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As a next step in the exploration of a class of flavored gauge mediation models of supersymmetry
breaking in which the mixing of the Higgs and messenger doublets are connected by a discrete non-Abelian
symmetry, we investigate the generation of nontrivial mass hierarchies and mixing angles for the Standard
Model matter fields. We consider here the case in which the Higgs-messenger symmetry, which we take for
concreteness to be the discrete group S3, also plays the role of a (partial) family symmetry. Within the
specific implementation of S3 studied here, we show that couplings at the renormalizable level can result in
hierarchical quark masses, but do not lead to phenomenologically viable quark mixing parameters,
requiring the inclusion of higher-dimensional operators. As a concrete exploration of this idea, we show
that the Cabibbo angle can be generated within this framework via such nonrenormalizable couplings and
explore the phenomenological implications of this scenario.
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I. INTRODUCTION

Gauge-mediated supersymmetry breaking [1–4] pro-
vides an elegant framework for the generation of the soft
supersymmetry breaking sector of the minimal supersym-
metric standard model (MSSM) and its extensions. In its
minimal incarnation within the MSSM, this framework is
well known to be severely constrained by the LHC Higgs
data [5–7], as it predicts negligibly small scalar trilinear
couplings (A terms) at the messenger scale. One way to
circumvent this issue is to consider nonminimal versions of
gauge mediation, in which the messenger fields have direct
(renormalizable) couplings to the MSSM fields [3,4,8–25].
A compelling set of examples within this broad category
are “flavored gauge mediation” models [9,16–25], for
which there is nontrivial mixing of the SUð2ÞL messenger
doublets and the electroweak Higgs fields of the MSSM.
Flavored gauge mediation models allow for the generation
of nontrivial A terms at the messenger scale, thus alleviat-
ing the Higgs mass problem of minimal gauge mediation in
the MSSM.
Flavored gauge mediation can also provide an intriguing

setting for exploring the flavor puzzle of the Standard

Model (SM). Since the electroweak Higgs doublets mix
with the messenger doublets, the generation of the needed
messenger Yukawa couplings is tied together with the
generation of the Yukawa couplings of the three families of
the quarks and leptons. The dynamics of the Higgs-
messenger sector is governed by a symmetry, denoted here
as the Higgs-messenger symmetry, which controls the
mixing of the Higgs and messenger doublets. This under-
lying Higgs-messenger symmetry can also play a role as
part of the family symmetry that controls the generation of
the fermion masses and mixing angles. One concrete
realization of this idea occurs in the case that the
MSSM matter fields have nontrivial charge assignments
with respect to the Higgs-messenger symmetry. In such
scenarios, achieving the observed patterns of the
quark and lepton masses and quark mixing angles is tied
together with the structure of the messenger Yukawa
couplings that control the flavored gauge mediation
corrections to the soft supersymmetry breaking terms.
Here we note that while nonminimal flavor violation
associated with the soft supersymmetry breaking terms
can then result, opening the door to the supersymmetric
flavor problem [26–30], it has been shown that flavor-
violating effects in these models can often be more
strongly suppressed than simple estimates might naively
indicate [24,25].
An intriguing possibility is that the Higgs-messenger

symmetry is a discrete non-Abelian symmetry [for exam-
ples based on Uð1Þ symmetries, see, e.g., [25] ]. This idea
was first studied for the case of a S3 Higgs-messenger
symmetry for two families [17], and later extended to three
families [31,32]. Discrete non-Abelian symmetries provide
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rigid constraints on these models, with implications not
only for the flavor puzzle but also for the well-known μ=Bμ

problem of gauge mediation [33–35] (see [4,36] for
reviews). In [31,32], we showed that three-family models
based on S3 require an expanded Higgs-messenger sector
that results in two pairs of heavy messenger doublets,
as well as the pair of light doublets that are to be identified
as the Higgs fields Hu;d of the MSSM. For the case of
interest in which the MSSM matter superfields also
are embedded within S3 representations, various scenarios
can be constructed with one heavy and two massless
generations. Such scenarios can also be consistent with
the Higgs mass constraints for squark masses in the
5–6 TeV range.
In this paper, as a next step in our exploration of this

