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We study soft and collinear gluon emission in squark decays to quark–neutralino pair, at next-to-next-to-
leading logarithmic (NNLL) accuracy in the end-point region, using soft collinear effective theory (SCET),
and at next-to-leading (NLO) fixed order in the rest of the phase space. As a phenomenological case study
we discuss the impact of radiative corrections on the simultaneous measurements of squark and neutralino
masses at a linear eþe− collider based on

ffiffiffi
s

p ¼ 3 TeV Compact Linear Collider (CLIC), and show the
softening of distributions in the sum of energies of the first two hardest jets or in theMC variable. Since the
majority of mass measurement techniques are based on edges in kinematic distributions, and these change
appreciably when there is additional QCD radiation in the final state, the knowledge of higher-order QCD
effects is required for precise mass determinations.

DOI: 10.1103/PhysRevD.101.115012

I. INTRODUCTION

The discovery of dark matter (DM) in a collider experi-
ment crucially depends on the ability to measure precisely
its properties—its mass and couplings to visible matter.
These are the necessary ingredients to test the hypothesis of
a “WIMP” miracle [1–4]. Given the importance of such a
discovery a number of methods to measure DM mass have
been developed [5–18]. In this paper we are interested in
understanding how QCD radiations modifies the precise
determination of DM mass. Many of the methods for DM
mass measurements were developed with low energy
supersymmetry (SUSY) in mind [19]. We will thus also
use SUSYas an example, though our results do apply more
generally.
A significant effort was devoted in measuring DM mass

at hadronic colliders. An ingenious method was put
forward in [10,11], where it was applied to g̃ → qq̄χ
decays in gluino pair production. The mass of g̃ and χ
can both be measured simultaneously from mT2, by
computing for each event the value of mT2 as a function
of an assumed χ mass, mT2ðmtrialÞ. The envelope of

mT2ðmtrialÞ curves exhibits a kink at mtrial ¼ mχ , where
mT2 ¼ mg̃. Measuring the kink determines both masses (for
the effect of radiative corrections see [20]). For two body
decays, e.g., for squark decays, q̃ → qχ, the kinks in the
distributions appear only once initial state radiation is
included [7]. This underscores the importance of radiative
corrections for DM mass measurement using kinematical
distributions.
In this paper we explore a somewhat simpler case—the

squark pair production in eþe− collisions.We focus on a two
body decay, q̃ → qχ, with q a light quark and χ a neutralino
(for earlier work see [21–23]). Emission of a hard gluon
converts this to a three body decay, q̃ → qgχ, qualitatively
changing the kinematical distributions. Hard gluon emis-
sions, on the other hand, are relatively rare, suppressed by
small coupling constant, αs ≲ 0.09 for mq̃ ≳ 1 TeV. Most
commonly the radiated gluons are either soft or collinearwith
the outgoing quark, affecting the kinematical distributions
in the endpoint region where the decay is almost two-
body. Parametrizing the neutralino energy in the squark rest
frame as

Eχ ¼
zM
2

þ m2
χ

2zM
; ð1Þ

the endpoint region is given by z ∼ 1. Here MðmχÞ is the
squark (neutralino) mass, while the dimensionless variable z
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takes values, z ∈ ½mχ=M; 1�. Near the end-point the neu-
tralino is maximally boosted and z becomes close to 1.
The collinear and soft singularities of QCD contributions

in the endpoint regions lead to large logarithms,
L ∼ lnð1 − zÞ, in the calculation of the differential decay
width, dΓ=dz. Working to next-to-leading order (NLO) in
αs, i.e., to OðαsÞ, the Sudakov effects result in large double
logarithmic contributions of the form αsL2. In order to
obtain reliable predictions, these logarithms need to be
resummed to all orders in αs. At next-to-next-to-leading
logarithmic (NNLL) accuracy the resummed decay width is
given by

ln
dΓ
dz

¼ Lf0ðαsLÞ þ f1ðαsLÞ þ αsf2ðαsLÞ; ð2Þ

with fið…Þ dimensionless functions that areOð1Þ, counting
the large logarithms as L ∼ 1=αs. This shows explicitly the
dominance of the endpoint region, where the first term on the
right-hand side (rhs) is the leading contribution. Keeping just
the first termwould give the result for decay width at leading
logarithmic (LL) accuracy, obtained by resumming the
double logarithms in the perturbative expansion of the form
expðLf0ðαsLÞÞ ¼

P
k¼0 akðαsL2Þk. The second and the

third terms on the rhs in Eq. (2), ofNLL andNNLL accuracy,
then resum terms that are additionally suppressed by αs and
α2s , respectively.
To resum the endpoint logarithms we employ soft-

collinear effective theory (SCET) [24–26], which properly
describes collinear and soft gluon radiation in the endpoint
region. The squark decay near the endpoint is governed by
three distinct scales: hard (μH), jet (μJ), and soft (μS) scales.
For large mass splittings, M −mχ ∼OðMÞ, the hard scale
μH can be identified with μH ∼M. The light quark together
with radiated collinear gluons forms a collimated jet,
controlled by a typical scale μJ ∼M

ffiffiffiffiffiffiffiffiffiffi
1 − z

p
. Finally, the

soft gluon radiations arise at the scale μS ∼Mð1 − zÞ. Note
that the kinematics of this problem is very similar to the
decay B → Xsγ in the endpoint region, i.e., in the part of the
phase space where the final state photon is close to
maximally boosted. The effects of strong interactions are
in this case described by collinear and soft gluon radiations.
The factorization formalism for B → Xsγ near the endpoint
was established in Refs. [24,26,27].
Similarly to B → Xsγ, the differential decay width for

q̃ → qχ can be schematically factorized as

dΓ
dz

¼ HðM; μFÞJðM
ffiffiffiffiffiffiffiffiffiffi
1 − z

p
; μFÞ ⊗ SðMð1 − zÞ; μFÞ; ð3Þ

where H, J, and S are the hard, jet, and collinear functions,
respectively. The ⊗ denotes the appropriate convolution
over 1 − z, while μF is the factorization scale. The decay
width is independent of the factorization scale, which
means that μF can be chosen arbitrarily. In general there

will be large hierarchies between μF and μH;J;S, so that one
needs to perform renormalization group (RG) evolution for
each of the H, J and S functions. These RG evolutions in
SCET automatically resum the large endpoint logarithms.
Away from the endpoint region, where 1 − z ∼Oð1Þ, the

differential rate is dominated by hard gluon emissions from
squark and quark lines, giving the event rate that is OðαsÞ.
This is of the same order as the NNLL corrections in the
endpoint region and thus needs to be kept in our expres-
sions. We compute these contributions using fixed order
calculation at NLO in αs. We smoothly connect the two
expressions, valid in the endpoint region and away from the
endpoint regions, giving our final result for the decay width
distribution at NNLLþ NLO accuracy. We use the
obtained expressions to perform a numerical study of the
impact of QCD corrections in eþe− → q̃q̃� events, using a
weighted Monte-Carlo simulation.
To compare directly with the experiment our results for

the decay widths will still need to be supplemented with a
resummation of soft and Coulomb gluon radiation con-
tributions connecting the two squarks, see Refs. [28,29] for
LHC. These are especially important for slowly moving
squarks, i.e., at threshold productions, and can even lead to
squark bound states [28,30–32].
The paper is structured as follows. In Sec. II, we

introduce the necessary ingredients of the effective field
theory (EFT) approach to the problem, that includes SCET
and heavy scalar effective theory (HSET). The HSET
describes soft fluctuations of the heavy squark arising
from soft gluon radiations. The HSET and SCET are then
used to derive the factorization theorem for the squark
decay rate near endpoint in Sec. III. The NLO calculation of
the decay width in the full kinematical range of z is
obtained in Sec. IV. Using our results that combine the
resummed and fixed calculations, giving the NNLLþ NLO
accuracy, we perform in Sec. V a phenomenological study
of squark pair production in eþe− annihilation, and then
conclude in Sec. VI. Appendix A contains technical details
on Δ-distribution which has been used to regularize infra-
red (IR) divergences in the fixed NLO calculation.

II. CONSTRUCTION OF EFFECTIVE THEORY
LAGRANGIAN

We are interested in the squark decay, q̃ → qχ, where χ is
the dark matter (DM) particle, and how this is affected by
QCD radiation. Near the endpoint, χ and a collimated jet
are almost back-to-back in the squark rest frame. DM, χ,
escapes detection and manifests itself in the detector as
missing energy. The quark interacts strongly—it radiates
collinear gluons and quark-antiquark pairs, which form a
collimated jet. In addition, there is soft gluon radiation in
the event, which does not have a preferred direction.
As explained in the Introduction, the decay is governed

by three distinct scales, μH, μJ, and μS. We use EFTs to deal
with the hierarchies between the three scales and the
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associated large logarithms. We first integrate out the hard
interactions, where the relevant hard scale, μH, is compa-
rable to the squark mass M. At energy scales below μH we
then have only collinear and soft degrees of freedom. The
light quark and the collinear gluon describe collinear
interactions for the collimated jet. Also the soft mode
decoupled from the collinear quark and the heavy squark
describes soft gluon radiations near the endpoint. SCET is
the appropriate EFT that describes collinear and soft modes
and their interactions. It provides a systematic way to
decouple soft modes from the collinear field. This is very
useful when proving factorization in the endpoint region.
The interactions of heavy squark are described by the
HSET, which is obtained by integrating out the hard gluon
modes and the squark massM. In the rest of this section we
show how SCETand HSET are constructed. The decay rate
of the heavy squark is calculated in the subsequent section.

A. Decay Lagrangian at the hard scale

We take χ to be a Majorana fermion. This is the case in
the MSSM where χ is the lightest supersymmetric particle
(LSP)—assumed to be the lightest neutralino. The most
general Lagrangian describing a two-body decay of a color
triplet scalar, q̃, to a quark, q, and a Majorana fermion χ, is
given by1

Lint ¼
X
L;R

BiðμÞOiðμÞ þ H:c:

¼ BLðμÞðq̄LPRχÞq̃þ BRðμÞðq̄RPLχÞq̃þ H:c:; ð4Þ

where we are using the four-component notation with
PL;R ¼ ð1 ∓ γ5Þ=2. The dimensionless Wilson coefficients
BL;R encode the new physics as well as strong interactions
above the hard scale μH ∼M. Our analysis applies to
MSSM, but is also more general and applies to any decays
of the form q̃ → qχ, where q̃ is a color triplet scalar.
In the MSSM for each quark flavor there are two

squarks, q̃1;2, so that the above Lagrangian modifies to

Lint ¼
X
i¼1;2

BLiðμÞðq̄LPRχÞq̃i þ BRiðμÞðq̄RPLχÞq̃i þ H:c:

ð5Þ

The tree level expressions for the Wilson coefficients are,
neglecting flavor violating effects,

BLi ¼ CLLLq̃i þ CLRRq̃i ; BRi ¼ CRLLq̃i þ CRRRq̃i ;

ð6Þ

with

CLL ¼ −
ffiffiffi
2

p
½gTq

3N12 þ g0ðQq − Tq
3ÞN11�;

CRR ¼
ffiffiffi
2

p
g0QqN�

11; ð7Þ

CRL ¼ C�
LR ¼ −

ffiffiffi
2

p
mqðN�

14δqu þ N�
13δqdÞ=v; ð8Þ

with g, g0 the weak and hypercharge gauge couplings, Qq

the electric charge of quark q, and Tq
3 the weak isospin,

while Rq̃1 ¼ L�̃
q2
¼ cosðθq̃Þ, and Lq̃1 ¼ −R�̃

q2
¼ sinðθq̃Þ,

with θq̃ the mixing angle rotating the squark gauge
eigenstates q̃R;L to mass eigenstates q̃1;2. The q̃R–q̃L
mixing is usually important only for the third generation
squarks, while for the first two generations gauge and mass
eigenstates coincide, θq̃ ¼ 0. The neutralino mixing matrix
is denoted by Nij. If LSP is mostly gaugino then N11;12 ≫
N13;14 and thus q̃L → qLχ and q̃R → qRχ for the first two
generations. For well-tempered neutralino, on the other
hand, all terms in (7), (8) may be important.

B. EFTs for the endpoint region

We restrict ourselves to the case where quark mass can be
neglected compared to M. We will work in the squark rest
frame, so that its four-velocity vμ is given by vμ ¼ ð1; 0Þ.
We orient the coordinate system such that jet goes in the z
direction, i.e., that, neglecting its mass, it is on the light
cone nμ ¼ ð1; 0; 0; 1Þ. We also introduce the opposite light
cone four-vector n̄μ ¼ ð1; 0; 0;−1Þ, so that n2 ¼ n̄2 ¼ 0,
n · n̄ ¼ 2 and pμ

q̃ ¼ Mvμ ¼ Mðnμ þ n̄μÞ=2. We will use
light-cone coordinates, in which a four-momentum pμ is
given by pμ ¼ ðn̄ · p; p⊥; n · pÞ.
The effective field theory to reproduce low energy

physics in full QCD is obtained by integrating hard degrees
of freedom. For instance, the hard gluon exchanges
between the heavy squark and the light quark are integrated
out. The Wilson coefficients BL;R in Eq. (4) thus get
modified to CL;RðμÞ (see Eq. (13) below). The resultant
EFT is valid at the scale μ < μH ∼M. And the remaining
degrees of freedom in EFT are collinear and soft fields
scaling as pc ¼ Mð1; λ; λ2Þ and ps ¼ Mðλ2; λ2; λ2Þ respec-
tively. Here λ is a small expansion parameter in EFT. For
the squark decay near endpoint, λ is given as ∼

ffiffiffiffiffiffiffiffiffiffi
1 − z

p
.

In the heavy squark sector, after integrating out hard
fluctuations as well as heavy squark mass M, the heavy
squark only interacts with soft gluons. Then full QCD
Lagrangian for the heavy squark can be matched onto
HSET Lagrangian,

LHSET ¼ ϕ�
vv · iDsϕv −

1

2M
ϕ�
vD2

sϕv þOð1=M2Þ; ð9Þ

where ϕv is the squark field in HSET,

q̃ðxÞ ¼ 1ffiffiffiffiffiffiffi
2M

p e−iMv·xϕvðxÞ; ð10Þ1For a Dirac fermion χ there are two additional terms in (4),
B0
LðμÞðq̄LPRχ

cÞq̃ and B0
RðμÞðq̄RPLχ

cÞq̃.
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The covariant derivativeDμ
s ¼ ∂μ − igAμ;a

s Ta includes only
the soft gluon field. The second term in (9) isOð1=MÞ with
a coefficient that is fixed by reparametrization invariance.
We work at leading order in 1=M expansion, and thus only
keep the first term in (9).
The light quark field matches onto n-collinear field in

SCET so that

qðxÞ ¼
X
p̃

e−ip̃·xqn;pðxÞ ¼
X
p̃

e−ip̃·xðξn;pðxÞ þ ξn̄;pðxÞÞ;

ð11Þ

where

ξn;pðxÞ ¼
nn̄
4
qn;pðxÞ; ξn̄;pðxÞ ¼

n̄n
4
qn;pðxÞ; ð12Þ

and thus nξn;p ¼ n̄ξn̄;p ¼ 0. The summation is over large
label momenta given by p̃μ ¼ n̄ · pnμ=2þ pμ

⊥ that differ
by soft fluctuations. The field ξn̄ is suppressed by λ, and is
thus not present as an external quark field in our analysis of
squark decays since we work to leading order (LO) in the
1=M expansion. Integrating out ξn̄ the collinear interactions
can be expressed entirely in terms of ξn. The resulting LO
SCET Lagrangian for collinear fields can be found in,
e.g., Ref. [25].
The decay Lagrangian (4) matches onto the HSETþ

SCET effective decay Lagrangian, appropriate for describ-
ing the squark decays in the endpoint region,

Leff
int ¼

�X
p̃

CLðμÞffiffiffiffiffiffiffi
2M

p e−iðMv−p̃Þ·xðξ̄n;pWnPRχÞϕvðxÞ þ H:c:

�

þ ½L ↔ R�
≡X

p̃

½e−iðMv−p̃ÞCLðμÞOLðx; μÞ þ H:c:�

þ
X
p̃

½e−iðMv−p̃ÞCRðμÞORðx; μÞ þ H:c:�; ð13Þ

In the sum only the p̃ that satisfy momentum conservation
are selected. The hard gluon exchanges are encoded in
Wilson coefficients CL;R [obtained from BL;R in (4)], while
collinear gluons emitted from the heavy squark yield the
collinear Wilson line

WnðxÞ ¼ P exp

�
ig
Z

x

−∞
dsn̄ · Aa

nðsn̄μÞTa

�
: ð14Þ

Here Aμ
n is n-collinear gluon field and “P” indicates the

path-ordered integral.
To show the factorization of soft and collinear inter-

actions it is useful to perform field redefinitions,
ξn → Ynξn, A

μ
n → YnA

μ
nY

†
n, and ϕv → Yvϕv [26], factoring

out the soft Wilson lines in the n and v directions, Yn;v,

YvðxÞ¼ Pexp

�
ig
Z

x

−∞
dsv ·Aa

s ðsvμÞTa

�
; vμ ¼ nμ;vμ:

ð15Þ

The path of integration over s ∈ ½−∞; x� indicates that the
dressed collinear or squark field is incoming. For the out-
going particles the integration path is over s ∈ ½x;þ∞�,
giving for the soft Wilson lines [33],

Ỹ†
vðxÞ¼ Pexp

�
ig
Z þ∞

x
dsv ·Aa

s ðsvμÞTa

�
; vμ ¼ nμ;vμ:

ð16Þ

In the LO SCET and HSET Lagrangian the interactions
between soft gluons and the redefined collinear fields, ξn,A

μ
n,

and between the soft gluons and the heavy squark field ϕv,
drop out (that is, at LO there are no interactions between
collinear and soft fields, and no interactions between
redefined heavy squark and soft fields). The effects of soft
gluons are thus moved into the effective decay Lagrangian,
where they appear as a product of two soft Wilson lines in n
and v directions,

Leff
int ¼

X
i¼L;R

X
p̃

CiðμÞe−iðMv−p̃Þ·xOa
i χa þ H:c:; ð17Þ

with

Oa
L;RðμÞ ¼

1ffiffiffiffiffiffiffi
2M

p ðξ̄n;pWnPR;LÞaỸ†
nYvϕvðxÞ: ð18Þ

In Eq. (17) a summation over Dirac four-component index a
is implied. From now on we will use the form of EFT
Lagrangian given in Eq. (17), i.e., with ξn, A

μ
n, and ϕv

denoting the redefined fields that do not couple to soft gluons
and quarks at LO.

III. DIFFERENTIAL DECAY RATE AT THE
ENDPOINT

The total decay rate for q̃ → χ0qL averaged over the
squark color is

Γðq̃ → χ0qLÞ ¼
1

2M

Z
d3pχ

ð2πÞ3
1

2Eχ
T LðEχ ; mχ ;MÞ; ð19Þ

where T LðEχ ; mχ ;MÞ is related to the matrix elements
squared for squark decays into left-handed quarks

T LðEχ ; mχ ;MÞ ¼
X
X

ð2πÞ4δðp − pχ − pXÞjMLj2: ð20Þ

Explicitly, the matrix elements squared are
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jMLj2 ¼ jBLðμÞj2hq̃jq̃�αðPLqαÞajXi
× hXjðq̄βPRÞbq̃βjq̃iðpχ −mχÞba; ð21Þ

with the summation over color indices, α, β, and Lorentz
indices, a, b implied. We do not show color index of squark
external state: we always consider color-averaged initial
states, hence hq̃j � � � jq̃i ¼ hq̃αj � � � jq̃αi=Nc in our conven-
tion. Note that in Eq. (21) we already used the fact that
neutralinos are not charged under QCD and thus only
contribute as

P
spin ubūa ¼ ðpχ −mχÞba. For q̃ → χ0qR

decays the same results apply, but with L ↔ R. The
interference terms between the two decays are mq=M
suppressed and can be safely neglected.
At tree level the decay rate is given by

Γð0Þðq̃ → χ0qLÞ ¼
jBLj2
16π

Mð1 − rχÞ2; ð22Þ

with

rχ ¼ m2
χ=M2: ð23Þ

A. Factorization theorem near the endpoint

We start by reviewing the decay kinematics near the
endpoint, where in the final states we have an energetic
neutralino and a collimated jet as well as soft gluons.
Following Eq. (1), we define the kinematic variable

z ¼ n · pχ

M
; ð24Þ

in terms of which the neutralino and other final states
momenta are given by

pμ
χ ¼ M

2

�
rχ
z
nμ þ zn̄μ

�
;

pX ≡ pμ
J þ pμ

S ¼
M
2

��
1 −

rχ
z

�
nμ þ ð1 − zÞn̄μ

�
: ð25Þ

Here z can take values z ∈ ½ ffiffiffiffiffirχp ; 1� (we oriented the
coordinate system such that p⃗χ is always along negative
z-axis, while p⃗X is along positive z-axis). The missing
energy is Eχ ¼ v · pχ ¼ ðrχ=zþ zÞM=2, and therefore one
can use z and Eχ interchangeably. The invariant mass of the
collinear and soft final states is p2

X ¼ M2ð1 − rχ=zÞð1 − zÞ.
The limit of a very collimated jet, p2

X → 0, is thus obtained
in the limit z → 1.
In the endpoint region, 1 − z ≪ 1, we can apply the

HSET and SCET formalism, introduced in the previous
section. The differential rate is

dΓðq̃ → χ0qLÞ
dEχ

¼ ðE2
χ − p2

χÞ1=2
8π2M

T LðEχ ; mχ ;MÞ; ð26Þ

with T L ¼ P
Xð2πÞ4δðp − pχ − pXÞjMLj2, where jMLj2

is calculated in HSETþ SCET,

jMLj2 ¼ 2MjCLðμÞj2hϕvjO†
L;ajXi

× hXjOL;bjϕviðpχ −mχÞba þOð1=MÞ: ð27Þ

The EFT operators OL;R are given in Eq. (18), and jq̃i ¼ffiffiffiffiffiffiffi
2M

p jϕvi up to 1=M corrections. The Wilson coefficients
CL;R can be decomposed into

CL;R ¼ BL;R × CL;R; ð28Þ

where BL;R are the unknown new physics Wilson coef-
ficients in Eq. (4) and CL;R are the Wilson coefficients as a
result of integrating out the squark mass M and the hard
gluon exchanges between squark and quark. The NLO
matching onto HSETþ SCET has been performed in
Sec. III B, with the result for CL;R given in Eq. (37).
In the remainder of this section we use the operator

production expansion (OPE) to arrive at a more practically
useful expression for T L. We first use the completeness
relation,

P
X jXihXj ¼ 1, to rewrite T L as (neglecting

Oð1=MÞ corrections)

T L ¼ 2MjCLðM;mχ ; μÞj2

×
Z

d4yeiðMv−pχ−p̃cÞ·yðpχ −mχÞba
× hϕvjO†

L;aðyÞOL;bð0Þjϕvi: ð29Þ

The large label momentum p̃c is the nμ-component of pμ
X,

given in Eq. (25). The phase in (29) is therefore equal to

Mvμ − pμ
χ − p̃μ

c ¼ Mð1 − zÞn̄μ=2; ð30Þ

so that

T LðEχ ; mχ ;MÞ

¼ zM2jCLðM;mχ ; μÞj2
Z

d4yeiMð1−zÞy−=2

× h0jðỸ†
nYvÞαβðyÞðW†

nPLξnðyÞÞβa
× ðξ̄nPRn̄WnÞγað0ÞðỸnY

†
vÞγαð0Þj0i; ð31Þ

where we used the shorthand notation y− ¼ n̄ · y
(yþ ¼ n · y) and that ϕα

vjϕβ
vi ¼ δαβ.

The collinear field ξn describes an inclusive jet in
n-direction. The corresponding jet function is defined as
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h0jðW†
nξn;pðyÞÞαaðξ̄nWn;pÞβbð0Þj0i

¼ δαβ
�
n
2

�
ab

Z
d4k
ð2πÞ3 e

−ik·yJnðkþ; n̄ · p̃Þ

¼ δαβ
�
n
2

�
ab
δðyþÞδðy⊥Þ

Z
dkþe−ikþy−=2Jnðkþ; n̄ · p̃Þ:

ð32Þ

At LO in αs the jet function is simply Jð0Þn ¼ δðkþÞ.
The product of Wilson lines in Eq. (31) forms the soft

function SðlþÞ, defined as

Sðlþ; μÞ ¼ Trh0jY†
vỸnδðlþ þ n · i∂ÞỸ†

nYvj0i; ð33Þ

so that its Fourier transform is

Trh0jY†
vỸnðy−ÞỸ†

nYvð0Þj0i ¼
Z

dlþe−ilþy−=2SðlþÞ: ð34Þ

The expression for T L in Eq. (31) can therefore be
written as the convolution of the soft function, Eq. (34), and
the jet function, Eq. (32),

T Lðz;mχ ;MÞ
¼ 4πjCLðM;mχ ; μÞj2zM2

×
Z

dlþSðlþ; μÞJnðMð1 − zÞ − lþ; μ;Mð1 − rχ=zÞÞ:

ð35Þ

Collecting all the terms, the differential decay rate dΓ=dz
in the z → 1 limit can thus be written as

dΓ
dz

ðq̃ → χ0XqLÞ

¼ M2

16π
jCLðM; x; μÞj2

�
z −

rχ
z

�
2

×
Z

dlþJnðMð1 − zÞ − lþ; μ;Mð1 − rχ=zÞÞSðlþ; μÞ;

ð36Þ

where the large momentum, Mð1 − rχ=zÞ, in the jet
function can be further simplified to Mð1 − rχÞ, neglecting
Oð1 − zÞ corrections.
The factorization formula (36) is similar to the one for

B → Xsγ [24,26,27]. The main difference are the hard
interactions. Another difference is that the soft function in
the q̃ → χq decay would be treated perturbatively. For the
squark mass M ≳Oð1 TeVÞ, the typical soft scale μS ∼
Mð1 − zÞwould be of a few tens ofGeV, and it ismuch larger
than the hadronic scale ΛQCD ≲ 1 GeV. Unlike B → Xsγ,
where the predictions in the endpoint region are given in
terms of the nonperturbative B meson shape functions, the
nonperturbative physics here affects the region of phase
space less than 1 − z ∼OðΛQCD=MÞ ∼ 10−3, which does not
significantly change our phenomenological conclusions in
Sec. V B.

B. Radiative corrections

We now return to the calculation of CL;R in Eq. (28). At
scale μ ∼M, we need to integrate out the heavy squark
mass M and the hard gluon fluctuations of order M,
matching onto HSETþ SCET. For this we match QCD
calculations in αs for the effective operators in full QCD
[Eq. (4)] and ones in SCETþ HSET [Eq. (13)]. And we
obtain theWilson coefficientsCL;R at the higher order in αs.
At tree level the matching is trivial, resulting in CL;R ¼ 1.
For NLO results of CL;R we compute Feynman diagrams

shown in Fig. 1 and self energy diagrams at one loop.

(a) (b)

FIG. 1. One loop diagrams for matching between full QCD (a) and SCETþ HSET (b). Here OLðRÞ ¼ ðq̄LðRÞPRðLÞχÞq̃ and
OLðRÞ ¼ ðξ̄n;LðRÞWnPRðLÞχÞϕv. In diagrams (b), the first (second) diagram is for collinear (soft) gluon exchange. Self-energy diagrams
are also needed for the matching process.
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Throughout this paper, we employ dimensional regularization in the MS scheme with D ¼ 4 − 2ϵ in order to handle
ultraviolet (UV) singularity. As a result we obtain

CL;RðM; rχ ; μÞ ¼ 1þ αs
4π

CF

�
−
�
9

4
þ π2

12
þ ln

μ2

M2
þ 1

2
ln2

μ2

M2

�

þ 2 lnð1 − rχÞ
�
1þ ln

μ2

M2

�
− ln2ð1 − rχÞ þ 2Li2

�
rχ

rχ − 1

��
: ð37Þ

Here Li2ðxÞ is the dilogarithm function. The anomalous dimensions for CL;R are given

γC ¼ μ

CL;RðμÞ
d
dμ

CL;RðμÞ ¼ −
αs
2π

CF

�
1þ ln

μ2

M2ð1 − rχÞ2
�
þOðα2sÞ: ð38Þ

Note that full Wilson coefficients CL;R ¼ BL;RCL;R
involve the unknown new physics Wilson coefficients
BL;R. But, since the effective interaction Lagrangian in
(13) should be scale invariant, we can compute γCL;R by
considering the renormalization behavior of the effective
operatorsOL;R in SCETþ HSET. The relation between the
bare and renormalized effective operators can be written as
ZL;R
O OR

L;R ¼ Z1=2
ϕv

Z1=2
ξ OB

L;R. Here,

Zϕv
¼ 1þ αsCF=ð2πϵÞ; and Zξ ¼ 1 − αsCF=ð4πϵÞ;

ð39Þ

are the wave function renormalizations for the heavy squark
and the collinear quark fields respectively. Computing the
one loop diagrams in Fig. 1(b) gives

ZL
O ¼ ZR

O ¼ 1þ αs
4π

CF

�
1

ϵ2
þ 1

ϵ

�
5

2
þ ln

μ2

ðn̄ · pÞ2ðn · vÞ2
��

;

ð40Þ

where n̄ · p is the large momentum component for the
quark and equals n̄ · p ¼ Mð1 − rχÞ in the z → 1 limit,
while n · v ¼ 1 in the squark rest frame. From Eq. (40) we
obtain the anomalous dimension for CL;R satisfying the RG
equation, d=ðd ln μÞCL;R ¼ γCCL;R, as follows

γC ¼
�
μ
∂
∂μþ

∂
∂g

�
lnZL;R

O ¼−
αs
2π

CF

�
5

2
þ ln

μ2

M2ð1− rχÞ2
�
:

ð41Þ

Since CL;R ¼ BL;RCL;R, from Eqs. (38) and (41) the anoma-
lous dimensions for the unknown BL;R are obtained as

γB ¼ μ

BL;RðμÞ
d
dμ

BL;RðμÞ ¼ −3
αs
4π

CF þOðα2sÞ: ð42Þ

In order to employ the standard plus distribution for the
radiative corrections in Eq. (36), it is convenient to
introduce dimensionless jet and soft functions,

J̄nðx; μ;Mð1 − rχÞÞ ¼ yMJnðMð1 − zÞ − lþ; μ;Mð1 − rχÞÞ
ð43Þ

S̄ðy; μÞ ¼ MSðlþ; μÞ; ð44Þ

where y is related to lþ through

lþ ¼ Mð1 − yÞ; while x ¼ z=y: ð45Þ

The two new variables are defined in the interval z ≤ x,
y ≤ 1. The limit of soft momenta in the soft function
corresponds to y → 1. In terms of the dimensionless jet and
soft functions, the differential decay rate in Eq. (36) can be
rewritten as

dΓ
dz

ðq̃ → χ0XqLÞ ¼
M
16π

�
z −

rχ
z

�
2

jCLðM; rχ ; μÞj2
Z

1

z

dx
x
J̄nðx; μ;Mð1 − rχÞÞÞS̄ðz=x; μÞ: ð46Þ

We computed the jet and the soft functions at next-to-leading order (NLO) in αs, and the results read [27,34]

J̄nðx; μÞ ¼ δð1 − xÞ þ αs
2π

CF

�
δð1 − xÞ

�
7

2
−
π2

2
þ 3

2
ln

μ2

Q2
þ ln2

μ2

Q2

�
−

1

ð1 − xÞþ

�
2 ln

μ2

Q2
þ 3

2

�
þ 2

�
lnð1 − xÞ
1 − x

�
þ

�
; ð47Þ
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S̄ðy; μÞ ¼ δð1 − yÞ þ αs
2π

CF

�
δð1 − yÞ

�
−
π2

12
þ ln

μ2

M2
−
1

2
ln2

μ2

M2

�
þ 2

ð1 − yÞþ

�
−1þ ln

μ2

M2

�
− 4

�
lnð1 − yÞ
1 − y

�
þ

�
; ð48Þ

whereQ2 ¼ M2ð1 − rχÞ and ð…Þþ the standard plus distribution. Note that both of the above results are infrared finite. The
logarithms are minimized at μ ¼ Qð1 − xÞ1=2 and μ ¼ Mð1 − yÞ for the jet and soft functions, respectively.
We can check that the obtained differential decay rate does not depend on the scale choice, μ, to the order we are working.

Differentiation with respect to dðlog μÞ gives,

μ
d
dμ

dΓ
dz

¼ M
16π

�
z −

rχ
z

�
2

jCLðμÞj2
�
2Re½γC�

Z
1

z

dx
x
J̄nðx; μÞS̄ðz=x; μÞ

þ
Z

1

z

dx
x

��
μ
d
dμ

J̄nðx; μÞ
�
S̄ðz=x; μÞ þ J̄nðx; μÞ

�
μ
d
dμ

S̄ðz=x; μÞ
���

;

¼ M
16π

�
z −

rχ
z

�
2

jCLðμÞj2½2Re½γLOC � · δð1 − zÞ þ ðγLOJ ðz; μÞ þ γLOS ðz; μÞÞ� þOðα2sÞ; ð49Þ

where γJ and γS are the anomalous dimensions for J̄n and S̄,

μ
d
dμ

J̄nðx; μÞ ¼
Z

1

x

dz
z
γJðz; μÞJ̄nðx=z; μÞ; ð50Þ

μ
d
dμ

S̄ðx; μÞ ¼
Z

1

x

dz
z
γSðz; μÞS̄ðx=z; μÞ: ð51Þ

At the lowest order in αs they are given by

γLOJ ðz; μÞ ¼ αs
π
CF

�
δð1 − zÞ

�
2 ln

μ2

Q2
þ 3

2

�
−

2

ð1 − zÞþ

�
;

ð52Þ

γLOS ðz; μÞ ¼ αs
π
CF

�
δð1 − zÞ

�
− ln

μ2

M2
þ 1

�
þ 2

ð1 − zÞþ

�
:

ð53Þ

From (41), (52), and (53) it then follows immediately that
Eq. (49) vanishes at OðαsÞ.

C. Resummed result for the differential
decay rate near the endpoint

The factorized result in Eq. (46) still contains large
logarithms. We resum these by RG evolving jCLj2, J̄n,
and S̄ from the factorization scale μF down to the respective
“typical scales” for each of the three quantities. The RG
evolution then automatically resums the large logarithms and
exponentiates them. Here “the typical scale” denotes the
scale at which the logarithms in the expressions for jCLj2, J̄n,
and S̄ are minimized. The typical hard scale for jCLj2 can be
chosen as μH ∼M. On the other hand, Eqs. (47) and (48)
imply that we can choose μJ ∼Mð1 − rχÞ1=2ð1 − zÞ1=2 and
μS ∼Mð1 − zÞ for the jet and soft functions, respectively.

We perform the resummation to NNLL accuracy, count-
ing large logarithms to be of Oð1=αsÞ. For resummation to
NNLL accuracy, we express the anomalous dimension of
each factorized part as follows:

γC ¼ ACΓC ln
μ2

M2ð1 − rχÞ2
þ γ̂C; ð54Þ

γJðzÞ¼ δð1− zÞ
�
AJΓC ln

μ2

M2ð1− rχÞ
þ γ̂J

�
− κJ

AJΓC

ð1− zÞþ
;

ð55Þ

γSðzÞ ¼ δð1 − zÞ
�
ASΓC ln

μ2

M2
þ γ̂S

�
− κS

ASΓC

ð1 − zÞþ
: ð56Þ

From Eqs. (41), (52), and (53) we extract
fAC; AJ; AS; κJ; κSg ¼ f−1; 2;−1; 1; 2g. ΓC is the cusp
anomalous dimension [35,36], which can be expanded
as

P
k¼0 Γkðαs=4πÞkþ1. The first two coefficients in the

expansion are,

Γ0 ¼ 4CF; Γ1 ¼ 4CF

��
67

9
−
π2

3

�
CA −

10

9
nf

�
; ð57Þ

where CA ¼ Nc ¼ 3 is the number of colors and nf is the
number of flavors. The three loop coefficient Γ2 reads [37]
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Γ2 ¼ 4CF

�
C2
A

�
245

6
−
134π2

27
þ 11π4

45
þ 22

3
ζð3Þ

�
þ CAnf

�
−
219

27
þ 20π2

27
−
18

3
ζð3Þ

�

þ CFnf

�
−
55

6
þ 8ζð3Þ

�
−

4

27
n2f

�
: ð58Þ

The noncusp anomalous dimensions in Eqs. (55) and (56) can be expanded as γ̂f¼J;S ¼
P

k¼0 γ̂f;kðαs=ð4πÞÞk. From
Eqs. (52) and (53), the leading coefficients are given as

γ̂J;0 ¼ 6CF; γ̂S;0 ¼ 4CF: ð59Þ

The two loop coefficients required for NNLL accuracy are given by [38]

γ̂J;1 ¼ −2CF

�
CF

�
−
3

2
þ 2π2 − 24ζð3Þ

�
þ CA

�
−
3155

54
þ 22π2

9
þ 40ζð3Þ

�
þ nf

�
247

27
−
4π2

9

�
þ 2β0ð7 − 2π2Þ

�
; ð60Þ

γ̂S;1 ¼ 16CF

�
CA

�
−

37

108
þ π2

144
þ 9

4
ζð3Þ − 1

6

�
− nf

�
1

54
þ π2

72

��
; ð61Þ

where β0 is the first coefficient of QCD beta function. The γ̂C in Eq. (54) can be written as γ̂C ¼ −γ̂J − γ̂S from the fact that
the differential decay width is scale independent.
Performing the RG evolutions using Laplace transform [39,40] leads to the resummed result near the endpoint at NNLL

accuracy as

dΓresðq̃ → χ0XqLÞ
dz

¼ M
16π

ð1 − rχÞ2 exp½MðμH; μJ; μSÞ�jBLðμHÞj2jCLðM; rχ ; μHÞj2

× J̃

�
ln

μ2J
M2ð1 − rχÞ

− ∂η

�
S̃

�
ln

μ2S
M2

− 2∂η

�
e−γEη

ΓðηÞ ð1 − zÞ−1þη; ð62Þ

For integrated quantities such as the total decay width the NNLL accuracy requires jet and soft functions, J̃ and S̃, to be
calculated at OðαsÞ (see, e.g., Table 1 in Ref. [41]). For decay width distributions, such as dΓ=dz, the log enhanced Oðα2sÞ
terms in J̃n and S̃ need to be included as well [42] (see, e.g., Table 6 in Ref. [42]). To the required order the two functions are

J̃½L� ¼ 1þ αsCF

2π

�
7

2
−
π2

3
þ 3

2
Lþ L2

�
þ � � � ; ð63Þ

S̃½L� ¼ 1þ αsCF

2π

�
−
5π2

12
þ L −

1

2
L2

�
þ � � � : ð64Þ

where the ellipses denote the Oðα2sÞ terms, which are given in Appendix B. For the NLL result, we only keep the first two
terms in Eq. (63) and (64).
The exponentiation factor in Eq. (62) is given by

MðμH; μJ; μSÞ ¼ 2SΓðμH; μJÞ − 2SΓðμJ; μSÞ þ ln
μ2H

M2ð1 − rχÞ2
a½ΓC�ðμH; μJÞ

− ln
μ2H
M2

a½ΓC�ðμJ; μSÞ þ a½γ̂J�ðμH; μJÞ þ a½γ̂S�ðμH; μSÞ; ð65Þ

with the Sudakov factor SΓ and the evolution function a½f� defined as

SΓðμ1; μ0Þ ¼
Z

α1

α0

dα
bðαÞΓCðαÞ

Z
α

α1

dα0

bðα0Þ ; a½f�ðμ1; μ0Þ ¼
Z

α1

α0

dα
bðαÞ fðαÞ: ð66Þ

ENDPOINT RESUMMATION IN SQUARK DECAYS PHYS. REV. D 101, 115012 (2020)

115012-9



Here α and α0;1 denote αsðμÞ and αsðμ0;1Þ, while bðαsÞ ¼ dαs=d ln μ is the QCD beta function. To NNLL accuracy SΓ and
a½ΓC� are given by [41]

Sðμ1; μ0Þ ¼
Γ0

4β20

�
4π

αsðμ1Þ
�
1 −

1

r
− ln r

�
þ
�
Γ1

Γ0

−
β1
β0

�
ð1 − rþ ln rÞ þ β1

2β0
ln2r

þ αsðμ1Þ
4π

��
β1Γ1

β0Γ0

−
β2
β0

�
ð1 − rþ r ln rÞ þ

�
β21
β20

−
β2
β0

�
ð1 − rÞ ln r

−
�
β21
β20

−
β2
β0

−
β1Γ1

β0Γ0

−
Γ2

Γ0

� ð1 − rÞ2
2

��
; ð67Þ

a½ΓC�ðμ1; μ0Þ ¼
Γ0

2β0

�
ln rþ

�
Γ1

Γ0

−
β1
β0

�
αsðμ0Þ − αsðμ1Þ

4π

�
; ð68Þ

where r ¼ αsðμ0Þ=αsðμ1Þ. Finally, the evolution parameter
η in Eq. (62) is defined as η ¼ 2a½ΓC�ðμJ; μSÞ. It is positive
since μJ > μS. For the NLL result, we only keep the first
line of Eq. (67), and the first term in Eq. (68).

IV. DECAY DISTRIBUTION IN THE FULL RANGE

Even though the decay distribution dΓ=dz in the region
z → 1 is the dominant contribution to the total decay width,
it is useful for phenomenological analyses to obtain the
decay distribution in the full range of z, while retaining the
Oð1 − zÞ corrections. The expression for dΓ=dz away from

z → 1 should be obtained using full QCD. Away from the
endpoint region the gluon emissions are hard so that the
total invariant mass of final state jets can be comparable
to M.
To perform the calculation of T L in Eq. (20) in full QCD

we introduce the structure function WLðz; rχ ;MÞ,

T Lðz; rχ ;MÞ ¼ 2πjBLj2WLðz; rχ ;MÞ: ð69Þ

The WL is thus given by

WLðz; rχ ;MÞ ¼ 1

2π

Z
d4ze−ipχ ·zhq̃jq̃�αðPLqαÞaðzÞðq̄βPRÞbq̃βLð0Þjq̃iðpχ −mχÞba; ð70Þ

where pχ is the momentum of the neutralino [the expression for it in terms of z and rχ is given in Eq. (25)]. The differential
decay rate is then

dΓ
dz

ðq̃ → χ0XqLÞ ¼
M
16π

jBLðμÞj2
1

z

�
z −

rχ
z

�
2

WLðz; rχ ;M; μÞ: ð71Þ

At tree level we have simply WL ¼ δð1 − zÞ.
To obtain the NLO expression for WL we computed the Feynman diagrams shown in Fig. 2 as well as

self-energy diagrams for the squark and the light quark. As a result, one loop corrections to WL in MS scheme are
given as

Wð1Þðz; rχ ;M; μÞ ¼ αsCF

2π

�
δð1 − zÞ

�
3

2
ln

μ2

M2ð1 − rχÞ2
þ 1

4
ln2ð1 − rχÞ þ 2Li2

�
rχ

rχ − 1

�

− 2rχH1ðrχÞ −
7

2
rχH2ðrχÞ þ

5

4
−
π2

3

�
þ rχ
z − rχ

þ 1

ð1 − zÞΔ
z

z − rχ

�
−4ð1 − rχÞ þ

1

2

�
z −

rχ
z

��

− 2
zð1 − rχÞð2 − z − rχ=zÞ

z − rχ

�
gðz; rχÞ

�
Δ

�
: ð72Þ

Here we introduced the so called “delta distribution,” ½…�Δ, in order to deal with the infrared (IR) singularity as z → 1. The
definition and some useful properties of the Δ distribution are given in Appendix A. For a region of integration that is, as in
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our case, over z ∈ ½ ffiffiffiffiffirχp ; 1� (rather than over the interval [0, 1]) the introduction of a Δ distribution shortens the expressions
compared to the standard plus distribution. In Eq. (72) the functions H1;2ðrχÞ and gðz; rχÞ are given by,

H1ðrχÞ ¼
Z

1

ffiffiffi
rχ

p
dz
z

ð2 − rχ − rχ=zÞð1 − 2rχ=zþ rχ=z2Þ
ðz − rχ=zÞð1 − rχ=zÞ2

ln
1 − z

1 − rχ=z
; ð73Þ

H2ðrχÞ ¼
Z

1

ffiffiffirχp
dz
z

1 − 2rχ=zþ rχ=z2

ð1 − rχ=zÞ2
¼ 1ffiffiffiffiffirχp þ 2 coth−1ð1þ 2

ffiffiffiffiffi
rχ

p Þ − lnð1þ ffiffiffiffiffirχp Þ
x

; ð74Þ

gðrχ ; zÞ ¼
z

ð1 − zÞðz2 − rχÞ
ln

1 − z
1 − rχ=z

: ð75Þ

The anomalous dimension γWðzÞ, controlling the RG
evolution of structure functions,

μ
d
dμ

WLðM; rχ ; z; μÞ ¼
Z

1

z

dx
x
γWðxÞWLðM; rχ ; z=x; μÞ

ð76Þ

is given by

γWðzÞ ¼ 3
αsCF

2π
δð1 − zÞ þOðα2sÞ: ð77Þ

Using the fact that dΓ=dz is scale-invariant then gives the
anomalous dimension for BLðμÞ as γB ¼ −3αsCF=ð2πÞþ
Oðα2sÞ, which, as expected, is the same result as given
in Eq. (42).

Finally, we combine our results for the differential
decay rates in the full z range and near the end-
point, z → 1, to obtain the decay distribution at NNLL
+NLO,2

(a) (b) (c)

(d) (e) (f)

FIG. 2. The NLO Feynman diagrams for q̃ → χXqL. The dashed lines at the center of each diagram denotes the discontinuity cut for
forward scattering amplitudes.

2One may wish to consider other matching schemes that turn
off smoothly the resummation effects in the region far away from
the endpoint. In our case the role of the smooth matching is
performed by the running of jet and soft scales which are
respectively given as μ0J ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − rχÞð1 − zÞp
and μ0S ¼

Mð1 − zÞ, where rχ ¼ m2
χ=M2. While the prescription in

Eq. (78) does not recover exactly the NLO result anywhere in
the physical region z ≥ ffiffiffiffiffirχp , this treatment does suffice for our
purposes. First of all, alternative prescriptions that have μH ¼
μJ ¼ μS at z ¼ 0 similarly do not lead to perfectly smooth
matchings anywhere in the physical region for z. More impor-
tantly, the two decay distributions with and without resumma-
tions, dΓres=dz and dΓf

NLO=dz, are completely dominated by the
endpoint region and have only negligible contributions from the
rest of the z range. We therefore expect only numerically
subleading corrections from alternative matching prescriptions
relative to the results using Eq. (78).
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dΓfull

dz
ðq̃L → χ0XqÞ ¼

dΓres

dz
þ dΓf

NLO

dz
−
dΓf

E

dz
: ð78Þ

The first and the second terms on the right-hand side are the
resummed result near the endpoint, Eq. (62), and the NLO
result for the full z range, Eq. (71), respectively. The double
counting of contributions between the two terms is
removed by the third term on the right-hand side of
Eq. (78), i.e., the dΓf

E=dz. The expression for dΓf
E=dz

follows from dΓres=dz by identifying the multiple scales
as μH ¼ μJ ¼ μS ¼ M.

V. PHENOMENOLOGICAL STUDY

In this section, we present a detailed study of NLO,
NLLþNLO, and NNLLþNLO predictions for the q̃ → qχ
decay. In Sec. VA we show our results for the normalized
differential width distributions as well as the total
decay widths, and discuss the impact of soft gluon
resummations on the NLLþ NLO and NNLLþ NLO
results. In Sec. V B, we perform a numerical analysis at
NLLþ NLO and NNLLþ NLO accuracies for the decays
of pair-produced squarks in a linear eþe− collider based onffiffiffi
s

p ¼ 3 TeV Compact Linear Collider (CLIC). Since the
decay topology of a squark can be significantly altered by
higher-order corrections, it is necessary to scrutinize these
effects for the precise measurements of a squark and
neutralino masses, which is an important part of the
CLIC physics program.

A. Differential width distributions and total widths

The resummed results that we calculated at NNLLþ
NLO and NLLþ NLO accuracies in Eq. (62) depend on
the choices of scales, μH, μJ, and μS. To illustrate the scale
dependences, we independently vary the μi, i ¼ H, J, S,
between 2μ0i and μ0i =2, where μ

0
i are the default choices of

the hard, jet, and soft scales. We take μ0H ¼ M for the
default hard scale. The default jet and soft scales are chosen
as the running scales μ0J ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − rχÞð1 − zÞp
and

μ0S ¼ Mð1 − zÞ, where rχ ¼ m2
χ=M2. For z → 1 we would

have μ0i → 0 for these choices of running scales and
therefore the IR Landau poles in the running of the strong
coupling constants. In order to avoid this problem we adopt
the following profile function for the soft scale,

μ0S ¼ μpfS ¼
�
Mð1 − zÞ if z ≤ z0;

μmin þ aMð1 − zÞ2 if z > z0:
ð79Þ

Therefore we make the soft scale frozen as μmin as z → 1.
The parameters a and z0, where 1 − z0 ≪ 1, are determined
by z0 ¼ 1–2μmin=M and a ¼ M=ð4μminÞ to ensure that μpfS
is smoothly continuous at z0. We use μmin ¼ 0.5 GeV so
that Mð1 − z0Þ ¼ 1 GeV. The impact of nonperturbative
physics grows as z becomes larger than z0, and therefore μ0S
goes from 1 GeV to 0.5 GeV. The precise choice of μmin and
the estimation of its uncertainty would be possible from a
nonperturbative model or from a fit to experimental data, if
these become available. This is beyond the scope of this
paper, where we focus on perturbative resummation effects
near the endpoint.
We also modify the jet scale using the following profile

function3

μ0J ¼ μpfJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mð1 − rχÞμpfS

q
: ð80Þ

Table I shows the total decay widths of a squark withmass
M ¼ 1.45 TeV obtained at LO, NLO, NLLþ NLO, and
NNLLþ NLO accuracies, with the Wilson coefficient BL
normalized by BLðMÞ ¼ 1 at the scale M. Benchmark
neutralino masses are chosen in the interval 200 < Mχ <
1000 GeV. The scale uncertainty of NLLþ NLO prediction
turns out to be ∼18%, which is improved to ∼14% at

TABLE I. Total decay widths of a 1.45 TeV squark based on the LO, fixed-order (NLO), NLLþ NLO, and
NNLLþ NLO calculations, with the Wilson coefficient BL at the scale M taken to be BLðMÞ ¼ 1. Benchmark
neutralino masses are varied in the interval 200 < Mχ < 1000 GeV. The impact of scale uncertainties for NLLþ
NLO and NNLLþ NLO predictions are shown as well.

Mχ (GeV) LO (GeV) NLO(GeV) NLL+NLO (GeV) unc.ð%Þ NNLL+NLO (GeV) unc.ð%Þ
1000 7.93 7.87 7.45 �18.13 8.58 �14.81
900 10.90 10.85 9.92 �17.79 11.47 �14.20
800 13.96 13.90 12.40 �17.76 14.38 �13.94
700 16.97 16.91 14.79 �17.90 17.19 �13.90
600 19.81 19.74 17.01 �18.13 19.81 �13.98
500 22.39 22.30 18.98 �18.39 22.15 �14.12
400 24.62 24.50 20.65 �18.66 24.14 �14.29
300 26.43 26.29 22.00 �18.91 25.73 �14.46
200 27.76 27.62 23.23 �18.93 27.16 �14.49

3Equation (80) relates only the default jet and soft scales.
When we estimate the uncertainty due to the choice of scales, the
jet and soft scales are varied independently around these central
values.
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NNLLþ NLO. These are obtained by varying the hard, jet
and soft scales in the range from μ0H;J;S=2 to 2μ0H;J;S each
independently. Figure 3 shows the ratios of total decay
widths of NLLþ NLO and NNLLþ NLO predictions with
respect to the LO as a function of massM, while fixing (left)

Mχ ¼ 1 TeV and (right) Mχ ¼ 0.5 TeV. For both cases,
scale uncertainties become larger as M increases.
Normalized NLLþ NLO, NNLLþ NLO, and NLO

differential decay width distributions using μmin ¼
0.5 GeV are shown in Figure 4. The NLO distribution

FIG. 3. The ratios of NLLþ NLO (green line) and NNLLþ NLO (blue) total decay widths normalized to the LO result as a function
of mass M. The neutralino masses are fixed to Mχ ¼ 1ð0.5Þ TeV in the left (right) panel. The details on hard, jet, and soft scale
variations, giving the corresponding bands, are explained in Eq. (79) and Eq. (80), with μmin ¼ 0.5 GeV.

FIG. 4. Normalized NLLþ NLO (green), NNLLþ NLO (blue), and NLO (gray dash-dotted) differential decay width distributions,
using μmin ¼ 0.5 GeV. We fixed neutralino masses to (left panel) Mχ ¼ 1 TeV and (right panel) Mχ ¼ 0.5 TeV.
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diverges in the region z → 1, while the resummed NLLþ
NLO and NNLLþ NLO distributions are regulated at the
endpoint. The central value of NLLþ NLO distribution
tends to be more broadened compared to the
NNLLþ NLO, but their overall size of uncertainties near
the endpoint region are similar with each other.
Concerning the scale variations of the NLLþ NLO and

NNLLþ NLO distributions, we find that the dominant
uncertainties come from when we vary the soft scale
down to μ0S=2, while other scale variations give quite small
uncertainties. Note that μ0S varies from 5.8 GeV to 1.45 GeV
when z is changed from z ¼ 0.996 to z ¼ 0.999, and reaches
μmin ¼ 0.5 GeV at the very right end of panels in Fig. 4. The
large variation still present at NNLL for z > 0.999 can thus
be traced to this very low soft scale that is reached at the very
endpoint of the spectrum.

B. Precision studies of squarks and neutralinos at CLIC

The squark decay, q̃ → qχ, results in a two-body final
state at LO, which at higher orders becomes a multibody
final state due to additional hard or soft QCD radiation.
This can potentially affect the methods for precise mea-
surements of squark and neutralino masses. As an illus-
tration we take the impact of QCD corrections on such
measurements at CLIC [43–46], a future linear eþe−
collider designed to provide collision energies up to
3 TeV. If supersymmetric particles are light enough to
be produced at such machine, CLIC will provide a platform
for precision studies where their properties could be
determined with considerable accuracy [47–51]. In the
phenomenological analysis we focus exclusively on the
impact of QCD radiations in the squark decay. For a
realistic study other important effects, in particular the
initial state QED radiation, that results in the reduced
effective eþe− collision energy, need to be included.
For pair-produced squarks that decay into light quarks

and neutralinos,

eþe− → q̃q̃� → qχq̄χ; ð81Þ

an interesting technique to simultaneously measure squark
and neutralino masses, is to search for the edges in the event
distributions.Wewill discuss two suchmethods, (i) based on
edges in energy distribution of the light quark jets, E1 þ E2,
and (ii) a method based on the kinematic variable MC [52].
The numerical analysis is based on LO version of
MadG5_aMC@NLO [53,54] with PYTHIA 6 [55] showering,
but no hadronization, which was used to generate the event
chain in (81), utilizing theminimal supersymmetric Standard
Model (MSSM) implementation from [56,57]. The PYTHIA

events were clustered with the FASTJET [58] implementation
of the anti-kT algorithm [59], taking r ¼ 0.4 for the cone size.
For events to pass the selection cuts we require at least two
jets with pT > 50 GeV. To obtain the NLLþ NLO and
NNLOþ NLO (including two-loop-log terms) samples we

reweight PYTHIA events, on an event-by-event basis, accord-
ing to the d logΓ=dz normalized differential distributions in
Figure 4 for each of the decay chains. We first rewrite the
variable z in Lorentz-invariant form

z ¼
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 4rχ

q
2

with x ¼ 2
pχ · pq̃

M2
; ð82Þ

where pq̃ and pχ are four-momenta of a squark and a
neutralino respectively.4 We plug two z values (from two
decay chains) into the normalized NLLþ NLO and
NNLOþ NLO distributions in Fig. 4 using μmin ¼
0.5 GeV to obtain probabilities. Then we multiply the two
probabilities to obtain the weight for each event. In this way,
the simulated events acquire the correct NLLþ NLO and
NNLOþ NLO distributions in z variable, but are only
approximately NLLþ NLO and NNLOþ NLO in the other
phase space variables. The NLO samples, on the other hand,
cannot be obtained using the same reweighting method.
Since the NLO distributions in Fig. 4 diverge at z ¼ 1, the
probabilistic interpretation of the differential width distribu-
tions is not well-defined. As a result we do not include
reweighted NLO distributions. We derive results for two
benchmarks, setting squark mass to M ¼ 1.45 TeV, while
taking the lightest neutralino mass to be Mχ ¼ 1 TeV or
0.5 TeV, and assume a negligible squark decay width. In this
study, the beamstrahlung, initial state radiation, and detector
effects are not included.
For two body squark decays, (81), the minimal and

maximal light quark energy are directly related to M and
Mχ [60,61]

Eq;max ¼
ffiffiffi
s

p
4

�
1 −

M2
χ

M2

��
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2

s

r �
; ð83Þ

Eq;min ¼
ffiffiffi
s

p
4

�
1 −

M2
χ

M2

��
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2

s

r �
; ð84Þ

and thus in our case E1 þ E2 ∈ ½2Eq;min; 2Eq;max�, neglect-
ing the small squark boosts in the lab frame. At LO the
E1 þ E2 distributions start at 0.59 TeV and 0.98 TeV, for
Mχ ¼ 0.5 TeV andMχ ¼ 1 TeV, respectively. In Figure 5,
on the other hand, the NLLþ NLO and NNLLþ NLO
E1 þ E2 distributions extend well below these boundaries
(see the green and blue lines). This behavior is easy to
understand—the collinear radiation leads to nonzero jet
masses, or equivalently, to a d log dΓ=dz squark decay
distribution with most of the events having z < 1 (two-
body decays have z ¼ 1), see Fig. 4. This in turn means that
the jet energy is smaller than in the two body decay,
cf. (25), softening the E1 þ E2 spectrum. The effect is

4We keep track of the event history to access this information.
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present, but less pronounced, also at the upper edge of the
E1 þ E2 distribution. The original PYTHIA distributions
(before reweighting) are shown with gray lines.
The extraction of M, and Mχ from the E1 þ E2 distri-

bution is still possible, as indicated by the fact that the
E1 þ E2 distributions shifts significantly between the
Mχ ¼ 0.5 TeV and Mχ ¼ 1 TeV benchmarks. However,
one would need to use the full matrix element and not just
the edges, in this way controlling the shift of the edges due
to the soft and collinear radiations. In addition to the
NLLþ NLO and NNLLþ NLO decay width distributions
that we have calculated in the present manuscript, one
would also control other systematics and theoretical
uncertainties. The method, for instance, requires precise
knowledge of the center of mass energy, which can be
potentially distorted by beamstrahlung [62,63] and initial
state radiations (ISR), causing sizable uncertainties in the
measurements of the edges, see, e.g., Ref. [61].
An alternative mass measurement method exploits the

kinematic variable MC, invariant under contralinear boosts
of equal magnitude,

MC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEq;1 þ Eq;2Þ2 − ðp⃗q;1 − p⃗q;2Þ2

q
: ð85Þ

Here Eq;1, p⃗q;1 and Eq;2, p⃗q;2 are the energies and three-
momenta of the two final state quarks, respectively. The
maximal value of MC is reached when the two jets are
colinear. It is given by

Mmax
C ¼ M2 −M2

χ

M
; ð86Þ

showing that MC is sensitive to bothM and Mχ . The virtue
of theMC variable is that it does not depend on the center of
mass energy, and is therefore less susceptible to beam-
strahlung distortions [61]. Similarly to the E1 þ E2 dis-
tribution, the collinear and soft radiations cause the MC
spectrum to soften. However, as can be seen in Fig. 6, the
effect is more pronounced at the maximal value of MC,
which is exactly the quantity that enters the determination
of M and Mχ . Comparing the shift in the distributions for
Mχ ¼ 0.5 TeV and Mχ ¼ 1 TeV one sees that the LO
sensitivity to M;Mχ , Eq. (86), still applies to a good extent
also to the resummed distribution with MC constructed
using the two hardest jets. For instance, for the numerical
examples in Fig. 6 there are still appreciable numbers of
events within Oð5%Þ of Mmax

C , with the peak of the
distribution shifted by Oð10 − 20%Þ at NNLLþ NLO
compared to PYTHIA. This gives a rough sense of associated
errors on Mmax

C due to the softening of distributions in the
case of limited statistics available in an experiment.
However, once CLIC collects enough statistics a precise
determination of Mmax

C ðM;MχÞ using a matrix element
method based on resummed distributions can be attempted.
Finally, we show in Fig. 7 the PYTHIA (gray), NLLþ

NLO (green), and NNLLþ NLO (blue) missing energy
Emiss distributions. Here the Emiss is due to the two
neutralinos in the final state, and we do not include any
detector effect. Unlike the other two observables, E1 þ E2

and MC, the effect of resummations is negligible for the

FIG. 5. Distributions for the sum of energies of the first two hardest jets for Mχ ¼ 1 TeV (left) and Mχ ¼ 500 GeV with fixed
M ¼ 1.45 TeV (right).
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Emiss distribution. This is because the neutralino mass is too
heavy for the effect of recoiling against the soft gluon
radiations from the quark-sector to be significant.

VI. SUMMARY

In this paper we have studied QCD corrections to the
squark decay, q̃ → qχ. The large logarithms that arise in the
endpoint region, z → 1, were resummed using SCET up to

the NNLL accuracy. Away from the endpoint we computed
hard gluon radiations at NLO. Finally, we provided an
expression that smoothly interpolates between the NNLL
and NLO results, giving the NNLLþ NLO prediction for
the total decay width and the decay distribution, dΓ=dz.
The additional QCD radiation in the decay softens the
decay distributions for many observables. As a case study
for the phenomenological impact of higher order QCD
corrections we explored the methods for simultaneous

FIG. 6. The MC distributions for (left) Mχ ¼ 1 TeV and (right) Mχ ¼ 500 GeV with fixed M ¼ 1.45 TeV.

FIG. 7. The missing energy distributions for (left) Mχ ¼ 1 TeV and (right) Mχ ¼ 500 GeV with fixed M ¼ 1.45 TeV.
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measurements of squark and neutralino masses at a linear
eþe− collider based on

ffiffiffi
s

p ¼ 3 TeV CLIC. A majority of
mass measurement techniques are based on edges in
kinematic distributions. Such kinematic edges are modified
by having additional QCD radiation in the event. For
instance, the distribution of the combined energy of the
hardest two jets, E1 þ E2, now extends below the lower
boundary that is otherwise obtained in the case of two body
decays. Similarly, the distributions in the MC variable get
softened near its maximal value, which is precisely the
region used for the quark and neutralino mass extractions.
With limited available statistics in experiments this soft-
ening of the distributions would result in a shift in measured
squark and neutralino masses. The induced shift in the
masses could be estimated from a matrix element based
method using the NNLLþ NLO resummed decay distri-
butions that we provided. In a quantitative analysis one
would also need to include additional effects such as the
beamstrahlung, initial state radiation, and detector effects.
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APPENDIX A: DETAILS ABOUT
Δ-DISTRIBUTIONS

Consider function gðu; ϵÞ that is singular at ϵ ¼ 0 with
u ¼ 0, and define

AðϵÞ ¼
Z

1

0

dugðu; ϵÞ; ðA1Þ

where AðϵÞ can have ð1=ϵÞn poles. The gðu; ϵÞ function can
be rewritten in terms of delta function and plus distributions
as,

gðu; ϵÞ ¼ AðϵÞδðuÞ þ ½gðu; ϵÞ�þ; ðA2Þ

where the plus distribution is defined asZ
1

0

du½gðuÞ�þfðuÞ ¼
Z

1

0

dugðuÞ½fðuÞ − fð0Þ�: ðA3Þ

For application to our results it is useful to make a
change of variables, u ¼ hðzÞ, so that the singular point,
u ¼ 0, is now at z ¼ 1, while z ∈ ½a; 1�, i.e., hð1Þ ¼ 0 and
hðaÞ ¼ 1. When extracting the IR poles from the integral
over z one needs to carefully keep track all the factors due
to a change of variables. Consider now the integral

Z
1

a
dzfðzÞgðu; ϵÞ

¼
Z

1

0

du

�
−
dz
du

�
f̃ðuÞðAðϵÞδðuÞ þ ½gðu; ϵÞ�þÞ; ðA4Þ

where on the lhs gðu; ϵÞ ¼ gðhðzÞ; ϵÞ, while on the rhs
f̃ðuÞ ¼ fðh−1ðuÞÞ ¼ fðzÞ. Using Eq. (A3) we can rewrite
the above expression as

Z
1

a
dzfðzÞgðu; ϵÞ

¼
Z

1

0

du

�
−
dz
du

�
f̃ðuÞAðϵÞδðuÞ

−
Z

1

0

dugðu; ϵÞ
�
dz
du

f̃ðuÞ − dz
du

				
u¼0

f̃ð0Þ
�

¼
Z

1

a
dzfðzÞAðϵÞδð1 − zÞ=

				 dudz
				
z¼1

þ
Z

1

a
dzgðu; ϵÞ

�
fðzÞ − fð1Þ du

dz
=

�
du
dz

				
z¼1

��
; ðA5Þ

where in the last two lines u should be viewed as a function
of z, u ¼ hðzÞ. This means that in terms of the z-space
distributions we have

gðu; ϵÞ ¼ AðϵÞ
				 dudz

				
−1

z¼1

δð1 − zÞ þ ½gðu; ϵÞ�Δ; ðA6Þ

where we have defined Δ-distribution as

Z
1

a
dzfðzÞ½gðu; ϵÞ�Δ

¼
Z

1

a
dzgðu; ϵÞ

�
fðzÞ − fð1Þ du

dz


�
du
dz

				
z¼1

��
: ðA7Þ

Note that term in the bracket multiplying gðu; ϵÞ in the right
side tends to zero as z → 1.
In obtaining Eq. (72) in the main text, we used the change

of variables, u ¼ ð1 − zÞ=ð1 − x=zÞ, for which du=dz ¼
−ð1 − 2x=zþ x=z2Þ=ð1 − x=zÞ2, and du=dzjz¼1 ¼ −1=
ð1 − xÞ. A function gðu; ϵÞ ¼ 1=u1þϵ, can then be expressed
in terms of z-space distributions as
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1

u1þϵ ¼ −
1 − x
ϵ

δð1 − zÞ þ
�ð1 − x=zÞ1þϵ

ð1 − zÞ1þϵ

�
Δ
; ðA8Þ

The Δ-distribution can be further expanded by ϵ,

Z
1

ffiffi
x

p dz

�ð1 − x=zÞ1þϵ

ð1 − zÞ1þϵ

�
Δ
fðzÞ ¼

Z
1

ffiffi
x

p dz
1 − x=z
1 − z

�
fðzÞ − ð1 − 2x=zþ x=z2Þð1 − xÞ

ð1 − x=zÞ2 fð1Þ
�
þOðϵÞ: ðA9Þ

In calculating the Feynman diagrams (c) and (d) in Fig. 2, one encounters the following integral

Z
1

0

dα
α−ϵð1 − αÞ−ϵ
ð1 − uÞαþ u

¼ ðΓð1 − ϵÞÞ2
u 2F̃1

�
1; 1 − ϵ; 2 − 2ϵ;

u − 1

u

�
; ðA10Þ

which is divergent for u ¼ 0 and ϵ ¼ 0. For extraction of 1=ϵ poles we can use that

Z
1

0

duu−2−ϵ2F̃1

�
1; 1 − ϵ; 2 − 2ϵ;

u − 1

u

�
¼ −

1

4ϵ3Γð−2ϵÞ ; ðA11Þ

where the regularized hypergeometric function 2F̃1 simplifies at ϵ ¼ 0 to

2F̃1

�
1; 1; 2;

u − 1

u

�
¼ −

u ln u
1 − u

: ðA12Þ

Applying Eq. (A6) then leads to

u−2−ϵ2F̃1

�
1; 1 − ϵ; 2 − 2ϵ;

u − 1

u

�
¼ −

1 − x
4ϵ3Γð−2ϵÞ δð1 − zÞ −

� ð1 − x=zÞ2
ð1 − zÞðz − x=zÞ ln

ð1 − zÞ
ð1 − x=zÞ

�
Δ
þOðϵÞ: ðA13Þ

APPENDIX B: TWO-LOOP JET AND SOFT FUNCTIONS

In this Appendix we give the log enhanced two-loop contributions in jet and soft functions, Eqs. (63), (64). First, we
consider the moments of the jet function

J̃½N̄� ¼
Z

1

0

dzz−1þNJðQ2ð1 − zÞÞ: ðB1Þ

In the large N limit we can write

J̃½N̄� ¼ 1þ αs
4π

ðjð1Þ0 þ jð1Þ1 Lj þ jð1Þ2 L2
jÞ þ

�
αs
4π

�
2

ðjð2Þ1 Lj þ jð2Þ2 L2
j þ jð2Þ3 L3

j þ jð2Þ4 L4
jÞ; ðB2Þ

where Lj ¼ lnðμ2N̄=ðM2ð1 − rχÞÞÞ and N̄ ¼ N expðγEÞ. Note that in the second line of the equation we dropped the

nonlogarithmic term, ðαs=ð4πÞÞ2jð2Þ0 . The RG equation becomes

dJ̃
d ln μ

¼ γJJ̃ ¼ αs
4π

ðγ̂J;0 þ 2Γ0LjÞ þ
�
αs
4π

�
2

½γ̂J;1 þ γ̂J;0j
ð1Þ
0 þ Ljðγ̂J;0jð1Þ1 þ 2Γ0j

ð1Þ
0 þ 2Γ1Þ

þ L2
jðγ̂J;0jð1Þ2 þ 2Γ0j

ð1Þ
1 Þ þ 2Γ0j

ð1Þ
2 L3

j �; ðB3Þ

where we have use that γJ ¼ 2ΓCLj þ γ̂J, with γ̂J ¼
P

k¼0 γ̂J;kðαs=ð4πÞÞk. From this we can obtain the coefficients of the
α2s log terms in Eq. (B2),

jð2Þ1 ¼ 1

2
ðγ̂J;1 þ γ̂J;0j

ð1Þ
0 þ 2β0j

ð1Þ
0 Þ; ðB4Þ
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jð2Þ2 ¼ 1

4
ððγ̂J;0 þ 2β0Þjð1Þ1 þ 2Γ0j

ð1Þ
0 þ 2Γ1Þ; ðB5Þ

jð2Þ3 ¼ 1

6
ððγ̂J;0 þ 2β0Þjð1Þ2 þ 2Γ0j

ð1Þ
1 Þ; ðB6Þ

jð2Þ4 ¼ 1

8
ð2Γ0j

ð1Þ
2 Þ: ðB7Þ

In a similar way, we write for the soft function

S̃½N̄� ¼ 1þ αs
4π

ðsð1Þ0 þ sð1Þ1 Lsþ sð1Þ2 L2
sÞ

þ
�
αs
4π

�
2

ðsð2Þ1 Lsþ sð2Þ2 L2
s þ sð2Þ3 L3

s þ sð2Þ4 L4
sÞ; ðB8Þ

where Ls ¼ lnðμ2N̄=M2Þ, and the coefficients of the α2s log
terms are determined to be

sð2Þ1 ¼ 1

2
ðγ̂s;1 þ ðγ̂s;0 þ 2β0Þsð1Þ0 Þ; ðB9Þ

sð2Þ2 ¼ 1

4
ððγ̂s;0 þ 2β0Þsð1Þ1 þ AsðΓ0s

ð1Þ
0 þ Γ1ÞÞ; ðB10Þ

sð2Þ3 ¼ 1

6
ððγ̂s;0 þ 2β0Þsð1Þ2 þ AsΓ0s

ð1Þ
1 Þ; ðB11Þ

sð2Þ4 ¼ 1

8
ðAsΓ0s

ð1Þ
2 Þ; ðB12Þ

where As ¼ −1, γS ¼ AsΓCLs þ γ̂S, and γ̂S ¼P
k¼0 γ̂S;kðαs=ð4πÞÞk.
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