
 

Exploiting CP asymmetries in rare charm decays
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We analyze patterns from CP–violating new physics (NP) in hadronic and semileptonic rare charm
jΔcj ¼ jΔuj ¼ 1 transitions. Observation of direct CP violation in hadronic decays, as in ΔACP, provides
opportunities for c → ulþl−, l ¼ e; μ transitions, and vice versa. For the concrete case of flavorful,
anomalyfree Z0–models a NP–interpretation of ΔACP suggests measurable CP asymmetries in semi-
leptonic decays such as D → πlþl− or D → ππlþl−. Conversely, an observation of CP violation in
c → ueþe− or c → uμþμ− decays supports a NP–interpretation of ΔACP. Flavorful Uð1Þ0–extensions
provide explicit U–spin and isospin breaking which can be probed in patterns of hadronic decays of charm
mesons. We work out signatures for CP asymmetries in D0 → πþπ−, D0 → KþK− and D0 → π0π0,
Dþ → πþπ0 decays, which can be probed in the future at LHCb and Belle II and provide further
informative cross checks.
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I. INTRODUCTION

Suppressions of standard model (SM) amplitudes due to
accidental symmetries provide useful directions for
searches for new physics (NP). Among the salient features
of jΔcj ¼ jΔuj ¼ 1 transitions within the SM are a strong
Glashow-Iliopoulos-Maiani (GIM)–suppression and small
CP violation. Hierarchies of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix V suggest SM CP violation at
the order of ImðV�

cbVub=ðV�
csVusÞÞ ∼ 7 × 10−4, somewhat

below LHCb’s observation of CP violation in charm [1]

ΔACP ¼ ACPðKþK−Þ − ACPðπþπ−Þ
¼ ð−15.4� 2.9Þ × 10−4; ð1Þ

where

ACPðfÞ ¼
ΓðD0 → fÞ − ΓðD̄0 → fÞ
ΓðD0 → fÞ þ ΓðD̄0 → fÞ ; ð2Þ

and the corresponding world average [2]

ΔAHFLAV
CP ¼ ð−16.4� 2.8Þ × 10−4: ð3Þ

While this leaves room for NP, due to the sizable uncer-
tainties of hadronic D–decays, Eqs. (1) and (3) provide no
clear-cut sign of NP. On the other hand, ΔACP as large as
the permille level is nontrivial to achieve in concrete
models of NP. Correlations with other observables in
charm and the down-quark sector exist, which are subject
to partly very strong flavor constraints. For recent works,
see Refs. [3–12]. Turning this around, the study of patterns
using different sectors can hence disfavor or support a
particular ΔACP interpretation, and vice versa.
In this work we pursue a global analysis of CP asymme-

tries in rare hadronic and semileptonic charm decays. Our
focus is on NP patterns induced by four-fermion operators.
Links via dipole operators between hadronic and semi-
leptonic CP asymmetries inD → πlþl− decays have been
pointed out by Ref. [13]. We work out predictions and
correlations for anomalyfree Z0–extensions of the SM with
generation-dependentUð1Þ0–charges, see Refs. [14–20] for
recent phenomenological works. Flavorful charges can give
rise to explicit isospin and U–spin breaking effects. It is our
goal to work out corresponding experimental signatures for
hadronic charm decays, exploiting yet another SM null test
strategy in charm [21].
This paper is organized as follows: In Sec. II we briefly

review CP violation in hadronic D–decays, D–mixing and
semileptonic c → ulþl− transitions. In Sec. III we analyze
effects of anomalyfree Uð1Þ0–extensions with generation-
dependent charges in hadronic 2-body D–decays and how
D–mixing constraints can be evaded to address ΔACP.
Patterns among CP asymmetries in D0 → πþπ−,
D0 → KþK−, D0 → π0π0 and Dþ → πþπ0 decays are
worked out in Sec. IV. Correlations with CP asymmetries
in rare semileptonic decays are studied in Sec. V. We
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conclude in Sec. VI. Auxiliary information is given in
several appendices.

II. CP PHENOMENOLOGY IN CHARM

We review CP violation in hadronic D–decays
(Sec. II A), D–mixing (Sec. II B) and semileptonic
c → ulþl− processes (Sec. II C).

A. Direct CP violation in D0 → π +π − ;K +K −
The single-Cabibbo-suppressed (SCS) D0ðD̄0Þ decay

amplitudes Af (Āf) to CP eigenstates f can be written as

Af ¼ AT
fe

iϕT
f ½1þ rfeiðδfþϕfÞ�;

Āf ¼ ηCPAT
fe

−iϕT
f ½1þ rfeiðδf−ϕfÞ�; ð4Þ

where ηCP ¼ �1 is the CP eigenvalue of f. The dominant

SCS “tree” amplitude in the SM is denoted byAT
fe

�iϕT
f , and

rf parametrizes the relative magnitude of all subleading
amplitudes. Inserting Eqs. (4) into Eq. (2), in the limit of
rf ≪ 1, yields

ACPðfÞ ¼ −2rf sin δf sinϕf þOðr2fÞ; ð5Þ
requiring both strong (δf) and weak (ϕf) relative phases for
a nonvanishing direct CP asymmetry. Beyond the SM the
SCS D0 decay amplitude can be written as

Af ¼
X

q¼d;s;b

λqðAq
fÞSM þANP

f ; ð6Þ

where the first term corresponds to the SM contribution
with CKM–factors λq ¼ V�

cqVuq made explicit, and the
second term accounts for NP. Using CKM unitarity
λd þ λs þ λb ¼ 0 and writing for the final states KþK−

and πþπ− in the subscripts f ¼ K and f ¼ π, respectively,
one finds

AKðπÞ ¼ λsðdÞðAsðdÞ
KðπÞ −AdðsÞ

KðπÞÞSM
þ λbðAb

KðπÞ −AdðsÞ
KðπÞÞSM þANP

KðπÞ: ð7Þ
Here, the first term is the SCS contribution and the second
one corresponds to “penguin” contributions with small
Wilson coefficients which are strongly CKM–suppressed
with respect to the SCS one by λb=λs;d. The last term ANP

KðπÞ
encodes NP contributions. Using Eqs. (4), (5) and (7), we
obtain

ΔACP ¼ ΔASM
CP −

2

jλs;dj
ΔrNP; ð8Þ

where1

ΔrNP ¼ rK sin δK sinϕK þ rπ sin δπ sinϕπ; ð9Þ

and

rK ¼ ANP
K

ðAs
K −Ad

KÞSM
; rπ ¼

ANP
π

ðAd
π −As

πÞSM
; ð10Þ

and rπ;K ≪ 1. The strong phases δπ;K are associated with
the NP amplitudes. Since we are interested in maximal NP
contributions, we employ in our numerical analysis
sin δπ;K ∼ 1. Note, there is a priori no information on
the sign of ΔrNP as it depends on products of strong and
weak phases. The branching ratios of theD → f modes are
dominated by their respective SM contributions. We can

therefore extract jðAsðdÞ
KðπÞ −AdðsÞ

KðπÞÞSMj from data, see

Appendix A for details.

