discussed in Sec. IV, the large
Coulomb barrier between Xþ and the positively charged
ðNXÞ state will prevent the Xþ and X− annihilating, so both
species can coexist in the core. This leads to two possible
outcomes: (1) the core is a roughly homogenous mixture of
Xþ and ðNXÞ, or (2) the Xþ and ðNXÞ stratify, with the Xþ
sinking to the core (smaller charge to mass ratio; see
Sec. VI C). To estimate which occurs, let us return to a time
scale estimate for the sinking of Xþ through a ðNXÞ fluid
similar to that we made in Sec. VI C. Assuming nXþ ∼
nðNXÞ ∼ 0.5 as an approximation, QðNXÞ ¼ Q̄N − jQXj with
jQXj ¼ 1 and Q̄N ∼ 7 in the mean-ion approach, and
mX ≫ GeV, the sinking terminal velocity for the Xþ in
the core is given by [100,107],

wcore
Xþ ðrÞ ∼ gðrÞDmX

T

�
2
jQXj
Q̄N

− 1

�
∼ −

5

7

gðrÞDmX

T
; ð69Þ

where gðrÞ ¼ MencðrÞ=ðrMPl:Þ2 with MencðrÞ ≈
Mcoreðr=RcoreÞ3 approximated as for a uniform density
spherical core, and D approximated by the self-diffusion
coefficient Eq. (43). Note however that in evaluating D we
must now takemion∼mX and Zion∼0.5QðNXÞþ0.5jQXj∼3.5
as appropriate for an initially homogeneous mixture in
the core of Xþ and ðNXÞ with equal number densities
through which the Xþ sink. Assuming Mcore and Rcore
to be the mass and radius of a near-extremal “mini-WD”
degenerate core [see Eqs. (D23) and (D24)], we find that
for T ∼ keV we have a sinking time scale of [rXðtÞ ¼
rXð0Þ expð−t=τsinkXþ Þ],34If it forms; see footnote 28.
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τsinkXþ ∼ 3 yr ×

�
mX

105 GeV

�
−17=9

×

�
T

keV

�
−1=3

: ð70Þ

This estimate of the stratification time scale indicates that
an initially mixed core should stratify almost immediately
over most of our parameter space; in particular, this
estimate is faster than the thermal core collapse time
Eq. (65) [relevant if Ms:g:;X > MChand.] or the sinking time
Eq. (56). The equilibrium structure in this case is of course
more complicated than either of the Xþ or ðNXÞ cores
alone, consisting now of three nested spherical shells.
However, since the Chandrasekhar mass for Xþ is a factor
of ∼36 lower than for ðNXÞ, it will be a reasonable
approximation to estimate the maximum mass of the Xþ
core to be that of the isolated Xþ core in most cases unless
the total ðNXÞ mass exceeds ∼36 times the Xþ mass.
Likewise, when the total Xþ mass is much below ∼1=36
times the total ðNXÞmass, it is likely a good approximation
to ignore the central Xþ core and estimate the maximum
allowed ðNXÞ mass as one would for the isolated ðNXÞ
core. In the intermediate regime where the total mass of
ðNXÞ is roughly equal to 36 times the mass of the Xþ, a
more complicated situation will arise, but this is a tuned
region of parameter space, and the allowed total mass will
be at most an Oð1Þ factor different from the maximum
allowed ðNXÞ mass in this case.

F. Super-Chandrasekhar mass of CHAMPs:
BH formation and time scales

As noted in Sec. VI E 3, our discussion thus far has
been largely limited to the impact of a total mass of
CHAMPs in the stratified core of the WD, Mcore

X� , that is
sub-Chandrasekhar at all times (with the exception of our
comments in Sec. VI E 2 b, which considered the case of
Mcore

X� in the high-sub-Chandrasekhar/trans-Chandrasekhar
mass range; and our comments in Sec. VI E 3). However, if
a super-Chandrasekhar mass of CHAMPs is able to collect
in the stratified core, the quiescent structure discussed in
Sec. VI E will not be the equilibrium structure (or even the
instantaneous quasistatic structure). Instead, provided
either that we consider Xþ, or the considerations of
Sec. VI E 2 b are inapplicable for X− in the high-sub-
Chandrasekhar regime, the general relativistic instability to
collapse of a sufficiently dense central core structure
implies that once the sinking CHAMPs accumulate ∼ a
Chandrasekhar mass in the stratified core, that core will
collapse to a BH with an initial mass equal to the relevant
Chandrasekhar mass. Note however that in order to obtain
such a massive stratified core, a larger total mass of
CHAMPs than the Chandrasekhar mass may35 be required
to be in the star if mX ≳ms:g:

X , so that self-gravitating
collapse of the CHAMPs can occur and give rise to the

stratified structure (see Secs. VI D and VI E 3). In either
case, this abundance of CHAMPs could either be present
primordially or could accrete onto the WD before the
crystallization time.
The time scale for formation of the BH during the

collapse of a trans-Chandrasekhar extremal core initially
supported by degeneracy pressure is extremely short, of the
order of the gravitational free fall time scale (see, e.g., the
discussion in §36.3.1 of Ref. [66]),

τcollapse: ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Pl:

MChand:=R3
Chand:

s
ð71Þ

∼1.5 μs ×QX ×
105 GeV

mX
; ð72Þ

where QX is the charge of the object in which X appears in
the WD [QX ¼ QXþ for Xþ; QX ¼ QðNXÞ for X−].
Note that this collapse provides another possible

avenue to trigger thermal runaway: the gravitational bind-
ing energy released by the collapse can heat the WD.
Suppose we only track the collapse as far as when the core
has collapsed to half its initial radius, at which point energy
of order of its initial binding energy has been released by
the collapsing CHAMPs. The energy can be estimated to be

Einit:
B ∼

M2
Chand:

M2
Pl:RChand:

ð73Þ

∼8 × 1041 GeV ×Q8=3
X ×

�
105 GeV

mX

�
8=3

: ð74Þ

If a fraction of this energy could somehow converted to
heating of the WD, thermal runaway may possibly be
triggered. Assuming that any such energy released would
be deposited within a volume parametrically of size the
trigger volume, a naïve criterion for the runaway to be
initiated is that

Edeposited ∼ ζ
Einit:
B

τcollapse:
min ½τdiff:; τcollapse:� ≳ ET; ð75Þ

where ζ ≤ 1 controls the fraction of available energy
that is deposited in the WD as heating. For a MWD ∼
1.1 M⊙ WD, we find that for mX ≳ 5 × 1010 GeV ×QX,
we have τdiff: ≳ τcollapse, so that ζ ≳ 4 × 10−7 ×Q−8=3

X ×
ðmX=5 × 1010 GeVÞ8=3 is required, which is possible with
ζ ≲ 1 for mX≲1013GeV×QX. For mX≲5×1010GeV×QX,
we have τdiff: ≲ τcollapse, and we find that we need ζ ≳
4×10−7×Q−5=3

X ×ðmX=5×1010GeVÞ5=3<4×10−7×Q−5=3
X .

We therefore see that, for mX ≲ 1013 GeV ×QX, there is a
possibility of that some fraction ζ ≤ 1 (and possibly ζ ≪ 1)
of this initial gravitational binding energy release being35See again footnote 28.
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deposited in the WD and leading to heating would be
sufficient to trigger thermal runaway. Of course, our
estimates here are schematic and approximate, although
they are conservative in the sense that further energy is
released as the core continues to collapse. All we intend to
argue here is that there is yet another plausible alternative
WD destruction mechanism that could be operative for
some range of CHAMP masses, even before the BH is
reached; see also Refs. [60,61] for similar arguments in a
different context. Of course, if no such mechanism exists to
cause a concomitant heating of the WD, the core simply
collapses to a BH without possibly triggering thermal
runaway.
Once the BH forms at the Chandrasekhar mass, its

subsequent dynamics and ultimate fate depend on a number
of different physical processes. Moreover, the ultimate fate
of the WD in which the BH forms also depends on which of
the various BH dynamical mechanisms dominate at various
points in the BH evolution. In Sec. VII, we undertake a
detailed consideration of these points.

VII. BLACK HOLES IN WHITE DWARFS

In Sec. VI F, we noted that if a sufficient mass of
CHAMPs is present primordially or can accrete onto the
WD within the WD crystallization time τaccum., a BH is
born at the center of the WD. Here, a “sufficient
mass” means the larger of the Chandrasekhar mass and
the self-gravitating mass: gravothermal collapse is
necessary to form a degenerate core that can later be
pushed over the Chandrasekhar limit in order to trigger the
gravitational collapse instability required to give birth
to a BH.36 This holds true even in the case where the
self-gravitating mass exceeds the Chandrasekhar mass,
because the thermal structure discussed in Sec. VI D
takes some time to fully collapse, and a degenerate
core must be born during that collapse, even if it is short
lived. We will assume throughout that the BH evolution
begins with a BH born at the Chandrasekhar mass at
time tBH, but that various phases of evolution of the
BH dynamics can follow. In this section, we turn to an
examination of the dynamics of the BH and the implica-
tions for old WD.
We begin in Sec. VII A by examining in detail the

various dynamical processes that govern the BH mass
evolution after BH formation, under various assumptions.
Thus armed with an understanding of the relevant dynami-
cal processes, we turn in Sec. VII B to a consideration of
the temporal evolution of the BH mass under the action of
these dynamical contributions, mapping out how the BH
mass evolves qualitatively (and, where necessary, quanti-
tatively) in various regions of parameter space. Finally, in

Sec. VII C, we turn to a consideration of the impact of the
BH evolution on the fate of old WD.
Our discussion of the BH dynamics and WD outcomes is

guided by Refs. [60,61], which considered the trigger
mechanism for SNIa-like supernova events in WD due
to the formation of a BH inside the WD (or, more
conservatively, for destruction of the WD by accretion
onto the BH), while our discussion of WD outcomes
draws also on a longer series of prior studies in this space
[57–61,63,65]. We note however that all numerical or
quantitative estimates here are performed independently
of past work to the extent this is possible.
Finally, we note that some of the accretion rate estimates

we develop in this section are quite approximate models for
the complex accretion dynamics; where relevant, we note
where our physical conclusions depend on details of
uncertain estimates. Resolution of these uncertainties
would likely require numerical modeling.

A. Dynamical processes governing BH evolution
in a WD

There are three possible dynamical processes that impact
the evolution of the BH mass: (1) Hawking radiation by the
BH, assuming that this process occurs in the usual fashion it
is believed to occur (see, e.g., Ref. [111] for one alternative
viewpoint); (2) Bondi (or Eddington) accretion of CO WD
material from the core of the WD; and (3) accretion of
CHAMPs from the WD, which occurs at various rates
throughout the BH evolution, depending on a variety of
criteria. In this subsection, we consider each contribution
in turn.

1. Hawking radiation from the BH

Once the BH forms, it is widely believed that there will
be a dynamical contribution to its evolution that will cause
it to lose mass: the Hawking process [56]. This process
causes the BH event horizon (which for a nonrotating BH
lies at the Schwarzschild radius, RS ¼ 2MBH=M2

Pl:) to emit
a thermal spectrum of particles at a temperature given by
TH ¼ M2

Pl:=ð8πMBHÞ. The Hawking mass loss rate is given
approximately by

_MBH;H ∼ −
π2

60

geff:ðTHÞ
2

T4
Hð4πR2

SÞ ð76Þ

¼ −
ðgeff:ðTHÞ=2ÞM4

Pl:

15360πM2
BH

; ð77Þ

where geff:ðTÞ is the effective number of relativistic degrees
of freedom at temperature T.
If the Hawking radiation completely dominates the BH

evolution, the BH mass will decrease, and the time scale to
radiate away the entirety of the BH mass is finite; it is
dominated by the time spent at the largest masses [61].
Making the conservative assumption that geffðTHÞ remains36Although see again the caveat at footnote 28.
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constant at some initial value geff;0,
37 the time scale can be

estimated by

τBH;H ∼
15360π

3ðgeff;0=2ÞM4
Pl:

M3
BH;0; ð78Þ

where MBH;0 is the initial mass. Numerically, we find

τBH;H ∼ 3.4 Gyr ×
�

MBH;0

10−19 M⊙

�
3

; ð79Þ

where we took geff;0 ≈ 51=4, as appropriate for temper-
atures TH ≲MeV.

2. Accretion of WD material onto the BH

The BH will also accrete CO matter from the surround-
ingWD.We assume that the accretion rate of WDmatter on
the BH is given (at least initially, see discussion below)
approximately by the Bondi accretion rate [74,112],

_MBH;B ∼þ4πλ

�
MBH

M2
Pl:c

2
s

�
2

ρWDcs; ð80Þ

where λ ∼Oð1Þ, cs is the WD sound speed, and ρWD is the
WD density; the latter two quantities are as evaluated at the
center of the unperturbed WD (i.e., far from the BH event
horizon, but still near the center of the WD). Parametrically,
this estimate follows, up to Oð1Þ numerical factors, by
assuming that particles crossing the sonic radius Rsonic ∼
RS=c2s ∼GMBH=c2s at which the escape speed from the BH
is equal to the sound speed in the (unperturbed) WD will
continue to accrete onto the BH.
If Bondi accretion completely dominates the BH evo-

lution, the BH grows, and the time scale for it to accrete up
to the full WD mass (assuming nothing cuts this evolution
off) is again finite; it is dominated by the time spent at the
smallest masses [61]. The time scale for the BH to accrete
from an initial mass MBH;0 to the full mass of the WD,
assuming the Bondi accretion rate holds throughout, is
given approximately by

τBH;B ∼
c3sM4

Pl:

4πλρWD

½M−1
BH;0 −M−1

WD�; ð81Þ

where λ is the same Oð1Þ constant as in Eq. (80),
MBH;0 ≪ M⊙ is the initial BH mass, and MWD ∼M⊙ is
the WD mass. Taking parameters appropriate for the center
of a MWD ∼ 1.1 M⊙ WD (and treating ρWD as constant,
which is a reasonable approximation as the time scale is
dominated by the time spent at the smallest masses for
the BH, when the WD is mostly unperturbed), we find
numerically that

τBH;B ∼ 3.1 Gyr ×

�
MBH;0

10−18 M⊙

�
−1
: ð82Þ

It is also worth noting the mass at which the Bondi and
Hawking rates balance (ignoring any CHAMP contribu-
tion; see below),

MB∼H
BH ∼

�ðgeff:;0=2ÞM8
Pl:c

3
s

61440π2λρWD

�
1=4

ð83Þ

¼ 1.5 × 1038 GeV ×

�
cs

2.8 × 10−2

�
3=4

×

�
geff:;0
51=4

�
1=4

×

�
λ

1

�
−1

×

�
ρWD

5.5 × 107 g=cm3

�
−2
; ð84Þ

where we assumed fiducial values for a MWD ∼ 1.1 M⊙
WD (see Table I). Assuming those values, we have
MB∼H

BH ∼ 1.3 × 10−19 M⊙, which is interestingly and
coincidentally a region where the intrinsic growth and
evaporation time scales for the BH happen to be about as
long as current old WD ages, ∼few × Gyr.

Eddington-limited accretion.—However, accretion can
become (Eddington) limited if radiative backreaction on
the in-falling matter in the region near the sound horizon
supplies sufficient pressure support to reestablish hydro-
static equilibrium conditions near the sound horizon
[50,61,66,74,113]. The Eddington luminosity is given by
Ledd ¼ 4πMBH=ðκradM2

Pl:Þ, where κrad ¼ σ=mion is the radi-
ative opacity with σ the photon scattering cross section
with the stellar matter. Following Ref. [61], we will assume
that σ ¼max½1 mb;100 mb× ðω=MeVÞ−1�≳ σ� ≡ 200 mb
for ω≲ 0.5 MeV (∼Tcrit:).
Assuming that a fraction ϵ of the in-falling matter is

converted into outgoing radiation, the Eddington-limited
mass accretion rate is

_MBH;E ∼ 4πMBHmion=ðϵσM2
Pl:Þ: ð85Þ

Equating this to the Bondi accretion rate, we estimate
that accretion becomes Eddington limited for

MB∼E
BH ∼

c3smionM2
Pl:

λϵσρWD

ð86Þ

∼ 3.5 × 1042 GeV ×

�
cs

2.8 × 10−2

�
3

×

�
ϵ

0.1

�
−1

×

�
λ

1

�
−1

×

�
σ

200 mb

�
−1

×

�
ρWD

5.5 × 107 g=cm3

�
−2
; ð87Þ

37This is conservative because as the BH mass drops, the
Hawking temperature increases, enabling the relativistic partici-
pation of more SM species, increasing geff: and the rate of
emission.
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where we assumed fiducial values for a MWD ∼ 1.1 M⊙
WD (see Table I). Note that, assuming the fiducial
values, MB∼E

BH ∼ 3 × 10−15 M⊙.
For MBH ≲MB∼E

BH , the accretion of WD material is at the
Bondi rate; for MBH ≳MB∼E

BH the accretion is Eddington
limited. We take

_MBH;WD material ¼ min ½ _MBH;B; _MBH;E�: ð88Þ

Note however that the Eddington-limited rates will be
essentially irrelevant for most of our considerations,
assuming fiducial values for a MWD ∼ 1.1 M⊙ WD. Even
ignoring any (necessarily positive) CHAMP contribution to
_MBH, the mass accretion rate onto the BH assuming Bondi
accretion of WDmaterial already exceeds the Hawking rate
in magnitude at a BH mass 3 orders of magnitude smaller
than the mass at which the Bondi rate becomes Eddington
limited. The impact of the Eddington rate limitation is thus
only felt deep into the regime where the BH is rapidly
accreting matter from the WD: the time scale to accrete to
the full WD mass from MB∼E

BH is ∼3 Myr assuming Bondi
accretion, while the cognate estimate for the Eddington-
limited accretion rate is

τBH;E ∼
ϵσM2

Pl:

4πmion
ln

�
MWD

MB∼Edd:
BH

�
ð89Þ

∼ 33 Myr ×

�
ϵ

0.1

�
×

�
σ

200 mb

�

×

�
ρWD

5.5 × 107 g=cm3

�
: ð90Þ

While the Eddington accretion time scale here is Oð10Þ
times longer than the Bondi time scale, the absolute time
scale is still extremely short, τBH;E ≪ Gyr ∼ τWD, so this
small additional amount of evolution time can be neglected
completely in what follows. These conclusions agree with
those of Ref. [61].

3. CHAMP accretion onto the BH. Case I:
Ms:g:;X < MChand:;X

It is our assumption throughout this paper that the initial
CHAMP distribution in the WD upon formation is homo-
geneous (see later comments in Sec. VIII D). These
CHAMPs will however begin to sink toward the center
of the WD after WD formation, as discussed in Sec. VI C.
Our best estimate for the time scale for the sinking of
CHAMPs from the outskirts of the WD to the core is given
by Eq. (56), which we will approximate here as

τsink ∼ 4 × 106 yr ×
105 GeV

mX
; ð91Þ

ignoring the small logarithmic correction.