class of flavored gauge mediation models, we build upon
[31,32] to investigate the generation of the quark and
charged lepton masses and the quark mixing angles. Our
focus in this work is to elucidate the conditions for
achieving a mass hierarchy for the lighter generations of
SM charged matter fields and obtaining a reasonable value
for the Cabibbo mixing angle of the quark sector (here
we will ignore the issue of neutrino mass generation, and
return to this question in future work). While S3 has been
considered as a family symmetry in prior work (see, e.g.,
[37–40], among others, for works in which S3 symmetry is
used to predict the Cabibbo angle), our approach differs
from previous literature that it is an investigation of this
question within the context of the MSSM with flavored
gauge mediated supersymmetry breaking. More precisely,
in this scenario, the electroweak Higgs doublets Hu;d

emerge after S3 breaking as specific linear combinations
of Higgs-messenger fields in singlet and doublet represen-
tations of S3, while the orthogonal combinations of the
Higgs-messenger fields are two sets of heavy messenger
states that are decoupled at the messenger scale of gauge
mediation. As a result, within this setting there are specific
relations among the SM and messenger Yukawa couplings,
and constraints on each sector that must be jointly satisfied.
We find that while specific perturbations of the Yukawa
couplings associated with the renormalizable superpoten-
tial interactions do not in general lead to the appropriate
mixing of the first and second generations, the Cabibbo
angle can be generated via higher-dimensional superpo-
tential operators, with corresponding implications for the
mass spectrum of the theory.
The structure of this work is as follows. We begin

with an overview of the discrete non-Abelian Higgs-
messenger symmetry and the resulting model structure,
focusing on the case of the discrete group S3, as in
[17,31,32]. We present the model and discuss the gener-
ation of masses and mixing angles among the first and
second quark families. The phenomenological implications
are then discussed. Finally, we present our summary and
conclusions.

II. THEORETICAL OVERVIEW

In the class of models we consider, the Higgs-messenger
symmetry is taken to be S3, the permutation group on three
objects. Its associated group theory can be found in many
references (see, e.g., [17]). Here we summarize its most
salient features for our study.
S3 contains three irreducible representations: the singlet

1, a one-dimensional representation 10, and a doublet 2. The
tensor products involving the doublets are

1⊗ 2¼ 2; 10 ⊗ 2¼ 2; 2⊗ 2¼ 1⊕ 10 ⊕ 2: ð1Þ

As in [17], we use a group presentation such that the singlet
representations obtained from the tensor products of either
two doublets or three doublets are given by

ð2 ⊗ 2Þ1 ¼
��

a1
a2

�
⊗

�
b1
b2

��
1

¼ a1b2 þ a2b1;

ð2 ⊗ 2 ⊗ 2Þ1 ¼
��

a1
a2

�
⊗

�
b1
b2

�
⊗

�
c1
c2

��
1

¼ a1b1c1 þ a2b2c2: ð2Þ

Here all fields are taken for simplicity to be either 1 or 2
representations, such that Eq. (2) provides us with the
relations needed to construct S3 invariants.
In this scenario, the Higgs-messenger sector consists of

the following collection of chiral superfields that have
specific transformation properties with respect to the S3

symmetry,

Hu ¼

0
B@

Hu1

Hu2

Hu3

1
CA ¼ Ru

0
B@

Hu

Mu1

Mu2

1
CA;

Hd ¼

0
B@

Hd1

Hd2

Hd3

1
CA ¼ Rd

0
B@

Hd

Md1

Md2

1
CA; ð3Þ

in which the electroweak Higgs fields are denoted by
Hu;d, the SUð2Þ doublet messengers are given by Mui;di

(i ¼ 1, 2), and Ru=d are rotation matrices that are obtained
upon diagonalizing the mass matrices of the Higgs/doublet
messenger sector of the theory. The individual components

