
 

Is it possible to explain the muon and electron g− 2 in a Z0 model?
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In order to address this question, we consider a simple renormalizable and gauge invariant model in
which the Z0 only has couplings to the electron and muon and their associated neutrinos, arising from
mixing with a heavy vectorlike fourth family of leptons. Within this model we discuss the contributions to
the electron and muon anomalous magnetic moments from Z0 exchange, subject to the constraints from
μ → eγ and neutrino trident production. Using analytic and numerical arguments, we find that such a Z0

model can account for either the electron or the muon g − 2 anomalies, but not both, while remaining
consistent with the experimental constraints from μ → eγ and neutrino trident production.
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I. INTRODUCTION

The Standard Model (SM) provides an excellent explan-
ation of all experimental data, apart from neutrino mass and
lepton mixing. Yet there are a few possible anomalies in the
flavor sector that may indicate new physics beyond the SM.
For example, recently, there have been hints of universality
violation in the charged lepton sector from B → Kð�Þlþl−
decays by the LHCb collaboration [1–3]. Specifically, the
RK [4] and RK� [5] ratios of μþμ− to eþe− final states in the
B → Kð�Þlþl− decays are observed to be about 70% of their
expected values with a roughly 2.5σ deviation from the
Standard Model (SM) in each channel. Following the
recent measurement of RK� [5], a number of pheno-
menological analyses have been presented [6–12] that
favor a new effective field theory (EFT) physics operator
of the CNP

9μ ¼ −CNP
10μ form [13–15]. The most recent global

fit of this operator combination yields C9 ¼ ð34.0 TeVÞ−2
[15], though other well-motivated solutions are also
possible [16].
In previous works [13], it has been suggested that such

observations of charged lepton universality violation
(CLUV) must be accompanied by charged lepton flavor
violation (CLFV) such as μ → eγ in the same sector,

however, such a link cannot be established in a model-
independent way because the low-energy effective opera-
tors for each class of processes are different. Nevertheless,
in concrete models the connection is often manifest. This
motivates studies of specific models. For example, studies
of CLFV in B-decays using generic Z0 models (published
before the RK� measurement but compatible with it) are
provided in Ref. [17]. A concise review of BSM scenarios
that aim to explain CLUVand possible connections to dark
matter is provided in Ref. [18]. Other theoretical explan-
ations for universality violation in the lepton sector are
discussed in Refs. [13,17,19–40].
Independently of these anomalies, for some time now, it

has been known that the experimentally measured anoma-
lous magnetic moments g-2 of both the muon and electron
each observe a discrepancy of a few standard deviations
with respect to the Standard Model predictions. The
longstanding non-compliance of the muon g-2 with the
SMwas first observed by the Brookhaven E821 experiment
at BNL [41]. The electron g-2 has more recently revealed a
discrepancy with the SM, following an accurate measure-
ment of the fine structure constant [42]. However the
different magnitude and opposite signs of the electron
and muon g-2 deviations makes it difficult to explain both
of these anomalies in any model, which also satisfies the
constraints of CLFV, with all existing simultaneous explan-
ations involving new scalars [43–51], or conformal
extended technicolor [52]. We know of no study which
discusses both anomalies in a Z0 model. One possible
reason is that the CLFV process μ → eγ, which would be
concrete of BSM physics in the charged fermion sector, is
very constraining. Neutrino phenomena do give rise to
CLFV but in the most minimal extensions this would occur
at a very low rate in the charged sector, making it practically
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unobservable. Given the considerable resources committed
to looking for CLFV, it is crucial to study relevant, well-
motivated BSM scenarios which allow for CLFV at
potentially observable rates. For example, such decays
can be enhanced by several orders of magnitude if one
considers extensions of the SM with an extra Uð1Þ0 gauge
symmetry spontaneously broken at the TeV scale. To
summarize, although such extensions are able to success-
fully accommodate the experimental value of the muon
magnetic moment [27,39,53–55], we know of no study of a
Z0 model which discusses both the electron and muon
magnetic moments, including the constraints from μ → eγ.
In this work, we ask the question: is it possible to explain

the anomalous muon and electron g − 2 in a Z0 model? It is
difficult to answer this question in general, since there are
many possible Z0 models. However it is possible to
consider a model in which the Z0 only has couplings to
the electron and muon and their associated neutrinos,
arising from mixing with a vectorlike fourth family of
leptons, thereby eliminating the quark couplings and
allowing us to focus on the connection between CLUV,
CLFV and the electron and muon g-2 anomalies. Such a
renormalizable and gauge invariant model is possible
within a Uð1Þ0 gauge extension of the SM augmented
by a fourth, vectorlike family of fermions and right-handed
neutrinos as proposed in [22]. In the fermiophobic version
of this model [22], only the fourth family carry Uð1Þ0
charges, with the three chiral families not coupling to the Z0
in the absence of mixing. Then one can switch on mixing
between the first and second family of charged leptons and
the fourth family, allowing controlled couplings of the Z0 to
only the electron and muon (and fourth family leptons) of
the kind we desire. Such a model allows charged lepton
universality violation (CLUV) at tree-level with CLFVand
contributions to the electron and muon magnetic moments
at loop level. Within such a model we attempt to explain the
anomalous magnetic moments of both the muon and
electron within the relevant parameter space of the model,
while satisfying the constraints of BRðμ → eγÞ and neu-
trino trident production. Using both analytic and numerical
arguments, we find that it is not possible to simultaneously
explain the electron and muon g-2 results consistent with
these constraints.
The remainder of this article is organized as follows; in

Sec. II we outline the renormalizable and gauge invariant

fermiophobic model in which the Z0 couples only to a
vector-like fourth family. In Sec. III, we show how it is
possible to switch on the couplings of the Z0 to the electron
and muon and their associated neutrinos, thereby elimi-
nating all unnecessary couplings and allowing us to focus
on the connection between CLUV, CLFV and the electron
and muon g-2 anomalies. A simplified analytical analysis
of the CLFV and the electron and muon g-2 anomalies in
the fermiophobic Z0 Model is presented in Sec. IV. In
Sec. V we analyse the parameter space numerically,
presenting detailed predictions for each of the examined
leptonic phenomena. Section VI concludes the paper.

II. THE FERMIOPHOBIC Z0 MODEL

Consider an extension of the SM with a Uð1Þ0 gauge
symmetry, where fermion content is expanded by right-
handed neutrinos and a fourth, vectorlike family. The scalar
sector is augmented by gauge singlet fields with nontrivial
charge assignments under the new symmetry. The basic
framework for such a theory was defined in [22].
Henceforth we consider the case where the SM fermions
in our model are uncharged under the additional symmetry,
whereas the vectorlike fermions are charged under this
symmetry, corresponding to so called “fermiophobic Z0”
model considered in [22]. The field content and charge
assignments are given in Table I. Note that such a theory is
anomaly free; left- and right-handed fields of the vectorlike
fermion family have identical charges under Uð1Þ0, and
hence chiral anomalies necessarily cancel.
Although the Z0 couples only to the vectorlike fourth

family to start with, due to the mixing between SM
fermions and those of the fourth vectorlike family (arising
from the Lagrangian below) the Z0 will get induced
couplings to chiral SM fermions. After mixing, the model
can allow for a viable dark matter candidate and operators
crucial for explaining the RK and RK� flavor anomalies[27].
As we shall see, this setup can also generate CLFV
signatures such as μ → eγ and accommodate the exper-
imental value of the anomalous muon and electron mag-
netic dipole moments.
With the particle content, symmetries and charge assign-

ments in Table I, the following renormalizable Lagrangian
terms are available:

TABLE I. Particle assignments under SUð3Þc × SUð2ÞL × Uð1ÞY × Uð1Þ0 gauge symmetry. i ¼ 1, 2, 3. The SM singlet scalars ϕf
(f ¼ Q; u; d; L; e) have Uð1Þ0 charges −qf4 ¼ −qQ4;u4;d4;L4;e4 .