In this subsection we will assume that we are in the
regime where the self-gravitating mass of the initial thermal
structure (if any) of CHAMPs formed at the core of the WD
Ms:g:;X has a mass smaller than the Chandrasekhar mass. If
this is the case, the mass contained in the self-gravitating
core collapses to a stratified core object below the
Chandrasekhar mass in the time Eq. (65), which is some-
what shorter than τsink or τaccum:. We thus assume that this
pre-BH evolutionary phase completes before the BH could
form, so there is no diffuse overdense CHAMP structure at
the center of the WD to feed the BH accretion at the time of
BH formation.
Consider first the CHAMPs present in the WD primor-

dially. The rate at which these CHAMPs accrete onto the
newly formed BH is somewhat uncertain, and we give two
distinct estimates for it.
The first estimate is naïve: we simply assume that for

t≲ τsink, the primordial CHAMPs accrete onto the BH at a
constant rate equal to the average accretion rate of all the
primordial CHAMPs,

½ _MBHðtÞ�ð1Þprim:;X ≈ τ−1sinkM
prim:
X� Θðτsink − tÞ; ð92Þ

where τsink is given approximately by Eq. (91), Mprim:
X� is

given by Eq. (27), and

ΘðxÞ ¼
�
1 x > 0

0 x ≤ 0
ð93Þ

is the Heaviside theta function. Note that if Mprim:
X� <

MChand:;X, then this rate is zero since τsink < tBH, where
tBH is the BH formation time.
The second estimate is more refined: assuming an initial

uniform distribution of the CHAMPs, in the time interval
t ∈ ½t⋆; t⋆ þ dt⋆�, those CHAMPs present in the radial slice
r ∈ ½r⋆; r⋆ þ dr⋆� will have sunk to the core of the WD and
will be accreted onto BH. The values of t⋆ and r⋆ ¼ r⋆ðt⋆Þ
are given by38

t⋆ ¼
Z

r⋆

Rf

dr0

wXðr0Þ
; ð94Þ

where, to make the estimate tractable, we take wX to be
given by the analytical estimate for the sinking speed of the
CHAMPs at Eq. (49). It follows from the Leibniz rule that

dt⋆ ¼ dr⋆
wXðr⋆Þ

: ð95Þ

The mass accretion rate is thus given by

38Note that r⋆ as defined here should not be confused with r�
refined by Eq. (58).
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dMðt⋆Þ
dt

¼ 4πr2⋆ρXdr⋆
dr⋆=wXðr⋆Þ

¼ 4πr2⋆ρXwXðr⋆Þ; ð96Þ

where ρX is the average (assumed uniform) mass density of
the primordial CHAMPs in the star: ρX ¼ 3MX=ð4πR3

WDÞ.
Since the central object at time t⋆ consists of all CHAMPs
accreted up to radius r⋆, we have

Mcore ∼Mðt⋆Þ ∼
4π

3
ρXr3⋆ ∼MX

r3⋆
R3

∼ ηMWD

r3⋆
R3

WD

; ð97Þ

so that in Eq. (49) we can take��
1 −

Mcore

MWD

�
þMcore

MWD

�
RWD

r⋆

�
3
�

∼
��

1 −
Mcore

MWD

�
þ η

�
∼ 1; ð98Þ

leading to

dMðt⋆Þ
dt

∼
4πr3⋆ρXwXðRWDÞ

R
¼ 3

wXðRWDÞ
RWD

Mðt⋆Þ: ð99Þ

Given that the central density of a WD is higher than the
average density, our discussion in Sec. VI C leads us to
conclude that this estimate is too small by, conservatively, a
factor of ∼6.5 [see, e.g., Eq. (55)] for the central density
and core masses considered in arriving at Eq. (56); in
the same approximation, we have wXðRWDÞ=RWD ∼ 2=τsink
where τsink is as given by Eq. (91). Therefore, we can take
the second estimate of the accretion rate to be

_Mð2Þ
prim:;XðtÞ ∼ 40τ−1sinkMðtÞ; ð100Þ

where τsink is as given by Eq. (91) and where the numerical
coefficient is a reasonable approximation when MðtÞ∼
MChand:;XðmX ∼ 1010 GeVÞ ≪ MWD, with only logarithmic
dependence on this assumption so long as the approxima-
tions used in deriving this estimate remain satisfied. This
accretion rate is of course cut off when the entire primordial
abundance of CHAMPs has accreted onto the central
object.
Note that the second estimate [Eq. (100)] is much smaller

than the first [Eq. (92)] when MðtÞ ≪ Mprim
X . [e.g., when

MðtÞ ∼MChand:;X], and also that it depends explicitly on the
mass of primordial CHAMPs already in the central object.
We comment below on the differing implications of the two
rate estimates.
Provided that the WD is located where a significant

galactic halo CHAMP abundance is present, there is a
second CHAMP accretion mechanism that operates for a
much longer time period. As already discussed in
Sec. VI B, halo CHAMPs accrete onto the WD (provided
that the WD has a sufficiently small magnetic field; see

discussion in Sec. VI B 2). If we assume that there is a
quasi-steady-state period of WD evolution during which
these CHAMPs simply sink through the star and are
captured by the BH, then the mass accretion rate onto
the BH during this quasi-steady-state period is simply equal
to the CHAMP mass accretion rate onto the WD,

_Maccum:;XðtÞ ≈ τ−1accum:Maccum:
X� ðτaccum:Þ

× Θðτaccum: − tÞΘðt − τsinkÞ; ð101Þ

where Maccum:
X� ðτaccum:Þ is given by the expressions in

Sec. VI B 1 and Appendix C, and τaccum: is the time scale
for WD crystallization (see the discussion in Sec. VI B 1).
Note that we have set this rate to zero for times t≲ τsink

because it will generally take a time on the order of τsink for
the CHAMPs first accreted onto the WD to sink to the core
and a steady-state flow to be established; none of our results
depend sensitively on this assumption.

4. CHAMP accretion onto the BH. Case II:
Ms:g:;X ≳MChand:;X

If the self-gravitating mass Ms:g:;X exceeds the
Chandrasekhar mass MChand:;X there is a modification to
the picture advanced in Sec. VII A 3; although see foot-
note 28. In this case, when the BH is initially born at the
Chandrasekhar mass, it is surrounded by a significant
overdensity of CHAMPs in the collapsing self-gravitating
cloud; this can temporarily boost the accretion rate of
CHAMPs just as the BH is born and until the self-
gravitating cloud has been accreted in a time τcorecoll:
[Eq. (65)]. We must therefore modify our estimates for
the CHAMP mass accretion rates Eqs. (92) or (100), or
Eq. (101) [depending on which process is the prevailing
rate at the time of self-gravitating collapse, ts:g:, and which
estimate we use for it] during this initial time.
We provide a simple estimate for this initial accretion

rate, assuming just that the self-gravitating core is accreted
at an average rate until it is completely depleted,

_Ms:g:;XðtÞ ≈ ðτcorecoll:Þ−1Ms:g:;X�Θðts:g: þ τcorecoll: − tÞ; ð102Þ

which holds during the time ts:g: ≲ tBH < t < ts:g: þ τcorecoll:.
This is a reasonable estimate because the mass in the self-
gravitating cloud is initially concentrated in a Gaussian
profile near the WD core and not spread diffusely through-
out the star.
Because 25τcorecoll: ∼ τsinkcoll: [cf., Eqs. (65) and (91)],

the accretion rate estimate Eq. (102) is comparable to
the estimate Eq. (100) if MðtÞ ∼Ms:g:;X� is assumed in the
latter rate. Therefore, assuming that the full self-gravitating
mass were to collapse into the BH (see discussion in
Sec. VII B below), the matching between the accretion rates
Eqs. (102) and (100) would be roughly smooth [up toOð1Þ
factors] at the end point of the self-gravitating collapse.
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Of course, for earlier times [e.g., supposing that MðtÞ∼
MChand:;X� ≪ Ms:g:;X�], the rate at Eq. (102) exceeds
that at Eq. (100) [as expected], by roughly the ratio
Ms:g:;X�=MChand:;X� . Therefore, if ts:g: < τsink, our refined
approach will be modified by assuming only the accretion
rate Eq. (102) for the initial time period of the self-
gravitating cloud collapse, then reverting to the rate
Eq. (100) until t ∼ τsink.

39

However, Eq. (102) is smaller than the naïve accretion
estimate Eq. (92) when Mprim:

X� ≳ 25Ms:g:;X� . If the naïve
approach is used, and ts:g: < τsink, we will instead assume
that the accretion rate is the larger of Eq. (102) or Eq. (92)
during the initial self-gravitating cloud collapse, and if
necessary then revert to the rate Eq. (92) until t ∼ τsink.
In both cases, if τsink < ts:g: < τaccum:, we assume only

the accretion rate Eq. (102) for the initial time period of the
self-gravitating cloud collapse and then revert instead to the
rate estimate Eq. (101) until t ∼ τaccum:.
This piecewise approach to the accretion rate estimates is

manifestly approximate, but it roughly captures the pre-
vailing dynamics of the major epochs of CHAMP accretion
under the various assumptions about the accretion dynam-
ics. The exact accretion behavior in the regimes where
various CHAMP reservoirs are nearly exhausted (e.g.,
when the self-gravitating structure is nearly fully accreted)
will of course be more complicated and our model for the
accretion rate would not fully capture all the subtleties of
the dynamics during these times. We expect that the gross
picture of the BH dynamics is captured by the approach we
have outlined here, although details will be lost.

B. Implications for BH evolution

Of the dynamical contributions to the BHmass evolution
discussed in the Sec. VII A, the WD and CHAMP accretion
processes tend to increase the BH mass, while the Hawking
process tends to decrease it. Moreover, the various accre-
tion and emission processes have rates that are explicit
functions of time, as well as functions of the BH mass in
many cases. In general, this leads to a rich and complicated
dynamics of the BH, leading to a surprising complexity of
possible BH evolutionary trajectories.
There are however only three distinct physical outcomes:

(1) the BH will reach an evolutionary phase during which it
undergoes runaway accretion with a rate sufficient in
principle to accrete the entire WD mass within the WD
lifetime, the countervailing effect of Hawking radiation
notwithstanding; (2) the BH will reach a phase during

which it undergoes Hawking evaporation at a rate sufficient
in principle to radiate away its entire mass within the
WD lifetime, the countervailing accretion of WD material
and/or CHAMPs notwithstanding; or (3) the BH will
follow an evolutionary trajectory along which it can
eventually be either dominantly accreting or dominantly
evaporating, but either owing to a balancing of rates of
accretion and evaporation, or simply the intrinsic time scale
for the dominant process being too long, the time scale for
completion of the accretion or evaporation processes is
longer than the observed age of the WD. In scenarios (1) or
(2), we will find that the accretion or evaporation likely
does not actually need to proceed all the way to completion
in order to trigger a backreaction on the WD sufficient to
trigger the supernova instability [60,61], thereby terminat-
ing the BH evolution and giving a clear observable signal.
However, in case (3), there will (except for highly tuned
regions of parameter space) be no observable impact on the
WD in which the BH resides.
Because case (3) is an important exception, we discuss

the requirements to be in this region. For concreteness, the
qualitative discussion that follows is correct in detail (and
has been checked quantitatively) for CHAMPs Xþ present
in a WD with mass MWD ∼ 1.1 M⊙ that has characteristics
as in Table I and which has an assumed crystallization time
of τaccum: ∼ Gyr and an assumed age/lifetime of τWD ∼
2 Gyr (see Sec. VIII and Table III). Similar considerations,
albeit with some modifications as to whether certain
regions of behavior exist, are applicable for CHAMPs
X− bound as ðNXÞ, or for different WD parameters.
It turns out that, for Xþ, the conditions under which

outcome (3) can occur are such that the total mass of
CHAMPs present primordially in the WD exceeds the self-
gravitating mass, which in turn exceeds the Chandrasekhar
mass (as opposed to a situation in which the primordial
mass of CHAMPs is too small to exceed the larger of the
Chandrasekhar or self-gravitating masses, but the slow
accretion of CHAMPs onto the WD triggers BH formation
at a later time, but before the WD crystallization time). To
maintain concreteness, we discuss only this ordering of the
self-gravitating and Chandrasekhar masses in what follows,
assuming the existence of the thermal-pressure-supported
phase (see footnote 28).
As the CHAMPs in the star collect in the central thermal-

pressure-supported structure, gravothermal collapse will
eventually be triggered at some time ts:g: < τsink. As the
thermal cloud of CHAMPs collapses in a time τcorecoll: there-
after, a stratified corewill form,whichwill accreteCHAMPs
from this initial thermal cloud structure. Once sufficiently
many primordial CHAMPs have accreted onto this core, a
BHwill form at time tBH where ts:g: ≲ tBH ≲ ts:g: þ τcorecoll:, with
a mass at the Chandrasekhar mass.
At this point, the remainder of the thermal cloud is still

collapsing onto the newly formed BH, supplying a large
positive contribution to the BH mass accretion rate.

39Roughly, the derivation of Eq. (100) still holds after the
initial phase where the CHAMPs are stalled in the thermal
structure, provided we make the reasonable assumption that the
dynamics of the CHAMPs sinking from radii large enough that
they arrive in the vicinity of the core after the collapse of the self-
gravitating cloud are not impacted by the earlier presence of that
cloud.
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Nevertheless, it is possible that the Chandrasekhar
mass is so small that, including the effects of Hawking
radiation from the newly formed BH, _MBHðMBH ¼ MChand:;
tBH ≲ t≲ ts:g: þ τcorecoll:Þ < 0, and the BH would immediately
begin to lose mass upon formation; outside of a highly
tuned region, the time scale for this process is so fast that
the BH would evaporate well within the WD lifetime. This
avoids outcome (3).
If _MBHðMBH ¼ MChand:; tBH ≲ t≲ ts:g: þ τcorecoll:Þ ≈ 0 (in a

highly tuned region), the BH will neither grow nor shrink
until such time as all the CHAMPs in the thermal cloud
have been depleted, at which point the BH is still
approximately at the Chandrasekhar mass. However, once
the CHAMPs initially in the thermal cloud are all accreted,
_MBHðMBH¼MChand:;ts:g:þτcorecoll: <t<τsinkÞ may (depending
on parameters and on which of the two estimates discussed
in Sec. VII A 4 we give for the accretion rates) lose a
positive contribution present in _MBHðMBH ¼ MChand:;
tBH ≲ t≲ ts:g: þ τcorecoll:Þ and turn negative; this is particularly
true if we use the refined approach of Sec. VII A 4 because
Ms:g:;X > MChand:;X. The intrinsic time scales involved for
the Hawking process are sufficiently rapid that, outside a
highly tuned region, the BH will then radiate away in a
fraction of the remaining lifetime of the WD, and outcome
(3) is avoided. Alternatively, if we use the naïve approach
detailed Sec. VII A 4 and Eq. (92) is the accretion estimate
throughout the thermal cloud collapse and sinking epochs,
then no such positive contribution to _MBH is lost after
t ∼ ts:g: þ τcorecoll:, and the BH will continue to sit at the
Chandrasekhar mass until t ¼ τsink, at which time it
definitely loses a large positive contribution to _MBH and
will Hawking radiate away within the WD lifetime.
Outcome (3) is avoided in either alternative. Note however
that the boundary at which _MBHðMBH ¼ MChand:; tBH ≲ t≲
ts:g: þ τcorecoll:Þ ¼ 0 depends on which of the two sets of rate
estimates from Sec. VII A 4 we use, and this has some
impact on the region in which outcome (3) is ultimately
avoided overall; we will discuss this in Sec. VIII below.
Finally, if _MBHðMBH¼MChand:;tBH≲t≲ts:g:þτcorecoll:Þ>0

the initial BH will begin to increase in mass, eventually
(outside of highly tuned regions where the Hawking
process converts a significant portion of the sinking
CHAMPs to radiation) reaching the full mass of the thermal
cloud at a time t ¼ ts:g: þ τcorecoll:. It turns out that, for Xþ,
whenever _MBHðMBH¼MChand:;tBH≲t≲ts:g:þτcorecoll:Þ>0, we
also have _MBHðMBH ¼ Ms:g:; ts:g: þ τcorecoll: < t < τsinkÞ > 0,
and the BH will always continue to accrete up in mass until
it reaches the full primordial mass of CHAMPs present in
the star around t ∼ τsink. If we are in this region, we have
thus far avoided BH evaporation on too fast a time scale,
and we can still ultimately reach outcome (3).
To make further progress, we must consider the value of

_MBHðMBH ¼ Mprim:
X ; τsink < t < τaccum:Þ, which now has no

further contribution from the primordial CHAMPs. If
_MBHðMBH ¼ Mprim:

X ; τsink < t < τaccum:Þ < 0, two outcomes
are possible: in the first case, the intrinsic time scale for
Hawking evaporation is fast enough that the BH radiates
away from MBH ¼ Mprim:

X to MBH ¼ 0 before the WD
crystallization time; this again avoids outcome (3).
Alternatively, in the second case, the time scale for the
Hawking radiation of the BH can be too long [when
_MBHðMBH ¼ Mprim:

X ; τsink < t < τaccum:Þ ∼ 0, but slightly
negative], such that it survives until at least the WD
crystallization time (likely without radiating much of its
mass away, outside of tuned regions of parameter space,
owing to the strong BH-mass dependence of the Hawking
rate); such a BH can still end up with outcome (3).
On the other hand, if _MBHðMBH ¼ Mprim:

X ; τsink < t <
τaccum:Þ > 0, two outcomes are again possible: in the first
case, the intrinsic time scale for accretion of CHAMPs and
WD material is so fast that the BH will in principle be able
to accrete up to the full WD mass within the WD
crystallization time; this avoids outcome (3). In the second
case [when _MBHðMBH¼Mprim:

X ;τsink<t<τaccum:Þ∼0, but
slightly positive], the time scale for accretion of
CHAMPs and WD material is too long to allow the
BH to accrete up to the full WD mass before the WD
crystallization time, but the BH can still accrete CHAMPs
up to the full abundance that accumulate onto the WD
before the crystallization time; such a BH can still end up
with outcome (3).
Outside of tuned regions of parameter space, we

thus have two possible BH that have survived to
the crystallization time: those that had _MBHðMBH¼
Mprim:

X ; τsink<t<τaccum:Þ∼0 but slightly negative and arrive
at the crystallization time with a mass still MBH ∼Mprim:

X ,
and those that had _MBHðMBH ¼Mprim:

X ; τsink < t < τaccum.Þ∼
0 but slightly positive and arrive at the crystallization time
with a mass MBH ∼Mprim:

X þMaccum:
X (ignoring any WD

material accumulated, because there is almost no para-
meter space in which that contribution would be signifi-
cant, but the WD is not also fully accreted by this
point).
Once again, a positive contribution to _MBH from the slow

CHAMP accumulation turns off at the crystallization time.
For those BH that had _MBHðMBH ¼ Mprim:

X ; τsink < t <
τaccumÞ ∼ 0 but slightly negative before the crystallization
time, _MBHðMBH ¼ Mprim:

X ; τaccum: < t < τWDÞ < 0, and there
are two outcomes: firstly, the Hawking evaporation can be
fast enough that the BH evaporates within the remaining
WD lifetime; this avoids outcome (3). Alternatively, the BH
can take too long to evaporate in the remaining WD
lifetime, resulting in outcome (3). On the other hand, for
BHs that had _MBHðMBH ¼ Mprim:

X ; τsink: < t < τaccum:Þ ∼ 0
but slightly positive before the crystallization time and
thus arrive at this point with mass MBH ∼Mprim:

X þMaccum:
X ,
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there are three outcomes. First, if _MBHðMBH ¼ Mprim:
X þ

Maccum:
X ; τaccum: < t < τWDÞ < 0, the BH begins to Hawking

evaporate. It turns out, given the assumed parameters, that
any such BH takes too long to Hawking evaporate within the
remaining WD lifetime (this of course depends on the WD
lifetime and could be violated with the WD lifetime was
longer, say 4 Gyr), resulting in outcome (3). Second,
_MBHðMBH¼Mprim:

X þMaccum:
X ;τaccum: <t<τWDÞ>0 and suffi-

ciently large so that theBHaccretes up to the fullWDmass in
the remaining WD lifetime; this avoids outcome (3). Third,
_MBHðMBH¼Mprim:

X þMaccum:
X ;τaccum:<t<τWDÞ>0 but

smaller, and the BH takes too long to accrete up to the full
WD mass, resulting in outcome (3).
This detailed step-by-step analysis, although it is still

crude and can miss some edge cases, provides a series of
conditions that must be satisfied for the BH evolution to be
result in outcome (3): i.e., be too slow to either Hawking
evaporate away, or accrete up to the full WD mass, in the
WD lifetime. When we present limits below, we will
exclude the region in which the following are all satisfied
as, taken together, they approximately cover the region in
which outcome (3) obtains40

(a) _MBHðMBH ¼MChand:; tBH ≲ t≲ ts:g: þ τcorecoll:Þ> 0; this is
possibly two different conditions depending on which
of the rate estimates discussed in Sec. VII A 4 is used,
and we will show the boundaries of the regions of
parameter space for which both of these conditions
obtain in turn in Sec. VIII.