B. CP violation in D0–D̄0 mixing

Here we consider constraints from charm meson mixing.
The D0–D̄0 transition amplitude can be written as

hD0jHΔc¼2
eff jD̄0i ¼ M12 −

i
2
Γ12; ð11Þ

which can be parametrized in terms of the following
physical quantities

x12¼ 2
jM12j
Γ

; y12¼
jΓ12j
Γ

; ϕ12¼ arg

�
M12

Γ12

�
: ð12Þ

Here, x12 and y12 are CP conserving, while ϕ12 is a phase
difference that results in CP violation in mixing. A global
fit from the HFLAV collaboration [2] results in

x12 ∈ ½0.22; 0.63�%;

y12 ∈ ½0.50; 0.75�%;

ϕ12 ∈ ½−2.5°; 1.8°�: ð13Þ

In absence of a sufficiently controlled SM prediction of the
mixing parameters, we require the NP contributions to
saturate the current world averages (13),

xNP12 ≤ x12; xNP12 sinϕNP
12 ≤ x12 sinϕ12: ð14Þ

C. CP violation in c → ul+l−
CP violation in semileptonic rare charm decays arises

from complex-valued Wilson coefficients Cll
i , Cll0

i in the
effective Hamiltonian [18],

Heff ⊃ −
4GFffiffiffi

2
p αe

4π

X
i¼9;10

ðCll
i Oll

i þ Cll0
i Oll0

i Þ þ H:c:; ð15Þ

with the operators
1The plus sign between the pion and kaon amplitudes in

Eq. (9) comes from λd ¼ −λs þOðλbÞ.
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Ollð0Þ
9 ¼ ðūLðRÞγμcLðRÞÞðl̄γμlÞ; ð16Þ

Ollð0Þ
10 ¼ ðūLðRÞγμcLðRÞÞðl̄γμγ5lÞ: ð17Þ

Here, αe denotes the fine structure constant, GF is Fermi’s
constant and L ¼ ð1 − γ5Þ=2; R ¼ ð1þ γ5Þ=2 are chiral
projectors. CP violation has not been observed in semi-
leptonic jΔcj ¼ jΔuj ¼ 1 decays yet. Available measure-
ments for CP asymmetries in rare semileptonic charm
decays are at the level of few to Oð10Þ% [22], which is
close to possible NP effects [13,18,21].
Branching ratio and high–pT data imply the following

constraints, barring cancellations [23,24]

jCμμð0Þ
9;10 j≲ 1; jCeeð0Þ

9;10 j≲ 3; ð18Þ

stronger for muons than for electrons.

III. A FLAVORFUL Z0 IN CHARM

We work out NP–effects in charm from anomalyfree
Uð1Þ0–extensions of the SM with fermion charges Fψ i

that
depend on the generation, i ¼ 1, 2, 3. Specifically,
SM fermion multiplets plus possibly right-handed neutri-
nos ψ ¼ Q; u; d; L; e; ν in representations of SUð3ÞC ×
SUð2ÞL ×Uð1ÞY × Uð1Þ0 can be characterized, in that
order, as

Qi ¼ ð3; 2; 1=6; FQi
Þ; ui ¼ ð3; 1; 2=3; FuiÞ;

di ¼ ð3; 1;−1=3; FdiÞ; Li ¼ ð1; 2;−1=2; FLi
Þ;

ei ¼ ð1; 1;−1; FeiÞ; νi ¼ ð1; 1; 0; FνiÞ: ð19Þ

Concrete models with Fψ i
–assignments that fulfill the

anomaly-cancellation conditions and induce c → u flavor
changing neutral currents (FCNCs) are given in Table I.
Related models (models 1 to 8) have been studied pre-
viously in the context of semileptonic rare charm decays in
Ref. [18], to which we refer for further details. The models
in Table I satisfy

P
3
i¼1ðFQi

−FLi
þ2Fui−Fdi−FeiÞ¼0

and therefore avoid kinetic mixing at one-loop [25].

In Sec. III Awe discuss couplings of the fermions to the
Z0–boson, which arises from the Uð1Þ0–group. We assume
the Z0 to have a mass MZ0 of the electroweak scale or
heavier. We discuss the induced c → u four-quark oper-
ators and Wilson coefficients in Sec. III B. In Sec. III C we
discuss how to bypass constraints from D0–D̄0 mixing. We
work out predictions for ΔACP in Sec. III D.

A. Z0–FCNCs
The Z0–couplings relevant to charm FCNCs can be

written as

LZ0 ⊃ ðgucL ūLγμcLZ0
μ þ gucR ūRγμcRZ0

μ þ H:c:Þ
þ gdLd̄Lγ

μdLZ0
μ þ gdRd̄Rγ

μdRZ0
μ

þ gsLs̄Lγ
μsLZ0

μ þ gsRs̄Rγ
μsRZ0

μ

þ gllL l̄Lγ
μlLZ0

μ þ gllR l̄Rγ
μlRZ0

μ; ð20Þ

with l ¼ e, μ, τ. The flavor diagonal couplings gd;sL;R and
gllL;R are given as the Uð1Þ0–gauge coupling g4 times the
associated charge Fψ .
The jΔcj ¼ jΔuj ¼ 1 FCNC couplings gucL;R are gener-

ated via rotations from the gauge to the mass basis, and are
in general complex-valued. Four different unitary rotations
exist in the quark sector, corresponding to the left-handed
(LH) and right-handed (RH) ones both for up- and
down-type quarks. The product of LH up- and down-type
rotations gives the CKM–matrix. In order to evade the
severe constraints in the kaon sector, we assume the CKM–
matrix to predominantly stem from the LH up-type rota-
tion, implying

gucL ≈ g4λCKMΔFL; ΔFL ¼ FQ2
− FQ1

; ð21Þ

where λCKM ∼ 0.2 denotes the Wolfenstein parameter and
we used λCKM ≪ 1. In contrast, the RH rotation is a priori
unconstrained and induces

gucR ¼ g4 sin θu cos θueiϕRΔFR; ð22Þ

TABLE I. Sample solutions of an anomalyfree Uð1Þ0–extension of the SMþ 3νR with FQ1
¼ FQ2

. Models 2, 4 and 5 are taken from
Ref. [18]. Models 9 and 10 feature FQi

¼ 0. In general, the ordering of generations is arbitrary due to permutation invariance. However,
our analysis explicitly uses the ordering stated here, that is, the ith entry corresponds to the ith generation. Model 10μ is the same as
model 10 with the smallest lepton-coupling to muons.

Model FQi
Fui Fdi FLi

Fei Fνi

2 3 3 −6 −8 4 4 −10 10 0 −6 5 1 0 0 0 0 0 0
4 −1 −1 2 −1 2 −1 0 0 0 −1 1 0 −2 2 0 −2 −1 3
5 −1 −1 2 −1 2 −1 2 −1 −1 −1 1 0 −1 1 0 0 0 0
9 0 0 0 −11 −2 13 7 7 −14 −8 3 5 −6 16 −10 0 0 0
10 0 0 0 −13 6 7 −1 −14 15 −15 15 0 −14 18 −4 0 0 0
10μ 0 0 0 −13 6 7 −1 −14 15 −15 0 15 −14 −4 18 0 0 0
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where θu is the up-charm mixing angle for the up-quark
singlets, ΔFR ¼ Fu2 − Fu1 and ϕR the corresponding
CP–phase.