Hui;di are given by S3 doublets (denoted by Hð2Þ
u;d) and S3

singlets (denoted byHð1Þ
u;d). Note that two sets of messenger

doublets are included; this is the minimal set needed to
accommodate the constraints of the μ=Bμ problem. The
theory also includes SUð3Þ triplet messengers, which are
taken to be S3 singlets and are denoted by Tui;di (i ¼ 1, 2).
The SM charges of the Tui;di and the messenger doublets
Mui;di are such that together they form two vectorlike pairs
of 5, 5̄ representations of SUð5Þ.
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The model also includes two supersymmetry breaking
fields: the S3 doublet, XH, which couples to the messenger-
Higgs fields, and a S3 singlet chiral superfield XT that
couples only to Tui;di via the superpotential coupling
λTXTTuiTdi. It is further assumed that the triplet messen-
gers and XT do not have renormalizable couplings to the
messenger doublets or the MSSM fields, as needed to avoid
rapid proton decay. This typically requires additional
symmetries, but this is not difficult to implement in a
concrete scenario; what is more difficult is to embed this
scenario within a fully grand unified theory. We defer that
question to future work.
As discussed in [31,32], the superpotential couplings of

XH to the Higgs-messenger sector are given by

WH ¼ λXHH
ð2Þ
u Hð2Þ

d þ λ0XHH
ð1Þ
u Hð2Þ

d þ λ00XHH
ð2Þ
u Hð1Þ

d

þ κMHð2Þ
u Hð2Þ

d þ κ0MHð1Þ
u Hð1Þ

d : ð4Þ

All couplings are taken for simplicity to be real. The
vacuum expectation value (VEV) of the supersymmetry-
breaking field XH is parametrized by

hλXHi ¼ M

�
sinϕ

cosϕ

�
þ θ2F

�
sin ξ

cos ξ

�
; ð5Þ

in which ϕ and ξ characterize the VEV directions of the
scalar and F components, respectively, and we take
F ≪ M2 for simplicity. After symmetry breaking, the
effective superpotential is given by

WH ≡HT
uMHd þ θ2HT

uFHd

¼ MHT
u

0
B@

sinϕ κ ϵ0 cosϕ

κ cosϕ ϵ0 sinϕ

ϵ00 cosϕ ϵ00 sinϕ κ0

1
CAHd

þ θ2FHT
u

0
B@

sin ξ 0 ϵ0 cos ξ

0 cos ξ ϵ0 sin ξ

ϵ00 cos ξ ϵ00 sin ξ 0

1
CAHd;

in which ϵ0 ¼ λ0=λ, ϵ00 ¼ λ00=λ, and the quantities Hu;d are
now given by

Hu ¼

0
B@

ðHð2Þ
u Þ1

ðHð2Þ
u Þ2

Hð1Þ
u

1
CA; Hd ¼

0
B@

ðHð2Þ
d Þ1

ðHð2Þ
d Þ2

Hð1Þ
d

1
CA: ð6Þ

Here we set ϵ00 ¼ ϵ, such that M and F are symmetric
matrices, and set ϵ0 ¼ 1. The next step [17] is to impose
½M; F � ¼ 0, which yields κ0 ¼ κ¼ sinðϕ−ξÞ=ðcosξ− sinξÞ,
where ξ ≠ π=4.
With these constraints, a viable solution with a distinct

hierarchy of eigenvalues for both M and F can then be

obtained. This distinct hierarchy is needed for separate fine-
tunings of the μ and b parameters, as well as for a clean
separation in mass scales between the electroweak Higgs
doublets and the doublet messenger fields. The solution
occurs in the limit in which ξ → −π=4 and ϕ ≠ ξ, with a
small detuning between ϕ and ξ ≃ −π=4 that controls the
size of the resulting μ term. In this limit, the matrices Ru;d

are given to leading order by

Ru;d ¼

0
BBB@

1ffiffi
3

p ∓ 1
2

�
1þ 1ffiffi

3
p
�

1
2

�
1 − 1ffiffi

3
p
�

1ffiffi
3

p � 1
2

�
1 − 1ffiffi

3
p
�

− 1
2

�
1þ 1ffiffi

3
p
�

1ffiffi
3

p � 1ffiffi
3

p 1ffiffi
3

p

1
CCCA: ð7Þ

Note that the trimaximal vector is associated with the light
eigenstate, which is precisely the state that corresponds to
the electroweak doublets Hu;d. (More precisely, the eigen-
values corresponding to this light eigenstate are μ ≪ M for
the case of M, and b ≪ F for the case of F .) The heavy
states in this limit have equal masses that are proportional
to M.