(b) _MBHðMBH ¼ Mprim:
X ; τsink < t < τaccum:Þ < 0, and

τevap:H ðMBH ¼ Mprim:
X → 0Þ > τaccum:, and τevap:H ðMBH ¼

Mprim:
X → 0Þ > τWD − τaccum:. Note that is slightly

conservative to impose both the time scale conditions
independently in this fashion, rather than as a single
condition.

(c) _MBHðMBH ¼ Mprim:
X ; τsink < t < τaccum:Þ > 0, and

τgrowBþaccum:ðMBH ¼ Mprim:
X → MWDÞ > τaccum: (time scale

assumingBondi accretion and slowCHAMPaccretion),
and τBðMBH¼Mprim:

X þMaccum:
X →MWDÞ>τWD−τaccum:.

Note that, in principle, there is a region satisfying the
following conditions which would not need to be excluded:
(d) _MBHðMBH¼Mprim:

X ;τsink<t< τaccum:Þ>0, _MBHðMBH¼
Mprim:

X þMaccum:
X ;τaccum:<t<τWDÞ<0, and τevapH ðMBH ¼

Mprim:
X þMaccum:

X → MWDÞ < τWD − τaccum:.

However, with the lifetimes we have assumed in this
discussion and for these WD parameters, region (d) does
not exist.

C. Implications of BH evolution for old WD

Having discussed in detail the region in which the BH
evolution does not have sufficient time to proceed to either
devour the entire WD within the WD lifetime, or Hawking
radiate away to zero mass within the same timeframe, we
now switch focus to the case where either outcome could in
principle happen, absent backreaction on the WD during
the BH evolution.
In this subsection, we will discuss the backreaction on

theWD as a result of these processes, and their implications
of the survival of old WD. Our discussion roughly follows
that of Refs. [60,61].

1. Evaporating case

In this section we assume that the BH follows an
evolutionary trajectory such that the final phase of the
BH evolution is one in which the BH dynamics are
dominated by evaporation rapid enough in principle to
release the entire BH mass within the remaining WD
lifetime [outcome (2) of Sec. VII B]. We see from the
intrinsic Hawking radiation time scale estimate Eq. (79)
that a necessary (although, as the discussion at Sec. VII B
makes clear, not sufficient) condition is for the BH to enter
this phase with MBH;0 ≲ 1038 GeV, yielding an intrinsic
evaporation time scale τH ≲ few Gyr, of order the WD
lifetime.
A critical result of Ref. [61] is that the evaporation of

such a BH inside a WD, assuming additionally only that
MBH;0 > ETðMWDÞ for its WD host, will always eventually
deposit sufficient energy sufficiently rapidly to satisfy the
trigger criteria for WD ignition discussed in Sec. III.
Indeed, assuming that the remaining BH lifetime is longer
than the diffusion time scale for the WD trigger radius, then
even for the largest trigger energies required (for the
lightest WD possibly of interest to us), ETðMWD ∼
0.8 M⊙Þ ∼ 1025 GeV (see Fig. 1), we find conservatively
that once the BH mass drops below MWD trig:

BH ∼ 1030 GeV,
the total energy Hawking radiated from the BH in one
diffusion time exceeds ET .

41,42 Since, as discussed at length
in Ref. [59], thermalization of all particles emitted by the
BH, except gravitons and possibly neutrinos, occurs within
a volume not parametrically larger than the trigger volume,

40Evaporation time scales are estimated using only the intrinsic
Hawking rate, neglecting any lengthening owing to partial
cancellation against the positive contributions to _M, resulting
in some small error in the boundary of the region. Similarly,
accretion time scales are estimated using only the intrinsic Bondi
(and, if applicable, slow CHAMP accretion rates), neglecting any
lengthening owing to partial cancellation against the negative
Hawking contribution to _M, resulting in some small error in the
boundary of the region. We also neglect the Bondi/Eddington
crossover here, per the discussion in Sec. VII A 2 a.

41TH is so high at this mass that all SM species are radiated
ultrarelativistically; we took geff: ¼ 101.5 in Eq. (77) to con-
servatively exclude gravitons and neutrinos.

42Reference [61] quotes a value for a 1.25 M⊙ WD of
MWD trig:;½61�

BH ðMWD ¼ 1.25 M⊙Þ ∼ 2 × 1035 GeV. We would find
a value of MWD trig:

BH ðMWD ¼ 1.25 M⊙Þ ∼ 1034 GeV, largely be-
cause we have a slightly more conservative trigger condition.
There is no qualitative difference here.
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this would satisfy the trigger criterion, leading to thermal
runaway. For the two specific WD masses that will be of
interest, the trigger condition is satisfied for MWD 0.85 trig:

BH ∼
4×1030GeV, and MWD1.1trig:

BH ∼1.8×1032GeV, respectively.
Given that the minimum diffusion time scale for a WD in

the mass range MBH ∈ ½0.8; 1.35�M⊙ is τdiff: ∼ 2 × 10−13 s
(see Fig. 1), which is the lifetime for a BH of mass
MBH ∼ 2 × 1028 GeV < MWD trig:

BH , it is appropriate here to
integrate the energy deposition over the full diffusion time.
Nevertheless, if for any reason the BH were either to drop
below MBH ∼ 2 × 1028 GeV without yet triggering thermal
runaway, or if it simply forms below that mass, its
(remaining) lifetime to radiate away its entire (remaining)
mass is less than one diffusion time, and it is possible to
draw a robust conclusion that, as long as the initial mass of
the evaporating BH is above the trigger energy for the
host WD (see Fig. 1 and Table I), runaway will always
be triggered. Because a number of the evolutionary
trajectories of BHs formed inside the WD result in the
BH immediately Hawking radiating away upon formation
(see Sec. VII B), so that MBH;0 ∼MX

Chand:, note that the
smallest Chandrasekhar mass of any BH we consider
occurs for Xþ for mX ∼ 1018 GeV, and is MXþ

Chand:ðmX ¼
1018 GeVÞ ∼ 5 × 1021 GeV > ETðMWD ¼ 1.1 M⊙Þ.
In summary, we have concluded in part that a sufficiently

light BH which forms inside a WD of massMWD ≳ 1.1 M⊙
would evaporate in a WD lifetime of ∼2 Gyr in large
regions of parameter space (see discussion in Sec. VII B)
and, so long as its initial mass upon beginning to evaporate
is above the trigger energy for the host WD (see Fig. 1 and
Table I), the evaporation will deposit sufficient energy to
trigger thermal runaway in the WD, destroying it in a SNIa-
like supernova event. The existence of WD in this mass
range older than ∼2 Gyr can thus place limits on this
process having occurred. On the other hand, one could also
in principle search for the SNIa-like destruction events
directly. Apart from the caveats regarding the time scale
and BH evolutionary trajectories, this agrees with the
results of Refs. [60,61].

2. Accreting case

In this section we assume that the BH follows an
evolutionary trajectory such that the final phase of the
BH evolution is one in which the BH dynamics are
dominated by accretion of WD material rapid enough in
principle to devour the entire WD mass within the
remaining WD lifetime [outcome (1) of Sec. VII B]. We
see from the intrinsic Bondi accretion time scale estimate
Eq. (82) (see also the discussion of the irrelevance of the
Eddington limitation in Sec. VII A 2 a) that a necessary
(although, as the discussion at Sec. VII B makes clear, not
sufficient) condition is for the BH to enter this phase with
MBH;0 ≳ 1038 GeV, yielding an intrinsic accretion time
scale τH ≲ few Gyr, of order the WD lifetime.

If this is the way the WD ends, it is not with a bang but a
whimper43: the BH simply devours thewholeWD, but there
is no immediate observational signature of this process,
other than the absence of WD older than ∼few Gyr.
The less conservative outcome proposed by Ref. [61] is

that the accretion of WD matter onto the BH will be
sufficiently violent that, in the vicinity of sonic radius from
which Bondi accretion occurs, heating or compression of
the WD material will trigger thermal runaway. Since this
must of course happen prior to the WD being completely
devoured, the time scale for this to occur must necessarily
be faster than the accretion time scale estimates given
above. Per Ref. [61], for the direct heating of the material
near around the sonic radius to have a chance to trigger
thermal runaway, that radius would need to exceed the
trigger length; we find that onceMBH ≳ 1047 GeV, we have
λT ≳ RB for a MWD ∼ 0.85 M⊙ WD (where we have
estimated the trigger length using the unperturbed density,
which is conservative). Similarly, for a MWD ∼ 1.1 M⊙
WD, MBH ≳ 1046 GeV is required for λT ≳ RB. Since cs ∼
2–3 × 10−2 at the sonic radius and EK ¼ 1

2
mionc2s ∼

2–5 MeV ∼ 10Tcrit., the motion of the carbon ions assum-
ing Bondi accretion would in principle be sufficiently fast
that thermal runaway could be triggered in this ballpark
(although, as discussed in Ref. [61], some significant
nonradial flow would be required to trigger the SN; this
is however entirely plausible as carbon ions outside the
sonic radius are not necessarily collapsing radially to the
center of the star).
However, the above argument ignores the fact that for

BH of these masses in WD of the relevant central densities,
the BH mass at which RB ≳ λT occurs is already high
enough that we estimate that the accretion is Eddington
limited; see Sec. VII A 2 a. As a result, the flow of material
onto the WD is choked by radiative backreaction, and cs is
an overestimate for the local speed of the ions. As such, it is
not clear that the trigger condition will be reached; a more
detailed consideration of this point is beyond the scope of
this work and would likely require simulations of the
accretion dynamics.
The other mechanism proposed by Ref. [61] is that the

density increase of the WD material in the vicinity of the
BH could trigger pycnonuclear fusion. This is however
much more speculative. The density increase near the
BH event horizon under Bondi accretion conditions is
∼1=c2s ∼ 103, so for WD near MWD ∼ 0.8 M⊙ with
ρ ∼ 107 g=cm3, the density could be boosted to near ρ ∼
1010 g=cm3 near the BH event horizon, which could trigger
pycnonuclear burning [61,66,83,84]. However, it is unclear
that the heated region is either large enough, or that the
flame front would propagate outward rapidly enough, to
ignite the star [61].

43With apologies to T. S. Eliot.
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We therefore reach conclusions similar to, although
slightly more conservative than, Ref. [61]: if the BH
trajectory leads it to a final evolutionary stage of accretion,
a BH near formed near the center of a WD can destroy the
WD within OðGyrÞ, either by direct accretion into the BH,
or possibly via the triggering of thermal runaway leading to
a supernova explosion; a necessary condition is that the
initial mass of the BH upon entering this evolutionary
phase is MBH;0 ≳ 1038 GeV.

VIII. LIMITS FROM THE EXISTENCE
OF OLD WHITE DWARFS

In this section, we present limits on the galactic CHAMP
abundance by considering the regions of parameter space in

which the WD destruction mechanisms outlined thus far
would have destroyed a number of known old WD [see,
e.g., Table III] had such CHAMPs been present.
In setting our bounds, we will conservatively consider a

WD such as that labeled No. 7 in Table III: such a WD is
fairly massive, quite old, has a measured magnetic field
which is sufficiently small to avoid the concerns expressed
in Sec. VI B 2 about the accretion of halo CHAMPs onto
the WD over its lifetime up to the crystallization time (at
least for masses mX ≳ 1010 GeV), and has low enough
effective surface temperature and high enough surface
gravity to avoid the concerns about stellar winds discussed
in Sec. VI B 2.
For concreteness, the exact parameters we assume in

setting our limits are shown in Table IV. Note that our

TABLE III. Some representative old WD from the database in Ref. [67] (and references therein). We give some relevant physical
characteristics: the mass in solar masses, surface magnetic field in MG (if known), cooling age in Gyr, effective surface temperature in
Kelvin, surface gravitational acceleration in cm=s2, and distance from Earth in parsec. Where multiple values for a specific physical
parameter are shown in Ref. [67], we quote the range of available values and refer the reader to the reference for more details. The WD
labeled 1–4 are representative nonmagnetic WD with masses similar to those of the fiducial WD we considered in Table I and cooling
ages > Gyr; the WD labeled 5–7 are high-mass magnetic WD with B fields below those discussed in Sec. VI B 2, and cooling ages on
the order of Gyr. With the exception of WD 5, which has one of the smallest measured B fields of any WD in this mass range reported in
Ref. [67], we have selected these examples largely at random.

No. Name MWD [M⊙] B [MG] tcool [Gyr] Teff. [104 K] log10ðg½cm=s2�Þ D [pc] Ref.

1 WDJ062144.86þ 753011.67 1.18–1.23 � � � 4.1 0.6 9.0 67 [114]
2 WDJ013839.12 − 254233.40 1.17–1.22 � � � 4.2 0.7 9.0 70 [115]
3 LP642 − 052 0.84 � � � 5.8 0.6 8.4 62 [116]
4 WDJ054706.58þ 753103.10 0.76–0.87 � � � 4.0–5.2 0.6 8.3–8.4 75 [117]

5 WD2051 − 208 1.21–1.24 0.20–0.26 0.62 1.9–2.1 9.0–9.1 31 [118]
6 WD0903þ 083 1.16 6.0 1.24 1.3–4.9 8.0–9.9 142 [119]
7 WD2202 − 000 1.08 1.0 2.19 1.0–2.2 8.0–9.0 152 [120]

TABLE IV. Parameters assumed in setting limits.

Parameter Symbol Value

WD mass MWD 1.1 M⊙
WD radius RWD 7 × 10−3R⊙
WD central density ρc 5.5 × 107 g=cm3

WD crystallization time τaccum. 1 Gyr
WD (cooling) age/lifetime τWD 2 Gyr
WD central temperature T 1 keV
WD surface effective temperature Teff ≪5 × 104 K
WD surface gravitational acceleration g ≳107cm=s2

WD progenitor cloud mass Mcloud 7 M⊙ (range: 6–8 M⊙) [91]
Speed of sound in WD center cs 2.8 × 10−2

Effective degrees of freedom for
Hawking radiation [Eq. (77)]

geff 51=4 (constant)

Bondi accretion parameter [Eq. (80)] λ 1
Location � � � In the disk, Earth vicinity
Local DM density ρ0 0.3 GeV=cm3

Local circular speed vrot. 220 km=s
WD speed relative to CHAMP halo vWD 220 km=s
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parameter choices are conservative in a number of ways:
(1) the WD mass (and hence central density) is not as high
as that of some other old WD [e.g., Nos. 1, 2, 5], (2) the age
of the WD is not as large as that of other old WD [e.g.,
Nos. 1–4], and (3) the magnetic field is large enough to be
measurable: if the absence of magnetic field measurements
for the older, more massive WD in Table III is indicative of
their magnetic fields being too small to measure, then those
WD could present even more robust bounds.
The basic criterion for obtaining a bound on the

existence of CHAMPs is that the WD at some point in
its evolution contains at least the larger of a Chandrasekhar
mass worth of CHAMPs and a self-gravitating mass of
CHAMPs (see Sec. VI D),44 either from the primordial
contamination, or by accretion of the CHAMPs onto the
WD.45 We first consider in turn the two cases where the
WD is contaminated purely by Xþ, and purely by X− in
the form of ðNXÞ, then we consider what happens if both
Xþ and ðNXÞ are present.
Our limits will be presented graphically on the parameter

space ðmX; ρX=ρ0Þ, for either fXþ ¼ 1 or fX− ¼ 1, and we
make comments about how these limits can be applied to
the mixed Xþ=X− case.