B. Four-fermion operators and matching

Generation-dependent quark-couplings result in addi-
tional operators in the effective weak Hamiltonian beyond
the ones considered usually, i.e., Ref. [26]. At the scale
mb < μ < μEWK,

HjΔcj¼1
eff ⊃

GFffiffiffi
2

p
X
i

C̃ð0Þ
i Q̃ð0Þ

i þ H:c:; ð23Þ

with the new operators

Q̃7 ¼ ðūcÞV−A
X
q

Fui;diðq̄qÞVþA; ð24Þ

Q̃0
7 ¼ ðūcÞVþA

X
q

FQi
ðq̄qÞV−A; ð25Þ

Q̃8 ¼ ðūαcβÞV−A
X
q

Fui;diðq̄βqαÞVþA; ð26Þ

Q̃0
8 ¼ ðūαcβÞVþA

X
q

FQi
ðq̄βqαÞV−A; ð27Þ

Q̃9 ¼ ðūcÞV−A
X
q

FQi
ðq̄qÞV−A; ð28Þ

Q̃0
9 ¼ ðūcÞVþA

X
q

Fui;diðq̄qÞVþA; ð29Þ

Q̃10 ¼ ðūαcβÞV−A
X
q

FQi
ðq̄βqαÞV−A; ð30Þ

Q̃0
10 ¼ ðūαcβÞVþA

X
q

Fui;diðq̄βqαÞVþA; ð31Þ

where (V � A) refers to the Dirac structures γμð1� γ5Þ,
q ¼ u, c, d, s, b and α, β are the color indices. The strength
of these operators is given by their respective Wilson
coefficients C̃i, C̃

0
i which depend on both heavy masses

and weak phases responsible for CP-violating phenomena.
The Wilson coefficients induced by the Lagrangian (20)
read

C̃7ðMZ0 Þ ¼ C̃9ðMZ0 Þ ¼
ffiffiffi
2

p

GF
gucL

g4
4M2

Z0
;

C̃0
7ðMZ0 Þ ¼ C̃0

9ðMZ0 Þ ¼
ffiffiffi
2

p

GF
gucR

g4
4M2

Z0
;

C̃ð0Þ
8 ðMZ0 Þ ¼ C̃ð0Þ

10ðMZ0 Þ ¼ 0: ð32Þ

They are evolved fromMZ0 tomc using the renormalization
group equations (RGEs) with top and bottom quarks
integrated out at their respective threshold scales. Finite

values of C̃ð0Þ
8 and C̃ð0Þ

10 arise from the RGE mixing at the
charm mass scale, see Appendix B for details.

C. D0 − D̄0 mixing constraints

Rare jΔcj ¼ jΔuj ¼ 1 decays are induced in the
Z0–models by operators with coefficients proportional to
gucL or gucR in Eq. (32). These couplings induce at second
order D0–D̄0 mixing (32), and are constrained as

jðgucL Þ2 þ ðgucR Þ2 − XgucL gucR j≲ 6 × 10−7
�
MZ0

TeV

�
2

; ð33Þ

with X ∼ 20 for MZ0 in the TeV range [18]. This constraint
on x12 can be evaded if both gucL and gucR are present, for
either gucL ∼ XgucR or gucL ∼ 1=XgucR . However, in these cases
the CP phases have to be aligned ArgðgucL Þ ∼ ArgðgucR Þ to
fulfill Eq. (33). As kaon constraints force ArgðgucL Þ to be
SM–like, CP-violating effects in charm become negligible.
We therefore choose gucL ¼ 0, which can be achieved

with ΔFL ¼ 0. The models in Table I satisfy for this reason
FQ1

¼ FQ2
. Consequently, we focus on FCNCs in the up-

singlet sector (22), that is, gucR ≠ 0 and complex.
If there is a single coupling only, the above mixing

constraint on x12 becomes

jgucA j ≲ 8 × 10−4
�
MZ0

TeV

�
; A ¼ L;R: ð34Þ

The even tighter constraint (14) for CP-violating couplings
on x12 sinϕ12 can be bypassed for ArgðgucR Þ ¼ ϕR around
π=2 (or 3π=2), as the CP phase of the mixing amplitude is
twice the one of the jΔcj ¼ jΔuj ¼ 1 FCNC [26]. The
contributions to ΔACP become maximal while simultane-
ously mixing constraints are satisfied. This interplay of ϕR

versus the coupling g4=MZ0 ðTeV−1Þ for model 2 and fixed
θu ¼ 1 × 10−4 is illustrated in Fig. 1. The red (hatched)
area corresponds to the D0–D̄0 mixing constraints on the
imaginary part x12 sinϕ12 (absolute value x12). Z0–induced
values of ΔACP are shown in green. Indeed the region
around ϕR ∼ π=2 is viable and can induce ΔANP

CP ∼ 10−3.

D. Z0–effects for ΔACP

Taking into account the running from MZ0 to mc, details
of which are given in Appendix B, we find that ΔACP can
be written as

ΔANP
CP ¼ ANP

CPðKþK−Þ − ANP
CPðπþπ−Þ; ð35Þ

with
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ANP
CPðKþK−Þ ∼ g24

M2
Z0
θuΔFR½cKFQ2

þ dKFd2 �;

ANP
CPðπþπ−Þ ∼

g24
M2

Z0
θuΔFR½cπFQ1

þ dπFd1 �; ð36Þ

where

cK ¼ χK
aK

r1ðmc;MZ0 Þ; cπ ¼ −
χπ
aπ

r1ðmc;MZ0 Þ;

dK ¼ 1

aK
r2ðmc;MZ0 Þ; dπ ¼ −

1

aπ
r2ðmc;MZ0 Þ: ð37Þ

As explained in the previous Sec. III C, we analyze models
with gucL ¼ 0 and ImðgucR Þ large. In Eq. (36) we use
sin δπ;K sinϕR ∼ 1 and anticipated θu ≪ 1. The parameters
cK;π and dK;π depend on the chiral factors χK;π at the charm
scale, the LO QCD running functions r1;2ðmc;MZ0 Þ and the
tree-level contributions aK;π , which are determined exper-
imentally. Further details can be found in Appendixes A–D.
Numerical values of cK;π and dK;π for different Z0 masses
are displayed in Table II.
In Fig. 2 we show sizable Z0–contributions to ΔANP