III. FERMION MASSES:
RENORMALIZABLE COUPLINGS

As studied in [32], a key assumption of this scenario is
that the three generations of SM quarks and leptons are
embedded into doublet and singlet representations of S3.
The charge assignments for the fields in the theory are
summarized in Table I.
The renormalizable superpotential Yukawa couplings of

the MSSM matter fields and the Higgs-messenger fields,
for example for the up quarks, are given by

WðuÞ ¼ yu½Q2ū2H
ð2Þ
u þ β1Q2ū2H

ð1Þ
u þ β2Q2ū1H

ð2Þ
u

þ β3Q1ū2H
ð2Þ
u þ β4Q1ū1H

ð1Þ
u �; ð8Þ

in which the βi are arbitrary coefficients in the absence of
further model structure. We note that here we will take
them to be real, for simplicity [41]. In the basis given by
Q ¼ ðQ2; Q1ÞT and ū ¼ ðū2; ū1ÞT , these couplings can be
expressed in matrix form as [42]

TABLE I. Charges for an S3 model of the Higgs-messenger
fields and the MSSM matter fields. Here the SUð3Þ triplet
messengers and the associated XT field are not displayed for
simplicity.

Hð2Þ
u Hð1Þ

u Hð2Þ
d Hð1Þ

d Q2 Q1 ū2 ū1 d̄2 d̄1 L2 L1 ē2 ē1 XH

S3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
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WðuÞ ¼ yuQT

0
BB@

Hð2Þ
u1 β1H

ð1Þ
u β2H

ð2Þ
u2

β1H
ð1Þ
u Hð2Þ

u2 β2H
ð2Þ
u1

β3H
ð2Þ
u2 β3H

ð2Þ
u1 β4H

ð1Þ
u

1
CCAū: ð9Þ

Analogous coupling matrices would hold in the down
quark and charged lepton sectors, with the replacements
βi → βdi; βei.
A key feature of this scenario compared to previous work

using S3 as a family symmetry (see, e.g., [39]) is that there
is a specific decomposition of the Higgs-messenger fields
into the electroweak Higgs pair, Hu;d, and two heavy pairs
of doublet messengers that acquire masses of the order of
Mmess and thus decouple at scales much higher than the
TeV scale, as summarized in the previous section. This
decomposition of the Higgs-messenger fields, which is
obtained using Eqs. (6) and (7), is given for the up-type
Higgs and messenger fields as follows:

Hð1Þ
u ¼ 1ffiffiffi

3
p ðHu þMu1 þMu2Þ;

ðHð2Þ
u Þ1 ¼

1ffiffiffi
3

p Hu −
1

2

�
1þ 1ffiffiffi

3
p

�
Mu1 þ

1

2

�
1 −

1ffiffiffi
3

p
�
Mu1;

ðHð2Þ
u Þ2 ¼

1ffiffiffi
3

p Hu þ
1

2

�
1 −

1ffiffiffi
3

p
�
Mu1 −

1

2

�
1 −

1ffiffiffi
3

p
�
Mu1:

ð10Þ
[Analogous results hold for the down-type Higgs and
messenger fields, from Eqs. (6) and (7).]
Using the results of Eq. (10) in Eq. (9), it is straightfor-

ward to see that the SM up quark sector Yukawa couplings
are given by

Yu ¼
yuffiffiffi
3

p

0
BB@

1 β1 β2

β1 1 β2

β3 β3 β4

1
CCA; ð11Þ

and the messenger Yukawa couplings Y 0
u1 and Y 0

u2 take the
form

Y 0
u1 ¼ yu

0
BBB@

− 1
2
− 1

2
ffiffi
3

p β1ffiffi
3

p β2
2
− β2

2
ffiffi
3

p

β1ffiffi
3

p 1
2
− 1

2
ffiffi
3

p − β2
2
− β2

2
ffiffi
3

p

β3
2
− β3

2
ffiffi
3

p − β3
2
− β3

2
ffiffi
3

p β4ffiffi
3

p

1
CCCA; ð12Þ

Y 0
2 ¼ yu2

0
BBB@

1
2
− 1

2
ffiffi
3

p β1ffiffi
3

p − β2
2
− β2

2
ffiffi
3

p

β1ffiffi
3

p − 1
2
− 1

2
ffiffi
3

p β2
2
− β2

2
ffiffi
3

p

− β3
2
− β3

2
ffiffi
3

p β3
2
− β3

2
ffiffi
3

p β4ffiffi
3

p

1
CCCA: ð13Þ

In this section, we will focus on the diagonalization of the
SM Yukawa couplings as given in Eq. (11) and save the

discussion of the messenger Yukawa couplings for later in
this work.
It is straightforward to diagonalize Eq. (11) for arbitrary

(real) βi via a standard biunitary transformation, in which

U†
uLYuUuR ¼ Ydiag

u ; ð14Þ

with

U†
uLYuY

†
uUuL; U†

uRY
†
uYuUuR: ð15Þ

It is clear from the structure of Eq. (11) that the eigenvalues
are not hierarchical for arbitary values of the βi. Hence,
specific relations among the βi are required for this
scenario to be phenomenologically viable of this scenario.
Any such relations correspond to additional symmetry
structures, together with the S3 Higgs-messenger sym-
metry. As discussed in [32], one possible solution that
guarantees two zero mass eigenvalues and one nonzero
mass eigenvalue is to require that

β1 ¼ 1; β2β3 ¼ β4: ð16Þ

The nonzero eigenvalue is then to be identified with
the top quark Yukawa coupling, yt. As discussed in
[32], this requires the specific identification that yu ¼
yt=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ β22

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ β23

p Þ.
Furthermore, from Eqs. (11) and (16), we see that one of

the zero mass eigenvalues arises from the upper 2 × 2 block
of Yu and is controlled by β1 → 1, while the other arises
from the symmetry of the third column and row of Yu and is
controlled by β2β3 → β4. Note that Eq. (16) includes the
possibility that all βi ¼ 1, for which there is the enhanced
symmetry S3L × S3R. This is the flavor “democratic” limit,
which was studied in this context in [31], and which has a
long and extensive literature (see, e.g., [43–59]). However,
Eq. (16) also encompasses other possibilities. This includes
the option that β4 ≫ β2;3 ≫ β1, in which the term involving
S3 singlet representations only in Eq. (8) is dominant,
which was explored in [32].
Given that there is a degenerate subspace corresponding

to the two zero mass eigenvalues, the diagonalization
matrices UuL and UuR should generally involve linear
combinations of the associated eigenvectors, with the linear
combinations parametrized by a continuous parameter.
More precisely, the (unnormalized) eigenvector corre-
sponding to the zero eigenvalue controlled by β1 → 1 is
given by ð1;−1; 0Þ, while the (unnormalized) eigenvector
corresponding to the other zero eigenvalue is given by
ð−β3;2;−β3;2; 1Þ, with β3;2 corresponding to the eigenvec-
tors for YuY

†
u and Y

†
uYu, respectively. With this in mind, the

diagonalization matrices UuL and UuR are given by
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UuL ¼