A. Limits on X+

For the case of pure Xþ contamination, fXþ ¼ 1, we
have argued that enough energy can in principle be released
in the collapse of the Chandrasekhar mass core to the BH
that the WD trigger criteria can be reached (possibly also
true during the earlier self-gravitating cloud collapse);
conservatively ignoring any early ignition scenarios
though, and assuming that the BH successfully forms from
the initial mini-WD-like core structure in the WD, we must
demand that the evolutionary time scales for the BH to
either accrete the WD mass (or until a trigger criterion is
possibly reached), or radiate to effectively zero mass
(or until the trigger criterion is reached), must be suffi-
ciently short.
The shaded dark red region in Fig. 4 indicates the region

of parameter space where the larger of the Chandrasekhar
mass and the self-gravitating mass of CHAMPs can
accumulate in the WD, and where the dynamical time
scales for the BH evolution are sufficiently short to

guaranteeWD destruction within theWD lifetime [the local
DM density ρ0 is used here purely as a convenient normali-
zation for the CHAMP density]. The unshaded shark-fin-
like region between mX ∼ 109 GeV and mX ∼ 1012 GeV
indicates the region in which a self-gravitating mass of
CHAMPs (which exceeds the Chandrasekhar mass in this
region)would be present in theWD (already primordially, as
it turns out), but where the evolutionary time scales are too
long to reliably conclude that the WD would be destroyed
within its observed cooling age. The tip of the shark-fin
region is shaded green and indicates a region in which the
evolutionary time scales are too long if the naïve initial
CHAMP accretion estimates of Sec. VII A 4 are used;
however, if the refined estimates discussed there are used
instead, this region does evolve sufficiently rapidly to
destroy the WD in its lifetime; see discussion in Sec. VII B.
The region below the thin dashed red line above

mX ≳ 1011 GeV is where the self-gravitating mass (which
exceeds the Chandrasekhar mass in this region) is only
exceeded owing to the slow accretion of CHAMPs onto the
WD before the crystallization time; in the remainder of the
region, the primordial abundance of CHAMPs suffices to
meet the mass criterion. Note in particular that this means
that the bounds for mX ≲ 1011 GeV are in principle not
open to question on the grounds of the WD magnetic field
(see discussion in Sec. VI B 2) because the bounds in that
region of parameter space do not rely on the slow
accumulation of CHAMPs over the WD lifetime being
efficient. We also show as a faint red dotted line for mX ≳
6.4 × 108 GeV the region of parameter space in which the
total accreted and primordial CHAMP abundance would
exceed the Chandrasekhar mass, even though it is smaller
there than the self-gravitating mass, both as an indication of
the degree to which limits could be strengthened if a lower
core temperature were assumed, and also because of the
caveat expressed in footnote 28 about the necessity of
considering the thermal-pressure-supported phase.
However, in the region 105 GeV≲mX ≲ 1011 GeV

(delimited by the thin long-dashed vertical black lines in
Fig. 4), we have indicated our bounds by dotted lines (and
lighter shading) to indicate that, in this region, the results of
Ref. [52] (and to some extent Ref. [49]) call into question
whether CHAMPs will be present in the region of the MW
in which the WD-progenitor protostellar cloud is collapsing
and thus whether this bound is actually applicable in that
region of parameter space; see discussion in Sec. V. In
particular, we do not claim a robust bound in this region;
see also the discussion in Sec. IX below.
Figure 4 is drawn assuming that the primordial CHAMP

contamination η� is obtained using a central value for the
mass of the progenitor protostellar cloud for this WD of
Mcloud ∼ 7 M⊙ [91] (implicitly assuming that the zero-age-
main-sequence star has the same mass as the collapsing
protostellar cloud used in the computation of η�); however,
owing to a fair degree of scatter in the initial-mass–final-
mass relationship for WDs (see, e.g., Figs. 1 and 2 of

44But note also the caveat at footnote 28; requiring the self-
gravitating mass may not be necessary, and it is conservative to
demand it.

45We will present somewhat conservative limits assuming that
T ∼ 1 keV is the WD central temperature; see discussion in
Sec. VI D. In principle, the limits we present could thus be
strengthened if very old, cold WD have core temperatures
T ≪ 1 keV, but they can only be strengthened up to the
limitation imposed by requiring at least a Chandrasekhar
mass of CHAMPs. The maximum achievable improvement in
the parameter range where we give limits occurs for Xþ at
mX ∼ 1018 GeV, and is a factor of Oð3 × 104Þ improvement on
the bound on ρX=ρ0; see Fig. 4.
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FIG. 4. Constraints on the abundance of CHAMPs Xþ, ρX=ρ0, as a function of CHAMP mass mX in GeV. This plot is
drawn assuming that fXþ ¼ 1 (see discussion in text). Here, ρX is the local CHAMP mass density, and ρ0 is taken to be the local
halo DM abundance ρ0 ¼ 0.3 GeV=cm3. The dark red shaded region bounded by the thick dark red lines (annotated as
“Mprim:

X þMaccum:
X ¼ Ms:g:;X” at large mX , and annotated as “Mprim:

X ¼ MChand:;X” at small mX) denotes the region where (1) the sum

of the primordial CHAMPabundance,Mprim.
Xþ , and theCHAMPabundance accumulated onto theWDfrom thegalacticCHAMPhalo before

theWDcrystallization time,Maccum:
Xþ , exceed the larger of theChandrasekharmass forXþ or the self-gravitatingmassEq. (62), leading toBH

formation; and (2) the subsequent BH evolutionary trajectory ends either with the BH accreting the entire WDmass (or triggering thermal
runaway in the process of doing so) [see Sec. VII C 2], or with the BH Hawking evaporating away, and triggering thermal runaway in the
process [see Sec. VII C 1]. This bound has a kink at ms:g

X ∼ 6.4 × 108 GeV owing to a crossover between the Chandrasekhar and self-
gravitating masses (with Ms:g:;X > MChand:;X above this value of mX , and smaller below). Nevertheless, we also continue to show the

parameters for which the Chandrasekhar mass is exceeded at larger mX by Mprim:
X þMaccum:

X with the faint red dotted line (annotated
“Mprim:

X þMaccum:
X ¼ MChand:;X” at largemX), as this is themaximumextent towhich the limits could improve if either (a) the conservatively

high temperature we have assumed for the thermal structure (T ∼ keV) is lowered [Ms:g:;X ∝ T3=2], or (b) the thermal-pressure-supported
structure does not actually form; see footnote 28. The shark-fin-shaped region aroundmX ∼ 109 GeV–1012 GeV which is not shaded red
and is annotated “τdestruction > τWD” is the region in which a sufficient CHAMP abundance is present (primordially) in theWD to cause BH
formation, but the evolutionary time scales for the BH are too long to destroy theWDwithin its assumed lifetime. The green shaded part of
this shark-fin-shaped region would however evolve rapidly enough to destroy the BH (by Hawking evaporation) if the initial primordial
CHAMPaccretion rate is assumed to be given by the refined estimates in Sec. VII A 4, instead of by the naïve estimates discussed there. The
thin red dashed line (annotated as “Mprim:

X ¼ Ms:g:;X” at largemX) delineates the regions of parameter spacewhere the primordial abundance
alone is sufficient to exceed the self-gravitating mass (above the red dashed line), and where the primordial abundance must be augmented
by the slowaccretion ofCHAMPsover theWD lifetime (until the crystallization time) in order to exceed a self-gravitatingmass ofCHAMPs
in the star (below the red dashed line). These bounds all assume the WD parameters shown in Table. IV. Also shown are the NS-derived
bounds reported byRef. [50], with the region above the thick solid grey line excluded (annotated as “NS limit” and shaded grey except—for
clarity—in the shaded red region). The region 105 GeV≲mX ≲ 1011 GeV, where the results of Ref. [52] call into question the presence of
CHAMPs in the MW, is indicated by the thin long-dashed vertical black lines; in this region, we present all results as dotted lines (and the
shading is lighter) to indicate the uncertainty as to their applicability; we do not claim robust bounds here (see discussion in text). CHAMPs
lighter thanmX ≲ 103 GeVhave a sinking time scale in theWDestimated to approach or exceed theWD lifetime and/or crystallization time
of ∼Gyr, and we conservatively do not present limits here; see Sec. VI C.
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Ref. [91]), this value could easily vary in the range
Mcloud ∼ 6–8 M⊙. Such changes only move the boundaries
of various excluded regions by Oð1Þ numerical factors.
Note also that in Fig. 4, we have conservatively plotted

all our bounds only up to mX ∼ 1018 GeV, at which point
the limit on ρXþfXþ=ρ0 is ðρXþfXþ=ρ0Þlimit ∼ 3 × 10−18.
This is still abundantly safe from the Poisson uncertainty on
the accumulated number of CHAMPs that was discussed
Sec. VI B 1: a ∼10% Poisson uncertainty required only
ðρXþfXþ=ρ0ÞPoisson ≳ 10−24 at this mass.
Also shown in Fig. 4 is the region delineated by thick

gray lines (and shaded gray where not otherwise already
shaded) where Ref. [50] claim a bound from the destruction
of old NS owing to the formation of a BH inside the NS,
assuming a neutron star mass of MNS ¼ 2 M⊙ with a
progenitor protostellar cloud with Mcloud ¼ 10 M⊙ (note
that the same objection to the bounds of Ref. [50] for
105 GeV≲mX ≲ 1011 GeV arises as for our WD bounds
based on the arguments of Ref. [52]; we indicate the bounds
there as thick, dotted lines, and shade the region more
lightly). As already discussed in Sec. I, these bounds
weaken sharply around mX ∼ 1010 GeV owing to the
Hawking process causing a BH with initial mass MBH≲
4×10−20M⊙ to evaporate before it can devour the whole
NS, which in the NS case does not inflict externally
observable damage on the NS (absent this consideration,
their bound would continue to higher masses).

B. Limits on X−
For ðNXÞ we have argued that there are at least two

points46 in the evolution prior to the BH formation where
the WD thermal runaway could be triggered: (1) by
pycnonuclear processes in the trans-Chandrasekhar mass
core of the WD, or (2) directly during collapse of the
stratified core structure to a BH, if a fraction of the
gravitational binding energy is transferred to the stellar
matter. We again conservatively ignore these early ignition
mechanisms, and assume that the BH successfully forms
from the initial stratified mini-WD-like core structure in the
WD. In order to destroy an old WD, we must again demand
a sufficient mass of CHAMPs (as discussed in Sec. VIII A),
and that the evolutionary time scales for the BH to either
accrete the WD mass (or until a trigger criterion is possibly
reached), or radiate to effectively zero mass (or until the
trigger criterion is reached), must be sufficiently short.
Imposing these requirements, we find limits on X−

bound as ðNXÞ that, for fX− ¼ 1, are broadly similar to
those for Xþ, but are weaker by a significant factor at
low mX ≲ms:g:

X ∼ 8.3 × 1011 GeV; see Fig. 5. This is
because the bound in this region is controlled by the
Chandrasekhar mass, and the ðNXÞ Chandrasekhar mass

is a factor of ∼62 ∼ 36 larger for the homogeneous ðNXÞ
mixture as compared to theXþ case, assuming themean ion
approachwe have thus far taken. FormX ≳ms:g:

X , the bounds
for ðNXÞ and Xþ are identical, because the self-gravitating
mass controls the bound, and the self-gravitating mass does
not depend on the charge of the CHAMP (or CHAMP
bound state); cf. Eq. (62). Note that boundaries of the shark-
fin region where the evolutionary time scales are too long
also shift slightly as compared to the Xþ case.
One important point to bear in mind however is that, in

the region 105 GeV≲mX ≲ 1011 GeV where the results of
Ref. [52] call into question our bounds on the grounds that
CHAMPs may get blown out of the galaxy by supernova
shock waves, the ðpXÞ may not be so evacuated because,
being neutral with binding energies ∼25 keV, they may not
become efficiently entrained in supernova shock fronts [52].
Moreover, the capture of ðpXÞ in the initial protostellar
cloud is highly inefficient owing to their small cross sections
(related to their charge neutrality); as such, X− bound as
ðpXÞ are unlikely to primordially accumulate in the proto-
stellar cloud (see discussion in Ref. [50]). However, we have
argued that the presence of exchange reactions ðpXÞ þ N →
ðNXÞ þ p combined with very high WD material densities
make the stopping of ðpXÞ in a WD by the accumulation
mechanism discussed in Sec. VI B efficient. Moreover, if
they approach the WD still in the form of ðpXÞ, they are not
deflected byWDmagnetic fields to nearly the same extent as
charged particles, so even fairly light CHAMPs could
accrete onto WD with large surface B fields. As such, we
argue that a bound where the abundance of ðpXÞ accumu-
lated onto theWDbefore the crystallization time exceeds the
Chandrasekhar mass (or self-gravitating mass, whichever is
larger) should still apply, but it is weaker than the cognate
accumulation-only bound assuming a density ρX of X−

accumulate onto the WD by the ratio of abundance of ðpXÞ
to other ðNXÞ states. This fraction is of course difficult to
estimate robustly, as it depends on the evolutionary history
of the ðpXÞ states. Nevertheless, to indicate the regionwhere
this bound would likely be applicable, we draw an orange
shaded region in Fig. 5 indicating where at least a
Chandrasekhar mass of X− that are galactically present as
ðpXÞ would accumulate onto the WD before the crystal-
lization time, assuming that the ðpXÞ make up a fraction
10−4 of all ðNXÞ bound states, which is the early-Universe
evolutionary estimate (see, e.g., Refs. [42,46–48]).

C. Limits when both X+ and X− are present

The case of most widely applicable physical relevance is
some mixture of Xþ and X− [bound as ðNXÞ] in the WD,
with both species coexisting without annihilating by virtue
of the large Coulomb barrier between the Xþ and the X−

bound within the positively charged N nuclear volume.
However, our discussion in Sec. VI E 4 shows that the Xþ
and ðNXÞwill rapidly stratifywith theXþ sinking toward the
center of the core, and it would be conservative to demand

46And possibly a third: during the collapse of the thermal-
pressure-supported structure to a stratified core.

FEDDERKE, GRAHAM, and RAJENDRAN PHYS. REV. D 101, 115021 (2020)

115021-38



that the total Xþ mass alone exceeds the Xþ Chandrasekhar
mass. Given that the Xþ bounds are, roughly speaking, a
factor of QðNXÞ ∼ 62 ¼ 36 times stronger than the ðNXÞ
bounds (by virtue of the MChand:;X ∝ Q2

X scaling) at
low mX≲6.4×108GeV [where the Xþ Chandrasekhar
and self-gravitating masses cross], so long as fXþ ≳
ðQXþ=QðNXÞÞ2fX− ⇒ fXþ ≳1=37 (since fXþ þ fX− ¼ 1),
the limits on ρX=ρ0 are to a good approximation given by�

ρX
ρ0

�
limit

∼
1

fXþ
×

�
ρX
ρ0

�
limit;Xþ

for Q2
X=Q

2
ðNXÞ ≲ fXþ ≤ 1

and mX ≲ 6.4 × 108 GeV; ð103Þ

where ½ρX=ρ0�Xþ
limit is the limit assuming fXþ ¼ 1, as shown

in Fig. 4.
Likewise, once fXþ ≪ 1=37, the X− bounds on ρX=ρ0

obtained by requiring a Chandrasekhar mass of ðNXÞ in
the core would be stronger than those obtained from Xþ;
moreover, the total mass of Xþ is in this regime so small
compared to the total mass of ðNXÞ that the impact of
the small central Xþ core structure will likely not
significantly impact the structure of the ðNXÞ layer
above it. Furthermore, the dense Xþ core would likely
only aid to make the ðNXÞ core collapse earlier, so it is
conservative in this case to fix the limit on ρX=ρ0 by
requiring a Chandrasekhar mass of ðNXÞ in the WD,
which leads to the limit,

FIG. 5. As for Fig. 4, but showing the constraints on the abundance of CHAMPs X− immutably bound as ðNXÞ, assuming fX− ¼ 1

and QðNXÞ ¼ þ6. The kink in the bound at ms:g
X ∼ 8.3 × 1011 GeV is where the Chandrasekhar and self-gravitating masses cross for

QðNXÞ ¼ þ6. The additional orange shaded region [annotated as ‘ðpXÞ’] as compared to Fig. 4 indicates where, in the region
105 GeV ≲mX ≲ 1011 GeV, an abundance of ðpXÞ at the level of 10−4 of the total number abundance of X− would accumulate to a
super-Chandrasekhar mass of CHAMPs (larger than the self-gravitating mass for these mX) in the WD within the crystallization time,
assuming that these neutral particles are not evacuated from the galactic disk by supernova shockwaves (and magnetically inhibited from
reentry) [52], but are efficiently captured by dense WD material owing to exchange reactions such as ðpXÞ þ N → ðNXÞ þ p [see
discussion in Sec. VI B]. Of course, the actual limit would not jump discontinuously from the red line to the orange region at
mX ∼ 1011 GeV; there would be some smooth crossover region. CHAMPs lighter than mX ≲ 103 GeV have a sinking time scale in the
WD estimated to approach or exceed the WD lifetime and/or crystallization time of ∼Gyr and we conservatively do not present limits
here; see Sec. VI C.
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�
ρX
ρ0

�
limit

∼
1

fX−
×

�
ρX
ρ0

�
limit;X−

for 1 −Q2
X=Q

2
ðNXÞ ≲ fX− ≤ 1

and mX ≲ 6.4 × 108 GeV: ð104Þ

In the tuned crossover region where fXþ∼
ðQXþ=QðNXÞÞ2fX− (and mX ≲ 6.4 × 108 GeV), one would
need to be more careful, but a limit correct within a
factor that is Oð1Þ would be set by requiring that an X−

Chandrasekhar mass worth of CHAMPs is present in
total in the star.
We propose the limit in the mixed Xþ=ðNXÞ case can be

given conservatively by�
ρX
ρ0

�
limit

∼min

�
1

fXþ

�
ρX
ρ0

�
limit;Xþ

;
1

1 − fXþ

�
ρX
ρ0

�
limit;X−

�
;

ð105Þ

which will capture the true limit correct to within Oð1Þ
factors, for mX ≲ 6.4 × 108 GeV.
In the region mX ≳ 8.3 × 1011 GeV [where the ðNXÞ

Chandrasekhar and self-gravitating masses cross], the limits
from Xþ and ðNXÞ become equal under our conservative
assumptions, because the self-gravitating mass fixes the
bound, and it does not depend on the charge of the CHAMP
state; cf. Eq. (62), but see footnote 28. In this case, it is again
conservative to fix the bound to be given by Eq. (105),
which, since ½ρX=ρ0�limit;X− ¼ ½ρX=ρ0�limit;Xþ in this mass
range, is at most a factor of 2 weaker than either individual
bound: maxfXþ fmin½1=fXþ ; 1=ð1 − fXþÞ�g ¼ 2.
In the intermediate region, 6.4 × 108 GeV≲mX≲

8.3 × 1011 GeV, Eq. (105) will still give a conservative
estimate for the lower envelope of the possible bounded
region; however, this is also roughly the range of parameter
space in which the BH evolutionary time scales are too long
to destroy theWDwithin its age, so some care is required to
set a rigorous bound in this region, and obtain the correct
shark-fin-shaped nonexcludable region (see Figs. 4 and 5).
Conservatively, one can of course choose to fix the lower
edge of the bounded region by Eq. (105), but avoid setting a
bound in the union of the regions where the evolutionary
time scales are too long assuming pure Xþ contamination,
and where they are too long assuming ðNXÞ contamination.
While not exact, this will give an estimate of the actual
bound that is likely noworse than the uncertainties in where
the bound should lie owing to factors such as, e.g., the mass
of the progenitor gas cloud, etc.
Finally, we note that the NS limits from Ref. [50] bound

only the asymmetry f ≡ jfþ − f−j because, in the NS, the
Xþ and X− are not inhibited from annihilating by a
Coulomb barrier as they are in our case (see discussion
in Sec. IV). We place our overall bounds using the more
restrictive of the bounds on the individual Xþ and X−

contamination components, without assuming any annihi-
lation. In particular, this means that for fXþ ∼ fX− galac-
tically, which is a highly motivated case that would occur
with a CP conserving production mechanism, our bounds
are approximately�

ρX
ρ0

�
limit

∼ 2

�
ρX
ρ0

�
limit;Xþ

; ð106Þ

whereas the bounds from Ref. [50] may possibly be
significantly weakened (although they would not disappear
entirely except maybe in a highly tuned region of parameter
space, because of possible differences in accretion effi-
ciency, etc. for the X� [50]).