CP and
D0–D̄0 mixing constraints (red area) in the plane of
g4=MZ0 ðTeV−1Þ and the parameter ΔF̃R ¼ ΔFRθu for
models 2, 5, 9 and 10ðμÞ. The corresponding plot of model
4 is not given in Fig. 2 because it exhibits very similar
bands as model 5 due to identical FQ1;2

and ΔFR, as shown
in Table I. Constraints from branching ratios of (semi-)
muonic D–decays (dash-dotted and dotted lines), here for
gucL ¼ 0, [18]

jgucR j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgμμL Þ2 þ ðgμμR Þ2

q
¼ g24jΔF̃Rj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
L2

þ F2
e2

q
≲ 0.04

�
MZ0

TeV

�
2

; ð38Þ

jgucR ðgμμL − gμμR Þj

¼ g24jΔF̃RðFL2
− Fe2Þj ≲ 0.03

�
MZ0

TeV

�
2

; ð39Þ

start to be competitive with mixing constraints close to the
nonperturbativity region (black region). This is particularly
relevant for model 9 and 10, which exhibit large couplings
to leptons. To evade the muon constraints and allow for
slightly larger values of ΔACP we also consider model
10μ, which is the same as model 10 with the lepton-charges
ordered in such a way that the smallest ones are for
muons, stressing the interplay between hadronic and
leptonic sectors; model 10 can accommodate ΔANP

CP up
to 1.5 × 10−3, while model 10μ can reach 1.8 × 10−3.
Figure 2 shows the stronger bound for each model, i.e.,
Eq. (39) for models 2, 5, 9 and 10μ (dash-dotted) and
Eq. (38) for model 10 (dotted).
In Figs. 1 and 2 we show benchmark points. They pass

constraints from D–mixing and semi(-muonic) decays,
while giving ΔANP

CP ∼ 10−3. The golden star corresponds
to model 2 with ΔFR ¼ 12 and

ϕR∼π=2; g4=MZ0 ∼0.38=TeV; θu∼1×10−4: ð40Þ

The pink diamond corresponds to model 10μ with ΔFR ¼
19 and

ϕR∼π=2; g4=MZ0 ∼2.3=TeV; θu∼1.7×10−5: ð41Þ

We learn that Z0–models with charges as in Table I can
provide concrete NP–interpretations of ΔACP of the
order of 10−3. D0–D̄0 mixing provides upper limits on
the achievable ΔANP

CP. To distinguish the different model
scenarios we explore correlations of ΔACP with other
sectors, hadronic 2-body D–decays in Sec. IV and semi-
leptonic c → ulþl− transitions in Sec. V.

FIG. 1. jΔANP
CPj (green bands) versus D0–D̄0 mixing exclusion

regions (14) on the imaginary part x12 sinϕ12 (red area) and the
absolute value x12 (red hatched area) in the ϕR–g4=MZ0 ðTeV−1Þ
plane for θu ¼ 1 × 10−4. Fψ–charges are as in model 2, see
Table I. The golden star indicates a benchmark point (40), see text
for details.

TABLE II. Parameters cK;π , dK;π and dπ0;π0 in ðTeVÞ2 as defined
in Eq. (37) and Eq. (53), respectively, for different Z0 masses.

MZ0 [TeV] 2 4 6 8 10

cK 1.133 1.217 1.266 1.302 1.330
dK −0.046 −0.054 −0.058 −0.061 −0.063
cπ −1.446 −1.553 −1.616 −1.661 −1.698
dπ 0.058 0.068 0.074 0.077 0.080
dπ0 0.071 0.083 0.090 0.094 0.098
dπ0 0.077 0.090 0.097 0.102 0.106
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IV. PATTERNS IN HADRONIC DECAYS

Z0–models with nonuniversal charges Fψ can give rise to
large flavor-breaking effects which could explicitly violate
relations between hadronic charm decays [28–31]. We
study signatures of Z0–induced U–spin and isospin break-
ing in Sec. IVA and Sec. IV B, respectively. ACP in
D0 → π0π0 is studied in Sec. IV C.

A. U–spin patterns in D0 → π +π − ;K +K −
U–spin breaking arises for FQ1

≠ FQ2
or Fd1 ≠ Fd2, and

can upset the U–spin sum rule [28]

ACPðD0 → KþK−Þ þ ACPðD0 → πþπ−Þ ¼ 0: ð42Þ

To quantify deviations from this relation we define2

Utot
break ¼

����1þ ACPðD0 → KþK−Þ
ACPðD0 → πþπ−Þ

����: ð43Þ

In the U–spin limit Utot
break ¼ 0.

Using Eqs. (36), Utot
break can be written as

Utot
break ¼

����1þ cKFQ2
þ dKFd2

cπFQ1
þ dπFd1

����: ð44Þ

In Table III we give Utot
break for models 2, 4, 5, 9 and

10ðμÞ, for MZ0 ¼ 6 TeV. The variation of Utot
break with MZ0

in the range shown is within a few percent.
Taking advantage of the smallness of the parameters dK;π

relative to cK;π , we perform a Taylor expansion in Eq. (44)
up to OðdK; dπÞ to qualitatively understand how U–spin
breaking in our models emerges. This leads to

Utot
break≈

����1þ cK
cπ

−
cKdπFd1

c2πFQ1

þ dKFd2

cπFQ1

����; ð45Þ

FIG. 2. jΔANP
CPj for different Z0–models (2 upper left, 5 upper right, 9 lower left and 10ðμÞ lower right) in the plane of g4=MZ0 ðTeV−1Þ

and ΔF̃R ¼ ΔFR · θu, together with the excluded region from D0–D̄0 mixing (red). Light green, dark green, blue and cyan bands
correspond to jΔANP

CPj ¼ ð4.0� 0.2Þ × 10−3, jΔANP
CPj ¼ ð1.5� 0.2Þ × 10−3, jΔANP

CPj ¼ ð8� 2Þ × 10−4 and jΔANP
CPj ¼ ð3� 1Þ × 10−4,

respectively. The black region indicates the upper bound coming from perturbativity and direct searches in dimuon and dielectron
spectra [27], which read g4 ≤ 4π andMZ0 ≥ 4.5 TeV, respectively. The magenta dash–dotted and dotted lines show the stronger (if any)
of the bounds from Eqs. (38) and (39). In the lower right plot the dotted line corresponds to model 10, and the dash–dotted to model 10μ.
The golden star and pink diamond are benchmark points (40) and (41). See text for details.

2For model 10ðμÞ we use instead j1þ ACPðD0→πþπ−Þ
ACPðD0→KþK−Þ j to avoid

Utot
break > 1. It is tacitly understood that K;Q2; d2 and π; Q1; d1–

indices in Eq. (44) and following need to be swapped in this case.
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for FQ1
¼ FQ2

≠ 0 (models 2, 4 and 5), while for FQ1
¼

FQ2
¼ 0 (models 9 and 10ðμÞ) Eq. (44) simply becomes

Utot
break ¼

����1þ dKFd2

dπFd1

����: ð46Þ

For models with FQ1
¼ FQ2

≠ 0 different sources of
U–spin breaking exist. The second term in Eq. (45)
accounts for effects originating from interference between
the SM amplitude and the FQ1;2

–charges. This contribution
is responsible for 22% U–spin breaking, which is of the
same order of magnitude as the expected U–spin breaking
uncertainty of the SM. In contrast, the last two terms
in Eq. (45) are pure NP U–spin breaking effects.
Equation (45) can further be simplified with dK ≈ cK

cπ
dπ

due to χπ ≈ χK , which holds numerically at the level of
Oð0.1 − 1Þ%. It follows that