0
BBBBB@

cos θ̃ffiffi
2

p − β3 sin θ̃ffiffi
2

p ffiffiffiffiffiffiffiffi
2þβ2

3

p − β3 cos θ̃ffiffi
2

p ffiffiffiffiffiffiffiffi
2þβ2

3

p − sin θ̃ffiffi
2

p 1ffiffiffiffiffiffiffiffi
2þβ2

3

p

− cos θ̃ffiffi
2

p − β3 sin θ̃ffiffi
2

p ffiffiffiffiffiffiffiffi
2þβ2

3

p − β3 cos θ̃ffiffi
2

p ffiffiffiffiffiffiffiffi
2þβ2

3

p þ sin θ̃ffiffi
2

p 1ffiffiffiffiffiffiffiffi
2þβ2

3

p
ffiffi
2

p
sin θ̃ffiffiffiffiffiffiffiffi
2þβ2

3

p
ffiffi
2

p
cos θ̃ffiffiffiffiffiffiffiffi
2þβ2

3

p β3ffiffiffiffiffiffiffiffi
2þβ2

3

p

1
CCCCCA
;

ð17Þ

UuR ¼

0
BBBBB@

cos θ̃ffiffi
2

p − β2 sin θ̃ffiffi
2

p ffiffiffiffiffiffiffiffi
2þβ2

2

p − β2 cos θ̃ffiffi
2

p ffiffiffiffiffiffiffiffi
2þβ2

2

p − sin θ̃ffiffi
2

p 1ffiffiffiffiffiffiffiffi
2þβ2

2

p

− cos θ̃ffiffi
2

p − β2 sin θ̃ffiffi
2

p ffiffiffiffiffiffiffiffi
2þβ2

2

p − β2 cos θ̃ffiffi
2

p ffiffiffiffiffiffiffiffi
2þβ2

2

p þ sin θ̃ffiffi
2

p 1ffiffiffiffiffiffiffiffi
2þβ2

2

p
ffiffi
2

p
sin θ̃ffiffiffiffiffiffiffiffi
2þβ2

2

p
ffiffi
2

p
cos θ̃ffiffiffiffiffiffiffiffi
2þβ2

2

p β2ffiffiffiffiffiffiffiffi
2þβ2

2

p

1
CCCCCA
;

ð18Þ

in which we have written the linear combinations of
degenerate eigenvectors in terms of the parameter θ̃, with
0 ≤ θ̃ ≤ π=2. In the case that θ̃ ¼ 0, the mass ordering is
such that the eigenvalue controlled by β1 would correspond
to the first generation, and UuL, UuR then reduce to the

forms given in [32]. In contrast, for θ̃ ¼ π=2, it is the other
eigenvalue that is to be identified with the first generation,
and the corresponding UuL, UuR have their first two
columns interchanged compared to the forms given in
[32]. Here it is important to recall that θ̃ is an unphysical
parameter in the degenerate (massless) limit, as studied in
[32], and hence it has no observable consequences in this
limit. However, when perturbations to this leading order
structure are incorporated such that there are three distinct
hierarchical mass eigenvalues, a specific value of θ̃ is
determined. Once this is done for both the up and the down
quark sectors, the Cabibbo-Kobayashi-Maskawa (CKM)
matrix can be explicitly predicted. Indeed, a primary
goal of this work is to explore such perturbations to see
if viable quark masses and mixing can be obtained in this
scenario.
To this end, we note that if identical structures are

assumed within the down quark sector, such that the UdL,
UdR that satisfy U†

dLYdUdR ¼ Ydiag
d are given by Eqs. (17)

