
 

Improved bounds on heavy quark electric dipole moments
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New bounds on the electric dipole moment (EDM) of charm and bottom quarks are derived
using the stringent limits on their chromo-EDMs. The new limits, jdcj < 1.5 × 10−21 e cm and
jdbj < 1.2 × 10−20 e cm, improve the previous ones by about 3 orders of magnitude. These indirect
bounds have implications for different models of new physics, including two-Higgs-doublet, leptoquarks,
and supersymmetry models.
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Searches for electric dipole moments (EDMs) are cur-
rently setting stringent constraints on models of new
physics (NP) with additional CP-violation sources [1–5].
Since the standard model predictions are well below the
current experimental accuracy, any signal of a nonzero
EDM would be a clear sign of NP. Moreover, the persisting
B-anomalies suggest a nontrivial flavor structure in NP
models, which can enhance the heavy quark EDMs [6,7].
Due to their very small lifetime, direct EDM searches on
heavy-flavored hadrons represent an experimental chal-
lenge and only indirect limits on heavy quark dipole
couplings have been obtained to date. However, this
situation may change with the new proposals to search
for the EDM of charmed and bottom baryons at the LHC
[8–11]. In this paper, a new approach for setting indirect
bounds on quark EDM couplings is presented. By exploit-
ing the mixing of operators under the renormalization
group and using current constraints on the chromo-EDM
of charm and bottom quarks [12,13], we extract new
bounds on their corresponding EDMs that improve the
current ones by several orders of magnitude.
For that purpose, let us consider the following flavor-

conserving CP-violating effective Lagrangian:

Leff ¼
X2
i¼1

X
q

Cq
i ðμÞOq

i ðμÞ þ C3ðμÞO3ðμÞ; ð1Þ

where the index q runs over the relevant flavors at the
chosen renormalization scale. The effective operators are
defined as

Oq
1 ≡ −

i
2
eQqmqq̄ασμνγ5qαFμν;

Oq
2 ≡ −

i
2
gsmqq̄ασμνTaγ5qαGa

μν;

O3 ≡ −
1

6
gsfabcϵμνλσGa

μρG
bρ
ν Gc

λσ; ð2Þ

where Qq and mq are the quark charge and quark mass,
respectively. The quark EDM, chromo-EDM, and the
usually defined coefficient ωðμÞ of the Weinberg operator
are related to the Wilson coefficients by

dqðμÞ ¼ eQqmqðμÞCq
1ðμÞ;

d̃qðμÞ ¼ mqðμÞCq
2ðμÞ;

ωðμÞ ¼ −
1

2
gsðμÞC3ðμÞ: ð3Þ

When a heavy quark is integrated out, its chromo-EDM
gives a finite contribution to the Weinberg operator [13–
15], which is strongly constrained from the limits on the
neutron EDM. This allows to bound the quark chromo-
EDMs to be [12,13]

jd̃cðmcÞj < 1.0 × 10−22 cm;

jd̃bðmbÞj < 1.1 × 10−21 cm: ð4Þ

Attempts to constraint heavy quark EDMs have followed
different strategies: flavor-mixing contributions into light
quark EDMs [12,16,17], b → sγ transitions [12], mixing
into the electron EDM via light-by-light scattering dia-
grams [17], and tree-level contributions to the eþe− → qq̄
total cross section [18,19]. These approaches yield results
between 10−13 and 10−17 e cm, the most restrictive ones
being [12,19]
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jdcðmcÞj < 4.4 × 10−17 e cm;

jdbðmbÞj < 2.0 × 10−17 e cm: ð5Þ

In this work, we follow a new strategy that relates the EDM
and chromo-EDM operators in order to find new limits on
dq from the already available strong bounds on d̃q. This
relation is done in a model-independent way using the
renormalization group equations, which mix the effective
operators when the energy scale is changed. The relevant
diagrams include photon loops which have been neglected
in previous works due to its small size compared with pure
QCD corrections. Nevertheless, they represent the first
nonzero contribution to the mixing we are interested in.
The evolution of the Wilson coefficients is given by

d
d ln μ

C⃗ðμÞ ¼ γ̂TC⃗ðμÞ; ð6Þ

where C⃗≡ ðCq
1; C

q
2; C3Þ and γ̂ is the anomalous dimension

matrix. This matrix can be expanded in powers of the QCD
and QED coupling constants, αs and αe, respectively,

γ̂ ¼ αs
4π

γð0Þs þ
�
αs
4π

�
2

γð1Þs þ αe
4π

γð0Þe þ � � � ; ð7Þ

where γð0Þs and γð1Þs represent the one- and two-loop QCD

corrections, while γð0Þe encodes the one-loop QED correc-
tion [14,20–23]. At Oðαs2Þ, the quark EDM does not mix
into the chromo-EDM and the first contribution only
appears at OðαeÞ from photon-loop diagrams as shown
in Fig. 1. Applying the standard techniques for the
computation of anomalous dimensions [24,25], we obtain

the matrix element ðγeÞð0Þ12 ¼ 8, in agreement with the recent
calculation in [23].
Solving Eq. (6) by adding this contribution, the evolution

of the charm and bottom chromo-EDMs reads

d̃cðmcÞ ¼ −0.04
dcðMNPÞ

e
þ 0.74d̃cðMNPÞ; ð8Þ

d̃bðmbÞ ¼ 0.08
dbðMNPÞ

e
þ 0.88d̃bðMNPÞ; ð9Þ

where we have taken MNP ∼ 1 TeV as the scale of NP. In
this result, we have neglected the mixing of the Weinberg
operator into the chromo-EDM due to the very strong
bounds on ω from constraints on the neutron EDM [3,26].
The mixing of d̃q into itself, described by the second term
on the right-hand side of Eqs. (8) and (9), has leading
contributions from pure QCD corrections, then corrections
of OðαeÞ can be safely neglected.
Using the bounds on the chromo-EDMs at the low scales

quoted in Eq. (4), the parameter space on the d̃q − dq plane
is constrained as shown in Fig. 2. Strong fine-tuned
cancellations between the two pieces of Eqs. (8) and (9)
result in an allowed region extending along a straight line
which is unlikely to be realized in NP models.
Hence, we assume constructive interference between the

EDM and chromo-EDM contributions at the NP scale to
extract bounds on dqðMNPÞ. Then, using the evolution of
the EDM operator to bring these bounds down to the quark

FIG. 1. The quark EDM coupling (blue square) induces a
chromo-EDM through photon-loop diagrams. These represent
the leading contribution to the matrix element ðγeÞð0Þ12 .

FIG. 2. Bounds on the charm (bottom) chromo-EDM constrain
the d̃c − dc (d̃b − db) plane to the allowed blue area. The narrow
region results from strong cancellation effects that are not present
in the case of constructive interference, displayed in orange.
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mass scale, the new bounds on the charm and bottom quark
EDMs are

jdcðmcÞj < 1.5 × 10−21 e cm;

jdbðmbÞj < 1.2 × 10−20 e cm; ð10Þ

which improve the previous ones quoted in Eq. (5) by 3 and
4 orders of magnitude, respectively. This approach does not
improve the current bounds on the top quark EDM [27,28]
given that the limit on its chromo-EDM is of similar size
[29]. These results directly depend on the chromo-EDM
bounds, in Eq. (4), which are obtained from the neutron
EDM by neglecting cancellations between the light quarks
(C)EDM and the Weinberg operator. The large uncertainty
on the Weinberg operator contribution to the neutron EDM
is treated conservatively by taking the smallest value within
the confidence interval. We should point out that using the
mercury EDM provides better bounds by about a factor 2
[4,30]. However, given the additional sources of uncer-
tainty together with the cancellation effects that may arise
between the several contributions to the mercury EDM, we
consider only the direct experimental bounds on the
neutron EDM. Note also that higher values of the NP
scale yield less conservative results, e.g., a 30% stronger
bounds forMNP ¼ 10 TeV. The inclusion of dimension-six
four-quark operators would add extra terms in the right-
hand side of Eqs. (8) and (9). The resulting cancellation
effects are nevertheless smaller than the self-correction of
the chromo-EDM, shown in Fig. 2.
In the following, we evaluate the effect of the new

bounds for the charm and bottom quark EDMs on the
parameter space of different theories beyond the standard
model (BSM).
In the context of minimal flavor violation, the EDM of

different quarks only differ by the quark mass. When this
dependency goes as dq ∝ mq, the strong bounds on the
light quark EDMs, jdu;dj ≲ 10−25 e cm, impose stronger
constraints than our bounds. However, if the quark EDM
scales with larger powers of the quark mass, the heavy
quark EDMs are greatly enhanced and become competitive.
This is the case of the two-Higgs-doublet model

(2HDM), which generates fermion EDMs via the
Yukawa couplings of new scalars. To avoid flavor-changing
neutral currents at tree level, which are very constrained at
the TeV scale, we restrict the discussion to the 2HDM with
flavor alignment [31–33] in which the Yukawa matrices
Yd;u are proportional to the quark mass matrices,

Yd ¼ ςdMd; Yu ¼ ς†uMu; ð11Þ

where ςu;d are complex numbers and contain the CP
violation. In this type of models, the quark EDMs arise
at one-loop level mediated by neutral (S0) or charged
scalars (S�) (see Fig. 3), giving contributions proportional

to m3
q=M2

S0 or mqm2
q0=M

2
S�jVqq0 j2, respectively, where V is

the Cabibbo-Kobayashi-Maskawa matrix. These mass fac-
tors suppress the light quark EDMs, which are actually
dominated by two-loop Barr-Zee contributions as shown in
Fig. 3. The EDM of heavy quarks are much larger and, even
with weaker experimental bounds, they can be more
restrictive.
Among these models, we shall consider the contribution

to the bottom quark (chromo-)EDM by the color-octet
scalars appearing in the so-called Manohar-Wise (MW)
model [34]. The relevant one-loop diagrams were com-
puted in [35] and are dominated by the exchange of a
charged scalar with mass MS� . The constraints on this
model from the experimental results on the B0

s − B̄0
s

mixing, B0
s → μμ, or B0 → Xsγ were analyzed in [36].

Among them, the inclusive branching ratio BðB → XsγÞ
dominates the constraints on the jςuςdj −MS� plane. As it
is shown in Fig. 4, the bounds on the bottom EDM derived
above are more restrictive than this observable and even
surpass the constraining power of the chromo-EDM for
MS� ≳ 1.5 TeV. This is always the case for the regions of
parameter space with nonzero phases of CP viola-
tion, argðςuς�dÞ≳ 15o.

FIG. 3. Diagrams with new scalars (dashed lines) contributing
to the quark dipole moments. The external wavy lines represent
photons (gluons) for the contribution to the quark EDM (chromo-
EDM), while the internal one can be either a photon, gluon, or
weak gauge bosons.

FIG. 4. Constraints on the parameter space of the MW model.
The allowed regions are below the lines. The lower limit on the
mass range follows from [37].
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In recent years, a series of measurements hinting at the
violation of lepton flavor universality have motivated new
physics extensions with nonuniversal couplings between
the three families. When the new CP-violation sources are
specific to the quark family, the EDM of each quark carries
independent and complementary information that should
be used in complete phenomenological analyses of such
models.
An example of family nonuniversal CP-violating inter-

action is found in models with scalar leptoquarks. These
models are currently receiving a lot of attention as they are
able to explain naturally the deviations in b → cτν̄τ
transitions [6,38–42]. The additional charged currents
contributing to this process are parametrized through the
coefficient gSL . Combining the experimental values of RD

and RD� results in allowed regions for gSL away from the
real axis [43] which induce a sizeable charm EDM [7]. If no
signal is observed in the planned neutron EDM experi-
ments with sensitivities of few times 10−27 e cm [1], the
resulting upper limits on the charm EDM (extracted with
the method presented here) will rule out this model as an
explanation for the B-anomalies. In fact, the authors of [7]
already draw exclusion regions due to the charm EDM.
Their results are nevertheless based on lattice QCD
calculations for the strange quark tensor charge, whose
translation into the charm quark is highly uncertain.
The next BSM extension we discuss is the minimal

supersymmetric standard model (MSSM). Among the large
number of free parameters that it contains, there are many
new sources of CP violation. It is customary to restrict
phenomenological analyses to just two sources: the trilinear
couplings A and the μ-term (see definitions in [44]). Since
the fermion EDMs appear at one-loop level, these param-
eters are strongly constrained by the neutron and electron
EDMs [3]. Nevertheless, in more general cases, the A
coupling can be a 3 × 3 matrix whose elements are specific
to the quark family. In particular, the charm quark EDM
accesses the element Ac predominantly via gluino loops
[45]. Updating the numerical analysis of [45] by taking into
account the LHC restrictions on the masses [46], we still
find values of dc ∼ 10−20 e cm for scharm masses
Mc1ðMc2Þ of 1(2) TeV, gluino mass mg̃ ¼ 1.6 TeV, and
argðAcÞ ¼ π=4. These regions of the parameter space are
therefore excluded and the new bounds should be included
in more detailed analyses of this model.
Beyond the MSSM, there are new CP-violating sources

that can generate contributions to quark EDMs. An
example of these is the MSSM with gauged baryon and
lepton numbers (BLMSSM). Scaling the results of [47]
accounting for the top quark EDM bounds [27,28] we

obtain values of dc reaching 10−19 e cm, i.e., 2 orders of
magnitude above the new upper limit in Eq. (10). As a
consequence, the new heavy quark EDM bounds impose
stringent constraints on the additional CP-violating phases
of the BLMSSM. During the publication process of this
paper, a detailed analysis of the BLMSSM demonstrated
the restrictive power of the new bounds on this model [48].
In the R-parity-violating supersymmetry, the EDM of
heavy fermions are the only EDM observables that directly
access the bilinear combinations of the third quark gen-
eration Imðλi33λ0�i33Þ, for i ¼ 1, 2 [49]. Nevertheless, the
leading contribution appears in this model at two-loop level
[50] and it is suppressed in comparison with other super-
symmetric extensions. For this reason, the bottom EDM is
not yet competitive with other observables when consid-
ering the effect of one coupling λijj at a time, but it could be
used in global analyses to restrict extended regions of fine-
tuned cancellations.
In the literature, there exist other models giving pre-

dictions on heavy quark EDMs at the level of our bound or
higher. As exemplary, we found works based on composite
Higgs [51] and 2HDM with nonuniversal extra dimensions
[52]. We will not comment further on them.
In summary, we have presented a simple way to access

the quark EDM through the corresponding chromo EDM.
The method relies on the inclusion of photon-loop correc-
tions OðαeÞ in the renormalization group equations, which
are often overlooked due to its small size. Nevertheless,
these corrections provide a new window to access effective
operators which are otherwise unconstrained. We derived
new upper limits for the charm and bottom quark EDMs
and showed the potential of these operators to constraint the
parameters of NP models. These limits will provide
valuable input for detailed phenomenological analyses of
BSM physics.
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