Utot
break≈

����1þ cK
cπ

þ dK
cπ

�
Fd2 − Fd1

FQ1

�����; ð47Þ

highlighting that pure NP U–spin breaking effects are
induced by

UNP
break ¼

dK
cπ

����Fd2 − Fd1

FQ1

���� ≈ 0.04

����Fd2 − Fd1

FQ1

����; ð48Þ

which indicates how both the pion chiral enhancement and
r2 suppress U–spin breaking in these models. Therefore,
values of Fd2 − Fd1 ∼Oð1Þ such as in model 5, induce
U–spin breaking within the range expected within the
SM≲ 30%. In model 4, Fdi ¼ 0 and UNP

break ¼ 0, that is,
U–spin breaking is SM-like. On the other hand, for
Fd2 − Fd1 ∼Oð10Þ as in model 2, large U–spin breaking
effects can arise and would be discernible with future
sensitivities for ACPðKþK−Þ and ACPðπþπ−Þ shown in
Table IV.
For models with FQ1

¼ FQ2
¼ 0 we obtain for the pure

NP U–spin breaking from Eq. (46)

UNP
breakðFQ1;2

¼ 0Þ ≈ 0.78

����Fd2 − Fd1

Fd1

����; ð49Þ

which, unlike in Eq. (48), is unsuppressed. Models with
FQ1

¼ FQ2
¼ 0 are therefore prime candidates for sizable

NP U–spin breaking effects. Models 9 and 10ðμÞ have been
constructed for this purpose. However, in model 9 Fd2 ¼
Fd1 and U–spin breaking arises from dK ≠ −dπ only, and is
SM-like.
Note, the strong phases associated with NP are assumed

to be similar, sin δπ ≃ sin δK , and order one; violation of
Eq. (42) can be suppressed or even further enhanced by
U–spin breaking in the strong phases. While this is an
uncertainty on the NP interpretation, Z0–signals could even
be more striking.
In Figs. 3 and 4 we show the contributions of models 2,

5, 9 and 10ðμÞ to the individual CP asymmetries
ACPðKþK−Þ and ACPðπþπ−Þ in blue, magenta, yellow
and cyan, respectively. The U–spin limit is given by the
red dashed line with 30% U–spin breaking indicated by the

TABLE III. Values of βll9=10 in ðTeVÞ−2 for l ¼ μ, e and
dimensionless βπ0;0 as defined in Eq. (63) and Eq. (55),
respectively, as well as Utot

break in Eq. (44), see footnote 2, for
MZ0 ¼ 6 TeV.

Model βμμ9 βμμ10 βee9 βee10 βπ0 βπ0 Utot
break

2 0.57 −0.57 −0.68 0.68 −0.02 −0.02 0.42
4 −1.04 −0.35 1.04 0.35 −0.03 −0.03 0.22
5 −0.67 0 0.67 0 −0.10 −0.09 0.32
9 −20.56 −14.07 15.15 −2.17 −1.89 −1.75 0.22
10 37.25 3.39 −32.73 1.13 1.31 1.22 0.91
10μ −4.52 −4.52 −32.73 1.13 1.31 1.22 0.91

TABLE IV. CP asymmetries and future sensitivities σ in units
of 10−4 at LHCb Run 1-3 (Run 1-5) [32] and Belle II with
50 ab−1 [33].

×10−4 Data σLHCb σBelle II

ΔACP −15.4� 2.9 [1] 1.3(0.3) � � �
ΔAHFLAV

CP −16.4� 2.8 [2] 1.3(0.3) � � �
ACPðD0 → KþK−Þ −9� 11 [2] 3(0.7) 3
ACPðD0 → πþπ−Þ −1� 14 [2] 3(0.7) 5
ACPðD0 → π0π0Þ −3� 64 [2] � � � 9
ACPðDþ → πþπ0Þ þ290� 290� 30 [34] � � � 17

FIG. 3. ACPðKþK−Þ versus ACPðπþπ−Þ with predictions in the
Z0–models 2, 5, 9 and 10ðμÞ in blue, magenta, yellow and cyan
lines, respectively. The green band corresponds to the exper-
imental world average of ΔACP (3) at 1σ. The gray bands indicate
the present experimental 1σ regions given in Table IV. The U–
spin limit (42) (red dashed line) and ≲30% SM-like U–spin
breaking (red area) is also shown.
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red contour. Present experimental bounds from Table IVare
shown in Fig. 3 as 1σ regions in gray for the individual
asymmetries and in green for ΔACP. The future sensitivities
are indicated in light (dark) gray and green bands in Fig. 4
for LHCb Run 1-3 (1-5). We use the following central
values for the plot to the left (right)

Acen
CPðKþK−Þ ¼ −0.6 × 10−3ð−1.45 × 10−3Þ;
Acen
CPðπþπ−Þ ¼ 1.0 × 10−3ð0.15 × 10−3Þ: ð50Þ

The orange error ellipses illustrate the NP sensitivity of the
projected uncertainties of ACPðKþK−Þ and ACPðπþπ−Þ
assuming no correlations. A future data-based analysis
which takes into account correlations between the individ-
ual asymmetries and ΔACP can be expected to be more
powerful.
U–spin symmetry within the SM is broken at the level of

30%. We find that flavorful Z0–models can exceed this by
far (model 10ðμÞ), or moderately (model 2), which makes
the measurements of ACPðKþK−Þ and ACPðπþπ−Þ smoking
guns for NP, within reach of Belle II and LHCb with the
projected sensitivities.

B. Isospin breaking patterns in D + → π +π0

Isospin breaking arises in Z0–models if Fu1 ≠ Fd1 . In
charm physics, the hadronic decay Dþ → πþπ0 represents
a formidable candidate to study these effects, because the
CP asymmetry ACPðπþπ0Þ, defined by

ACPðπþπ0Þ ¼
ΓðDþ → fþÞ − ΓðD− → f−Þ
ΓðDþ → fþÞ þ ΓðD− → f−Þ ; ð51Þ

with f� ¼ π�π0 is a clean SM null test [35].

Following the same procedure as in Sec. III D for ΔANP
CP

we obtain, using θu ≪ 1,

ANP
CPðπþπ0Þ ∼

g24
M2

Z0
θuΔFRdπ0 ðFd1 − Fu1Þ; ð52Þ

with

dπ0 ¼ −
1

aπ0
r2ðmc;MZ0 Þ: ð53Þ

Here, aπ0 denotes the tree-level contribution to Dþ → πþπ0
whose modulus has been fixed experimentally, see
Appendix A for details. Numerical values of dπ0 for
different values of MZ0 are given in Table II. Inserting
Eq. (35) into Eq. (52), we obtain

ANP
CPðπþπ0Þ ∼ βπ0 · ΔANP

CP; ð54Þ

where

βπ0 ¼
dπ0 ðFd1 − Fu1Þ

cKFQ2
þ dKFd2 − cπFQ1

− dπFd1

: ð55Þ

Values of βπ0 forMZ0 ¼ 6 TeV and different Z0–models can
be seen in Table III. Since we have lost information about
the signs of the leading SM decay amplitudes with which
NP is interfering, we cannot predict the relative sign
between the CP asymmetries in Eq. (54) without relying
on assumptions on the strong interaction. Note, unlike
for ACPðKþK−Þ and ACPðπþπ−Þ, there is no SM flavor
symmetry here at work.

FIG. 4. Future projections for ACPðKþK−Þ versus ACPðπþπ−Þ with predictions in the Z0–models 2, 5, 9 and 10ðμÞ in blue, magenta,
yellow and cyan lines, respectively. The green band corresponds to the central value of the present experimental world average of ΔACP
(3) with future 1σ sensitivities according to Table IV. The gray bands illustrate two future measurements of the individual asymmetries.
The central values are given in Eq. (50), the uncertainties are scaled according to Table IV. Lighter (darker) bands correspond to LHCb
Run 1-3 (1-5). Assuming for simplicity gaussian errors a dashed (solid) ellipse occurs around model 2 (plot to the left) and model 10μ
(plot to the right) for LHCb Run 1-3 (1-5). The U–spin limit (42) (red dashed line) and≲30% SM-like U–spin breaking (red area) is also
shown. The golden star and pink diamond are benchmark points (40) and (41).
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We find that model 9 and 10ðμÞ induce values near

ANP
CPðπþπ0Þ ∼ ð1 − 2Þ · ΔANP

CP; ð56Þ

which for ΔANP
CP ∼ 10−3 is within the projected sensitivity

of Belle II with 50 ab−1 [33], see Table IV. Models 2, 4
and 5 induce ANP

CPðπþπ0Þ≲ 0.1 · ΔANP
CP ∼ 10−4, beyond the

reach of current facilities.
This behavior can be understood by expanding Eq. (55)

in the di up to OðdiÞ. For FQ1
¼ FQ2

¼ 0 [model 9 and
10ðμÞ], we find that βπ0 scales with dπ0=dK ≈ −1.6 times a
combination of charges ðFd1 − Fu1Þ=Fd2ð1þ � � �Þ ∼Oð1Þ
resulting in Oð1Þ isospin breaking effects. For models
with FQ1

¼ FQ2
≠ 0 instead a suppression factor

dπ0=ðcK − cπÞ ≈ 0.03 exists from the chiral enhancement
of the ðV − AÞ × ðV þ AÞ operators, leading to βπ0 of
Oð10−2 − 10−1Þ.

C. D0 → π0π0

We work out the CP asymmetry for D0 → π0π0 decays
because of its potential to diagnose patterns of NP [36].
In addition, the experimental prospect at Belle II for
ACPðD0 → π0π0Þ is about a factor of two better than for
ACPðDþ → πþπ0Þ, see Table IV. In the Z0–models,
ACPðD0 → π0π0Þ is obtained from Eqs. (52) and (53) after
replacing subscripts π0 by π0 with otherwise identical
expressions. Therefore, with βπ0 given in Table III,

ANP
CPðπ0π0Þ ∼ βπ0 · ΔANP

CP; ð57Þ

hence

ANP
CPðπ0π0Þ≲ 2 · ΔANP

CP; ð58Þ

with the limit saturated by model 9, and which is within the
sensitivity of Belle II with 50 ab−1 [33], see Table IV.
Furthermore,

ANP
CPðπ0π0Þ

ANP
CPðπþπ0Þ

∼
βπ0

βπ0
¼ aπ0

aπ0
¼ 1.08� 0.10; ð59Þ

holds universally for all Z0–models with Fu1 ≠ Fd1 .
Experimental tests of Eq. (59) can support a Z0–
interpretation, however, additional uncertainties from large,
unknown strong phases exist, which can modify the
relation. As discussed after Eq. (54), we cannot predict
the relative sign between the CP asymmetries (57), (59)
without relying on input on the strong interaction.

V. SEMILEPTONIC DECAYS VS ΔACP

The dominant Wilson coefficients in c → ulþl−

transitions are Cllð0Þ
9=10 , defined in Eq. (15). In flavorful

Z0–models [18]

Cll
9=10ðMZ0 Þ ¼ −

πffiffiffi
2

p
GFαe

gucL
M2

Z0
ðgllR � gllL Þ; ð60Þ

Cll0
9=10ðMZ0 Þ ¼ −

πffiffiffi
2

p
GFαe

gucR
M2

Z0
ðgllR � gllL Þ; ð61Þ

where gllR ¼ g4Fei and gllL ¼ g4FLi
with in general differ-

ent couplings for muons and electrons. As explained in
Sec. III C, we analyze in this work Z0–models with gucL ¼ 0
and ImðgucR Þ large.
CP asymmetries in the branching ratios are induced by

interference of NP, here through gucR , with Ceff
9 , the effective

coefficient of O9 present in the SM, which is lepton-
universal, depends on the dilepton invariant mass and has
sizable hadronic contributions and provides sizable strong
phases. This interference term is sensitive to Cll0

9 only.
Angular analysis offers further opportunities. An interest-
ing recent example for the latter isD0 → πþπ−μþμ− decays
[21,22,37]. Notably, the angular observables I5;6;7 are
GIM–protected in the SM and clean null tests [21]. In
the Z0–models under consideration, I5;6 are induced by
ReðCll0

9 · Cll0�
10 Þ and ImðCll0

10 · Ceff�
9 Þ, whereas I7 is induced

by Re½ðCeff�
9 − Cll0

9 Þ · Cll0�
10 Þ�. CP asymmetries in angular

asymmetries, on the other hand, can stem from naïve
T–odd observables and do not rely on strong phases
(I7;8;9). CP–odd ones (I5;6;8;9) provide CP asymmetries
that can be measured without tagging, see Ref. [21] for
details. A complete and detailed analysis of angular
asymmetries in Z0–models is beyond the scope of this
work. What we do want to point out here is that a global
analysis of angular and CP asymmetries can probe both
Cll0
9 and Cll0

10 for electrons, l ¼ e and muons, l ¼ μ
separately, and therefore can distinguish different Uð1Þ0–
charge assignments.
Taking the imaginary part of Eq. (61) and employing

Eq. (35), we obtain

ImðCll0
9=10Þ ∼

πffiffiffi
2

p
GFαe

βll9=10 · ΔA
NP
CP; ð62Þ

where

βll9=10 ¼
Fei � FLi

cKFQ2
þ dKFd2 − cπFQ1

− dπFd1

: ð63Þ

Values of βll9=10 for l ¼ μ, e in ðTeVÞ−2 are given in
Table III. For ΔANP

CP ∼ 10−3 we find

ImðCll0
9=10Þ ∼ 0.03 ðTeVÞ2 · βll9=10; ð64Þ

consistent with Cll0
9=10 ¼ Oð10−2Þ for gucL ¼ 0; gucR ≠ 0 [18]

and for βll9=10 ¼ Oð1=TeV2Þ (models 2, 4 and 5). Models 9
and 10ðμÞ have sizable couplings to leptons, and in addition
FQ1;2

¼ 0, which bring a factor of cπ;K=dπ;K, see Eq. (63),
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score βll9=10 ¼ Oð10=TeV2Þ and sizable Cll0
9=10 ¼ Oð10−1Þ.

As values of ImðCll0
9=10Þ ≳Oð10−2 − 10−1Þ suffice to induce

CP asymmetries beyond the SM in semileptonic D–decays
at the few percent level and above [13,18,21,23], all models
can simultaneously lead to ΔANP

CP ∼ 10−3 with NP patterns
in c → ulþl− decays.
In Fig. 5 we show the imaginary part of Wilson

coefficients with dielectrons (upper plots) and dimuons
(lower plots) for different models as in Eq. (62). Plots to the
left show lepton vector couplings versus lepton axial vector
couplings, ImðCll0

9 Þ vs ImðCll0
10 Þ, respectively. Also

given is ImðCll0
10 Þ ¼ −ImðCll0

9 Þ (thin gray line). The lines
corresponding to model 2, 4, and 5 end when the corre-
sponding ΔANP

CP exceeds 2 × 10−3. Results are lepton
nonuniversal as anticipated and sensitive to the lepton
doublet and singlet charges. In the plots to the right the
correlation (62) between ImðCll0

9 Þ (solid) and ImðCll0
10 Þ

(dashed) and jΔANP
CPj in the Z0–models 2, 9, 10 and 10μ is

made explicit. Curves for models 4 and 5 are only in mild

excess of those for model 2, or smaller, see Table III, and
are not shown to avoid clutter.
As couplings to electrons and muons differ, lepton

nonuniversality in charm [18,21,38] is induced, for exam-
ple in the ratio of branching ratios of D → πμþμ− and
D → πeþe− using identical kinematic cuts, RD

π . To better
control SM backgrounds from intermediate resonances
R ¼ ϕ; ηð0Þ; ρ;…, via D → πRð→lþl−Þ, interesting
regions are for low (high) dilepton mass, below the
η–mass (above the ϕ–mass), see Ref. [18] for details.
We focus on the high mass region as it has fewer sensitivity
to unknown strong phases from the resonances.
Using βll9=10 from Table III and Eq. (64) we find that all

models yield order one deviations from the universality
limit RD

π ¼ 1. Except for model 10μ, which has smaller
couplings to muons by construction, all models can induce
significant enhancements or suppressions from the SM.
In particular, in the high mass region, for ϕR ¼ π=2
and varying strong resonance phases, see Ref. [18] for
details,

FIG. 5. The interplay between semi–electronic (upper plots) and semi–muonic (lower plots) charm FCNCs (62) and ΔACP. The lines
for model 2, 4 and 5 end when the corresponding ΔANP

CP exceeds 2 × 10−3 (plots to the left). In the plots to the right the correlation (62)
between ImðCll0

9 Þ (solid) and ImðCll0
10 Þ (dashed) and jΔACPj in the Z0–models 2, 9, 10 and 10μ is made explicit. The golden star and pink

diamond are benchmark points (40) (model 2) and (41) (model 10μ), respectively. The shaded areas correspond to the upper limits (18).
See text for details.

BAUSE, GISBERT, GOLZ, and HILLER PHYS. REV. D 101, 115006 (2020)

115006-10



RD
π ∼ ½0.6…1.5� ðmodel 2; 4; 5Þ;

RD
π ∼ ½0.2…70� ðmodel 9Þ;

RD
π ∼ ½0.2…11� ðmodel 10Þ;

RD
π ∼ ½0.03…0.8� ðmodel 10μÞ; ð65Þ

allowing to signal NP.

VI. CONCLUSIONS

Patterns of observables are indispensable for pinning
down an underlying NP–dynamics. We looked globally
into hadronic and semileptonic charm decays and their
respective CP asymmetries. We find that there is strong
benefit in doing so.
Most important, all flavorful, anomalyfree Z0–models in

Table I can simultaneously accommodateΔANP
CP ∼ 10−3 and

induce measurable CP asymmetries in the semileptonic
c → ulþl− modes for l ¼ e or l ¼ μ above the SM. An
observation of CP violation in, for instance, D → πlþl−

or D → ππlþl− decays supports a NP–interpretation of
ΔACP, Eqs. (1) and (3), see Fig. 5.
Additional cross checks are provided by CP asymme-

tries inD0 → πþπ−,D0 → KþK−, which probe for U–spin
breaking NP, see Figs. 3 and 4 for present data and future
sensitivities, respectively. In addition, isospin violating NP
can be observed with projected sensitivities at Belle II in
D0 → π0π0, Dþ → πþπ0 decays, whose CP asymmetries
can exceed ΔACP, Eqs. (54) and (57).
In the Z0–models lepton nonuniversality is generic, and

observable in the ratio of branching fractions of D →
πμþμ− and D → πeþe− decays, as briefly discussed in
Sec. V. The Z0–model 9 with order one enhancements
over the universality limit, RD

π ≫ 1, also induces
ANP
CPðπþπ0Þ ∼ ANP

CPðπ0π0Þ ≲ 2 · ΔANP
CP. Z

0–model 10μ with
order one suppression of the universality limit, RD

π < 1

exhibits sizable NP U–spin breaking ANP
CPðπþπ−Þ ≪

ANP
CPðKþK−Þ ∼ ΔACP.
Checking correlations pins down models. Improved data

and sensitivities from LHCb and Belle II are important in
this program. We encourage and look forward to furtherCP
studies of rare semileptonic and hadronic charm decays.
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APPENDIX A: EXPERIMENTAL INPUT

We extract the modulus of the dominant, SM decay
amplitudes from data on branching ratios [27] given in
Table V. We use

BRðD → P1P2Þ ¼
jAPj2
16πmD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
P

m2
D

s
τD; ðA1Þ

where [39]

AP ¼ ηPλPaP
GFffiffiffi
2

p ðm2
D −m2

PÞfD→P
0 ðm2

PÞfP; ðA2Þ

P ¼ π; π0; π0; K, λπ ¼ λd and λK ¼ λs and

ηP ¼
�
1 P ¼ π; π0; K
1ffiffi
2

p P ¼ π0
: ðA3Þ

The subscript π0 corresponds to the Dþ → πþπ0 channel,
and π0 to D0 → π0π0. Relevant form factors fD→P

0 and
decay constants fP are taken from Ref. [40] and [27],
respectively. Resulting values of aP > 0 are given in
Table V.

APPENDIX B: EVOLUTION
OF WILSON COEFFICIENTS

The Wilson coefficients C̃ð0Þ
7;8;9;10 at the Z

0 mass scale (32)
are evolved to the charm mass scale at LO in αs. The
requisite anomalous dimension matrix for the operators
Q̃7;8;9;10 can be inferred from Ref. [41]. We obtain

γ0F ¼

0
BBBBB@

6
NC

−6 0 0

0
6ð1−N2

CÞ
NC

0 0

0 0 −6
NC

6

0 0 6 −6
NC

1
CCCCCA; ðB1Þ

where NC ¼ 3 is the number of colors. Since QCD
conserves parity, γ0F is identical for Q̃i and Q̃0

i. Using
Eq. (B1), the Wilson coefficients are evolved to the charm
scale, integrating out degrees of freedom at the ðZ0; t; bÞ–
scales,

C⃗ðμÞ ¼ U4ðμ; mbÞÛ5ðmb;mtÞÛ6ðmt;MZ0 ÞC⃗ðMZ0 Þ;

where Ûfðm1; m2Þ≡Mfðm1ÞUfðm1; m2Þ and Ufðm1; m2Þ
is the evolution matrix from scale m2 to scale m1 in an

TABLE V. Measured branching ratios [27] and aP–parameters
from Eq. (A2) for different decay modes.

Mode BR(mode) aP

D0 → KþK− ð4.08� 0.06Þ × 10−3 1.19� 0.04
D0 → πþπ− ð1.455� 0.024Þ × 10−3 0.94� 0.07
D0 → π0π0 ð8.26� 0.25Þ × 10−4 0.71� 0.05
Dþ → π0πþ ð1.247� 0.033Þ × 10−3 0.77� 0.05
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effective field theory with f active flavors; Mf is the
threshold matrix that matches the two effective theories
with f − 1 and f active flavors. At LO in αs, the Mf

matrices are equal to the identity matrix. For μ ¼ mc and
MZ0 ¼ 6 TeV, one finds

C̃ð0Þ
7 ðmcÞ ¼ 0.829C̃ð0Þ

7 ðMZ0 Þ;
C̃ð0Þ
8 ðmcÞ ¼ 1.224C̃ð0Þ

7 ðMZ0 Þ þ 4.502C̃ð0Þ
8 ðMZ0 Þ;

C̃ð0Þ
9 ðmcÞ ¼ 1.404C̃ð0Þ

9 ðMZ0 Þ − 0.718C̃ð0Þ
10ðMZ0 Þ;

C̃ð0Þ
10ðmcÞ ¼ −0.718C̃ð0Þ

9 ðMZ0 Þ þ 1.404C̃ð0Þ
10ðMZ0 Þ: ðB2Þ

Weusemc¼ð1.280�0.013ÞGeV,mb¼ð4.198�0.012ÞGeV
[42] and mt ¼ ð165.9� 2.1Þ GeV [43,44] and central
values for the thresholds.

APPENDIX C: HADRONIC MATRIX ELEMENTS

In order to estimate the NP decay amplitudes, we need to
determine the hadronic matrix elements for each operator
given by Eqs. (24)–(31). For that purpose, we employ
factorization of currents, P ¼ π, K,

hPþP−jQijD0i
¼ hPþjðq̄1Γ1q2Þj0ihP−jðq̄3Γ2q4ÞjD0iBPþP−

i ; ðC1Þ

where Qi ¼ ðq̄1Γ1q2Þðq̄3Γ2q4Þ is a 4–quark operator and
Γ1;2 represent possible Dirac and color structures while qj
denote quarks. The factor BPþP−

i parametrizes the deviation
of the true hadronic matrix element from its naïve approxi-
mation, BPþP−

i jnä{ve ¼ 1. For the NP contributions we work
in this approximation. After employing Fierz identities in
the flavor and color space, we find for D0 → KþK− and
πþπ− decays

hQ̃7iK;π ¼
1

NC
hQ̃8iK;π; ðC2Þ

hQ̃8iK;π ¼ Fd2;d1χK;πðμÞhQs;d
1 iK;π; ðC3Þ

hQ̃9iK;π ¼
1

NC
hQ̃10iK;π; ðC4Þ

hQ̃10iK;π ¼ FQ2;Q1
hQs;d

1 iK;π; ðC5Þ

where h…iP ¼ hPþP−j…jD0i, Qp
1 ¼ ðūpÞV−Aðp̄cÞV−A

and χK;πðμÞ are the usual chiral enhancements generated
by ðV − AÞ × ðV þ AÞ operators,

χKðμÞ ¼
2M2

K

mcðμÞmsðμÞ
;

χπðμÞ ¼
2M2

π

mcðμÞðmd þmuÞðμÞ
; ðC6Þ

with values χKðmcÞ ≈ 3.626 and χπðmcÞ ≈ 3.655 at the
charm mass scale. For the Q̃0

i operators the same relations
hold but with the proper exchange of charges FQi

↔ Fdi .
For Dþ → π0πþ decays we find

hQ̃7iπ0 ¼
1

NC
hQ̃8iπ0 ; ðC7Þ

hQ̃8iπ0 ¼
χπðμÞffiffiffi

2
p ðFu1 − Fd1ÞhQu

1iu; ðC8Þ

hQ̃9iπ0 ¼
1

NC
hQ̃10iπ0 ¼ 0; ðC9Þ

and for the corresponding Q̃0
i operators

hQ̃0
7iπ0 ¼

1

NC
hQ̃0

8iπ0 ¼ 0; ðC10Þ

hQ̃0
9iπ0 ¼

1

NC
hQ̃0

10iπ0 ; ðC11Þ

hQ̃0
10iπ0 ¼

1ffiffiffi
2

p ðFu1 − Fd1ÞhQu
1iu: ðC12Þ

For D0 → π0π0 decays we obtain

hQ̃7iπ0 ¼
1

NC
hQ̃8iπ0 ; ðC13Þ

hQ̃8iπ0 ¼
χπðμÞ
2

ðFu1 − Fd1ÞhQu
1iu; ðC14Þ

hQ̃9iπ0 ¼
1

NC
hQ̃10iπ0 ¼ 0; ðC15Þ

and for the corresponding Q̃0
i operators

hQ̃0
7iπ0 ¼

1

NC
hQ̃0

8iπ0 ¼ 0; ðC16Þ

hQ̃0
9iπ0 ¼

1

NC
hQ̃0

10iπ0 ; ðC17Þ

hQ̃0
10iπ0 ¼

1

2
ðFu1 − Fd1ÞhQu

1iu; ðC18Þ

where h…iπ0 ¼ hπþπ0j…jDþi, h…iπ0 ¼ hπ0π0j…jD0i and
h…iq ¼ hq̄qj…jDþi. Equations (C2)–(C18) are obtained
in the isospin limit,mu ¼ md and e ¼ 0, since these isospin
breaking corrections from within the SM are negligible
with respect to the NP ones, Fui;di;Qi

≠ 0.
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APPENDIX D: RGE FUNCTIONS

Equation (35) for ΔANP
CP accounts for the running and

mixing of operators through the functions r1;2. The latter
can be obtained from the evolution of the Wilson coef-
ficients described in Appendix B. We obtain

r1ðmc;MZ0 Þ ¼ R−2

3
ffiffiffi
2

p
GFλs

; ðD1Þ

r2ðmc;MZ0 Þ ¼ 2R1=2 − R−1

3
ffiffiffi
2

p
GFλs

; ðD2Þ

where

R ¼
�
αð4Þs ðmbÞ
αð4Þs ðmcÞ

�12
25

�
αð5Þs ðmtÞ
αð5Þs ðmbÞ

�12
23

�
αð6Þs ðMZ0 Þ
αð6Þs ðmtÞ

�4
7

: ðD3Þ
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