D. Comment on assumed uniform
CHAMP distribution

We have assumed throughout this paper that the pri-
mordial CHAMP abundance is uniformly distributed in the
WD at the time of WD formation. However, some early
sinking is to be expected, possibly even during the
evolution of the WD-progenitor star lifetime. Taken to
the logical extreme, this could even cause the primordial
abundance of CHAMPs to collapse to a BH earlier in the
evolution of the WD progenitor star, before the CO core of
this progenitor even becomes degenerate. In this case, if the
BH thus formed evaporates before the core is degenerate, it
may not trigger a thermal runaway at all.
However, in almost the entire region where BH evapo-

ration is responsible for destroying the WD per our canoni-
cal picture, the limits set by the additional CHAMPs
accumulated onto the WD after formation are actually
stronger than those coming from the primordial abundance
alone. Those limits would not be impacted by early CHAMP
collapse and BH evaporation: even if the primordial abun-
dance of CHAMPs collapsed early to form a BH which
radiated away, a second BH could still form long after the
WD is born (but before the crystallization time) owing to
accretion of additional CHAMPs onto the WD.
Moreover, in the region of parameter space where limits

from the primordial CHAMP abundance are much stronger
than those from the additional accumulated CHAMPs, it
turns out that the BH dynamics dictate that the BH would
grow in size after formation to devour the whole star,
instead of evaporating away. In this case too, any early
sinking is a nonissue, because the BH would still be present
when the WD is born (if the progenitor star even survives
that long). Our bounds are thus quite robust to having the
CHAMPs sink in the WD progenitor star prior to the
formation of a degenerate core.

IX. SPECULATIONS: Ca-Rich
GAP TRANSIENTS

In this section, we adopt a much more speculative
attitude to make some comments on the so-called “Ca-
rich gap transients” (hereinafter “CaRGT”).

FEDDERKE, GRAHAM, and RAJENDRAN PHYS. REV. D 101, 115021 (2020)

115021-40



The CaRGTs are a class of approximately ten observed
anomalous supernovalike events which are found to occur
preferentially displaced from their most likely host gal-
axies; see, e.g., Refs. [121–125] and references therein.
Events are included in this anomalous class based on
specific criteria (see e.g., Refs. [122–124]) identifying them
as rapidly evolving, calcium-rich, and faint (luminosities in
the “gap” between novae and supernovae) transients; the
statistically significant [123,126] preferentially large spatial
offset from the most likely host is however not one of the
defining characteristics for inclusion, but is rather feature of
the class to be explained.
The progenitors of these transient events are as-yet not

known, although several “conventional astrophysics”
explanations have been advanced (see Ref. [124] and
references therein), such as low-mass He WDs which are
detonated by some external perturbation (e.g., tidal defor-
mation by aNSorBH in a close binarywith theWD), andHe
shell detonation on a relatively low-mass CO WD core.
Here, we advance a possible unconventional explana-

tion: that these events occur as a result of CHAMPs in the
mass range 105 GeV < mX < 1011 GeV accumulating in
sufficient quantity onto a sub-Chandrasekhar mass WD that
they trigger the thermal runaway instability, destroying the
WD in a supernova explosion. We suggest this CHAMP
mass range as it is where the results of Ref. [52] suggest
that the CHAMP population in the center of galaxies (or in
the disk) could be depleted [although see comments about
ðpXÞ in Secs. V and VIII B].47

We imagine aWD allowed to form in the inner regions of
a galaxy where the CHAMP density is low. This WD can
thus avoid being destroyed initially by protostellar or
accreted CHAMP contamination. If this WD then happens
to be gravitationally ejected from the inner regions of the
galaxy,48 it will enter a region in which the CHAMP density
is not depleted, where it can begin to accrete CHAMPs
from the remaining (unejected) virialized CHAMP density
in the outer halo. Alternatively, a WD could simply be born
in the outer halo, but these regions of a galaxy are star-poor.
Should this WD come to accrete more than a

Chandrasekhar mass (or a self-gravitating mass, whichever

is larger) worth of CHAMPs within a crystallization time
τaccum: ∼ 109 yr of initial WD formation, a BH would form
in the WD (unless the WD is destroyed earlier as we have
discussed throughout), and in the interesting region of
parameter, accrete up in mass over time. A SN could then
be triggered if the explosive mechanisms upon accretion of
WD material [61] discussed in Sec. VII C 2 are operative.
As this picture envisages CHAMP accretion that can only
occur on the outskirts of galaxies, it could naturally explain
the observed spatial distribution of the CaRGT, as well as
their intermediate luminosities, as the SN is triggered in a
sub-Chandrasekhar progenitor. Although detailed model-
ing of the light curves and nucleosynthetic abundances of
such an event are well beyond the intended scope of this
paper, it is at least plausible that such a sub-Chandrasekhar
progenitor could explain the high Ca yield, per recent
modeling [70,127,128]. This picture may however be
challenged by the some recent high estimates for the
inferred rates for these events [125,126], as it relies on
some fairly rare events to be successful.
In order to roughly estimate the plausible region of

parameter space in which this picture could operate, we
consider a MWD ¼ 0.85 M⊙ WD with an extremely low
magnetic field (≲1 kG; see Sec. VI B 2) [see Table I for
other WD parameters], assuming that the progenitor of this
WD formed in a region where the CHAMP abundance
[except perhaps for ðpXÞ] is zero owing to the mechanism
of Ref. [52], so that the progenitor had zero initial CHAMP
contamination [the ðpXÞ are not efficiently captured by the
protostellar cloud [50] ]. We assume that this WD then gets
gravitationally ejected from the initial CHAMP-depleted
region into an outer region of its parent galaxy (at
galactocentric distance r̃), where the CHAMP abundance
is nonzero. For simplicity, we adopt a somewhat naïve
model in which the WD, once ejected, experiences a
constant, virialized CHAMP abundance ρXðr̃Þ for a period
of τ ∼ τaccum: ∼ 109 yr, with the total attainable CHAMP
mass in the star taken to be that given by the approximate
expression Eq. (34). This is of course very schematic. In
particular, the CHAMP abundance will not just rapidly turn
on as the WDmoves in the galaxy, so by approximating the
temporal integral in Eq. (28) by ρXðr̃Þ × τaccum:, we make
some error which is difficult to quantify given that we do
not know the spatial profile of the evacuated CHAMPs (see
below), and we do not specify the WD trajectory.
Moreover, the approximation Eq. (34) ignores the

velocity distribution of the CHAMPs [which would in
any event likely not be a Maxwellian distribution in the
galactic rest frame if the CHAMPs have been significantly
impacted by the expulsion dynamics (see, e.g., Ref. [49])];
however, the exact assumed velocity distribution only
matters when considering much more massive CHAMPs
(mX ≳ 1016 GeV) where there is a question of whether the
entire distribution can be efficiently captured onto the WD.
As our goal here is not to be exact, but rather to advance a
plausibility argument that some region of parameter space

47Of course, the results of Ref. [52] were obtained specifically
using parameters for the MW, so the boundaries of the CHAMP
evacuation region may differ in a different system; as this section
is in any event speculative, we simply adopt the MW results and
show the allowed parameter space under that assumption. Any
follow-up study that further examines our speculations would of
course have to take this into account.

48Note that the long timeframe envisaged here provides ample
time for the WD to move a significant distance in the galaxy:
suppose we impose that the WD may take only 10% of the
crystallization time (∼108 yrs) to move from the inner CHAMP-
depleted region to the outer CHAMP-rich region, so that it still
has 90% of the crystallization time available to accrete CHAMPs
in the CHAMP-rich region. Assuming that the WD moves with
typical galactic speeds v ∼ 10−3, it moves a distance of ∼30 kpc
in this time, which is sufficient (see text).
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could be available, we judge these rough approximations to
be fit for purpose.
In estimating ρXðr̃Þ we will make the approximation that

although the inner region of the galaxy is actually evacu-
ated of CHAMPs, the CHAMP density in the outer region
still roughly tracks the spatial distribution of the DM halo at
r ¼ r̃ ∼ 30 kpc, a representative median projected host-
transient offset for the known CaRGTs (see, e.g., Fig. 11 of
Ref. [123]), just with a different normalization to the DM;
that is, we crudely approximate that

ρXðrÞ ∝ ρDMðrÞΘ½r − revac:�; ð107Þ

where revac: is the radius within which we assume the
CHAMPs would be evacuated by the SN shockwaves. Here
we are implicitly assuming either that (a) if the host galaxy
is a disk galaxy, the evacuation of CHAMPs [52] (although
see Ref. [49]) above and below the disk is still efficient even
absent a large density of supernova shockwaves in these
baryon-poor regions, or (b) the host galaxy is elliptical.
These assumptions are required in order that is plausible
that a full 3D volume of CHAMPs have been evacuated
(see below). However, in the latter case this does of course
lead to a mismatch: the mechanism of Ref. [52] on which
we would need to rely to create this evacuated region
specifically considered the properties of a MW-like disk
galaxy. Although SN shockwaves will certainly accelerate
CHAMPs regardless of the galaxy type, there is a question
as to whether there are appropriate and sufficiently large
magnetic fields in elliptical galaxies to magnetically inhibit
the entry of CHAMPs initially external to the evacuation
volume into that volume. We simply assume that this is the
case and that the same range of mX are subject to the
mechanism in the galaxies in which the CaRGT are
observed as in the MW; if either of these assumptions is
not the case, the picture presented here may break down,
and/or require refinement.49 Note further that it is important
for a full 3D region of CHAMPs to be evacuated, because if
only a thin 2D slice (e.g., the MW disk) is evacuated then,
once projection effects are accounted for, it is likely that
the observed SNIa-like events triggered by the accumu-
lation of CHAMPs would not exhibit the correct spatial
morphology: a WD would only need to be ejected above or
below the disk to experience a large CHAMP abundance,
regardless if the radial distance from the center of the
galaxy.
It is still necessary to settle on a specific parametrization

convention for the DM abundance. We will parametrize

ρXðr̃Þ≡ ρ̂X
ρ0

ρDMðr̃Þ
ρ0

ρ0; ð108Þ

where ρ̂X is an arbitrary constant density normalization,50

and ρ0 ¼ 0.3 GeV=cm3 is the local DM density in the MW,
which is simply used here as a convenient normalization.
Although none of the CaRGT events have been observed to
occur in our galaxy, we will take MW-like parameters for
ρDMðr̃Þ, assuming that has approximately the same radial
dependence and normalization as the MW DM abundance
(i.e., ρDMðr⊕Þ ∼ ρ0, where r⊕ is the distance from the Earth
to the MW galactic center); this is of course a guess about
the DM abundance in the CaRGT host galaxy, but the
observed CaRGT events occur in galaxies of comparable
sizes to the MW, so it is a well-motivated guess. Note that
under these assumptions, the value of ρDMðr̃Þ is insensitive
at the ∼20% level to the choice of NFWc(γ ¼ 1;
rs ¼ 20 kpc), NFWc(γ ¼ 1.3; rs ¼ 20 kpc), Einasto
(α ¼ 0.17; rs ¼ 20 kpc), or isothermal (rs ¼ 5 kpc) DM
halo profile models (see, e.g., Ref. [129] and references
therein for definitions), and can be approximated as

ρDMðr̃Þ
ρ0

∼ 9 × 10−2: ð109Þ

Finally, in making our estimates, we assume that vWD ∼
v0ðr̃Þ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMgalaxy=r̃

p
∼ 10−3, which must be correct

within an order of magnitude unless the WD has been
expelled from the inner region of the galaxy so fast that it is
no longer gravitationally bound to the galaxy (any slower,
and the WD would likely not move a sufficient distance in
the galaxy to make our speculative mechanism operable,
unless the WD being ignited are formed in the outskirts of
the galaxy).
Under these assumptions, we compute the region of

parameter space (mX, ρ̂X=ρ0), for the cases of pure Xþ and
X− [bound as ðNXÞ] contaminations, in which an initially
CHAMP-freeWD as described above would accrete at least
the larger of a Chandrasekhar mass and a self-gravitating
mass of CHAMPs before the crystallization time; see
Fig. 6, where we show these regions (blue) with a fuzzy
boundary to emphasize that there are large uncertainties in
their exact location. Note also that this region is drawn
without regard to the region in which the evolutionary time
scales for WD destruction are sufficient rapid (the region
for MWD ∼ 0.85 M⊙ being somewhat different than that
for MWD ∼ 1.1 M⊙).
We see that there is plausibly some region of parameter

space in which this mechanism could clear the first hurdle
and provide a trigger mechanism for a sub-Chandrasekhar
WD in the spatial location at which CaRGTevents occur; of
course, this is not dispositive, both because of the large

49Alternatively, and optimistically, there may even be some
discriminating power here: if different types of galaxies evacuate
CHAMPs to differing degrees of efficiency, or in different spatial
volumes, a high statistics sample of CaGRT events could even
show distinct spatial morphologies of these events in different
galaxy types if this is the trigger mechanism.

50Although not completely arbitrary: if the CHAMP abundance
thus parametrized where evaluated in the MW, and the CHAMPs
were not blown out of the MW disk, then ρXðr⊕Þ ¼ ρ̂X.
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uncertainties on our estimates here and because a careful
estimate for the rate of this process would be required.
Nevertheless, taken at face-value, the fact that there appears
to be some allowed region is interesting and allows us to
speculate that this may be an explanation for these
events that would somewhat naturally explain their spatial
morphology.

X. CONCLUSION

In this paper we have considered the impact of an
abundance of extremely massive, stable (or cosmologically
long-lived), early-Universe relics with Oð1Þ electrical
charge on the late-stage evolution and survival of old
white dwarfs (WD).
Such charged massive particles (CHAMPs) can come to

contaminate old WD in at least two ways: by contaminating
the protostellar cloud which collapses to form the main-
sequenceWD-progenitor star, thereby ending up in the WD
at the end of the evolutionary phase of that massive
progenitor, or—provided the WD has a small enough
magnetic field to not deflect the incoming CHAMPs—by
direct accretion on the WD over the course of its lifetime.
These CHAMPs, being extremely massive, sink in the WD,
most probably forming first a thermally pressure-supported

structure at the center, then later undergoing self-gravitating
collapse to a miniature CHAMP-contaminated WD-like
object at the center of theWD, provided a sufficient mass of
CHAMPs is present. If a sufficient mass of CHAMPs is
present in theWD, either primordially uponWD formation,
or accreted up over the WD lifetime, this central dense
CHAMP-contaminated WD-like object eventually collap-
ses to a black hole. This black hole in general has
complicated dynamics because it can accrete WD matter
and CHAMPs to increase its mass, as well as Hawking
radiate to reduce its mass.
Our detailed study of the possible BH trajectories leads

us to conclude that there are only three physical outcomes
(see also Refs. [60,61]): (1) the BH survives for a length of
time of order the WD age by virtue of a balancing between
the mass accretion and mass loss rates and intrinsically long
time scales for evolution, and nothing interesting happens
observationally for an external observer; (2) the BH will
evaporate within the WD lifetime if it ever forms, with the
increasing high Hawking radiation power emitted by the
BH serving to trigger the thermal runaway instability of
the WD material, leading to a SNIa-like explosion; or
(3) the BH will accrete enough matter within the WD
lifetime to either conservatively devour the entire WD (with
no directly observable signature) or alternatively trigger the

FIG. 6. These plots indicate the regions (blue shaded) of ðmX; ρ̂X=ρ0Þ parameter space where our speculations about a possible trigger
mechanism for the CaRGTs are applicable, both for Xþ (left panel) and X− bound as ðNXÞ (right panel). These shaded regions are
shown with very fuzzy edges to emphasize the large uncertainties associated with our estimates, and their highly speculative nature. Also
shown for mX ≳ 1011 GeV are the bounds on ðmX; ρX=ρ0Þ from Figs. 4 and 5 [see captions there for explanations of the shading]. The
limits from Figs. 4 and 5 in the region mX ≲ 1011 GeV have been removed as, for our CaRGT picture to be applicable, the CHAMP
expulsion mechanisms of Ref. [52] must be operative, and this invalidates the limits from Figs. 4 and 5 in that mass range (but see
footnote 47 for an important caveat about the mass range of interest); we have nevertheless included very light shaded lines that follow
the outlines of those limits in order to guide the eye in a comparison of the regions of parameter space. Note that the CaRGT regions are
shown for ρ̂X=ρ0, while the limits from Figs. 4 and 5 are on ρX=ρ0; in order to show both sets of results on the same plot and for the
comparison to be meaningful, we have had to identify ρ̂X and ρX [see Sec. IX and footnote 50]. The blue shaded regions assume
MWD ¼ 0.85 M⊙ and τaccum: ∼ Gyr; see Table I for other parameters.
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thermal runaway instability of the WD by heating of
accreting carbon ions (or possibly other mechanisms),
again resulting in a SNIa-like supernova explosion.
With the exception of the region of parameter spacewhere

the evolutionary time scales are too long, the WD destruc-
tion mechanisms outlined above impose severe bounds (see
Figs. 4 and 5 for our main results) on the allowed galactic
abundance of CHAMPs (either Xþ or X−) that for mX ≳
1011 GeV are many orders of magnitude stronger than
existing astrophysical bounds on such particles derived
from their destruction of old neutron stars via a similar
accretion mechanism (although without the possibility of a
SNIa-like explosion). We are able to place bounds on the
abundances ofXþ andX− separately, and not on the residual
asymmetry after their annihilation in the dense core of the
WD, because the X− become deeply bound to nuclei in the
WD, resulting in nuclear-sized bound states that are net
positively charged and which therefore prevent the Xþ and
X− from approaching close enough to capture and annihi-
late. This makes our bounds even stronger than existing
constraints in the regimewhere the net charge asymmetry of
the galactic CHAMP abundance is zero or small.
Somevariations on the above picture are possible, but they

too lead to WD destruction. For instance, if the energy
injection into the WD material at earlier phases of the
evolution of the CHAMP core results in enough energy
deposition into the WD material during any of the collapse
phases (thermal-pressure-supported structure to mini-WD-
like core structure, or mini-WD-like core structure to BH),
the thermal runaway can be triggered. Or, in the case of X−,
the ð12CX−Þ bound states which form the bulk of the dense
pre-BH mini-WD-like core structure inside the WD may
become so dense that pycnonuclear (density-enhanced)
fusion processes between carbon ions can occur at a
sufficient rate to lead to thermal runaway; this can only
happen just prior to the collapse of the core to theBH, if at all.
Additionally, we have speculated that in certain regions

of parameter space, the possible WD trigger mechanism
provided by an accreting BH could give a natural
explanation for the so-called calcium-rich gap transient
supernova events, because this mechanism can trigger sub-
Chandrasekhar WD to go off as a supernova, which could
naturally explain the Ca-rich spectra and subluminous
nature of these events [70]. Moreover, if the supernova
shocks are efficient at depleting the CHAMP abundance in
baryon-rich regions of galaxies [with magnetic field inhib-
iting the (re)entry of (expelled) CHAMPs] as has been
argued in the literature [52], the spatial morphology of
these events, which are observed to occur preferentially far
from the center of their host galaxies, could be naturally
explained. This mechanism is of course highly speculative,
and other more conventional astrophysics explanations for
these events may suffice.
In summary, our work improves astrophysical bounds on

the allowed galactic CHAMP abundance by many orders of
magnitude at the highest CHAMP masses mX ≳ 1011 GeV,

and advances a speculative explanation for a class of
anomalous supernova events.
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APPENDIX A: (NX) BINDING ENERGIES