and (18) with β3;2 → β3d;2d and θ̃ → θ̃d, the CKM matrix
UCKM ¼ U†

uLUdL takes the general form

UCKM ¼

0
BBBBB@

cos θ̃ cos θ̃d þ ð2þβ3β3dÞ sin θ̃ sin θ̃dffiffiffiffiffiffiffiffi
2þβ2

3

p ffiffiffiffiffiffiffiffiffi
2þβ2

3d

p ð2þβ3β3dÞ cos θ̃d sin θ̃ffiffiffiffiffiffiffiffi
2þβ2

3

p ffiffiffiffiffiffiffiffiffi
2þβ2

3d

p − cos θ̃ sin θ̃d −
ffiffi
2

p ðβ3−β3dÞ sin θ̃ffiffiffiffiffiffiffiffi
2þβ2

3

p ffiffiffiffiffiffiffiffiffi
2þβ2

3d

p

− cos θ̃d sin θ̃ þ ð2þβ3β3dÞ cos θ̃ sin θ̃dffiffiffiffiffiffiffiffi
2þβ2

3

p ffiffiffiffiffiffiffiffiffi
2þβ2

3d

p ð2þβ3β3dÞ cos θ̃ cos θ̃dffiffiffiffiffiffiffiffi
2þβ2

3

p ffiffiffiffiffiffiffiffiffi
2þβ2

3d

p þ sin θ̃ sin θ̃d −
ffiffi
2

p ðβ3−β3dÞ cos θ̃ffiffiffiffiffiffiffiffi
2þβ2

3

p ffiffiffiffiffiffiffiffiffi
2þβ2

3d

p
ffiffi
2

p ðβ3−β3dÞ sin θ̃dffiffiffiffiffiffiffiffi
2þβ2

3

p ffiffiffiffiffiffiffiffiffi
2þβ2

3d

p
ffiffi
2

p ðβ3−β3dÞ cos θ̃dffiffiffiffiffiffiffiffi
2þβ2

3

p ffiffiffiffiffiffiffiffiffi
2þβ2

3d

p 2þβ3β3dffiffiffiffiffiffiffiffi
2þβ2

3

p ffiffiffiffiffiffiffiffiffi
2þβ2

3d

p

1
CCCCCA
: ð19Þ

There are several illuminating features of Eq. (19). First,
Eq. (19) shows that the 2–3 and 1–3 mixing angles ofUCKM
both depend linearly on the quantity β3 − β3d. In contrast,
the Cabibbo (1–2) mixing angle λ is largely independent of
this factor, and instead depends primarily on the difference
between θ̃ and θ̃d. In the case that θ̃ takes intermediate
values such that sin θ̃ ∼ cos θ̃, it is necessary to take
β3d → β3 þOðλ3Þ. This a very delicate balance that is
needed between the up and down quark sectors, and
ensuring that this condition is satisfied certainly requires
additional model-building input. In this case, further
corrections are required to fill in the needed value of the
2–3 CKMmixing angle. Second, it is possible to envision a
scenario in which θ̃ → OðλÞ, such that we can take the
still stringent but slightly milder condition that β3d →
β3 þOðλ2Þ. Indeed, in the limit that β3d → β3, Eq. (19)
simplifies to the following form:

UCKM ¼

0
B@

cosðθ̃ − θ̃dÞ sinðθ̃ − θ̃dÞ 0

− sinðθ̃ − θ̃dÞ cosðθ̃ − θ̃dÞ 0

0 0 1

1
CA: ð20Þ

In this case, we must further require that θ̃d → OðλÞ and
θ̃ − θ̃d ∼OðλÞ, which is also a delicate balance between the
up and the down quark sectors. Further model-building
structure must be incorporated to generate such relations
dynamically rather than forcing them to occur via fine-tuning.
While it might at first seem plausible that perturbations

to Eq. (16) could yield a phenomenologically acceptable
CKM matrix, we can see right away that this is impossible
with only the renormalizable (tree-level) superpotential
couplings of Eq. (8). The reason is that Eq. (11) is exactly
diagonalizable for arbitrary βi, and the eigenvectors of the
Hermitian combinations YuY

†
u and Y

†
uYu in the general case

include the (unnormalized) eigenvector ð1;−1; 0Þ, with the
associated eigenvalue controlled by the parameter β1.
Hence, once the βi no longer satisfy Eq. (16), the hierarchy
of the eigenvalues is immediately fixed (up to the possible
but uninteresting case of masses that are nonzero, but still
degenerate) such that either θ̃ ¼ 0 or θ̃ ¼ π=2. (Analogous
results hold for θ̃d.) As a result, the Cabibbo angle is
predicted to be either vanishingly small if θ̃ ¼ θ̃d orOð1Þ if
θ̃ − θ̃d ