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Exploiting CP asymmetries in rare charm decays
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We analyze patterns from CP-violating new physics (NP) in hadronic and semileptonic rare charm
|Ac| = |Au| = 1 transitions. Observation of direct CP violation in hadronic decays, as in AAp, provides
opportunities for ¢ - uf"¢~, £ = e, u transitions, and vice versa. For the concrete case of flavorful,
anomalyfree Z'-models a NP-interpretation of AA.p suggests measurable CP asymmetries in semi-
leptonic decays such as D — z£+¢~ or D — zaf"¢~. Conversely, an observation of CP violation in
¢ — uete” or ¢ — uutp~ decays supports a NP—interpretation of AAcp. Flavorful U(1)—extensions
provide explicit U-spin and isospin breaking which can be probed in patterns of hadronic decays of charm

0.0

mesons. We work out signatures for CP asymmetries in D° — zt7z~, D° - K*K~ and D° — %2°,
D — 7% decays, which can be probed in the future at LHCb and Belle II and provide further

informative cross checks.

DOI: 10.1103/PhysRevD.101.115006

I. INTRODUCTION

Suppressions of standard model (SM) amplitudes due to
accidental symmetries provide useful directions for
searches for new physics (NP). Among the salient features
of |Ac| = |Au| = 1 transitions within the SM are a strong
Glashow-Iliopoulos-Maiani (GIM)—suppression and small
CP violation. Hierarchies of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix V suggest SM CP violation at
the order of Im(VZ,V,;,/ (Vi V) ~ 7 x 1074, somewhat
below LHCb’s observation of CP violation in charm [1]

AAcp = Acp(KTK™) = Acp(ntn™)
= (—15.4 £2.9) x 107, (1)
where

I(D° > f)-T(D° > f)
I(D% = f) +T(D° > f)’

Acp(f) = 2)

and the corresponding world average [2]

AAHELAY — (_16.4 4 2.8) x 107, (3)
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While this leaves room for NP, due to the sizable uncer-
tainties of hadronic D—decays, Egs. (1) and (3) provide no
clear-cut sign of NP. On the other hand, AAp as large as
the permille level is nontrivial to achieve in concrete
models of NP. Correlations with other observables in
charm and the down-quark sector exist, which are subject
to partly very strong flavor constraints. For recent works,
see Refs. [3—12]. Turning this around, the study of patterns
using different sectors can hence disfavor or support a
particular AAcp interpretation, and vice versa.

In this work we pursue a global analysis of CP asymme-
tries in rare hadronic and semileptonic charm decays. Our
focus is on NP patterns induced by four-fermion operators.
Links via dipole operators between hadronic and semi-
leptonic CP asymmetries in D — z£* ¢~ decays have been
pointed out by Ref. [13]. We work out predictions and
correlations for anomalyfree Z'—extensions of the SM with
generation-dependent U(1)'—charges, see Refs. [14-20] for
recent phenomenological works. Flavorful charges can give
rise to explicit isospin and U—spin breaking effects. It is our
goal to work out corresponding experimental signatures for
hadronic charm decays, exploiting yet another SM null test
strategy in charm [21].

This paper is organized as follows: In Sec. Il we briefly
review CP violation in hadronic D—decays, D-mixing and
semileptonic ¢ — u#* £~ transitions. In Sec. Il we analyze
effects of anomalyfree U(1)—extensions with generation-
dependent charges in hadronic 2-body D—decays and how
D-mixing constraints can be evaded to address AAcp.
Patterns among CP asymmetries in D° — 777",
D’ - K*K~, D° - 72%2° and D* — 272° decays are
worked out in Sec. IV. Correlations with CP asymmetries
in rare semileptonic decays are studied in Sec. V. We

Published by the American Physical Society
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conclude in Sec. VI. Auxiliary information is given in
several appendices.

II. CP PHENOMENOLOGY IN CHARM

We review CP violation in hadronic D-decays
(Sec. 1T A), D-mixing (Sec. IIB) and semileptonic
¢ — ut*¢" processes (Sec. I1C).

A. Direct CP violation in D - n*n~ K*K~
The single-Cabibbo-suppressed (SCS) D°(D°) decay
amplitudes A, (Ay) to CP eigenstates f can be written as

Ap = ATeT[1 + ryeirtdn)],
Ar = nep Afe 1[I+ ryelr=os)], (4)

where ncp = £1 is the CP eigenvalue of f. The dominant
SCS “tree” amplitude in the SM is denoted by A}eii‘ﬁfT , and
ry parametrizes the relative magnitude of all subleading
amplitudes. Inserting Eqgs. (4) into Eq. (2), in the limit of
rp <1, yields

Acp(f) = =2rpsiné;singy + O(r7), (5)

requiring both strong (5;) and weak (¢5) relative phases for
a nonvanishing direct CP asymmetry. Beyond the SM the
SCS D° decay amplitude can be written as

Ap= " Ag(ADgy + AP, (6)

q=d,s,b

where the first term corresponds to the SM contribution
with CKM-factors 4, = Vi, V,, made explicit, and the
second term accounts for NP. Using CKM unitarity
Ag + A3+ 4, =0 and writing for the final states K™K~
and 7"z~ in the subscripts f = K and f = &, respectively,
one finds

_ s(d) d(s)
AK(H) = As(a) (‘AK(ﬂ) - ‘AK(n))SM
d(s)
+ Ay (AR = Ak)sm T ARl (D)

Here, the first term is the SCS contribution and the second
one corresponds to “penguin” contributions with small
Wilson coefficients which are strongly CKM-suppressed
with respect to the SCS one by 4,,/4, 4. The last term Azl()”)
encodes NP contributions. Using Eqs. (4), (5) and (7), we
obtain

2
|/1s,d|

AACP - AAE‘I\}/)I - ArNP’ (8)

1
where

"The plus sign between the pion and kaon amplitudes in
Eq. (9) comes from A; = —4; + O(4,).

ArNP = ry sin Sk sin g + 7, sin S, sin ¢, 9)
and

A%P L AEP
(‘A;( - 'A;i()SM ’ " (Ag - A;YI)SM ’

rg =

(10)

and r, ¢ < 1. The strong phases §, x are associated with
the NP amplitudes. Since we are interested in maximal NP
contributions, we employ in our numerical analysis
siné, x ~ 1. Note, there is a priori no information on
the sign of ArNP as it depends on products of strong and
weak phases. The branching ratios of the D — f modes are
dominated by their respective SM contributions. We can

}(53) _A§{2>)SM| from data, see

Appendix A for details.

therefore extract |(.A

B. CP violation in D’-D° mixing

Here we consider constraints from charm meson mixing.
The D°-D° transition amplitude can be written as

- i
(DOIHE= D) = My, _EFIZ’ (11)

which can be parametrized in terms of the following
physical quantities

M r M
M| )’12:%, qﬁlz—arg(?';). (12)

F ’

X12:2

Here, x;, and y;, are CP conserving, while ¢;, is a phase
difference that results in CP violation in mixing. A global
fit from the HFLAV collaboration [2] results in

x5 €[0.22,0.63]%,

yi2 € [0.50,0.75]%,

¢ € [-2.5°,1.8°]. (13)
In absence of a sufficiently controlled SM prediction of the

mixing parameters, we require the NP contributions to
saturate the current world averages (13),

X <X, Xl singly <xppsingp.  (14)

C. CP violation in ¢ - u#*¢-

CP violation in semileptonic rare charm decays arises
from complex-valued Wilson coefficients CZ, C¢“" in the
effective Hamiltonian [18],

4G
Her D — 2 22 N (€107 + CO70(7) + Hee., (15)

V2 47 54,

with the operators

115006-2
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ng(/) = (L ryrucrir) (Er'E), (16)
010" = (aywyvucrw) Er'rst). (17)

Here, a, denotes the fine structure constant, G is Fermi’s
constant and L = (1 —y5)/2,R = (1 +y5)/2 are chiral
projectors. CP violation has not been observed in semi-
leptonic |Ac| = |Au| =1 decays yet. Available measure-
ments for CP asymmetries in rare semileptonic charm
decays are at the level of few to O(10)% [22], which is

close to possible NP effects [13,18,21].
Branching ratio and high—p; data imply the following

constraints, barring cancellations [23,24]
cy < 1.

csl) <3, (18)

stronger for muons than for electrons.

III. A FLAVORFUL Z' IN CHARM

We work out NP—effects in charm from anomalyfree
U(1)'—extensions of the SM with fermion charges F,, that
depend on the generation, i =1, 2, 3. Specifically,
SM fermion multiplets plus possibly right-handed neutri-
nos y = Q,u,d,L,e,v in representations of SU(3). x
SU(2), xU(1)y x U(1)" can be characterized, in that
order, as

Q;=(3.2,1/6,Fy.),

di - (3, 1, _I/S’Fdi)’
e;=(1,1,-1,F,),

u; = (3.1,2/3,F,),
Li — (1,2,—1/2,FL,,),

v;=(1,1,0,F,). (19)
Concrete models with F, —assignments that fulfill the
anomaly-cancellation conditions and induce ¢ — u flavor
changing neutral currents (FCNCs) are given in Table L.
Related models (models 1 to 8) have been studied pre-
viously in the context of semileptonic rare charm decays in
Ref. [18], to which we refer for further details. The models
in Table I satisfy Y} (Fo —F. +2F,—F;—F,)=0
and therefore avoid kinetic mixing at one-loop [25].

TABLE 1.

In Sec. IIT A we discuss couplings of the fermions to the
Z'-boson, which arises from the U(1)'-group. We assume
the Z' to have a mass M, of the electroweak scale or
heavier. We discuss the induced ¢ — u four-quark oper-
ators and Wilson coefficients in Sec. III B. In Sec. III C we
discuss how to bypass constraints from D°~D° mixing. We
work out predictions for AA-p in Sec. III D.

A. Z-FCNCs

The Z'—couplings relevant to charm FCNCs can be
written as

Ly D (giuary*c,Z, + gg’igy*cgZ, +H.c.)

+ gidpytd,Z), + ghdry'drZ,,

+ 91507512, + GrSRY"SRZ,,

+ G Lz, + g CRY R, (20)
with £ = e, u, 7. The flavor diagonal couplings gi‘fR and
g7’ are given as the U(1)'—gauge coupling g, times the
associated charge F,.

The |Ac| = |Au| = 1 FCNC couplings gj; are gener-
ated via rotations from the gauge to the mass basis, and are
in general complex-valued. Four different unitary rotations
exist in the quark sector, corresponding to the left-handed
(LH) and right-handed (RH) ones both for up- and
down-type quarks. The product of LH up- and down-type
rotations gives the CKM-matrix. In order to evade the
severe constraints in the kaon sector, we assume the CKM—
matrix to predominantly stem from the LH up-type rota-
tion, implying

91" ® gadckmAF L. AF, =Fg,—Fg,. (21)
where Acxy ~ 0.2 denotes the Wolfenstein parameter and
we used Acxy < 1. In contrast, the RH rotation is a priori
unconstrained and induces

g4 = gy sin0, cos 0, ePx AFy, (22)

Sample solutions of an anomalyfree U(1)—extension of the SM + 3vy with Fp, = F,. Models 2, 4 and 5 are taken from

Ref. [18]. Models 9 and 10 feature F,, = 0. In general, the ordering of generations is arbitrary due to permutation invariance. However,
our analysis explicitly uses the ordering stated here, that is, the ith entry corresponds to the ith generation. Model 10y is the same as

model 10 with the smallest lepton-coupling to muons.

Model FQi Fui Fdi FL,‘ FC’; FD,

2 3 3 -6 -8 4 4  -10 10 0 -6 5 1 0 0 0 0 0 0
4 -1 -1 2 -1 2 -1 0 0 0 -1 1 0 -2 2 o -2 -1 3
5 -1 -1 2 -1 2 -1 2 -1 -1 -1 1 0 -1 1 0 0 0 O
9 0 0 0o -11 =2 13 7 7 -14 -8 3 5 —6 16 -10 0 0 0
10 0 0 0 -13 6 7 -1 -14 15 -15 15 0o -14 18 —4 0 0 0
10 0 0 0 -13 6 7 -1 -14 15 -15 o 15 -14 -4 18 0 0 0

115006-3
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where 6, is the up-charm mixing angle for the up-quark
singlets, AFr=F, —F, and ¢y the corresponding
CP-phase.

B. Four-fermion operators and matching

Generation-dependent quark-couplings result in addi-
tional operators in the effective weak Hamiltonian beyond
the ones considered usually, i.e., Ref. [26]. At the scale

my, < p < UEWK,
|Ac|=1
Heff

(;F ~(1) 2 ()
D —= E C " 4+ H.c., 23
\/§ i ' Ql ( )

with the new operators

0, = (uc>v_A§quu,.,d,.<aq>v+A, (24)
0y = <uc>v+A;FQ,.<aq>v_A, (25)
05 = (uacﬂn_AquFu,.,d,.(aﬁqa>V+A, (26)
04 = (i, v+Azq:FQ (@54)v-a- (27)
0y = <ac>V_AquFQ;<qq>V_A, (28)
Qh = <ac>V+A;Fu,.,d,.<aq>v+A, (29)
D1 = <aacﬁ>v_A2quQ,.(c‘1ﬂqa>v_A, (30)
Ol = <ﬂ>ZF (@pqa)vear (1)

where (V £ A) refers to the Dirac structures y,(1 % ys),
q =u,c,d,s,band a, § are the color indices. The strength
of these operators is given by their respective Wilson
coefficients C;, C which depend on both heavy masses
and weak phases responsible for CP-violating phenomena.
The Wilson coefficients induced by the Lagrangian (20)
read

- V2 94
Cy (M4 Co(Mz) = g 5
7( Z) 9( Z) GF L 4M2
s \/§ ue 94
Ci(Mz) = Co(My) = G—FQR Ty
¢y (Mz) = Cly(My) = 0. (32)

They are evolved from M, to m, using the renormalization
group equations (RGEs) with top and bottom quarks
integrated out at their respective threshold scales. Finite

values of C’g) and C (13 arise from the RGE mixing at the
charm mass scale, see Appendix B for details.

C. D’ -D" mixing constraints

Rare |Ac| =|Au| =1 decays are induced in the
Z'-models by operators with coefficients proportional to
g;¢ or gg in Eq. (32). These couplings induce at second
order DD mixing (32), and are constrained as

M, \2
(97)* + (9% )* = Xg{g| < 6 x 1077 . (33)
TeV

with X ~ 20 for M, in the TeV range [18]. This constraint
on xp, can be evaded if both g7 and g§° are present, for
either g§° ~ X gl or gi° ~ 1/Xg. However, in these cases
the CP phases have to be aligned Arg(g}®) ~ Arg(g%‘) to
fulfill Eq. (33). As kaon constraints force Arg(g}©) to be
SM-like, CP-violating effects in charm become negligible.

We therefore choose g} = 0, which can be achieved
with AF; = 0. The models in Table I satisfy for this reason
Fo, = Fy,. Consequently, we focus on FCNC:s in the up-
singlet sector (22), that is, g° # 0 and complex.

If there is a single coupling only, the above mixing
constraint on x;, becomes

M
| < 8 x 1074 Z ,

A=L.R (34

The even tighter constraint (14) for CP-violating couplings
on x|, sin ¢, can be bypassed for Arg(g%) = ¢ around
/2 (or 37/2), as the CP phase of the mixing amplitude is
twice the one of the |Ac| = |Au| =1 FCNC [26]. The
contributions to AA.p become maximal while simultane-
ously mixing constraints are satisfied. This interplay of ¢
versus the coupling g,/ M, (TeV~!) for model 2 and fixed
0, =1 x 107 is illustrated in Fig. 1. The red (hatched)
area corresponds to the D°~D° mixing constraints on the
imaginary part x,, sin ¢;, (absolute value x;,). Z'-induced
values of AAcp are shown in green. Indeed the region
around ¢z ~ 7/2 is viable and can induce AANE ~ 1073,

D. Z'—effects for AAcp

Taking into account the running from M, to m,., details
of which are given in Appendix B, we find that AA-p can
be written as

AAT, = ATp(KTK™) — ATy (x 7). (39)

with

115006-4
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FIG. 1. |AAX?| (green bands) versus D°-D° mixing exclusion
regions (14) on the imaginary part xi, sin ¢, (red area) and the
absolute value x,, (red hatched area) in the ¢g—gs/ M, (TeV™!)
plane for 6, =1x 107 F, y—charges are as in model 2, see
Table I. The golden star indicates a benchmark point (40), see text
for details.

2
_ g
AEE(KJFK ) NM—éeuAFR[CKFQZ +dgF,],

Z
%
Agg(ﬂ' T )NizeuAFR[cﬂFQl + dler]}v (36)
Z/
where
X X
cx =Eri(me, My), Co=—="Eri(m.,My),
ag ay
1 1
dg = —ry(m., My), dy = =—ra(me, Mz). (37)
ag ay

As explained in the previous Sec. III C, we analyze models
with ¢4 =0 and Im(g%°) large. In Eq. (36) we use
siné, g singpg ~ 1 and anticipated 6, < 1. The parameters
ck.» and d , depend on the chiral factors yg , at the charm
scale, the LO QCD running functions r (m,., Mz ) and the
tree-level contributions ag ,, which are determined exper-
imentally. Further details can be found in Appendixes A-D.
Numerical values of ¢k, and dg , for different Z' masses
are displayed in Table II.

In Fig. 2 we show sizable Z'—contributions to AAN, and
D°-D® mixing constraints (red area) in the plane of
gs/My (TeV™") and the parameter AFp = AFg6, for
models 2, 5, 9 and 10(u). The corresponding plot of model
4 is not given in Fig. 2 because it exhibits very similar
bands as model 5 due to identical F , and AF, as shown
in Table I. Constraints from branching ratios of (semi-)
muonic D—decays (dash-dotted and dotted lines), here for
gi¢ =0, [18]

TABLEIL Parameters cx ., dg , and d, o in (TeV)? as defined
in Eq. (37) and Eq. (53), respectively, for different Z' masses.
My [TeV] 2 4 6 8 10
Cx 1.133 1.217 1.266 1.302 1.330
dg —0.046 —0.054 -0.058 —0.061 —0.063
Cr —1.446 —-1.553 -1.616 —-1.661 —1.698
d, 0.058 0.068 0.074 0.077 0.080
dy 0.071 0.083 0.090 0.094 0.098
do 0.077 0.090 0.097 0.102 0.106
gk 1/ () + (gR')?

. 2
= gi|AFg] F%2+F§2§OO4< V)’ (38)

9% (9" = 9]

— GlaR(F, - P 00335 ) (9

start to be competitive with mixing constraints close to the
nonperturbativity region (black region). This is particularly
relevant for model 9 and 10, which exhibit large couplings
to leptons. To evade the muon constraints and allow for
slightly larger values of AAcp we also consider model
10p, which is the same as model 10 with the lepton-charges
ordered in such a way that the smallest ones are for
muons, stressing the interplay between hadronic and
leptonic sectors; model 10 can accommodate AANS up
to 1.5 x 1073, while model 10y can reach 1.8 x 1073,
Figure 2 shows the stronger bound for each model, i.e.,
Eq. (39) for models 2, 5, 9 and 10y (dash-dotted) and
Eq. (38) for model 10 (dotted).

In Figs. 1 and 2 we show benchmark points. They pass
constraints from D-mixing and semi(-muonic) decays,
while giving AANY ~ 1073, The golden star corresponds
to model 2 with AF, = 12 and
pr~m/2, gi/Myp~038/TeV, 6,~1x107*.  (40)
The pink diamond corresponds to model 10y with AFp =
19 and

br~7)2, 0,~1.7x1075.  (41)

gs/ My ~2.3/TeV,

We learn that Z’'-models with charges as in Table I can
provide concrete NP—interpretations of AAcp of the
order of 1073, D°-D° mixing provides upper limits on
the achievable AARY. To distinguish the different model
scenarios we explore correlations of AA-p with other
sectors, hadronic 2-body D-decays in Sec. IV and semi-
leptonic ¢ — uZ ¢~ transitions in Sec. V.

115006-5
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0.0 02 04 06 08 L0 12 14 0.0 02 04 06 08 L0 12 14
AFyp-10° AFp-10°

00 02 04 06 08 1.0 1.2 14 0.0 02 04 06 08 1.0 12 14
AFg - 103 AFg - 103

FIG.2. |AARE| for different Z'-models (2 upper left, 5 upper right, 9 lower left and 10(u) lower right) in the plane of g,/M, (TeV™')
and AFy = AFy - 0, together with the excluded region from D°-D° mixing (red). Light green, dark green, blue and cyan bands
correspond to |[AANE| = (4.0 £0.2) x 1073, [AANE| = (1.5 £0.2) x 1073, |AARD| = (8 £2) x 10™* and |AANP| = (3£ 1) x 1074,
respectively. The black region indicates the upper bound coming from perturbativity and direct searches in dimuon and dielectron
spectra [27], which read g, < 4z and M, > 4.5 TeV, respectively. The magenta dash—dotted and dotted lines show the stronger (if any)
of the bounds from Egs. (38) and (39). In the lower right plot the dotted line corresponds to model 10, and the dash—dotted to model 10pu.
The golden star and pink diamond are benchmark points (40) and (41). See text for details.

IV. PATTERNS IN HADRONIC DECAYS Acp(D° - KTK™)

UL =1+ . 43
Z'-models with nonuniversal charges F, can give rise to preak ‘ Acp(D® — n*n7) “3)
large flavor-breaking effects which could explicitly violate
relations between hadronic charm decays [28-31]. We  In the U-spin limit U2, , = 0.
study signatures of Z'—induced U-spin and isospin break- Using Egs. (36), U, can be written as
ing in Sec. IVA and Sec. IV B, respectively. Aqp in
D’ — 7929 is studied in Sec. IV C. cxFo, + dgFa,
Ubteak = ‘1 Yo F TdF, | (44)
. . zt 0, nt d,
A. U-spin patterns in D - z*z~ K*K~
U-spin breaking arises for Fo, # Fg, or Fy, # Fa,and ) mple 111 we give USL for models 2, 4, 5, 9 and
can upset the U-spin sum rule [28] 10(g), for M, = 6 TeV. The variation of UL . with M
in the range shown is within a few percent.
Acp(D® = K*K™) +Acp(D° = ntn™) =0.  (42) Taking advantage of the smallness of the parameters d ,

relative to ck ,, we perform a Taylor expansion in Eq. (44)
up to O(dg,d,) to qualitatively understand how U-spin

To quantify deviations from this relation we define” LN .
q Y breaking in our models emerges. This leads to

2 . Acp(D—=rtn7) .
For model 10(x) we use instead |1 + A SKTE | to avoid cx ek d,F,  dgFy,

Ut > 1. It is tacitly understood that K, Q,,d, and r, Qy, d,— U =1 +—

45)
> S
indices in Eq. (44) and following need to be swapped in this case. Cx cxFo, ko,

115006-6
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TABLE III.  Values of ﬂ9 1o in (TeV)™ for £ =y, e and
dimensionless f,0 as deﬁned in Eq. (63) and Eq. (55),

respectively, as well as U, , in Eq. (44), see footnote 2, for

MZ’ =6 TeV.

Model ﬂg” ’llg 83 T(e) ﬂ ° :B 4 U}J(;E:ak
2 0.57 -0.57 -0.68 0.68 —0.02 —0.02 0.42
4 -1.04 -0.35 1.04 035 -0.03 -0.03 0.22
5 —0.67 0 0.67 0 -0.10 -0.09 0.32
9 -20.56 —-14.07 15.15 -2.17 -1.89 —-1.75 0.22

10 37.25 339 =-3273 1.13 131 122 091
10u -452 —-452 =-3273 1.13 131 122 091

for Fp, = Fy, # 0 (models 2, 4 and 5), while for Fp =
Fo, = 0 (models 9 and 10()) Eq. (44) simply becomes

dgFg,
dn'Fd .

wa:b+ (46)

For models with Fy, = F,, # 0 different sources of
U-—spin breaking exist. The second term in Eq. (45)
accounts for effects originating from interference between
the SM amplitude and the F ,—charges. This contribution
is responsible for 22% U-spin breaking, which is of the
same order of magnitude as the expected U—spin breaking
uncertainty of the SM. In contrast, the last two terms
in Eq. (45) are pure NP U-spin breaking -effects.
Equation (45) can further be simplified with dg wi—’:d,,
due to y, = yx, which holds numerically at the level of
O(0.1 — 1)%. It follows that

o ck  dg (Fa,—Fa
e i) | I

highlighting that pure NP U-spin breaking effects are
induced by

dg

Cr

Fdz Fd,
FQI

Fy, —Fy

Ureak =
FQI

. (48)

= 0.04‘

which indicates how both the pion chiral enhancement and
r, suppress U—spin breaking in these models. Therefore,
values of F,, —F, ~O(1) such as in model 5, induce
U-spin breaking within the range expected within the
SM < 30%. In model 4, F; =0 and Ubreak =0, that is,
U—spin breaking is SM-like. On the other hand, for
Fy4, — F4 ~O(10) as in model 2, large U-spin breaking
effects can arise and would be discernible with future
sensitivities for Acp(KTK™) and Acp(ztn~) shown in
Table IV.

For models with F, = F,, = 0 we obtain for the pure
NP U-spin breaking from Eq. (46)

TABLE IV. CP asymmetries and future sensitivities ¢ in units

of 10~* at LHCb Run 1-3 (Run 1-5) [32] and Belle II with
50 ab™! [33].
x107* Data OLHCb  OBelle II
AAcp —154+29 [1] 1.3(0.3)
AA}CI}:,LAV —16.4 + 2.8 [2] 1.3(0.3)
ACP(DO — K+K_) -9+11 [2] 3(0.7) 3
Acp(D® = 7t 7o) ~1£14 2] 307) S
Acp(D° = 7°2%) -3 +64[2] 9
Aep(D* = 7ta®) 42904290 +£30 [34] .- 17
F, —F,
UM (Fo, = 0) ~ 0.78‘ Fezlfal )
1

which, unlike in Eq. (48), is unsuppressed. Models with
Fg, = Fy, = 0 are therefore prime candidates for sizable
NP U-spin breaking effects. Models 9 and 10(x) have been
constructed for this purpose. However, in model 9 F;, =
F; and U-spin breaking arises from dg # —d,, only, and is
SM-like.

Note, the strong phases associated with NP are assumed
to be similar, sind, ~ sindg, and order one; violation of
Eq. (42) can be suppressed or even further enhanced by
U-spin breaking in the strong phases. While this is an
uncertainty on the NP interpretation, Z’'—signals could even
be more striking.

In Figs. 3 and 4 we show the contributions of models 2
5, 9 and 10(x) to the individual CP asymmetries
Acp(KTK™) and Acp(n™z~) in blue, magenta, yellow
and cyan, respectively. The U-spin limit is given by the
red dashed line with 30% U-spin breaking indicated by the

E
B
& 1
= = [J-spin limit
:5/ = model 2
=T3] —11 model 5
< model 9
—21 model 10(z)
m AAEHY
_3 I AN '
-2 0 2
AGR(mr ) - 10°
FIG.3. Acp(KTK™) versus Acp(xtn~) with predictions in the

Z'-models 2, 5, 9 and 10(u) in blue, magenta, yellow and cyan
lines, respectively. The green band corresponds to the exper-
imental world average of AAcp (3) at 1o. The gray bands indicate
the present experimental 1o regions given in Table IV. The U-
spin limit (42) (red dashed line) and <30% SM-like U-spin
breaking (red area) is also shown.
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‘e —0.501
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= —0.751
O
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Acp(ﬁ+7'r7) 103

0.50

0.0 — 1
~
=

el s
S.i —05 ‘\\\\\\\
b —~1.0 h <
<
& | o
< _1 ; I |

2.0

000 025 050 075

Acp(ntm) - 103

FIG. 4. Future projections for Acp(K™K™) versus Acp(a* x~) with predictions in the Z'-models 2, 5, 9 and 10(x) in blue, magenta,
yellow and cyan lines, respectively. The green band corresponds to the central value of the present experimental world average of AAp
(3) with future 1o sensitivities according to Table IV. The gray bands illustrate two future measurements of the individual asymmetries.
The central values are given in Eq. (50), the uncertainties are scaled according to Table I'V. Lighter (darker) bands correspond to LHCb
Run 1-3 (1-5). Assuming for simplicity gaussian errors a dashed (solid) ellipse occurs around model 2 (plot to the left) and model 10y
(plot to the right) for LHCb Run 1-3 (1-5). The U—spin limit (42) (red dashed line) and <30% SM-like U—spin breaking (red area) is also
shown. The golden star and pink diamond are benchmark points (40) and (41).

red contour. Present experimental bounds from Table IV are
shown in Fig. 3 as lo regions in gray for the individual
asymmetries and in green for AAp. The future sensitivities
are indicated in light (dark) gray and green bands in Fig. 4
for LHCb Run 1-3 (1-5). We use the following central
values for the plot to the left (right)

ASB(KTK™) = —0.6 x 1073(=1.45 x 1072),

A3 (zta~) = 1.0 x 1073(0.15 x 1073). (50)
The orange error ellipses illustrate the NP sensitivity of the
projected uncertainties of Acp(KTK™) and Acp(ntz™)
assuming no correlations. A future data-based analysis
which takes into account correlations between the individ-
ual asymmetries and AAcp can be expected to be more
powerful.

U-spin symmetry within the SM is broken at the level of
30%. We find that flavorful Z'-models can exceed this by
far (model 10(u)), or moderately (model 2), which makes
the measurements of A-p(K"K~) and Acp(n'z~) smoking
guns for NP, within reach of Belle II and LHCb with the
projected sensitivities.

B. Isospin breaking patterns in D* — z*z°

Isospin breaking arises in Z'-models if F, # F, . In
charm physics, the hadronic decay D* — 772 represents
a formidable candidate to study these effects, because the
CP asymmetry Acp(nt7°), defined by

(D" - f7) -T(D” = f7)

Ace(z"2%) = (D" = f)+0(D = f)

(51)

with f* = 7770 is a clean SM null test [35].

Following the same procedure as in Sec. III D for AAND
we obtain, using 0, < 1,

2
g
AGp(a 70) ~ o OB Fpdy (Fy, = Fo), - (52)
ZI
with
1
dy =— r2(mc’MZ/)' (53)
ayp

Here, a,y denotes the tree-level contribution to D™ — 7+ 7°
whose modulus has been fixed experimentally, see
Appendix A for details. Numerical values of d, for
different values of M, are given in Table II. Inserting
Eq. (35) into Eq. (52), we obtain

ARp( 70) ~ By - AATE. (54)

where

ﬂﬂ’ _ dzr’(Fdl Ful) ] (55)

CKFQZ + dKFd2 - C”F'Q1 - andl
Values of g, for M, = 6 TeV and different Z'-models can
be seen in Table III. Since we have lost information about
the signs of the leading SM decay amplitudes with which
NP is interfering, we cannot predict the relative sign
between the CP asymmetries in Eq. (54) without relying
on assumptions on the strong interaction. Note, unlike
for Acp(KTK™) and Acp(nn~), there is no SM flavor
symmetry here at work.
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We find that model 9 and 10(x) induce values near

AN (a0 ~ (1-2) - AAY, (56)
which for AARP ~ 1072 is within the projected sensitivity
of Belle II with 50 ab~! [33], see Table IV. Models 2, 4
and 5 induce ANE (z772%) 0.1 AARE ~ 107, beyond the
reach of current facilities.

This behavior can be understood by expanding Eq. (55)
in the d; up to O(d;). For Fp = Fp, =0 [model 9 and
10(p)], we find that 3, scales with d,,/dg ~ —1.6 times a
combination of charges (Fy — F, )/Fq,(14---) ~O(1)
resulting in O(1) isospin breaking effects. For models
with Fy =Fj, #0 instead a suppression factor

dy/(cg —c,;) ~0.03 exists from the chiral enhancement
of the (V—A)x (V+A) operators, leading to f, of
O(102 = 1071).

C.D" - 2"

We work out the CP asymmetry for D° — 7%2° decays
because of its potential to diagnose patterns of NP [36].
In addition, the experimental prospect at Belle II for
Acp(D° — 7°7°) is about a factor of two better than for
Acp(DT — 77.'+ 7Y), see Table IV. In the Z'-models,
Acp(D? — 7°7°) is obtained from Egs. (52) and (53) after
replacing subscripts 7' by z° with otherwise identical
expressions. Therefore, with 0 given in Table III,

ARR(r°7°) ~ B - AATE, (57)

hence

AN (207) 52+ A, (58)
with the limit saturated by model 9, and which is within the
sensitivity of Belle II with 50 ab~! [33], see Table IV.
Furthermore,

AR (%7 B ap
—= -~ =1 = 1.08 £0.10, 59
AIE‘IIP;(”JFEO) ﬂﬂ’ azo ( )

holds universally for all Z'-models with F, # F,.
Experimental tests of Eq. (59) can support a Z'-
interpretation, however, additional uncertainties from large,
unknown strong phases exist, which can modify the
relation. As discussed after Eq. (54), we cannot predict
the relative sign between the CP asymmetries (57), (59)
without relying on input on the strong interaction.

V. SEMILEPTONIC DECAYS VS AAp
The dominant Wilson coefficients in ¢ — uf™¢~
transitions are Cgffg , defined in Eq. (15). In flavorful

Z'-models [18]

T guC
Co/10(Mz) = _ﬁTFaMLZ, (9% £ 4917).  (60)
T gk
Cifio(Mz) = ——==— 2 T £ o). (61)
F e
where g%’ = g4F, and g;° = g,F with in general differ-

ent couplings for muons and electrons. As explained in
Sec. III C, we analyze in this work Z'-models with ¢/ = 0
and Im(g¥°) large.

CP asymmetries in the branching ratios are induced by
interference of NP, here through g4, with C, the effective
coefficient of Oy present in the SM, Wthh is lepton-
universal, depends on the dilepton invariant mass and has
sizable hadronic contributions and provides sizable strong
phases. This interference term is sensitive to Cgf’ only.
Angular analysis offers further opportunities. An interest-
ing recent example for the latter is D — 7tz u* u~ decays
[21,22,37]. Notably, the angular observables I5q; are
GIM-protected in the SM and clean null tests [21]. In
the Z'-models under consideration, /54 are induced by
Re(CE7 - C457) and Im(C4" - &™), whereas I7 is induced
by Re[(CS™ — C57") - C{6"™)]. CP asymmetries in angular
asymmetries, on the other hand, can stem from naive
T—-odd observables and do not rely on strong phases
(I789). CP—odd ones (Isgg9) provide CP asymmetries
that can be measured without tagging, see Ref. [21] for
details. A complete and detailed analysis of angular
asymmetries in Z'-models is beyond the scope of this
work. What we do want to point out here is that a global
analysis of angular and CP asymmetries can probe both
Ci?" and CYY’ for electrons, £ = e and muons, ¢ = u
separately, and therefore can distinguish different U(1)'-
charge assignments.

Taking the imaginary part of Eq. (61) and employing
Eq. (35), we obtain

In(CYfy) ~ o plfiy- MM ()
FQe

where

Bsjo = e .
/ CKFQ2+dKFd2_CnFQ1 _dﬂFdl

(63)

Values of ﬂ9 1o for = ,u, e in (TeV)~2 are given in

Table I11. For AARE ~ 107 we find
m(CéﬂO) ~0.03 (TeV)? ﬂ9/10’ (64)

consistent with Cgﬂo = O(1072) for g4¢ = 0, g% # 0 [18]
and for :%710 = O(1/TeV?) (models 2, 4 and 5). Models 9

and 10(u) have sizable couplings to leptons, and in addition
Fy,, = 0, which bring a factor of ¢, x/d, k., see Eq. (63),
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score 7, = O(10/TeV?) and sizable C§7l, = O(107").
As values of Im(C§f},) 2 O(107> — 107") suffice to induce
CP asymmetries beyond the SM in semileptonic D—decays
at the few percent level and above [13,18,21,23], all models
can simultaneously lead to AAYS ~ 1073 with NP patterns
in ¢ - uf¢" decays.

In Fig. 5 we show the imaginary part of Wilson
coefficients with dielectrons (upper plots) and dimuons
(lower plots) for different models as in Eq. (62). Plots to the
left show lepton vector couplings versus lepton axial vector
couplings, Im(C5”") vs Im(C{§'), respectively. Also
given is Im(C%’") = —Im(C%?') (thin gray line). The lines
corresponding to model 2, 4, and 5 end when the corre-
sponding AANY exceeds 2 x 1073. Results are lepton
nonuniversal as anticipated and sensitive to the lepton
doublet and singlet charges. In the plots to the right the
correlation (62) between Im(C5”') (solid) and Im(C{{")
(dashed) and |AARE| in the Z'-models 2, 9, 10 and 10y is
made explicit. Curves for models 4 and 5 are only in mild

01f o
S 0.0
g
***** G5 = —Cff == model 5
—0.11 = model 2 model 9
= model 4 model 10(p)
—0.1 0.0 0.1
Im(C§*)
011
— \\\
4
O 0.01 X
SN—
E .
***** Gyt = -cf! model 9
model 2 model 10
—0.1 == model 4 model 10p
model 5
—0.1 0.0 0.1
gt
Im (Cg )

FIG. 5.

excess of those for model 2, or smaller, see Table III, and
are not shown to avoid clutter.

As couplings to electrons and muons differ, lepton
nonuniversality in charm [18,21,38] is induced, for exam-
ple in the ratio of branching ratios of D — zu*u~ and
D — me* e using identical kinematic cuts, R?. To better
control SM backgrounds from intermediate resonances
R=¢.q".p,...., via D— aR(—¢1¢7), interesting
regions are for low (high) dilepton mass, below the
n-mass (above the ¢—mass), see Ref. [18] for details.
We focus on the high mass region as it has fewer sensitivity
to unknown strong phases from the resonances.

Using ﬂgf 1o from Table III and Eq. (64) we find that all
models yield order one deviations from the universality
limit R? = 1. Except for model 10y, which has smaller
couplings to muons by construction, all models can induce
significant enhancements or suppressions from the SM.
In particular, in the high mass region, for ¢p = 7/2
and varying strong resonance phases, see Ref. [18] for
details,

10
104 ¢
é‘i 10—1 4
E
10724 — model 2355, model 10(u) 35¢
model 9 35 model 10(p) 555
model 9 37§
1073 - ‘ -
0.0 0.5 1.0 1.5 2.0
A4 - 107
10!
100 4 % /| ///4 7 /|

¢

[ (C315) |
—
=

1024 — model 2 551, model 10 g4
model 9 35" model 10 '
model 9 3 model 104 8%,

1073 . I i

. .0 . Ne .
0.0 0.5 1.0 1.5 2.0
NP 3
|[AAGR] - 10

The interplay between semi—electronic (upper plots) and semi—muonic (lower plots) charm FCNCs (62) and AAp. The lines

for model 2, 4 and 5 end when the corresponding AAISIP; exceeds 2 x 1073 (plots to the left). In the plots to the right the correlation (62)
between Im(C5”’) (solid) and Im(C%%") (dashed) and |AAcp| in the Z'~models 2, 9, 10 and 10y is made explicit. The golden star and pink
diamond are benchmark points (40) (model 2) and (41) (model 10u), respectively. The shaded areas correspond to the upper limits (18).

See text for details.
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1.5]  (model 2,4,5),

~[0.6

~10.2.. 70] (model 9),

~[0.2...11]  (model 10),

[0 03...0.8] (model 104), (65)

allowing to signal NP.

VI. CONCLUSIONS

Patterns of observables are indispensable for pinning
down an underlying NP—dynamics. We looked globally
into hadronic and semileptonic charm decays and their
respective CP asymmetries. We find that there is strong
benefit in doing so.

Most important, all flavorful, anomalyfree Z'-models in
Table I can simultaneously accommodate AAND ~ 1073 and
induce measurable CP asymmetries in the semlleptonlc
¢ = u?"¢~ modes for £ = e or £ = u above the SM. An
observation of CP violation in, for instance, D — £ "¢~
or D — zat"¢~ decays supports a NP-interpretation of
AAcp, Egs. (1) and (3), see Fig. 5.

Additional cross checks are provided by CP asymme-
tries in D® — 77 2~, D’ — K*K~, which probe for U-spin
breaking NP, see Figs. 3 and 4 for present data and future
sensitivities, respectively. In addition, isospin violating NP
can be observed with projected sensitivities at Belle II in
D° — 7°2° D* — n*2° decays, whose CP asymmetries
can exceed AAcp, Egs. (54) and (57).

In the Z'-models lepton nonuniversality is generic, and
observable in the ratio of branching fractions of D —
autu~ and D — mete” decays, as briefly discussed in
Sec. V. The Z'-model 9 with order one enhancements
over the universality limit, R? > 1, also induces
ARP (2 7%) ~ AP (2029) <2 - AARE. Z'-model 10u with
order one suppression of the universality limit, R? < 1
exhibits sizable NP U-spin breaking AN (zF77) <
AN (KK") ~ Adcy.

Checking correlations pins down models. Improved data
and sensitivities from LHCb and Belle II are important in
this program. We encourage and look forward to further CP
studies of rare semileptonic and hadronic charm decays.
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APPENDIX A: EXPERIMENTAL INPUT

We extract the modulus of the dominant, SM decay
amplitudes from data on branching ratios [27] given in
Table V. We use

TABLE V. Measured branching ratios [27] and ap—parameters
from Eq. (A2) for different decay modes.

Mode BR(mode) ap
D’ - KTK- (4.08 4+ 0.06) x 1073 1.19 £ 0.04
D° > ntn (1.455 +0.024) x 1073 0.94 £ 0.07
DY - 797° (826 £0.25) x 1074 0.71 £0.05
Dt —= 2%z (1.247 4+ 0.033) x 1073 0.77 £0.05
|Ap|2 4m%
BR(D - P\P,) = - , Al
(D = P1Py) 1672my, m%)TD (A1)
where [39]
Gr, 5 2\ fD—P
Ap = VIP/IPaP% (mp —mp)fo =" (m »)fp (A2)
P=nm77,K, 2, =2, and Ax = A, and
{1 P=nn2"K (a3)
p=19 1 _
7 P=r
The subscript #’ corresponds to the DT — 777" channel,

and 7° to D° — 7%2°. Relevant form factors fD"P and
decay constants fp are taken from Ref. [40] and [27],
respectively. Resulting values of ap > 0 are given in
Table V.

APPENDIX B: EVOLUTION
OF WILSON COEFFICIENTS

The Wilson coefficients Cgl,)&g.lo at the Z’ mass scale (32)
are evolved to the charm mass scale at LO in «a,. The
requisite anomalous dimension matrix for the operators
Q7,8,9,10 can be inferred from Ref. [41]. We obtain

N% —6 0 O
6(1-N2) 0 0
vy = e : (B1)
0 0 Ne 6
0 0 6 ;,—g

where N- =3 is the number of colors. Since QCD
conserves parity, y% is identical for Q; and Qi Using
Eq. (B1), the Wilson coefficients are evolved to the charm
scale, integrating out degrees of freedom at the (Z', ¢, b)-
scales,
C(w) = Uy(p, my)Us(my, m)Ug(m,, M7z)C (M),

where f]f(ml,mz) = M(my)Us(my, my) and Uy (my, m,)
is the evolution matrix from scale m, to scale m; in an
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effective field theory with f active flavors; My is the
threshold matrix that matches the two effective theories
with f—1 and f active flavors. At LO in ay, the M,
matrices are equal to the identity matrix. For 4 = m, and
M, = 6 TeV, one finds

CY (m,) = 0.820C% (M),

CV (m,) = 1.224CY) (M ) + 4.502C)) (M ).

CY (m,) = 1.404CY) (M) — 0.718C\) (M ),

C\)(me) = —0.718CY (M) + 1.404C) (M), (B2)

We use m,=(1.280+£0.013)GeV, m;, =(4.198+0.012) GeV
[42] and m, = (165.9 +2.1) GeV [43,44] and central
values for the thresholds.

APPENDIX C: HADRONIC MATRIX ELEMENTS

In order to estimate the NP decay amplitudes, we need to
determine the hadronic matrix elements for each operator
given by Eqs. (24)—(31). For that purpose, we employ
factorization of currents, P = r, K,

(P*P~]Q;|D°)

= (P*|(@1142)0)(P~|(q3T244)[ D) Bf 7", (C1)
where Q; = (§,1'19,)(g312q4) is a 4—quark operator and
["; , represent possible Dirac and color structures while g;
denote quarks. The factor BY "P” parametrizes the deviation
of the true hadronic matrix element from its naive approxi-
mation, BY'P"| e = 1. For the NP contributions we work
in this approximation. After employing Fierz identities in
the flavor and color space, we find for D° — K* K~ and
atn~ decays

- 1 .
<Q7>Kﬂ = N_c <Q8>K,m (C2)
<Q8>K,/r = Fdz,dl)(K,n(ﬂ)<Qi’d>K,m (C3)

- 1 .
<Q9>K.n’ = N_c <Q10>K,;z’ <C4)
<Q10>K,;z =Fy, 0, <Q§’d>K,m (Cs)

where  (...)p = (PTP7[...[D%, OF = (ap)y_s(Pc)y_s
and yg () are the usual chiral enhancements generated
by (V—A) x (V + A) operators,

W=
AR = Gy, ()
M2
Xall) = ) g + ) () (C6)

with values yx(m.) ~3.626 and y,(m.)~3.655 at the

charm mass scale. For the Q' operators the same relations

hold but with the proper exchange of charges Fy <> F.
For D™ — 7°z" decays we find

- 1 -
<Q7>ﬂ’ = N_C <Q8>ﬂ” (C7)
5\ Xa) ‘
<Q8>n’ - \/E (Ful Fd])<Q1>u’ (Cg)
(@) =5 (010)y =0 (©9)
ol = N\l =5
and for the corresponding Q' operators
~ 1 -
Q) = N—C<Qé>ﬂ/ =0, (C10)
D)y = (O Cl11
<Q 9>7r' - N_C <Q 10>ﬂ” ( )
~ 1
<Q/10>7r’ = E(Ful - Fd1)<QL1l>u' (C12)
For D° — 7°2° decays we obtain
~ 1 -
<Q7>ﬂ0 = N_C <Q8>ﬂ0’ (C13)
O =2 (F, ~Fi)i0D,  (C14)
- 1 -
0o =— 0o =0, Cl15
<Q9>7‘[ NC <Q10>ﬂ ( )
and for the corresponding Qi operators
~ )
(Q7)0 = N—c< 8w = 0. (Clo)
0} Lo, C17
<Q9>7r° N_c< 10>n°» ( )
~ 1
(@100 =5 (Fu, = Fa, (O )us (C18)

where (...}, = (zt7°...|D*), {...) o = (z°2°|...|D") and
(-.-)4 = (qql...|D*). Equations (C2)~(C18) are obtained
in the isospin limit, m,, = m, and e = 0, since these isospin
breaking corrections from within the SM are negligible
with respect to the NP ones, F, 4 o, # 0.
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APPENDIX D: RGE FUNCTIONS

Equation (35) for AAYY accounts for the running and
mixing of operators through the functions r;,. The latter
can be obtained from the evolution of the Wilson coef-
ficients described in Appendix B. We obtain

R—2

rl(mC’MZ/):3\/§G A s
Fts

(D1)

2R'/2 - R™!
ry(me,Mz) = BN (D2)
F/s
where
_ (@) E () \ B (aM)\E
o 4) (5) (6) )
as’(m.)/) \ag”’ (my) as’ (m,)
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