In this appendix, we outline the computation of the
binding energy of a heavy, negatively charged CHAMP X−

with a heavy nucleus N; see also Refs. [9,34,87].
We model the nucleus as a uniform charged ball of radius

R ≈ R0A1=3 with R0 ¼ 1.22 fm [130], and chargeQN . Let r
be the relative coordinate separating the pointlike CHAMP
of charge −jQXj and the center of the nucleus. The
electrostatic potential energy of this configuration is then

⇒ VðrÞ ¼
(
− α̂

r r > R

− α̂
2R ½3 − r2

R2� 0 ≤ r ≤ R
; ðA1Þ

where α̂≡ αjQXjQN . The fact that the potential energy
transitions from a 1=r potential for r > R to a shifted
harmonic oscillator potential for 0 ≤ r ≤ R implies that the
binding energies will be reduced from the naïve Bohr atom
binding energies. For reference, the naïve Bohr atom
ground state would have Bohr radius and binding energy
given respectively by [131]

a ¼ 1

α̂μ
Epoint
B ¼ 1

2
α̂2μ; ðA2Þ

where μ ¼ mXmN=ðmX þmNÞ ≈mN is the reduced mass
of the system.
Setting the wave function for the system to be

Ψðt; rÞ ¼ e−iEt uðrÞr Ym
l ðθ;ϕÞ, the 3D Schrödinger equation

(SE) of course reads

FEDDERKE, GRAHAM, and RAJENDRAN PHYS. REV. D 101, 115021 (2020)

115021-44



−
1

2μ
u00 þ

�
VðrÞ þ lðlþ 1Þ

2μr2

�
uþ EBu ¼ 0; ðA3Þ

where we set E ¼ −EB with EB > 0 the binding energy of
the system.
Consider then the 3D SE for l ¼ 0with u ¼ u1 for r > R

and u ¼ u2 for 0 ≤ r ≤ R, with C1-smoothness between u1
and u2 imposed at r ¼ R; the boundary conditions (BCs) to
be imposed on u are u1ð∞Þ¼ 0 and u2ð0Þ ¼ 0 (for dis-
cussion of the latter condition see, e.g., Sec. 12.6 of
Ref. [131]),

−
1

2μ
u001 −

α̂

r
u1 þ EBu1 ¼ 0 ðA4Þ

−
1

2μ
u002 −

α̂

2R

�
3 −

r2

R2

�
u2 þ EBu2 ¼ 0: ðA5Þ

Supposewe rescale x≡ r=R, define β≡ R=awhere a is the
Bohr radius as defined for the point charge setup and define

ϵ ¼ 2μR2EB ⇒ EB ¼ Epoint
B × ðϵ=β2Þ, where Epoint

B is the
binding energy of the point charge setup. We then have

ðu1Þxx þ
2β

x
u1 ¼ ϵu1 ðA6Þ

ðu2Þxx − βx2u2 ¼ ðϵ − 3βÞu2 ðA7Þ
u1ð∞Þ ¼ u2ð0Þ ¼ 0 ðA8Þ
u1ð1Þ ¼ u2ð1Þ ¼ 0 ðA9Þ
u01ð1Þ ¼ u02ð1Þ ¼ 0: ðA10Þ

The exterior solution which obeys the BC is

u1ðxÞ ¼ C1xe−x
ffiffi
ϵ

p
U

�
1 −

βffiffiffi
ϵ

p ; 2; 2x
ffiffiffi
ϵ

p �
; ðA11Þ

whereUða; b; zÞ≡ ΓðaÞ−1 R∞
0 e−ztta−1ð1þ tÞb−a−1dt is the

confluent hypergeometric function. The interior solution
which obeys the BC is

u2ðxÞ ¼ C2

8>><
>>:

D
h
1
2

	
3β−ϵffiffi

β
p − 1



; x

ffiffiffi
2

p
β1=4

i
−

ffiffi
2
π

q
cos

h
π
4

	
3β−ϵffiffi

β
p − 1


i
Γ
h
1
2

	
3β−ϵffiffi

β
p þ 1


i
D
h
1
2

	
− 3β−ϵffiffi

β
p − 1



; ix

ffiffiffi
2

p
β1=4

i
9>>=
>>;; ðA12Þ

where Dðν; zÞ is the parabolic cylinder function.
Continuity at x ¼ 1 demands that

C1

C2

e−
ffiffi
ϵ

p
U

�
1−

βffiffiffi
ϵ

p ;2;2
ffiffiffi
ϵ

p �
¼D

�
1

2

�
3β− ϵffiffiffi

β
p −1

�
;

ffiffiffi
2

p
β1=4

�

−
ffiffiffi
2

π

r
cos

�
π

4

�
3β− ϵffiffiffi

β
p −1

��
Γ
�
1

2

�
3β−ϵffiffiffi

β
p þ1

��
D

�
1

2

�
−
3β− ϵffiffiffi

β
p −1

�
; i

ffiffiffi
2

p
β1=4

�
; ðA13Þ

while continuity of the derivative at x ¼ 1 imposes

C1

C2

e−
ffiffi
ϵ

p
U

�
1 −

βffiffiffi
ϵ

p ; 2; 2
ffiffiffi
ϵ

p ��
ð ffiffiffi

ϵ
p

− 1Þ þ 2ð ffiffiffi
ϵ

p
− βÞ

Uð2 − βffiffi
ϵ

p ; 3; 2
ffiffiffi
ϵ

p Þ
Uð1 − βffiffi

ϵ
p ; 2; 2

ffiffiffi
ϵ

p Þ

�

¼
ffiffiffi
β

p
D

�
1

2

�
3β − ϵffiffiffi

β
p − 1

�
;

ffiffiffi
2

p
β1=4

�
−

ffiffiffi
2

p
β1=4D

�
1

2

�
3β − ϵffiffiffi

β
p þ 1

�
;

ffiffiffi
2

p
β1=4

�

þ
ffiffiffi
2

π

r
cos

�
π

4

�
3β − ϵffiffiffi

β
p − 1

��
Γ
�
1

2

�
3β − ϵffiffiffi

β
p þ 1

�� ffiffiffi
β

p
D

�
1

2

�
−
3β − ϵffiffiffi

β
p − 1

�
; i

ffiffiffi
2

p
β1=4

�

þ
ffiffiffi
2

π

r
cos

�
π

4

�
3β − ϵffiffiffi

β
p − 1

��
Γ
�
1

2

�
3β − ϵffiffiffi

β
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��
i

ffiffiffi
2

p
β1=4D

�
1

2

�
−
3β − ϵffiffiffi

β
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�
; i

ffiffiffi
2

p
β1=4

�
: ðA14Þ

Using Eq. (A13) to eliminate the ½C1=C2e−
ffiffi
ϵ

p
Uð� � �Þ�

expression that appears on the lhs of Eq. (A14) in favor of
the rhs of Eq. (A13) yields a single transcendental
eigenvalue equation for ϵ as a function of β; this must
be solved numerically to find the allowed ground state ϵðβÞ,
with the binding energy constructed as

EB ¼ ϵðβÞ
2μR2

����
β¼jQX jQNαμR

: ðA15Þ

While the above procedure has the virtue of being an
accurate solution to the problem of finding the binding
energies of the system with the potential described by
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Eq. (A1), it is numerically cumbersome. We can develop a
relatively accurate approximation by returning to Eq. (A1)
and considering only the part of the potential for r < R,
which looks like the harmonic oscillator potential for a 3D
oscillator with fundamental frequency ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α̂=ðmNR3Þ

p
,

but with its energies offset by −3α̂=ð2RÞ. If we take this
picture literally, the binding energies of the system should
be the energies of the 3D oscillator,

ðEharmonic
B Þn ¼ −

3

2

α̂

R
þ
�
nþ 3

2

� ffiffiffiffiffiffiffiffiffiffiffiffi
α̂

mNR3

s
: ðA16Þ

However, the classical turning points for the ground
state motion of this system are given by x� ¼ffiffiffi
3

p ðR3=ðα̂mNÞÞ1=4 ∼ R
ffiffiffi
3

p ðα̂mNRÞ−1=4. But α̂mNR∼
αQNAμaR0A1=3 ∼QNA4=3=24 ∼ A7=3=48, where we
assumed jQXj ¼ 1 and at the last step we assumed
QN ∼ A=2; therefore, we have x�=R ∼

ffiffiffi
3

p ðα̂mNRÞ−1=4∼
4.6A−7=12 ∼ 1.4ðA=8Þ−7=12 ∼ 1.07ðA=12Þ−7=12. While the
classical turning points of the ground state motion for
small A therefore lie outside the region where the
harmonic oscillator treatment is appropriate, we might
still hope that the ground state binding energies are
reasonable numerical approximations to the actual bind-
ing energies Eq. (A15) already for A ∼ 8, with the
accuracy of the approximation improving for larger A.
This turns out to be a correct conclusion; see Table. V.
We can therefore approximate the binding energies as

EB ≈ ðEharmonic
B Þ0

¼ 3αjQXjQN

2R
½1 − ðαjQXjQNmNRÞ−1=2�: ðA17Þ

APPENDIX B: PYCNONUCLEAR
FUSION RATE ESTIMATE

In order to estimate the ion number density in the ðNXÞ
core at which pycnonuclear fusion may become relevant,

we develop here an estimate of the tunneling suppression
for this process; this estimate is similar to that developed in
Ref. [74], which correctly captures the exponential sup-
pression of the pycnonuclear fusion rate in the case of an
ordinary COWD (although it obtains the wrong prefactor).
We consider a simple one-dimensional tunneling prob-

lem in the following setup: let CHAMPs X− be located at
x ¼ 0;�L, and assume that carbon ions C are bound to
each CHAMP site. We denote the carbon nuclear radius as
R; each C wave function is thus localized within ∼R of the
locations x ¼ 0;�L. Our approximation will treat the ðCXÞ
bound states at x ¼ �L as immutable objects of charge
QðCXÞ ¼ þ5, but we will track the X at x ¼ 0 and the C
initially localized around x ¼ 0 individually. Because it is
extremely massive, we will treat the X at x ¼ 0 as sta-
tionary; additionally, because we actually imagine that the
massive ðCXÞ bound states at x ¼ �L are actually local-
ized in a quasi-periodic structure in which ðCXÞ are present
at xk ¼ kL for k ∈ Z, we imagine also that the ðCXÞ bound
states at x ¼ �L are stationary. Within the context of a
Wentzel-Kramers-Brillouin (WKB) approximation, we will
ask for the probability that the carbon ion initially localized
around x ¼ 0 is able to tunnel to a location x ¼ L − 2R, at
which location it is within ∼ a nuclear diameter of the C in
the ðCXÞ bound state at x ¼ L, and can undergo a fusion
reaction. This approximation is manifestly crude, but it
should obtain the appropriate parametric scalings of the
exponential tunneling suppression factor.
Let the x-coordinate of the dynamical carbon ion C that

is initially localized around x ¼ 0 be x; accounting for the
finite charge radius of the C ion in its binding with the X−

located at x ¼ 0, the terms in the electrostatic potential that
are of interest in this tunneling computation are (for
x ∈ ½−Lþ 2R;L − 2R�)

V ⊃ VðxÞ ¼ −
αjQXjQC

jxj βðxÞ þ αQCQðCXÞ
L − x

þ αQCQðCXÞ
Lþ x

−
2αQCQðCXÞ

L
; ðB1Þ

where the first line is the interaction energy of the
dynamical C ion with the X− at x ¼ 0 and

βðxÞ≡
�
1 jxj > R
1
2
jxj
R ½3 − x2

R2� jxj ≤ R
; ðB2Þ

the second line is the interaction energy of the dynamical C
ion with the ðCXÞ states at x ¼ �L, and the third is a
constant offset in the potential energy conveniently chosen
to zero out the potential energy contribution from the
neighboring ðCXÞ ions at x ¼ 0.
Per the arguments advanced in Ref. [74], the probability

per unit time per ion pair for a pycnonuclear fusion reaction
to occur is given by

TABLE V. Ground-state binding energies EB [MeV] computed
per Eq. (A15), compared to the ground state energy level
ðEharmonic

B Þ0 of the approximate harmonic oscillator treatment
defined at Eq. (A16). For A ≳ 8 and Z ≳ 4, it is a good
approximation to take EB ≈ ðEharmonic

B Þ0; the approximation is
poor for ðA; ZÞ ¼ ð4; 2Þ as the true ground state is localized
mostly outside the nuclear volume.

N EB [MeV] ðEharmonic
B Þ0 [MeV]

4He 0.35 <0
8Be 1.6 1.4
12C 2.9 2.9
16O 4.1 4.1
20Ne 5.2 5.2
24Mg 6.1 6.1
56Fe 10.0 9.9
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W ∼
SðEÞ
E

vinc:jψ inc:j2T ; ðB3Þ

where SðEÞ is the nuclear reaction S-factor which encodes
all the nuclear physics, and is usually a slowly varying
function of energy (absent resonances), E is the (kinetic)
energy of the ion which must tunnel though the Coulomb
barrier to trigger the fusion, vinc ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
2E=m

p
is the corre-

sponding speed of that ion (in the usual symmetric
tunneling case, this is technically the relative speed of
the pair, so m is replaced by the reduced mass μ), jψ inc:j2 is
the ion wave function evaluated at the classical turning
point for the motion of the ion, and T is the tunneling
exponential. Therefore, the dynamical C ion initially
localized around x ¼ 0 will have a probability per unit
time to fuse with the C ion bound to the X− at x ¼ L of

W ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

EKmC

s
jψCðx�Þj2T ; ðB4Þ

where we have dropped the S factor because it varies slowly
with energy, and where x� is the classical turning point of
the C ion motion in the potential Eq. (B1) assuming that the
ion has the ground state binding energy EB appropriate for
the ðCXÞ bound state. The tunneling exponential T is (note
in connection with the sign under the square-root that the
energy of the system at the classical turning point is
E ¼ −EB < 0)51

−
1

2
ln T ¼

ffiffiffiffiffiffiffiffiffi
2mC

p Z
L−2R

x�
dx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðx0Þ þ EB

p
: ðB5Þ

Because the C ion in question is in a bound state with the
X− located at x ¼ 0, we expect that x� ∼ R; see
Appendix A. To make this more precise, let us expand
Eq. (B7) for jxj≲ R ≪ L [the convenience of the choice of
the constant potential energy offset in Eq. (B1) is now
manifest],

Vðjxj≲R≪LÞ≈−
αjQXjQC

R
1

2

�
3−

x2

R2

�
þ2αQCQðCXÞ

L
x2

L2

ðB6Þ

¼−
3

2

αjQXjQC

R
þ1

2

αjQXjQC

R3

×
�
1þ4

QðCXÞ
jQXj

R3

L3

�
x2; ðB7Þ

for R ≪ L, the correction term in the ½� � �� bracket on the
second line above can be ignored, and the potential reduces
to one of the same form as that we already considered at the
end of Appendix A in developing the approximate treat-
ment of the ground state binding energy of the ðNXÞ state,
so x� ∼ R is valid.
There is however a mismatch with the treatment in

Appendix A, because we are treating the tunneling part of
the problem here as a 1D problem, whereas we treated the
problem using the 3D SE in Appendix A. Following the
treatment of the pycnonuclear rate estimate in Ref. [74], we
will largely gloss over this mismatch and use a blend of the
1D and 3D results: (1) we estimate jψCðx�Þj2 ∼ ð ffiffiffi

π
p

RÞ−3 as
the value of the ground state wave function of the 3D
harmonic oscillator evaluated around the classical turning
point (taken for this part of the computation to be x� ∼ R
per Appendix A); (2) we estimate mCEK ∼ ð3=2ÞmCω0 ∝
1=R2 [this follows from the discussion around Eq. (A16)];
and (3) we will use the approximate ground state binding
energy estimate Eq. (A17) developed for the 3D problem to
estimate EB in Eq. (B5); but (4) we will otherwise continue
to compute the tunneling exponential in the 1D approach.
For the tunneling part of the problem, we need VðxÞ þ

EB with VðxÞ from Eq. (B1) for x ∈ ½R; L − 2R�,

Vðx∈ ½R;L−2R�ÞþEB

¼ αjQXjQC

R
Λ−

αjQXjQC

x
þ2αQCQðCXÞ

L

�
x2

L2−x2

�
ðB8Þ

¼ αjQXjQC

R

�
Λ−

R
x
þ2

R
L
ð1−qÞ

� ðx=LÞ2
1− ðx=LÞ2

��
; ðB9Þ

where we have defined

Λ≡ 3

2
½1 − ðαjQXjQCmCRÞ−1=2� ∼ 1; ðB10Þ

(the approximation being numerically satisfied for the
nuclei of interest) and have used that QðCXÞ ¼QC− jQXj
and defined q≡ jQXj=QC. Therefore, if we parametrize
x� ≡ γRwith γ ∼ 1, and define u≡ x=L and u0 ≡ R=L < 1
(indeed, typically, u0 ≪ 1), then

−
1

2
lnT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αjQXjQCmCL2=R

q Z
1−2u0

γu0

du

×

�
Λ−

u0
u
þ2u0ð1−qÞ

�
u2

1−u2

��
1=2

: ðB11Þ

Note that for this piece of the computation, we must set γ
to satisfy

Λ −
1

γ
þ 2u30ð1 − qÞ

�
γ2

1 − γ2u20

�
¼ 0; ðB12Þ

51Note that since we are treating the other carbon ions as
rigidly fixed to their respective massive CHAMPs in this
approximation, the mass that appears in the tunneling exponential
is the carbon mass, not the reduced mass of the carbon-carbon
system.

WHITE DWARF BOUNDS ON CHARGED MASSIVE PARTICLES PHYS. REV. D 101, 115021 (2020)

115021-47



since u0 ≪ 1 is assumed, the last term can be neglected,
and this gives γ ≈ Λ, which is again ofOð1Þ, approximately
consistent with the estimate from the harmonic oscillator
approximation (although the exact numerical values for x�
derived in the two different approximations will differ).
Note also that the final term in the square root becomes
maximum at the upper end of the integration range, where
we can estimate its size as

2u0ð1 − qÞ
�

u2

1 − u2

�����
u¼1−2u0

ðB13Þ

¼ 1

2
ð1 − qÞ

�
1 − 4u0 þ 4u20

1 − u0

�
≈
1 − q
2

<
1

2
: ðB14Þ

Since (1) the integrand in Eq. (B11) vanishes at the lower
integration limit owing to a cancellation of the first and
second terms in the square-root (with the third term being
negligible); (2) this cancellation persists only until
u ∼ few × u0 ≪ 1, at which point the integrand becomes
dominated by the first term in the square-root; and (3) this
domination by the first term in the square-root persists at
theOð1Þ level until the upper limit of the integration owing
to Eqs. (B10) and (B14); we can estimate the integral in
Eq. (B11) parametrically as

R ���
��� duf� � �g1=2 ∼

ffiffiffiffi
Λ

p
, up to an

Oð1Þ factor. Therefore, parametrically,

T ∼ exp
h
−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αjQXjQCmCL2Λ=R

q i
; ðB15Þ

where the exponent is correct up to an Oð1Þ factor.
Putting together Eq. (B15) with the points (1) and (2) just

below Eq. (B7), we expect parametrically that the rate per
unit time per unit volume for this fusion process is

ΓCðCXÞ=V ∝ n2ðCXÞWCðCXÞ ∝ n2ðCXÞR
−2

× exp
h
−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αjQXjQCmCL2Λ=R

q i
: ðB16Þ

Let us trade out R for the nuclear number density:
ð4π=3Þnnuclð2RÞ3 ∼ 1 ⇒ R ∼ ½3=ð32πnnuclÞ�1=3; and L for
the ðCXÞ number density: ð4π=3ÞnðCXÞL3 ∼ 1 ⇒ L∼
½3=ð4πnðCXÞÞ�1=3, yielding (we drop numerical prefactors),

ΓCðCXÞ=V

∝ n2ðCXÞn
2=3
nucl

× exp
h
−4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αjQXjQCmCΛn

−2=3
ðCXÞn

1=3
nuclð3=ð4πÞÞ1=3

q i
:

ðB17Þ
On the other hand, the cognate estimate for the ordinary

pycnonuclear C–C fusion process from Ref. [74] yields

ΓCC=V∝n2CWCC∝n2C
L0

ðx00Þ3
×exp½−2ðL0Þ2=ðx00Þ2�; ðB18Þ

where L0 is the average distance between carbon ions, and
x00 ≈ L0=

ffiffiffiffiffiffiffiffiffi
2QC

p
× ðαmCL0=2Þ−1=4 is the classical turning

point for the C tunneling motion in the cognate compu-
tation, such that

ΓCC=V ∝ n2CðL0Þ−2ð2Q2
CαmCL0Þ3=4

× exp
h
−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Q2

CαmCL0
q i

; ðB19Þ

if we similarly trade out L0 ∼ ½3=ð4πnCÞ�1=3, we have
(dropping numerical prefactors)

ΓCC=V ∝ n8=3C ð2Q2
CαmCn

−1=3
C ð3=ð4πÞÞ1=3Þ3=4

×exp
h
−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Q2

CαmCn
−1=3
C ð3=ð4πÞÞ1=3

q i
: ðB20Þ

We would like to know where the volumetric rates are
approximately equal: ΓCC=V ∼ ΓCðCXÞ=V. This will allow
us to estimate the number density at which the X− catalyzed
pycnonuclear fusion process could trigger runaway in the
collapsing core based on the number density at which this
occurs in an ordinary CO WD. We therefore seek

n8=3C ð2Q2
CαmCn

−1=3
C ð3=ð4πÞÞ1=3Þ3=4

×exp
h
−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Q2

CαmCn
−1=3
C ð3=ð4πÞÞ1=3

q i
∼n2ðCXÞn

2=3
nucl exp

h
−4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αjQXjQCmCΛn

−2=3
ðCXÞn

1=3
nuclð3=ð4πÞÞ1=3

q �
ðB21Þ

⇒ ln ½n8=3C n−2=3nucl n
−2
ðCXÞð2Q2

CαmCn
−1=3
C ð3=ð4πÞÞ1=3Þ3=4�

∼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Q2

CαmCn
−1=3
C ð3=ð4πÞÞ1=3

q
×
h
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðjQXj=QCÞΛn−2=3ðCXÞn

1=3
nucln

1=3
C

q i
: ðB22Þ

To make progress, note that if we take the extreme
carbon number densities shortly before pycnonuclear
fusion is relevant [74] of around ρ ∼ 1010 g=cm3 ⇒ nC ∼
5 × 1032 cm−3, the factor 2Q2

CαmCn
−1=3
C ð3=ð4πÞÞ1=3 ∼ 103,

while the largest that the logarithmic factor becomes
assuming nC ≲ nðCXÞ ≲ nnucl and that nnucl ∼ 1037 cm−3,
is Oð1Þ. Therefore, to good approximation, we can simply
set the ½� � ��-bracket on the rhs of the final line of Eq. (B22)
to zero to find the condition for equal volumetric rates,

nðCXÞ ∼ ½2ðjQXj=QCÞΛ�3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nnuclnC

p ðB23Þ

∼ 0.2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nnuclnC

p ðB24Þ

∼ 1034 cm−3; ðB25Þ

where we used nX ∼ 5 × 1032 cm−3 as the usual carbon
pycnonuclear fusion density [74], and nnucl ∼ 1037 cm−3.
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APPENDIX C: FULL EXPRESSIONS FOR
ACCRETING CHAMPs

Wegive here the full expressions for themass ofCHAMPs
that accrete over the lifetime of the WD; see Sec. VI B 1.
The form of the truncated Maxwellian distribution

Eq. (29), and more specifically the Heaviside theta function
appearing therein, as well as the appearance of the addi-
tional Heaviside theta function in the expression assumed
for ϵðvÞ [Eq. (31)], dictate that caution must be exercised in
the integration over velocity in Eq. (28). The integral
over the azimuthal angle is always without bound and
yields a factor of 2π; however, the polar angle defined by
vWD · v ¼ vvWD cos θ may have a restriction, depending on
the value of v. There are three cases. Case I: for
vmax ≤ vesc;MW − vWD, there is no angular restriction on θ,
and

R
d3v → 4π

R vmax
0 dv in Eq. (28). Case II: for

vesc;MW−vWD≤vmax≤vesc;MWþvWD, the integral over vmust
be broken into two domains. For v≤vesc;MW−vWD there is

no angular restriction, while for vesc;MW − vWD <
v ≤ vmax there is a maximum allowed value of
cos θ ≤ cos θ�ðvÞ≡ ðv2esc;MW − v2WD − v2Þ=ð2vWDvÞ. The
integral in Eq. (28) must thus be performed as

R
d3v →

4π
R vesc;MW−vWD

0 dvþ 2π
R
vmax
vesc;MW−vWD

dv
R cos θ�ðvÞ
−1 d cos θ. Case

III: for vmax ≥ vesc;MW þ vWD, the integral over v would
in principle need to be split into three domains, but one is
identically zero. For v ≤ vesc;MW − vWD there is no angular
restriction, while for vesc;MW − vWD < v ≤ vesc;MW þ vWD

there is a maximum allowed value of cos θ ≤ cos θ�ðvÞ≡
ðv2esc;MW − v2WD − v2Þ=ð2vWDvÞ. The integral in Eq. (28)
must thus be performed as

R
d3v → 4π

R vesc;MW−vWD

0 dvþ
2π

R vesc;MWþvWD
vesc;MW−vWD

dv
R cos θ�ðvÞ
−1 d cos θ. The angular integral is

identically zero for vesc;MW þ vWD < v ≤ vmax, and so the
final result is independent of vmax.
Taking this into account, the accumulated mass of

CHAMPs for cases I, III, and II, are, respectively,

MI
X� ¼ Mapprox;III

X� ×

8>>>>>><
>>>>>>:

v0
vWD

½erfðvWD

v0
Þ þ 1

2
erfðvmax−vWD

v0
Þ − 1

2
erfðvmaxþvWD

v0
Þ� ×

	
1þ 1

2

v2
0

v2esc;WD
þ v2WD

v2esc;WD



þ 1ffiffi

π
p v2

0

v2esc;WD

exp
h
− v2WD

v2
0

i
− 1

2
ffiffi
π

p v2
0

v2esc;WD

exp

�
− ðvmax−vWDÞ2

v2
0

�
×
	
1þ vmax

vWD



− 1

2
ffiffi
π

p v2
0

v2esc;WD

exp
h
− ðvmaxþvWDÞ2

v2
0

i
×
	
1 − vmax

vWD




9>>>>>>=
>>>>>>;

×

�
erf

�
vesc;MW

v0

�
−
2vesc;MWffiffiffi

π
p

v0
exp

�
−
v2esc;MW

v20

��
−1

ðC1Þ

MII
X� ¼ Mapprox;III

X� ×

8>>>>>>>>>>>><
>>>>>>>>>>>>:

v0
vWD

h
erf

	
vWD

v0



þ 1

2
erf

	
vmax−vWD

v0



− 1

2
erf

	
vesc;MW

v0


i
×
	
1þ 1

2

v2
0

v2esc;WD

þ v2WD

v2esc;WD



þ 1ffiffi

π
p v2

0

v2esc;WD

exp
h
− v2WD

v2
0

i
− 1

2
ffiffi
π

p v2
0

v2esc;WD

exp
h
− ðvmax−vWDÞ2

v2
0

i
×
	
1þ vmax

vWD




− 1ffiffi
π

p exp
h
− v2esc;MW

v2
0

i
×

0
BBBBB@

1þ v2esc;MW

v2esc;WD
þ v2

0

v2esc;WD
×
	
1 − 1

2

vesc;MW

vWD



− vesc;MW

vWD

	
1þ 1

3

v2esc;MW

v2esc;WD



þ vmax

vWD

	
1þ 1

3
v2max
v2esc;WD



− vesc;MWvWD

v2esc;WD

	
1 − 1

3
vWD

vesc;MW




1
CCCCCA

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

×
n
erf

hvesc;MW

v0

i
−
2vesc;MWffiffiffi

π
p

v0
exp

h
−
v2esc;MW

v20

io
−1
; ðC2Þ

MIII
X� ¼ Mapprox;III

X� ×

8>><
>>:

v0
vWD

erf
	
vWD

v0



×
h
1þ 1

2

v2
0

v2esc;WD

þ v2WD

v2esc;WD

i
þ 1ffiffi

π
p v2

0

v2esc;WD

exp
h
− v2WD

v2
0

i
− 2ffiffi

π
p exp

h
− v2esc;MW

v2
0

i	
1þ v2esc;MW

v2esc;WD
þ v2

0

v2esc;WD
þ 1

3

v2WD

v2esc;WD



9>>=
>>;

×

�
erf

hvesc;MW

v0

i
−
2vesc;MWffiffiffi

π
p

v0
exp

h
−
v2esc;MW

v20

i�−1
ðC3Þ

where Mapprox;III
X� is defined at Eq. (34), and all other variables are as defined in Sec. VI B 1.
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APPENDIX D: WHITE DWARF STRUCTURE

In this appendix, we review the computation of white
dwarf mechanical structure, and the derivation of the
Chandrasekhar limit. We also discuss modifications intro-
duced by CHAMP contamination.

1. General problem statement

The mechanical structure of a white dwarf of mass MWD

and radiusRWD is given by the stable, spherically symmetric
equilibrium solutions to Einstein’s equations (although
in practice the GR corrections are small, except for a
near-extremal, Chandrasekhar-mass WD) for a perfect
fluid—Tμν ¼ ðρþ PÞuμuν − Pgμν with u2 ¼ −1—with
the equation of state given to good approximation by the
fully degenerate electron equation of state, with overall
plasma neutrality additionally assumed to prevail every-
where throughout the star in order to guarantee the
electrostatic communication of the electron degeneracy
pressure to the much heavier ions that form the bulk of
the mass density of the star; see, e.g., Refs. [55,66].
Working in a spherical coordinate system (t; r; θ;ϕ)

with the line-element ds2¼eνðrÞdt2−ð1þhðrÞÞ−1dr2−
r2dΩ2 leads to the two independent equations: the first
being for the mass enclosed at radial coordinate r, and
the second, the Tolmann-Oppenheimer-Volkhoff (TOV)
equation [75,76], being the GR-corrected version of the
Newtonian hydrostatic equilibrium equation,

dMðrÞ
dr

¼ 4πr2ρðrÞ ðD1Þ

dPðrÞ
dr

¼−
1

r2M2
Pl:

ðρðrÞþPðrÞÞðMðrÞþ4πr3PðrÞÞ
1−2MðrÞ

rM2
Pl:

: ðD2Þ

The boundary conditions are Mð0Þ ¼ 0 and Pð0Þ ¼ P0,
where P0 is a free parameter giving the central pressure;
this defines a one-parameter class of solutions. The radial-
coordinate extent of the star and the Arnowitt-Deser-Misner
(ADM) mass are then fixed in terms of the central pressure
via the condition PðRWDÞ ¼ 0 and MWD ¼ MðRWDÞ; for
r ≥ RWD, the solution matches onto the free-space
Schwarzschild metric with mass MWD.
Defining the radial-coordinate-dependent electron Fermi

momentum to be pFðrÞ ¼ mexFðrÞ, so that the Fermi
energy is EFðrÞ≡me

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½xFðrÞ�2

p
and the electron

density is neðrÞ ¼ ðgem3
e=6π2Þ½xFðrÞ�3 with ge ¼ 2, the

total pressure is given by the fully degenerate electron
pressure (we ignore the ion thermal contribution, and the
T ≠ 0 corrections to the electron pressure),

PðrÞ ¼ AgðxFðrÞÞ ðD3Þ

gðxÞ≡ 3arcsinhxþ xð2x2 − 3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
ðD4Þ

A≡ gem4
e

48π2
: ðD5Þ

The electron contribution to the total energy density is
given by

ρeðrÞ ¼ 3AfðxFðrÞÞ ðD6Þ
fðxÞ≡ xð2x2 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
− arcsinhx: ðD7Þ

Imposing plasma neutrality gives the much larger (for all
densities relevant for the present work) ion energy density
contribution,

ρi ≡ Bμ̂eðrÞ½xFðrÞ�3 ðD8Þ

B≡ gem3
eμaμ

R
e

6π2
; ðD9Þ

and we have defined the mean molecular weight per free
electron μeðrÞ≡ μRe μ̂eðrÞ with μRe ≡ μeðRÞ by

1

μeðrÞ
≡X

j

XjðrÞZj

Aj
; ðD10Þ

where Zj, Aj, and XjðrÞ are, respectively, the charge, mass
number, and mass fraction at radius r of ion species j; this
definition assumes full ionization, but could be corrected
for partial ionization if desired. The total mass density is
ρðrÞ ¼ ρeðrÞ þ ρiðrÞ. In this version of the computation,
the chemical composition must be assumed as an input; for
a pure COWD, we will assume a completely homogeneous
mixture, XjðrÞ ¼ const, so that μ̂eðrÞ≡ 1.

2. Nondimensional governing equations

In practice it is preferable to redefine variables r≡ r0ξ,
MðrÞ≡M0M̂ðξÞ, ϕðξÞ≡ α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½xFðrÞ�2

p
with α ∈ ð0; 1�

a free parameter, and where

r0 ≡ αMPl:

B

ffiffiffiffiffiffi
2A
π

r
; ðD11Þ

M0 ¼
4πr30B
α3

¼ 8

ffiffiffiffiffiffi
2A
π

r
A
B2

M3
Pl:; ðD12Þ

in terms of which the governing equations Eqs. (D1) and
(D2) can be written as

dϕðξÞ
dξ

¼−
1

ξ2
ðμ̂eðξÞþ8CϕðξÞ=αÞðM̂ðξÞþCα3ξ3ĝ½ϕðξÞ=α�Þ

1−ð16C=αÞðM̂ðξÞ=ξÞ
ðD13Þ

dM̂ðξÞ
dξ

¼ α3ξ2½μ̂eðξÞððϕðξÞ=αÞ2 − 1Þ3=2 þ 3Cf̂½ϕðξÞ=α��;

ðD14Þ
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where

f̂ðyÞ ¼ f
h ffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 − 1

q i
¼ yð2y2 − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

q
− arcsinh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

q
; ðD15Þ

and

ĝðyÞ ¼ g
h ffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 − 1

q i
¼ 3arcsinh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

q
þ yð2y2 − 5Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

q
; ðD16Þ

and C≡ A=B ¼ me=ð8μaμRe Þ ≈ 3.4 × 10−5 × ð2=μRe Þ ≪ 1;
the boundary conditions are fixed by ϕð0Þ ¼ 1 and
M̂ð0Þ ¼ 0. The one-parameter class is solution is now
defined by the value of α, with the WD radial-coordinate
extent and ADM mass given by

RWD ¼ r0ξ� ðD17Þ

MWD ¼ M0M̂ðξ�Þ; ðD18Þ

where ϕðξ�Þ≡ α defines ξ�. The central density is given by
[cf., Eq. (1)]

ρC ≡ ρð0Þ ¼ B½μ̂eð0Þðα−2 − 1Þ3=2 þ 3Cf̂ð1=αÞ� ðD19Þ

≈Bμ̂eð0Þðα−2 − 1Þ3=2: ðD20Þ

The governing equations Eqs. (D13) and (D14) must still
be solved numerically; see Eq. (2) for a numerical fit that
gives α to an accuracy of better than 1% for masses in the
range MWD ∈ ½0.1; 1.35�M⊙, assuming μ̂e ¼ 1 and μRe ¼ 2.

3. Chandrasekhar mass

It is of course well known that a WD has a maximum
stable mass [55], the Chandrasekhar mass. For μe ¼ 2 (as
in a CO WD), the maximum mass is found numerically to
be MChand: ≈ 1.42 M⊙, corresponding to α⋆ ≈ 4.4 × 10−2.
However, since 8C=α ≈ ð6π2ρC=geμ4aðμRe Þ4Þ1=3 ≈ 1.0×

10−3 × ðρC=108 g cm−3Þ1=3 × ð2=μRe Þ4=3 ≪ 1, the gov-
erning equations Eqs. (D13) and (D14) depend only weakly
on the mean molecular mass per free electron, and the
dependence of the mass of the physical solution on μe is
dominated by the scaling factor M0 that relates the non-
dimensionalized solution to the physical one. To see this,
suppose we send C=α → 0 in the governing equations
Eqs. (D13) and (D14) [but retain A;B ≠ 0 in the scaling
factors r0,M0 relating the dimensional and nondimensional
solutions] and assume that the chemical composition is
homogeneous. Then the governing equations reduce to a
single simplified equation,

d
dξ

�
ξ2

dϕðξÞ
dξ

�
¼ −ξ2ð½ϕðξÞ�2 − α2Þ3=2; ðD21Þ

with the boundary conditions ϕð0Þ ¼ 1 and dϕð0Þ=dξ ¼ 0,
and with ξ� still defined by ϕðξ�Þ ¼ α. Moreover, in this
regime, M̂ðξÞ ¼ −ξ2dϕðξÞ=dξ. For α ≪ 1, as relevant for
the extremal configurations of the star, ϕðξÞ ∼ 1 ≫ α for
most ξ < ξ�, so the approximate governing equation,
Eq. (D21), becomes independent of α for most ξ (indeed,
it reduces to the Lane-Emden equation with a polytropic
index of 3 [66]); it is only in the regime ξ ≈ ξ�, where
ϕðξÞ ∼ α, that the dependence on α enters. However,
in this regime, the governing equation tells us that
dM̂ðξÞ=dξ ¼ ðd=dξÞð−ξ2dϕðξÞ=dξÞ ∼ 0; therefore, in the
only regime where the solution does depend on α ≪ 1,
the value of M̂ðξÞ is approximately stationary. Taken
together, these observations imply that M̂ðξ�Þ is approx-
imately independent of α when α ≪ 1, and takes the value
M̂ðξ�Þ ≈ 1.96. As such, and because the scaling factor
M0 ∝ μ−2e also does not depend on α explicitly, the limiting
physical mass of a WD with μe ≠ 2 can be given to a very
good approximation by

MChand: ¼
1

2
MPl:

ffiffiffiffiffiffi
6π

ge

s �
MPl:

μaμ
R
e

�
2

M̂ðξ�Þ ðD22Þ

≈1.4 M⊙ × ð2=μeÞ2; ðD23Þ

even for μe ≫ 2. We have checked explicitly with the
numerical solution that this scaling is obeyed well, even for
masses as large as mX ∼ 1019 GeV.
It is more difficult to develop an understanding of the

scaling of the radius of the extremal star with mX, as we
need to know both how the value of α required to obtain the
critical star scales, since r0 ∝ α=μe, and also how the value
of ξ� depends on α. However, on the basis of the arguments
advanced above about the independence of the solution to
the Lane–Emden equation to the value of α for α ≪ 1

except in the region where ξ ≈ ξ�, when M̂ is approxi-
mately stationary, we can argue that the value of ξ� is a
fairly weak function of parameters when α ≪ 1. It remains
to understand the scaling of α with mX.
The critical stellar configuration is obtainedwhen the EoS

for the electrons at the stellar core comes too close to the
extreme relativistic EoS, P ∝ ρ4=3 (see, e.g., Ref. [74]); this
in turn means that the condition is really one on the central
electron number density of the star and thus on the central
mass density of the star (for fixed charge-to-mass ratio
massive constituents). Indeed, a GR fluid stability analysis
(see, e.g., Ref. [74]) shows that the relevant condition is
that the central density of the extremal star scales as
ρC ∝ μ2e ∝ m2

X=Q
2
X. From Eq. (D20), we see that for

α ≪ 1, ρC ∝ μeα
−3; we thus expect that α⋆ ∝ Q1=3

X m−1=3
X
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is a good approximation to the scaling of critical value of α
withmX, provided that α ≪ 1. We verify numerically over a
broad range of masses mX that the mX scaling is obeyed
within an Oð1Þ numerical factor; see Fig. 7. We also verify
the QX scaling numerically. As a result, we expect that the
radius of the extremal star obeys roughly RWD ∝ Q4=3

X m−4=3
X

to within an Oð1Þ numerical factor, or

RChand: ≈ 1.5 × 10−3R⊙ × ð2=μeÞ4=3; ðD24Þ
wherewe used the Chandrasekhar radius for an extremal CO
WDas the fiducial value.Note also that this is self-consistent
with the scaling of the central (technically, average) density
ρC ∝ MWD=R3

WD ∝ Q2
Xm

−2
X =ðQ4=3

X m−4=3
X Þ3 ∝ m2

X=Q
2
X. Note

that this implies that the central ion number density of the
extremal star increases as nC ∝ mX=Q2

X.
We also that the electron mass does not enter Eq. (D23)

explicitly.

4. CHAMP-modified WD structure

The equilibrium configuration with a heavy CHAMP
(mX ≫ 20 GeV, so that we can ignore the C and O ion
masses relative to the X mass whenever the ions and
CHAMPs coexist, or are bound) is a complete stratification
of the X material (for QX > 0) or the homogeneously
mixed ðNjXÞ material (for QX < 0),52 and the ordinary
homogeneous CO mixture; this occurs because of the

relative buoyancy (more specifically, the much smaller
charge-to-mass ratio) of theCHAMP-contaminatedmaterial
as compared to the standard WDmaterial; see discussion in
Sec. VI C.We thus assume as input that the mean molecular
mass per electron, μ̂eðξÞ, undergoes a sharp transition (in
reality, this would be smoothed by thermal effects; see
Sec. VI E 1) at a radius ξ ¼ ξX between its value for ordinary
WDmatter (for ξX < ξ ≤ ξ�), and its value for the CHAMP-
contaminated matter (for 0 ≤ ξ ≤ ξX). The value of ξX is
found consistently such that MX ≡MðξXÞ is the total
CHAMP mass in the stratified core.
In the heavy CHAMP limit, we obtain the mean

molecular mass per electron for the CHAMP-contaminated
mixture using AX ≡mX=μa; ZX ¼ QX (for QX > 0) or
ZðNjXÞ ¼ Qj − jQXj (for QX < 0); and XX ¼ 1 (for
QX > 0) or XðNjXÞ ¼ yj (for QX < 0), where yj is the
fraction of negatively charged CHAMPs bound to ion
species j (satisfying

P
j yj ¼ 1),

μeð0 ≤ ξ < ξXÞ≡
( mX

μa
Q−1

X QX > 0

mX
μa
ðQ̄N − jQXjÞ−1 QX < 0;

ðD25Þ

where Q̄N ≡P
j yjQj is the mean charge of the ions to

which the CHAMPs are bound (weighted by the fraction
of CHAMPs bound to each ion species). Given that we
assume a CO mixture, Q̄N ∈ ½6; 8�; moreover, we assume a
composition of equal mass-fraction abundances, so we will
assume throughout this work as an approximation that
Q̄N ≈ 7. This approximation of course ignores the small
difference between the mass-fraction and number fraction
of the ions, and also ignores the differential affinity of
CHAMPs to bind to each ion species given their differing
binding energies; however, since Q̄N is in any event
bounded in a small range, choosing the middle of that
range introduces only an Oð1Þ-factor error in our results.
For the case where the central pressure in the core vastly

exceeds the ambient pressure in the CO material just
outside the core (i.e., when the core itself is near-extremal),
the solutions that are obtained via the above procedure have
the approximate appearance for 0 ≤ ξ ≤ ξX of a small
isolatedWD comprised of CHAMP-contaminated material
(i.e., the CO overburden has little impact on the interior
solution for near-extremal cores); see Figs. 3, 8, and 9.
This follows because the boundary condition for
an isolated WD, Pðr ¼ RÞ ¼ 0, is more closely approxi-
mated as Pambient=Pcore → 0. Therefore, to maintain
a stable hydrostatic equilibrium, the stratified inner
CHAMP-contaminated material must obey a separate
Chandrasekhar limit that can be given approximately as
MX ≲ 1.4 M⊙ × ð2Q0μa=mXÞ2 ≪ 1.4 M⊙, where Q0 ¼
QX for QX > 0 and Q0 ¼ Q̄N − jQXj ≈ 7 − jQXj for
QX < 0. Stratified cores of CHAMPs that violate this
bound will thus collapse to a black hole in the center of
the WD. On the other hand, somewhat unsurprisingly, less

FIG. 7. The value of α⋆ necessary to obtain the critical star
assuming a pure ðNXÞ configuration with QðNXÞ ¼ þ6, as a
function of the CHAMP mass mX (black circles). Over a wide
range of masses, α⋆ ∝ m−1=3

X (red line), as discussed in the text.

52Strictly speaking, given sufficient time to settle, the homo-
geneous ðNjXÞmaterial mixture will itself stratify into individual
layers of pure ðNjXÞ for each j due to the small differences in the
ion charges (and, with the mass being dominated by the CHAMP,
the charge-to-mass ratios) of each species; we will ignore this
additional complication in this work, as the time scale for a
complete stratification of this type is likely extremely long (the
charge differences are only on the order of 20%), and we will
assume instead that all the ðNjXÞ species exist as one entirely
homogeneous mixture at the center of the star.
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extremal cores behave quite differently from an their equal-
mass isolated WD brethren comprised of pure CHAMP-
contaminated material: the CO overburden significantly
reduces the radius of the core, and forces the central density
of the core to be maintained at a much higher value than the
isolated object; see again Figs. 3, 8, and 9.
For CHAMPs that are closer in mass to the ion species’

masses, the picture will be more complicated; we do not
treat this case.

APPENDIX E: ELECTRON HEAT CONDUCTION

We take the electron heat conductivity kcd from Ref. [79].
For completeness, we reproduce the relevant expressions
from Ref. [79] in full here; the formulae in this section hold
in the natural unit system, ℏ ¼ c ¼ kB ¼ 1. The thermal
conductivity for electron conduction is given by

kcd ¼
π2Tne
3EFνk

; ðE1Þ

where ne ¼ ðgem3
e=6π2Þx3F is the electron density, T is the

temperature, EF ¼ me

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2F

p
is the electron Fermi

energy, and the dominant contribution to the parameter νk ¼
νeik þ νeek is given by electron-ion scattering,

νeik ¼ 4πα2EF

p3
F

X
j

Z2
jnjΛk;j; ðE2Þ

where α ≈ 1=137 is the fine structure constant, pF ¼ mexF
is the electron Fermi momentum, and the sum runs over all
ion species present in the multicomponent plasma (MCP)
[we adopt the approximate prescription detailed in the
second-last paragraph in the left-hand column on page 6
of Ref. [79] to handle the MCP case], with Zj and nj
(respectively) the charge and number density of ion species
j.Λk;j is the Coulomb logarithm for ion species j, defined by

Λk;j ≡
�
Λ1
kðsj; wjÞ þ

�
pF

EF

�
2

Λ2
kðsj; wjÞ

�
Gk;jDj; ðE3Þ

where

2Λ1
kðs; wÞ≡ sð1þ sÞ−1ð1 − e−wÞ

þ ð1þ swÞesw½Ei½−sw� − Ei½−ð1þ sÞw��
þ lnð1þ 1=sÞ; ðE4Þ

FIG. 8. For an X− of varying mass as indicated in the legend,
this plot shows a comparison of the central ion number densities
in the central core of a fully stratified CO star containing some
CHAMP contamination [denoted n½NXþN�], with the central ion
number densities in an isolated pure-(NX) star of the same mass
as the core [denoted n½NX�], and the central ion number densities in
the uncontaminated (CO) star [denoted n½N�]. In all cases, the WD
structure is computed in the mean-ion approach assuming the
“mean ion” in the unperturbed CO star has chargeþ7 [resulting in
a core of heavy charge þ6 (NX) objects]. These results are
obtained by fixing the total mass of the WD in the stratified and
uncontaminated cases to be MWD ¼ 1.2 M⊙. It is clear that the
central core object in the stratified star is always more dense than
that of either the uncontaminated star or the isolated completely
contaminated star, as a result of the overburden in the stratified
case. However, as the central density in the isolated completely
contaminated star becomes much larger [respectively, smaller]
than the central ion density in the uncontaminated star, the central
number density in the equal-mass core in the partially contami-
nated stratified case behavesmore andmore like that of the isolated
completely contaminated star (the black dotted line shows
n½NXþN� ¼ n½NX�) [respectively, like that of the uncontaminated
star (the black dashed line shows n½NXþN� ¼ n½N�)]. The value of
the CHAMPmassmX appears to be irrelevant for this comparison,
assuming it is large enough to guarantee complete stratification in
the partially contaminated case case.

FIG. 9. For an X− of varying mass mX as indicated in the
legend, this plot shows a comparison of the radius of the central
core of a fully stratified CO star containing some CHAMP
contamination, with the radius of an equal-mass (denoted M)
isolated pure-(NX) star. In both cases, the WD structure is
computed in the mean-ion approach assuming the “mean ion”
in the unperturbed CO star has charge þ7 [resulting in a core of
heavy charge þ6 (NX) objects]. These results are obtained by
fixing the total mass of the WD in the stratified case to be
MWD ¼ 1.2 M⊙. It is clear that the central core object in the
stratified star is always more compact than the isolated com-
pletely contaminated star, as a result of the overburden in the
stratified case “squashing” the central core; however, as the mass
of the core in the stratified case approaches the Chandrasekhar
mass of the isolated completely contaminated star, its radius and
that of the isolated completely contaminated star converge.
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2Λ2
kðs; wÞ≡ ðw−1 þ s2ð1þ sÞ−1Þð1 − e−wÞ − 1

þ sð2þ swÞesw½Ei½−sw� − Ei½−ð1þ sÞw��
þ 2s lnð1þ 1=sÞ; ðE5Þ

Gk;j≡ ηjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2j þ½0.19Z−1=6

j �2
q ð1þ0.122β2jÞ

þ0.0105ð1−Z−1
j Þ½1þðpF=EFÞ3βj�

ηj
ðη2j þ0.0081Þ3=2 ;

ðE6Þ

Dj ≡ exp ½−α0;ju−1e−9.1ηj=4�; α0;j ≡ 4p2
Fa

2
j

3Γjηj
; ðE7Þ

with EiðxÞ≡ −
R
∞
−x t

−1e−tdt being the exponential integral
function, and where

sj ≡ ðqs;j=2pFÞ2; ðE8Þ

wj ≡ u−2ð2pF=qD;jÞ2ð1þ βj=3Þ; ðE9Þ

with

ηj ≡ T=ωp;j; βj ≡ παZjpF=EF; ðE10Þ

aj ¼ ð3=4πnjÞ1=3; Γj ≡ αZ5=3
j

T

�
4πne
3

�
1=3

; ðE11Þ

qD;j ¼
ffiffiffiffiffiffiffi
3Γj

p
=aj; q2i;j ¼ q2D;jð1þ 0.06ΓjÞe−

ffiffiffiffi
Γj

p
;

ðE12Þ

qs;j ¼ ðq2i;j þ k2TFÞe−βj ; ω2
p;j ≡ 4παZ2

jnjm
−1
j ðE13Þ

k2TF ¼
4α

π
EFpF: ðE14Þ

Finally, the constants u−1 ¼ 2.8 and u−2 ¼ 13.0.
We also include the subdominant contribution to the

parameter νk from electron-electron scattering [79,132],

νeek ¼ 12α2T2

π3EF

�
pF

kTF

�
3

JðxF; yÞ; ðE15Þ

where

y ¼
ffiffiffi
3

p
ωp;e=T; ω2

p;e ¼ 4παne=EF; ðE16Þ

and

Jðx; yÞ ≈
�
1þ 6

5x2
þ 2

5x4

�

×

�
y3

3ð1þ 0.07414yÞ3 ln
�
1þ 2.81

y
−
0.81
y

p2
F

E2
F

�

þ π5

6

y4

ð13.91þ yÞ4
�
: ðE17Þ

APPENDIX F: FREE-FREE OPACITY

The formulas in this section hold in the natural unit
system, ℏ ¼ c ¼ kB ¼ 1.
The Rosseland mean free-free opacity is given by the

Kramers opacity [66], suitably corrected [63,82] by a
velocity averaged (i.e., thermally averaged) Gaunt factor
hḡffiðTÞ that is also appropriately averaged over frequency
[80,82],

κff;rad ≈
�

2

1þ 945ζð7Þ=π6
�

2

15

ffiffiffiffiffiffi
2π

3

r
α3

m3=2
e μ2a

hḡffiðTÞ

× ð1þ XÞðX þ Y þ BÞρT−7=2 ðF1Þ

≈ 0.1175 cm2 g−1 × hḡffiðTÞ × Fðρ; TÞ
× ð1þ XÞðX þ Y þ BÞ

×

�
ρ

108 g cm−3

�
×

�
T

109K

�
−7=2

; ðF2Þ

where we have assumed that Z=A ¼ 1=2 for all elements in
the chemical composition, except hydrogen; X and Y are,
respectively, the helium and hydrogen mass fractions (both
zero in our case); B ¼ P

i Z
2
i Xi=Ai is the heavy-element

contribution (with the sum running over all elements
heavier than helium), which takes the value B ¼ 3.5 for
a Xð12CÞ ¼ Xð16OÞ ¼ 0.5 mixture; me is the electron
mass; and μa is the atomic mass unit. The fraction in
the ð� � �Þ-bracket on the first line of Eq. (F1) is numerically
equal to 1.0044.
The appropriate frequency-averaged value hḡffiðTÞ of

the velocity-averaged free-free Gaunt factors ḡffðT; νÞ is
given by

hḡffiðTÞ≡
R∞
0 dxx7e2xðex−1Þ−3ḡffðT;ν¼ xT=2πÞR∞

0 dxx7e2xðex−1Þ−3 ; ðF3Þ

this definition ensures that the total free-free radiative
opacity is the Rosseland mean [66,82]. The thermally
averaged Gaunt factors ḡffðT; νÞ are tabulated in
Ref. [133], which results indicate that this correction is
usually Oð1Þ, or within an order of magnitude or two
thereof; we omit this Gaunt factor correction.
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