Field QiL uiR diR LiL eiR νiR H Q4L Q̃4R ũ4L u4R d̃4L d4R L4L L̃4R Ẽ4L E4R ν4R ν̃4L ϕf

SUð3Þc 3 3 3 1 1 1 1 3 3 3 3 3 3 1 1 1 1 1 1 1
SUð2ÞL 2 1 1 2 1 1 2 2 2 1 1 1 1 2 2 1 1 1 1 1
Uð1ÞY 1

6
2
3

− 1
3

− 1
2

−1 0 1
2

1
6

1
6

2
3

2
3

− 1
3

− 1
3

− 1
2

− 1
2

−1 −1 0 0 0
Uð1Þ0 0 0 0 0 0 0 0 qQ4

qQ4
qu4 qu4 qd4 qd4 qL4

qL4
qe4 qe4 qν4 qν4 −qf4
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LY ¼
X3
i¼1

X3
j¼1

yðuÞij Q̄iLH̃ujR þ
X3
i¼1

X3
j¼1

yðdÞij Q̄iLHdjR þ
X3
i¼1

X3
j¼1

yðeÞij L̄iLHejR þ
X3
i¼1

X3
j¼1

yðνÞij L̄iLH̃νjR

þ yðuÞ4 Q̄4LH̃u4R þ yðdÞ4 Q̄4LHd4R þ yðeÞ4 L̄4LHE4R þ yðνÞ4 L̄4LH̃ν4R

þ
X3
i¼1

xðQÞ
i ϕQQ̄LiQ̃4R þ

X3
i¼1

xðuÞi ϕu
¯̃u4LuRi þ

X3
i¼1

xðdÞi ϕd
¯̃d4LdRi þ

X3
i¼1

xðLÞi ϕLL̄LiL̃4R þ
X3
i¼1

xðeÞi ϕe
¯̃E4LeRi

þMQ
4 Q̄4LQ̃4R þMu

4
¯̃u4Lu4R þMd

4
¯̃d4Ld4R þML

4 L̄4LL̃4R þME
4
¯̃E4LE4R þMν

4
¯̃ν4Lν4R þ H:c: ð1Þ

where the requirement of Uð1Þ0 invariance of the Yukawa
interactions involving the fourth family yields the following
constraints on the Uð1Þ0 charges of fourth fermion families:

qQ4
¼ qu4 ¼ qd4 qL4

¼ qe4 ¼ qν4 : ð2Þ

It is clear from Eq. (1) that fields in the 4th, vectorlike
family obtain masses from two sources; first, Yukawa terms

involving the SM Higgs field such as yðeÞ4 L̄4LHe4R which
get promoted to chirality flipping fourth family mass terms
MC

4 once the Higgs acquires a vev, and second from
vectorlike mass terms like ML

4 L̄4LL̃4R (these terms show

up in lines 2 and 4 of Eq. (1) respectively). For the purposes
of clarity, we shall treatMC

4 andML
4 L̄4LL̃4R as independent

mass terms in the analysis of the physical quantities of
interest, rather than constructing the full fourth family mass
matrix and diagonalizing it, since such quantities rely on
a chirality flip and are sensitive to MC

4 rather than the
vectorlike masses ML

4 L̄4LL̃4R. Spontaneous breaking of
Uð1Þ0 by the scalars ϕi spontaneously acquiring vevs gives
rise to a massive Z0 boson featuring couplings with the
chiral and vectorlike fermion fields. In the interaction basis
such terms will be diagonal and of the following form:

Lgauge
Z0 ¼ g0Z0

μðQ̄LDQγ
μQL þ ūRDuγ

μuR þ d̄RDdγ
μdR þ L̄LDLγ

μLL þ ēRDeγ
μeR þ ν̄RDνγ

μνRÞ: ð3Þ

Here, g0 is the “pure” gauge coupling of Uð1Þ0 and each of the Ds are 4 × 4 matrices. However, only the fourth family has
nonvanishing Uð1Þ0 charges as per Table I and hence these matrices are given by:

DQ ¼ diagð0; 0; 0; qQ4
Þ; Du ¼ diagð0; 0; 0; qu4Þ; Dd ¼ diagð0; 0; 0; qd4Þ;

DL ¼ diagð0; 0; 0; qL4
Þ; De ¼ diagð0; 0; 0; qe4Þ; Dν ¼ diagð0; 0; 0; qν4Þ: ð4Þ

At this stage, the SM quarks and leptons do not couple
to the Z0. However, the Yukawa couplings detailed in
Eq. (1) have no requirement to be diagonal. Before
we can determine the full masses of the propagating
vectorlike states and SM fermions, we need to transform

the field content of the model such that the Yukawa
couplings become diagonal. Therefore, fermions in the
mass basis (denoted by primed fields) are related to
particles in the interaction basis by the following unitary
transformations;

Q0
L ¼ VQL

QL; u0R ¼ VuRuR; d0R ¼ VdRdR; L0
L ¼ VLL

LL; e0R ¼ VeReR; ν0R ¼ VνRνR: ð5Þ

This mixing induces couplings of SM mass eigenstate fermions to the massive Z0 which can be expressed as follows

D0
Q ¼ VQL

DQV
†
QL
; D0

u ¼ VuRDuV
†
uR; D0

d ¼ VdRDdV
†
dR
;

D0
L ¼ VLL

DLV
†
LL
; D0

e ¼ VeRDeV
†
eR ; D0

ν ¼ VνRDνV
†
νR : ð6Þ

Thus far all discussion of interactions and couplings has been general. In Secs. III and V, we will prohibit mixing in some
sectors to simplify our phenomenological analysis. In particular, we shall only consider induced Z0 couplings to the electron
and muon.
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III. Z0 COUPLINGS TO THE ELECTRON AND
MUON

In this paper we are particularly interested in the electron
and muon g-2. We therefore take a minimal scenario and
consider mixing only between first and second families of
charged leptons, and ignore all quark and neutrino mixing,
leading to a leptophillic Z0 model, in which the Z0 couples
only to the electron, muon and their associated neutrinos.
Therefore, only VLL

and VeR will be nondiagonal, and LHC
results will not constrain the Z0 mass as there is no direct

coupling between SM quarks and the new vector boson, nor
mixing between SM and vectorlike quarks, because SM
quarks are uncharged under Uð1Þ0 as seen in Table I.
Among the CLFV processes, we will focus on studying the
μ → eγ decay, which put tighter constrains than the
τ → μγ and τ → eγ decays. For this reason, to simplify
the parameter space, we also forbid the third family
fermions from mixing with any other fermionic content.
As such, all mixing at low energies can be expressed as
per Eq. (7).

VLL;eR ¼

0
BBB@

cos θL;R12 sin θL;R12 0 0

− sin θL;R12 cos θL;R12 0 0

0 0 1 0

0 0 0 1

1
CCCA

0
BBB@

cos θL;R14 0 0 sin θL;R14

0 1 0 0

0 0 1 0

− sin θL;R14 0 0 cos θL;R14

1
CCCA

0
BBB@

1 0 0 0

0 cos θL;R24 0 sin θL;R24

0 0 1 0

0 − sin θL;R24 0 cos θL;R24

1
CCCA ð7Þ

The angles defined here take the theory from the interaction
basis in Eq. (1) to the mass eigenbasis of primed fields
introduced with Eq. (5). They directly parametrize the
mixing between the 4th, vectorlike family and the usual
three chiral families of SM fermions. Such mixing para-
meters will cause the D0 matrices from Eq. (6) to become

off-diagonal. This incites couplings between the massive
Z0 vector boson and the SM leptons, suppressed by the
mixing angles. These mixing angles can be expressed in
terms of parameters from the Lagrangian [Eq. (1)], as per
Eq. (8) [22].

tan θL14 ¼
xðLÞ1 hϕLi

ML
4

; tan θL24 ¼
xðLÞ2 hϕLiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxðLÞ1 hϕLiÞ2 þ ðML
4 Þ2

q ð8Þ

With the restrictions defined in Eq. (7) and above, all of the relevant couplings between the massive Z0 and fermions in the
mass basis of propagating fields can be determined as the following:

Lgauge
Z0 ¼ Z0

μl̄L;RðgL;RÞll0γμl0L;R ð9Þ

where l; l0 ¼ e, μ, E, the mass eigenstate leptons electron, muon, and vectorlike lepton respectively with the following
couplings to the massive Z0 boson:

ðgL;RÞμμ ¼ g0qL4;e4ðcos θL;R12 sin θL;R24 − cos θL;R24 sin θL;R12 sin θL;R14 Þ2; ð10Þ

ðgL;RÞee ¼ g0qL4;e4ðsin θL;R12 sin θL;R24 þ cos θL;R12 cos θL;R24 sin θL;R14 Þ2; ð11Þ

ðgL;RÞEE ¼ g0qL4;e4ðcos θL;R14 Þ2ðcos θL;R24 Þ2; ð12Þ

ðgL;RÞeE ¼ g0qL4;e4 cos θ
L;R
14 cos θL;R24 ðsin θL;R12 sin θL;R24 þ cos θL;R12 cos θL;R24 sin θL;R14 Þ; ð13Þ

ðgL;RÞμE ¼ g0qL4;e4 cos θ
L;R
14 cos θL;R24 ðcos θL;R12 sin θL;R24 − cos θL;R24 sin θL;R12 sin θL;R14 Þ; ð14Þ

ðgL;RÞμe ¼ g0qL4;e4ðsin θL;R12 sin θL;R24 þ cos θL;R12 cos θL;R24 sin θL;R14 Þðcos θL;R12 sin θL;R24 − cos θL;R24 sin θL;R12 sin θL;R14 Þ: ð15Þ

It is important to note that only the first and second family of SM leptons e, μ couple to the massive Z0, with their
nonuniversal and flavor changing couplings controlled by the mixing angles θL;R14 ; θL;R24 with the vectorlike family.
Throughout the remainder of this work, we assume that g0qL4;e4 ¼ 1 for simplicity.
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A. Muon decay to electron plus photon

In this subsection we study charged lepton flavor
violating process μ → eγ in the context of our BSM
scenario. It is worth mentioning that a future observation
of the μ → eγ decay will be indisputable evidence of
physics beyond the SM. The SM does predict nonzero
branching ratios for the processes μ → eγ, τ → μγ, and
τ → eγ, but such predictions are several orders of magni-
tude below projected experimental sensitivities [56,57].
The μ → eγ decay rate is enhanced with respect to the SM
by additional contributions due to virtual Z0 and charged
exotic lepton exchange at the one-loop level. General
li → ljγ decay can be described by the following effective
operator [56]:

LEFT ¼ μMij
2

l̄iσμνljFμν þ
μEij
2
il̄iγ5σμνljFμν ð16Þ

where Fμν denotes the electromagnetic field strength
tensor, μEij and μMij are the transition electric and magnetic
moments, respectively and i; j ¼ 1; 2; 3 denote family
indices. Diagonal elements in the transition magnetic
moment μMij give rise to the anomalous dipole moments
Δal ¼ 1

2
ðgl − 2Þ of leptons, whilst off-diagonal elements in

the transition moments contribute to the li → ljγ decay
amplitude. Based on the effective Lagrangian in Eq. (16),
one has that the amplitude for a generic lepton decay
f1 → f2γ has the form [58]:

A ¼ eε�μðqÞv̄2ðp2Þ½iσμνqνðσLPL þ σRPRÞ�u1ðp1Þ; ð17Þ
where σL and σR are numerical quantities with dimension
of inverse mass that can be expressed in terms of loop
integrals [58]. u1 and v2 are spinors, furthermore, we have
the following relations:

σμν ¼ i
2
½γμ; γν�; PL;R ¼ 1

2
ð1 ∓ γ5Þ; q ¼ p1 − p2:

ð18Þ
In such a general case, the decay rate expression for the
μ → eγ process is the following [54,56,58,59]:

Γðμ → eγÞ ¼ αem
1024π4

m5
μ

M4
Z0
ðjσ̃Lj2 þ jσ̃Rj2Þ ð19Þ

where σ̃L and σ̃R are given by:

σ̃L ¼
X

a¼e;μ;E

�
ðgLÞeaðgLÞaμFðxaÞ þ

ma

mμ
ðgLÞeaðgRÞaμGðxaÞ

�
;

σ̃R ¼
X

a¼e;μ;E

�
ðgRÞeaðgRÞaμFðxaÞ þ

ma

mμ
ðgRÞeaðgLÞaμGðxaÞ

�
;

xa ¼
m2

a

M2
Z0

ð20Þ

FðxÞ and GðxÞ are loop functions related to the Feynman
diagrams for μ → eγ as per Fig. 1, and have the functional

FIG. 1. Feynamn diagrams contributing to the μ → eγ decay. Note that these diagrams all rely on a chirality flipping mass (LR). Where
the chirality flip involves the fourth family, the relevant mass is MC

4 .
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form given in Eq. (21). gL;R are couplings in the fermion
mass basis, as detailed in Eqs. (10) through (15). ma here
corresponds to the full propagating mass of the vectorlike
partners. In the approximation where the vectorlike mass
ML

4 is always much greater than the chirality-flipping mass
MC

4 (ML
4 ≫ MC

4 ) that we will adopt here, this full propa-
gating mass is almost equivalent to the vectorlike mass.
Therefore when a ¼ E, we approximate mE ≃ML

4 . The
loop functions are given by [54]:

FðxÞ ¼ 5x4 − 14x3 þ 39x2 − 38x − 18x2 ln xþ 8

12ð1 − xÞ4 ;

GðxÞ ¼ x3 þ 3x − 6x ln x − 4

2ð1 − xÞ3 : ð21Þ

Equation (19) has some generic features; the loop
function FðxÞ varies between 0.51 and 0.67 when x is
varied in the range 10−3 ≤ x ≤ 2, whilst in the same region,
GðxÞ varies between −1.98 and −0.84. Consequently, in
the case of charged fermions running in loops, contribu-
tions proportional to GðxÞ will likely dominate over those
proportional to FðxÞ. The dominant contributions involve
left-right and right-left Z0 couplings, whereas the sublead-
ing ones include either left-left or right-right couplings.
Dividing Eq. (19) by the known decay rate of the muon
yields a prediction for the μ → eγ branching fraction
[54,56,58,59]:

BRðμ → eγÞ ¼ α

1024π4
m5

μ

M4
Z0Γμ

�����ðgLÞμμðgLÞμeFðxμÞ þ ðgLÞμEðgLÞeEFðxEÞ þ ðgLÞμeðgLÞeeFðxeÞ

þmμ

mμ
ðgLÞμeðgRÞμμGðxμÞ þ

MC
4

mμ
ðgLÞeEðgRÞμEGðxEÞ þ

me

mμ
ðgLÞeeðgRÞμeGðxeÞ

����2

þ
����ðgRÞμμðgRÞμeFðxμÞ þ ðgRÞμEðgRÞeEFðxEÞ þ ðgRÞμeðgRÞeeFðxeÞ

þmμ

mμ
ðgRÞμeðgLÞμμGðxμÞ þ

MC
4

mμ
ðgRÞeEðgLÞμEGðxEÞ þ

me

mμ
ðgRÞeeðgLÞμeGðxeÞ

����2
�

ð22Þ

where the total muon decay width is Γμ ¼ G2
Fm

5
μ

192π3
¼

3 × 10−19 GeV. The massMC
4 that appears in the Feynman

diagrams with a chirality flip on the 4th family fermions E4

(Fig. 1, 5th and 11th diagrams) is not the vectorlike mass,
but instead arises from the Yukawa-like couplings from

Eq. (1), MC
4 ¼ yðeÞ44 vϕ, where vϕ is the vacuum expectation

value of the SM Higgs field, which acquires a vev and
spontaneously breaks electroweak symmetry in the estab-
lished manner. Under the assumption that MC

4 > mμ, such
terms proportional to the chirality flipping mass in Eq. (22)
give by far the largest contributions to μ → eγ. The

experimental limit on BRðμ → eγÞ is determined from
nonobservation at the MEG experiment at a 90% con-
fidence level [60,61]:

BRðμ → eγÞ < 4.2 × 10−13: ð23Þ

B. Anomalous magnetic moment of the muon Δaμ
In this subsection we study the muon anomalous

magnetic moment in the context of our BSM scenario.
In a model such as this, the Feynman diagrams for μ → eγ
are easily modified to give contributions to the anomalous

FIG. 2. Feyman diagrams contributing to the muon ðg − 2Þμ.
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magnetic moment of the muon as per Fig. 2. The prediction for such an observable in our model therefore takes the
form [54]:

ΔaZ0
μ ¼ −

m2
μ

8π2M2
Z0

�
ðjðgLÞμμj2 þ jðgRÞμμj2ÞFðxμÞ þ ðjðgLÞμEj2 þ jðgRÞμEj2ÞFðxEÞ

þ ðjðgLÞμej2 þ jðgRÞμej2ÞFðxeÞ þ ReððgLÞμμðg�RÞμμÞGðxμÞ

þ ReððgLÞμEðg�RÞμEÞ
MC

4

mμ
GðxEÞ þ ReððgLÞμeðg�RÞμeÞ

me

mμ
GðxeÞ

�
: ð24Þ

Once more, the dominant terms will be those propor-
tional to the enhancement factor of MC

4

mμ
, corresponding

to the final diagram in Fig. 2, provided MC
4 > mμ.

Recent experimental evidence has shown that the muon
magnetic moment as measured by the E821 experiment at
BNL is at around a 3.5σ deviation from the SM prediction
[41,62–67]:

ðΔaμÞexp ¼ ð26.1� 8Þ × 10−10 ð25Þ

C. Anomalous magnetic moment of the electron Δae
Analogously to the muon, there is also an amendment to

the electron ðg − 2Þe in this scenario, from Feynman
diagrams given in Fig. 3. The analytic expression for
Δae is the following [54]:

ΔaZ0
e ¼ −

m2
e

8π2M2
Z0

�
ðjðgLÞeej2 þ jðgRÞeej2ÞFðxeÞ þ ðjðgLÞeμj2 þ jðgRÞeμj2ÞFðxμÞ

þ ðjðgLÞeEj2 þ jðgRÞeEj2ÞFðxEÞ þ ReððgLÞeeðg�RÞeeÞ
me

me
GðxeÞ

þ ReððgLÞeμðg�RÞeμÞ
mμ

me
GðxμÞ þ ReððgLÞeEðg�RÞeEÞ

MC
4

me
GðxEÞ

�
: ð26Þ

As per the muon moment, if MC
4 > mμ the largest

contribution to the electron moment will be the final term
in Eq. (26), corresponding to the last diagram in Fig. 3. The
most recent experimental result of the ðg − 2Þe, obtained
from measurement of the fine structure constant of QED,
shows a 2.5σ deviation from the SM, similarly to the muon
magnetic moment [42]:

ðΔaeÞexp ¼ ð−0.88� 0.36Þ × 10−12: ð27Þ

Notice especially that Eqs. (25) and (27) have deviations
from the SM in opposite directions, therefore explaining
both phenomena simultaneously can be difficult for a given
model to achieve.

D. Neutrino trident production

So-called trident production of neutrinos by process
νμγ

� → νμμ
þμ− through nuclear scattering is also relevant.

The Feynamn diagram contributing to neutrino trident

FIG. 3. Feynamn diagrams contributing to the electron g − 2.
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production in our model is shown in Fig. 4. This process
constrains the following effective four lepton interaction,
which in this scenario arises from leptonic Z0 interactions
[68–70]:

ΔLeff ⊃ −
ðgLÞ2μμ
2M2

Z0
ðμ̄LγλμLÞðν̄μLγλνμLÞ

−
ðgRÞμμðgLÞμμ

2M2
Z0

ðμ̄RγλμRÞðν̄μLγλνμLÞ: ð28Þ

Said coupling is constrained as in the SUð2ÞL symmetric
SM, left-handed muons and left-handed muon neutrinos
couple identically to the Z0 vector boson. Experimental data
on neutrino trident production νμγ

� → νμμ
þμ− yields the

following constraint at 95% CL [71]:

−
1

ð390 GeVÞ2 ≲
ðgLÞ2μμþðgLÞμμðgRÞμμ

M2
Z0

≲ 1

ð370 GeVÞ2 :

ð29Þ

This limit can be applied to the model’s parameter space in
a similar manner to other CLFV constraints discussed
previously.

IV. ANALYTIC ARGUMENTS FOR
ðg− 2Þμ, ðg− 2Þe, AND BRðμ → eγÞ

In order to gain an analytic understanding of the inter-
play between ðg − 2Þμ, ðg − 2Þe, and BRðμ → eγÞ, in this
section we shall make some simplifying assumptions about
the parameters appearing in Eqs. (24), (26), and (22). If we
assume large fourth family chirality flipping masses
MC

4 ≫ mμ, then the expressions for these phenomena
reduce to a minimal number of terms, all proportional to
MC

4 . Furthermore, we assume that left- and right- handed
couplings are related by some real, positive constants k1
and k2 defined thus:

ðgLÞμE ¼ gμE; ðgRÞμE ¼ k1gμE;

ðgLÞeE ¼ geE; ðgRÞeE ¼ −k2geE: ð30Þ

The final coupling in Eq. (30) is defined with a sign
convention such that, seeing as it is known numerically that
the G loop function is always negative, we automatically
recover the correct signs for all of our observables. We also
define the following prefactor constants to further simplify
our expressions:

C1 ¼
α

1024π2
m5

μ

M4
Z0Γμ

; C2 ¼
m2

μ

8π2M2
Z0
; C3 ¼

m2
e

8π2M2
Z0
:

ð31Þ

Under such assumptions, Equations (24), (26), and (22)
reduce to the following:

BRðμ → eγÞ ¼ C1

�����MC
4

mμ
k1geEgμEGðxEÞ

����2

þ
����MC

4

mμ
k2geEgμEGðxEÞ

����2
�

ð32Þ

jΔaμj ¼ C2k1g2μE
MC

4

mμ
jGðxEÞj ð33Þ

jΔaej ¼ C3k2g2eE
MC

4

me
jGðxEÞj: ð34Þ

We can then invert Eqs. (33) and (34) to obtain expressions
for the couplings in terms of the observables as per
Eq. (35).

gμE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔaμj
C2k1

1

jGðxEÞj
mμ

MC
4

s
; geE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔaej
C3k2

1

jGðxEÞj
me

MC
4

s
:

ð35Þ

Substituting into the flavor violating muon decay in
Eq. (32) and expanding the constants defined earlier yields:

BRðμ → eγÞ ¼ απ2

16

ðk21 þ k22Þ
k1k2

jΔaμjjΔaej
m2

μ

Γμme
ð36Þ

independently of MZ0 and MC
4 which cancel. Rearranging

Eq. (36) and setting the physical quantities jΔaμj, jΔaej
equal to their desired central values, yields a simple
condition on r ¼ k1=k2 in order to satisfy the bound on
BRðμ → eγÞ: ����rþ 1

r

���� < 5.57 × 10−10: ð37Þ

Since the left-hand side is minimized for r ¼ 1, the bound
on BRðμ → eγÞ can never be satisfied while accounting for
ðg − 2Þμ, ðg − 2Þe (although clearly it is possible to satisfy
it with either ðg − 2Þμ or ðg − 2Þe but not both). However

FIG. 4. Feynamn diagram contributing to neutrino trident
production, N denotes a nucleus.
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this conclusion is based on the assumption that the physical
quantities are dominated by the diagrams involving the
chirality flipping fourth family masses MC

4 ≫ mμ. In order
to relax this assumption, a more complete analysis of the
parameter space is required, one that considers all relevant
terms in our expressions for observables in a numerical
exploration of the parameter space. Such investigations are
detailed in Sec. V.

V. NUMERICAL ANALYSIS OF THE
FERMIOPHOBIC Z0 MODEL

Given the expressions for observables that we have
outlined above, we use these phenomena to constrain the
parameter space of the model. As mentioned, a minimal
parameter space is considered here, limiting mixing to the
lepton sector and omitting the third chiral family from any

mixing. From coupling expressions in Section III, the
angular mixing parameters such as θ24L and particle masses
form a minimal parameter space for this model. We set
direct mixing between the electron and muon ðθ12L;RÞ to be
vanishing for all tests, as even small direct mixing can
easily violate the strict MEG constraint on BRðμ → eγÞ.

A. Anomalous muon magnetic moment

Initially, we focus on the longest-standing anomaly, that
of ðg − 2Þμ. We first utilize a simple parameter space, as we
require only mixing between the muon and vectorlike
lepton fields. To keep the analysis in a region potentially
testable by upcoming future experiments, we take a vector-
like fourth family lepton mass of ML

4 ¼ 1 TeV and a
chirality-flipping fourth family mass of MC

4 ¼ 200 GeV
(as discussed earlier we make a distinction between these
two sources of mass). The smaller value of MC

4 is well
motivated by the need for perturbativity in Yukawa cou-
plings, as the SM Higgs vev is 176 GeV, since MC

4 is
proportional to the Higgs vev. For this investigation, the
parameter space under test is detailed in Table II.
Within the stated parameter space, expressions for the

observables under test are simplified considerably, and with
fixed MC

4 and ML
4 we constrain the space in terms of the

three variables sin2 θ24L, sin2 θ24R, and MZ0 , as shown in
Figure 5. Note that, as θ12L;R and θ14L;R are set vanishing,
contributions to ðg − 2Þe and BRðμ → eγÞ are necessarily
vanishing, as can be readily seen from Eqs. (26) and (22).
The dominant contribution to ðg − 2Þμ under these

TABLE II. Explored parameter space for muon g − 2 test.

Parameter Value/Scanned Region

MZ0 50 → 1000 GeV
MC

4
200 GeV

ML
4

1000 GeV
sin2 θ12L;R 0.0
sin2 θ14L 0.0
sin2 θ14R 0.0
sin2 θ24L;R 0.0 → 1.0

FIG. 5. Constraints in the MZ0 , sin2 θ24L, and sin2 θ24R parameter space, mixing between the electron and vectorlike lepton
switched off.
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assumptions is shown in the final Feynman diagram in
Fig. 2, that with the enhancement factor of MC

4 =mμ.
The legend in Fig. 5 shows the constraint from neutrino

trident production as “νTri” for brevity. Using only mixing
between the muon and the vectorlike lepton, it is not
possible to predict a value for the electron g − 2 consistent
with the observed value as the electron-Z0 coupling does
not exist. In order to recover this, we must consider mixing
of the vectorlike lepton with the electron, detailed in the
following subsection.

B. Anomalous electron magnetic moment

Here we concentrate on the ðg − 2Þe. In order to test this
observable alone, we investigate only mixing between the
electron and vectorlike lepton, and ignore any muon
contributions. The region of parameter space under test
is given in Table III, note also that mixing with the right-
handed electron field is not required to obtain a good
prediction.

In Fig. 6, we color the electron g − 2 being greater
than the observed value (i.e., “less negative” than the
experimental data) as the blue region, as such values are
more SMlike. Blue regions therefore ameliorate the SM’s
tension with the experimental data but do not fully
resolve it.
Similarly to the preceding section, because there are no

couplings between the electron and the muon (even at the
loop level), there are no contributions to the CLFV decay
μ → eγ. Similarly, there are no amendments to the SM
expressions for the muon g − 2 or neutrino trident
decay. From this analysis one can conclude that only
through using mixing between both muons and electrons
with the vectorlike leptons is it possible to simultaneously
predict observed values of both the anomalous magnetic
moments.

C. Attempt to explain both anomalous moments

In an attempt satisfy all constraints simultaneously, we
set specific values for MZ0, MC

4 , and sin2 θL14 that inhabit
allowed regions of parameter space in Figs. 5(a), 5(b), and
6, then scan through angular mixing parameters as before.
The investigated region is summarized in Table IV. The
choice of Z0 mass here is motivated by studying the regions
of Figs. 5 and 6 that admit muon and electron (g − 2)s
respectively.
This story concludes quite quickly with all points being

excluded. The enhancement factor ofMC
4 =mμ in Eq. (24) is

largely responsible for ðg − 2Þμ in this scenario, however
such a term also gives an unacceptably large contribution to
BRðμ → eγÞ as per Eq. (22), resulting in a branching
fraction far above the experimental limit; the minimum
BRðμ → eγÞ for any parameter points in this scenario is
around 10−3, as shown in Table IV. Such a situation persists
even if sin2 θL14 is scanned through it’s entire range, and
furthermore is unchanged by the choice of ML

4 , and is
insensitive to the Z0 mass in the case of large MC

4 . We
conclude therefore, that with a large chirality-flipping mass
circa 200 GeV, it is not possible to simultaneously satisfy

FIG. 6. Δae impact on sin2 θ14L, MZ0 parameter space, mixing
between the muon and vectorlike lepton switched off.

TABLE III. Explored parameter space for electron g − 2 test.

Parameter Value/Scanned Region

MZ0 50 → 1000 GeV
MC

4
200 GeV

ML
4

1000 GeV
sin2 θ12L;R 0.0
sin2 θ14L 0.0 → 1.0
sin2 θ14R 0.0
sin2 θ24L;R 0.0

TABLE IV. Parameter space and BRðμ → eγÞ in a parameter
space where the electron and muon both mix with the vectorlike
lepton. Initial attempt to satisfy both anomalous moments.

Parameter/Observable Value/Scanned Region

MZ0 75 GeV
MC

4
200 GeV

ML
4

1000 GeV
sin2 θ12L;R 0.0
sin2 θ14L 0.75
sin2 θ14R 0.0
sin2 θ24L;R 10−7 → 1.0
BRðμ → eγÞ 10−3 → 1.0
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constraints and make predictions consistent with current
data. This conclusion is consistent with the analytic
arguments of the previous section, where the large con-
tributions coming from large chirality flipping fourth
family masses MC

4 were assumed to dominate. We now go
beyond this approximation, considering henceforth very
small MC

4 .
If one sets MC

4 vanishing, terms proportional to the
aforementioned enhancement factor also vanish, eliminat-
ing the largest contribution to μ → eγ, as follows from
Eq. (22). Motivated by this reduction in the most restrictive
decay the above analysis is repeated, but with the chirality-
flipping mass removed.

1. Vanishing MC
4

If we choose to turn off the chirality-flipping mass of the
vectorlike leptons, their mass becomes composed entirely
of ML

4 . Terms proportional to the enhancement factor
MC

4 =mμ in Eq. (24) are sacrificed, which makes achieving
a muon g − 2 that is consistent with the experimental result
more challenging. Larger mixing between the muon and
vectorlike leptons is required, but more freedom exists with
respect to BRðμ → eγÞ. We investigated a region of
parameter space defined as per Table V, to test its viability.
For the results of this scan we consider the impact of

each constraint separately, then check for overlap of
allowed regions. Note that in Fig. 7, angular parameters
and the heavy vector Z0 mass are varied simultaneously,
hence here we randomly select points and evaluate relevant
phenomena, rather than excluding regions in the space.
This also explains the spread of parameter points as
compared to the previous exclusions. Note that the range
of sin2 θL14 has been restricted in Tables Vand VI due to the
fact that no points that satisfy BRðμ → eγÞ could be found
with sin2 θL14 < 0.5, omitting this region increases the
efficiency of our parameter scan. We also limit the ranges
of MZ0 in Tables V and VI as Z0 masses much higher than
this were found to be incompatible with ðg − 2Þμ, and
masses much below saturated the bound from μ → eγ.

TABLE V. Parameters for scan without chirality-flipping mass.

Parameter Value/Scanned Region

MZ0 50 → 100 GeV

MC
4

0 GeV

ML
4

1000 GeV

sin2 θ12L;R 0.0
sin2 θ14L 0.5 → 1.0
sin2 θ14R 0.0
sin2 θ24L;R 0.0 → 1.0

FIG. 7. Parameter scan results for MC
4 ¼ 0.
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In Fig. 7(a), one can see that, as suspected, larger
sin2 θ24L;R mixings are required to obtain a muon ðg − 2Þμ
consistent with current data. However, there is no over-
lapped region in Fig. 7(a), and ðg − 2Þμ cannot be solved
without violating the muon decay constraint for a vanishing
chirality-flipping mass, or the shown exclusion for neutrino
trident production. On the other hand, Fig. 7(b) shows that
there are points that resolve the SM’s tension with ðg − 2Þe,
and are allowed by the strict BRðμ → eγÞ limit and neutrino
trident production. The lack of terms with the enhancement
factor of MC

4 =mμ in Eq. (22) means that points have been
found with an acceptable branching fraction of μ → eγ that
was not possible with a large MC

4 .
Note that in both panels of Fig. 7 the most conservative

neutrino trident limit is shown, where we assume that MZ0

is fixed at 50 GeV. We have also found that there is also no
obvious correlation between MZ0 and sin2 θ14L for μ → eγ,
and points appear to be randomly distributed in this space.
Since we have seen that neither large nor vanishingMC

4 are
viable, in the next subsection we switch on a small but
nonzeroMC

4 , to investigate if it may be possible to increase
ðg − 2Þμ to an acceptable level, without giving an overlarge
contribution to the CLFV muon decay.

2. Small MC
4 OðmμÞ

Here we perform analogous tests to those above but with
a small chirality flipping mass, motivated by ðg − 2Þμ with
the requirement that BRðμ → eγÞ remains below the
experimental limit. Ranges of parameters scanned in this
investigation are given in Table VI.
Figure 8 shows points allowed under each separate

observable in an analogous parameter space to Fig. 7,
but with MC

4 ¼ 5mμ. Once more neutrino trident produc-
tion excludes a large region of the parameter space in this
scenario. From initial study of the parameter space it seems
that there is overlap between the allowed regions of
ðg − 2Þμ, ðg − 2Þe and BRðμ → eγÞ, however, upon closer
inspection of the parameter points allowed by μ → eγ,
those points always yield negative (wrong sign) ðg − 2Þμ
that is far away from the experimental value, and hence all
points are excluded.

FIG. 8. Parameter scan results for small MC
4 ¼ 5mμ.

TABLE VI. Parameters for larger scan with a small chirality-
flipping mass.

Parameter Value/Scanned Region

MZ0 50 → 100 GeV
MC

4
5mμ

sin2 θ14L 0.5 → 1.0
sin2 θ14R 0.0
sin2 θ24L;R 0.0 → 1.0
sin2 θ12L;R 0.0
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In Table VII, we examine more closely the points that
are allowed under the most stringent constraint of μ → eγ.
As 4th family mixing with the muons exists in this space,
neutrino trident production is also a consideration, and the
constraint of this observable in our space is given in Fig. 8.
All points valid when considering BRðμ → eγÞ exist with a
small sin2 θ24R mixing angle, but can have a wide range of
Z0 masses and sin2 θ14L.
We see that for the points in Table VII, electron g − 2

prefers regions of the space with small sin2 θ24L, similarly
to the preferred points under the neutrino trident constraint,
given in the same plot as an excluded region derived in the
same way as previous results for MC

4 ¼ 0. Many of these
points are simultaneously consistent with the μ → eγ limit,
and also provide a ðg − 2Þe consistent with experimental
data (denoted in green), whilst a subset of these points do
not violate the neutrino trident production limit. From these
results, we can conclude that the best points lie in the region
of small sin2 θ24L and sin2 θ24R, and that such points simu-
ltaneously comply with BRðμ → eγÞ, ðg − 2Þe and neutrino
trident. Such candidate points however do not allow for
resolution of Δaμ, as they all have negative values for Δaμ,
as opposed to the experimental value which is positive.
A number of other chirality flipping masses were exam-

ined in this work, in the region 5mμ < MC
4 < 200 GeV,

including a parameter scan whereby MC
4 was randomly

selected between these limits, and these tests yielded similar
results to those shown in the last three sections, whereby it
was not possible to obtain predictions that were simulta-
neously consistent with ðg − 2Þe, ðg − 2Þμ and BRðμ → eγÞ.

VI. CONCLUDING REMARKS

In this paper, we have addressed the question: is it
possible to explain the anomalous muon and electron g − 2

in a Z0 model? Although it is difficult to answer this
question in general, since there are many possible Z0
models, we have seen that it is possible to consider a
simple renormalizable and gauge invariant model in which
the Z0 only has couplings to the electron and muon and their
associated neutrinos, arising from mixing with a vectorlike
fourth family of leptons. This is achieved by assuming
that only the vectorlike leptons have nonvanishing Uð1Þ0
charges and are assumed to only mix with the first and
second family of SM charged leptons. In this scenario, the
heavy Z0 gauge boson couples with the first and second
family of SM charged leptons only through mixing with the
vectorlike generation.
A feature of our analysis is to distinguish the two sources

of mass for the 4th, vectorlike family: the chirality flipping
fourth family mass terms MC

4 arising from the Higgs
Yukawa couplings and are proportional to the Higgs vev
and the vectorlike massesML

4 which are not proportional to
the Higgs vev. For the purposes of clarity we have treated
MC

4 and ML
4 as independent mass terms in the analysis of

the physical quantities of interest, rather than constructing
the full fourth family mass matrix and diagonalizing it,
since such quantities rely on a chirality flip and are sensitive
to MC

4 rather than ML
4 .

We began by assuming large fourth family chirality
flipping masses MC

4 ≫ mμ, and showed that the expres-
sions for ðg − 2Þμ, ðg − 2Þe and BRðμ → eγÞ reduced to a
minimal number of terms, all proportional to MC

4 . We were
then able to construct an analytic argument which shows
that it is not possible to explain the anomalous muon and
electron g − 2 in the Z0 model, while respecting the bound
on BRðμ → eγÞ.
We then performed a detailed numerical analysis of the

parameter space of the above model, beginning with large
MC

4 ¼ 200 GeV, where we showed that it is possible to

TABLE VII. Parameter points that are below the upper bound on BRðμ → eγÞ for MC
4 ¼ 5mμ. The points in this table correspond to

the 13 black points in Fig. 8 that are also below the grey neutrino trident exclusion. These points do not satisfy the experimental value of
ðΔaμÞexp ¼ ð26.1� 8Þ × 10−10.

Parameter Observable

MZ0=GeV sin2 θ14L sin2 θ24L sin2 θ24R BRðμ → eγÞ Δae Δaμ
69.5 0.61 0.11 0.02 3.25 × 10−13 −2.15 × 10−13 −1.80 × 10−10

68.5 0.80 0.05 0.01 1.69 × 10−13 −3.32 × 10−13 −1.63 × 10−10

91.0 0.99 0.08 0.16 3.34 × 10−13 −2.41 × 10−13 −1.19 × 10−9

63.0 0.99 0.02 0.13 1.38 × 10−13 −5.390 × 10−13 −2.03 × 10−9

65.5 0.78 0.07 0.02 4.94 × 10−14 −3.43 × 10−13 −2.36 × 10−10

64.8 0.78 0.09 0.02 3.61 × 10−13 −3.46 × 10−13 −3.19 × 10−10

77.9 0.85 0.005 0.02 6.13 × 10−14 −2.77 × 10−13 −1.77 × 10−10

91.4 0.81 0.14 0.04 5.80 × 10−14 −1.73 × 10−13 −2.71 × 10−10

97.2 0.86 0.08 0.03 1.07 × 10−13 −1.73 × 10−13 −2.71 × 10−10

76.0 0.63 0.03 0.004 1.72 × 10−13 −2.01 × 10−13 −3.97 × 10−11

56.8 0.96 0.04 0.05 3.77 × 10−14 −6.22 × 10−13 −8.36 × 10−10

78.1 0.99 0.07 0.20 1.84 × 10−14 −3.32 × 10−13 −2.04 × 10−9

89.4 1.0 0.07 0.28 2.95 × 10−13 −2.56 × 10−13 −2.25 × 10−9
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account for ðg − 2Þμ in a region of parameter spacewhere the
electron couplings were zero. Similarly, forMC

4 ¼ 200 GeV,
we showed that it is possible to account for ðg − 2Þe in a
region of parameter space where the muon couplings were
zero. In both cases BRðμ → eγÞ was identically zero.
Keeping MC

4 ¼ 200 GeV, we then attempted to explain
both anomalous magnetic moments by switching on the
couplings to the electron and muon simultaneously, but
saw that it was not possible to do this while satisfying
BRðμ → eγÞ, as expected from the analytic arguments.
We then went beyond the regime of the analytic argu-

ments by considering very small values of MC
4 . With

MC
4 ¼ 0, we saw that it is not possible to account for

ðg − 2Þμ without violating the bounds from BRðμ → eγÞ
and trident, however it is possible to account for ðg − 2Þe
while respecting all constraints. With small but nonzeroMC

4

we reached similar conclusions, although the analysis was
more complicated, and it was necessary to examine specific
benchmark points to reach this conclusion.
We stress that the fermiophobic Z0 model is a good

candidate to explain either ðg − 2Þμ or ðg − 2Þe, consistently
with BRðμ → eγÞ and trident, with the choice determined
by the specific mixing scenario. However to explain the
ðg − 2Þμ always requires a significant nonvanishing chirality
flipping mass involving the 4th vectorlike family of leptons.
We would like to comment on the generality of our

conclusion that, for the Z0 framework considered in this
paper, we cannot simultaneously explain the electron and
muon g-2 results within the relevant parameter space of the
model, while satisfying the constraints of BRðμ → eγÞ and
neutrino trident production. Does this conclusion apply to
all Z0 models? While it is impossible to answer this
question absolutely, there are reasons why our results here
might be considered very general and indicative of a large
class of Z0 models. The main reason for this is that, in the
considered framework, the Z0 is only allowed to couple to
the electron and muon and their associated neutrinos,
arising from mixing with a vectorlike fourth family of
leptons, thereby eliminating the quark couplings and
allowing us to focus on the connection between CLUV,
CLFV and the electron and muon g − 2 anomalies only,
independently of other constraints. Moreover, the allowed
Z0 couplings are free parameters in our approach and so
may represent the couplings in a large class of Z0 models.
Furthermore, we have presented a general analytic argument
that provides some insight into our numerical results. For
example, we do not require the Z0 to couple identically to
left- and right-handed leptons, and the masses for inter-
mediate particles in the one-loop diagrams cancel in the final
expression for BRðμ → eγÞ in Eq. (36), which lends this
result some generality.We also note that this paper represents
the first paper to attempt to explain both electron and muon
g − 2 anomalies simultaneously within a Z0 model. Thus,
although the problem of the CLFV constraint in preventing
an explanation of electron and muon g − 2 anomalies is well

known in general, it had not been studied within the
framework of Z0 models before the present paper. Indeed
this is the first work we know of that attempts to explain the
muon and electron anomalous magnetic moments simu-
ltaneously using a simple Z0 model.
Finally we comment that since there are models in the

literature which account for all these observables based on
having scalars, it might be interesting to extend the scalar
sector of a Z0 model. The lepton flavor violating processes
could then be used to set constraints on the masses for theCP
even and CP odd heavy neutral scalars, as in [39]. However,
such a study is beyond the scope of the present paper.
In conclusion, within a model where the Z0 only has

tunable couplings to the electron and muon and their
associated neutrinos, arising from mixing with a vectorlike
fourth family of leptons, it is not possible to simultaneously
satisfy the experimentally observed values of ðg − 2Þμ and
ðg − 2Þe, while respecting the BRðμ → eγÞ and trident
constraints, within any of the exhaustively explored param-
eter space (only one or other of ðg − 2Þμ or ðg − 2Þe can be
explained). Since the model allows complete freedom in the
choice of couplings, and the diagrams involving fourth
family lepton exchange can be chosen to contribute or not,
this model may be regarded as indicative of any Z0 model
with gauge coupling and charges of order one.
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APPENDIX: FURTHER ANALYTICS FOR
OBSERVABLES

It is important to understand how the observables
BRðμ → eγÞ, muon g − 2, electron g − 2, and neutrino
trident can be written in terms of the mixing angles. The
coupling constants appearing in each observable consist of
the mixing angles. The coupling constants are defined from
Eq. (10) to (15) in Sec. III.

1. The branching ratio of μ → eγ

The branching ratio of μ → eγ is the following:

BRðμ → eγÞ ¼ α

1024π4
m5

μ

M4
Z0Γμ

ðjσ̃Lj2 þ jσ̃Rj2Þ ðA1Þ
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The σ̃L;R are given by:

σ̃L ¼
X

a¼e;μ;E

�
ðgLÞeaðgLÞaμFðxaÞ þ

ma

mμ
ðgLÞeaðgRÞaμGðxaÞ

�
;

σ̃R ¼
X

a¼e;μ;E

�
ðgRÞeaðgRÞaμFðxaÞ þ

ma

mμ
ðgRÞeaðgLÞaμGðxaÞ

�
; xa ¼

m2
a

M2
Z0

ðA2Þ

Expanding the above σ̃L;R in terms of electron, muon and fourth family:

σ̃L ¼
�
ðgLÞeeðgLÞeμFðxeÞ þ

me

mμ
ðgLÞeeðgRÞeμGðxeÞðgLÞeμðgLÞμμFðxμÞ þ

mμ

mμ
ðgLÞeμðgRÞμμGðxμÞ

× ðgLÞeEðgLÞEμFðxEÞ þ
MC

4

mμ
ðgLÞeEðgRÞEμGðxEÞ

�

σ̃R ¼
�
ðgRÞeeðgRÞeμFðxeÞ þ

me

mμ
ðgRÞeeðgLÞeμGðxeÞðgRÞeμðgRÞμμFðxμÞ þ

mμ

mμ
ðgRÞeμðgLÞμμGðxμÞ

× ðgRÞeEðgRÞEμFðxEÞ þ
MC

4

mμ
ðgRÞeEðgLÞEμGðxEÞ

�
: ðA3Þ

One important feature in Eq. (A3) is the chirality-flipping mass was used instead of vectorlike mass in the last line of
Eq. (A3). It then is possible to turn the coupling constants in each σ̃ into the mixing angles by using the Eqs. (10)–(15). It
was assumed that g0qL4 in each coupling constant to be 1.

σ̃L ¼
�
ðsin θL12 sin θL24 þ cos θL12 cos θ

L
24 sin θ

L
14Þ2

× ðsin θL12 sin θL24 þ cos θL12 cos θ
L
24 sin θ

L
14Þðcos θL12 sin θL24 − cos θL24 sin θ

L
12 sin θ

L
14ÞFðx1Þ

þm1

m2

ðsin θL12 sin θL24 þ cos θL12 cos θ
L
24 sin θ

L
14Þ2

× ðsin θR12 sin θR24 þ cos θR12 cos θ
R
24 sin θ

R
14Þðcos θR12 sin θR24 − cos θR24 sin θ

R
12 sin θ

R
14ÞGðx1Þ

þ ðsin θL12 sin θL24 þ cos θL12 cos θ
L
24 sin θ

L
14Þðcos θL12 sin θL24 − cos θL24 sin θ

L
12 sin θ

L
14Þ

× ðcos θL12 sin θL24 − cos θL24 sin θ
L
12 sin θ

L
14Þ2Fðx2Þ

þm2

m2

ðsin θL12 sin θL24 þ cos θL12 cos θ
L
24 sin θ

L
14Þðcos θL12 sin θL24 − cos θL24 sin θ

L
12 sin θ

L
14Þ

× ðcos θR12 sin θR24 − cos θR24 sin θ
R
12 sin θ

R
14Þ2Gðx2Þ

þ cos θL14 cos θ
L
24ðsin θL12 sin θL24 þ cos θL12 cos θ

L
24 sin θ

L
14Þ

× cos θL14 cos θ
L
24ðcos θL12 sin θL24 − cos θL24 sin θ

L
12 sin θ

L
14ÞFðx4Þ

þMC
4

m2

cos θL14 cos θ
L
24ðsin θL12 sin θL24 þ cos θL12 cos θ

L
24 sin θ

L
14Þ

× cos θR14 cos θ
R
24ðcos θR12 sin θR24 − cos θR24 sin θ

R
12 sin θ

R
14ÞGðx4Þ

�

IS IT POSSIBLE TO EXPLAIN THE MUON AND ELECTRON … PHYS. REV. D 101, 115016 (2020)

115016-15



σ̃R ¼
�
ðsin θR12 sin θR24 þ cos θR12 cos θ

R
24 sin θ

R
14Þ2

× ðsin θR12 sin θR24 þ cos θR12 cos θ
R
24 sin θ

R
14Þðcos θR12 sin θR24 − cos θR24 sin θ

R
12 sin θ

R
14ÞFðx1Þ

þm1

m2

ðsin θR12 sin θR24 þ cos θR12 cos θ
R
24 sin θ

R
14Þ2

× ðsin θL12 sin θL24 þ cos θL12 cos θ
L
24 sin θ

L
14Þðcos θL12 sin θL24 − cos θL24 sin θ

L
12 sin θ

L
14ÞGðx1Þ

þ ðsin θR12 sin θR24 þ cos θR12 cos θ
R
24 sin θ

R
14Þðcos θR12 sin θR24 − cos θR24 sin θ

R
12 sin θ

R
14Þ

× ðcos θR12 sin θR24 − cos θR24 sin θ
R
12 sin θ

R
14Þ2Fðx2Þ

þm2

m2

ðsin θR12 sin θR24 þ cos θR12 cos θ
R
24 sin θ

R
14Þðcos θR12 sin θR24 − cos θR24 sin θ

R
12 sin θ

R
14Þ

× ðcos θL12 sin θL24 − cos θL24 sin θ
L
12 sin θ

L
14Þ2Gðx2Þ

þ cos θR14 cos θ
R
24ðsin θR12 sin θR24 þ cos θR12 cos θ

R
24 sin θ

R
14Þ

× cos θR14 cos θ
R
24ðcos θR12 sin θR24 − cos θR24 sin θ

R
12 sin θ

R
14ÞFðx4Þ

þMC
4

m2

cos θR14 cos θ
R
24ðsin θR12 sin θR24 þ cos θR12 cos θ

R
24 sin θ

R
14Þ

× cos θL14 cos θ
L
24ðcos θL12 sin θL24 − cos θL24 sin θ

L
12 sin θ

L
14ÞGðx4Þ

�
ðA4Þ

2. Anomalous muon g − 2
The anomalous muon g − 2 is given by:

ΔaZ0
μ ¼ −

m2
μ

8π2M2
Z0

X
a¼e;μ;E

�
ðjðgLÞμaj2 þ jðgRÞμaj2ÞFðxaÞ þ

ma

mμ
Re½ðgLÞμaðg�RÞμa�GðxaÞ

�
; xa ¼

m2
a

M2
Z0
: ðA5Þ

Expanding the above equation in terms of electron, muon, and vectorlike lepton couplings as per BRðμ → eγÞ:

ΔaZ0
μ ¼ −

m2
μ

8π2M2
Z0

�
ðjðgLÞμej2 þ jðgRÞμej2ÞFðxeÞ þ

me

mμ
Re½ðgLÞμeðg�RÞμe�GðxeÞ

þ ðjðgLÞμμj2 þ jðgRÞμμj2ÞFðxμÞ þ
mμ

mμ
Re½ðgLÞμμðg�RÞμμ�GðxμÞ

þ ðjðgLÞμEj2 þ jðgRÞμEj2ÞFðxEÞ þ
MC

4

mμ
Re½ðgLÞμEðg�RÞμE�GðxEÞ

�
ðA6Þ

The chirality-flipping mass is used in the last line of Eq. (A6) similarly to Eq. (A3). It then is possible to represent Δaμ in
terms of mixing angles.
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ΔaZ0
μ ¼ −

m2
μ

8π2M2
Z0

�
ðjðsin θL12 sin θL24 þ cos θL12 cos θ

L
24 sin θ

L
14Þðcos θL12 sin θL24 − cos θL24 sin θ

L
12 sin θ

L
14Þj2

þ jðsin θR12 sin θR24 þ cos θR12 cos θ
R
24 sin θ

R
14Þðcos θR12 sin θR24 − cos θR24 sin θ

R
12 sin θ

R
14Þj2ÞFðx1Þ

þm1

m2

ðsin θL12 sin θL24 þ cos θL12 cos θ
L
24 sin θ

L
14Þðcos θL12 sin θL24 − cos θL24 sin θ

L
12 sin θ

L
14Þ

× ðsin θR12 sin θR24 þ cos θR12 cos θ
R
24 sin θ

R
14Þðcos θR12 sin θR24 − cos θR24 sin θ

R
12 sin θ

R
14ÞGðx1Þ

þ ðjðcos θL12 sin θL24 − cos θL24 sin θ
L
12 sin θ

L
14Þ2j2 þ jðcos θR12 sin θR24 − cos θR24 sin θ

R
12 sin θ

R
14Þ2j2ÞFðx2Þ

þm2

m2

ðcos θL12 sin θL24 − cos θL24 sin θ
L
12 sin θ

L
14Þ2ðcos θR12 sin θR24 − cos θR24 sin θ

R
12 sin θ

R
14Þ2Gðx2Þ

þ ðj cos θL14 cos θL24ðcos θL12 sin θL24 − cos θL24 sin θ
L
12 sin θ

L
14Þj2

þ j cos θR14 cos θR24ðcos θR12 sin θR24 − cos θR24 sin θ
R
12 sin θ

R
14Þj2ÞFðx4Þ

þMC
4

m2

cos θL14 cos θ
L
24ðcos θL12 sin θL24 − cos θL24 sin θ

L
12 sin θ

L
14Þ

× cos θR14 cos θ
R
24ðcos θR12 sin θR24 − cos θR24 sin θ

R
12 sin θ

R
14ÞGðx4Þ ðA7Þ

3. Anomalous electron g− 2
The anomalous electron g − 2 is given by:

ΔaZ0
e ¼ −

m2
e

8π2M2
Z0

X
a¼e;μ;E

�
ðjðgLÞeaj2 þ jðgRÞeaj2ÞFðxaÞ þ

ma

me
Re½ðgLÞeaðg�RÞea�GðxaÞ

�
; xa ¼

m2
a

M2
Z0
: ðA8Þ

Expanding the above equation in terms of electron, muon and vectorlike lepton as previously, the form is

ΔaZ0
e ¼ −

m2
e

8π2M2
Z0

�
ðjðgLÞeej2 þ jðgRÞeej2ÞFðxeÞ þ

me

me
Re½ðgLÞeeðg�RÞee�GðxeÞ

þ ðjðgLÞeμj2 þ jðgRÞeμj2ÞFðxμÞ þ
mμ

me
Re½ðgLÞeμðg�RÞeμ�GðxμÞ

þ ðjðgLÞeEj2 þ jðgRÞeEj2ÞFðxEÞ þ
MC

4

me
Re½ðgLÞeEðg�RÞeE�GðxEÞ

�
: ðA9Þ

The chirality-flipping mass is used in the last line of Eq. (A9) similarly to the Eqs. (A3) or (A6). It then is possible to
represent anomalous electron g − 2 in terms of mixing angles.

ΔaZ0
e ¼ −

m2
e

8π2M2
Z0

�
ðjðsin θL12 sin θL24 þ cos θL12 cos θ

L
24 sin θ

L
14Þ2j2 þ jðsin θR12 sin θR24 þ cos θR12 cos θ

R
24 sin θ

R
14Þ2j2ÞFðx1Þ

þm1

m1

ðsin θL12 sin θL24 þ cos θL12 cos θ
L
24 sin θ

L
14Þ2ðsin θR12 sin θR24 þ cos θR12 cos θ

R
24 sin θ

R
14Þ2Gðx1Þ

þ ðjðsin θL12 sin θL24 þ cos θL12 cos θ
L
24 sin θ

L
14Þðcos θL12 sin θL24 − cos θL24 sin θ

L
12 sin θ

L
14Þj2

þ jðsin θR12 sin θR24 þ cos θR12 cos θ
R
24 sin θ

R
14Þðcos θR12 sin θR24 − cos θR24 sin θ

R
12 sin θ

R
14Þj2ÞFðx2Þ

þm2

m1

ðsin θL12 sin θL24 þ cos θL12 cos θ
L
24 sin θ

L
14Þðcos θL12 sin θL24 − cos θL24 sin θ

L
12 sin θ

L
14Þ

× ðsin θR12 sin θR24 þ cos θR12 cos θ
R
24 sin θ

R
14Þðcos θR12 sin θR24 − cos θR24 sin θ

R
12 sin θ

R
14ÞGðx2Þ

þ ðj cos θL14 cos θL24ðsin θL12 sin θL24 þ cos θL12 cos θ
L
24 sin θ

L
14Þj2

þ j cos θR14 cos θR24ðsin θR12 sin θR24 þ cos θR12 cos θ
R
24 sin θ

R
14Þj2ÞFðx4Þ

þMC
4

m1

cos θL14 cos θ
L
24ðsin θL12 sin θL24 þ cos θL12 cos θ

L
24 sin θ

L
14Þ

× cos θR14 cos θ
R
24ðsin θR12 sin θR24 þ cos θR12 cos θ

R
24 sin θ

R
14ÞGðx4Þ ðA10Þ
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4. Neutrino trident

The constraint from neutrino trident has a much simpler form compared to the other observables, as it only depends on
coupling of the heavy Z0 to two muons.

ðgLÞ2μμ þ ðgLÞμμðgRÞμμ
M2

Z0
¼ ðcos θL12 sin θL24 − cos θL24 sin θ

L
12 sin θ

L
14Þ4

M2
Z0

þ ðcos θL12 sin θL24 − cos θL24 sin θ
L
12 sin θ

L
14Þ2ðcos θR12 sin θR24 − cos θR24 sin θ

R
12 sin θ

R
14Þ2

M2
Z0

ðA11Þ
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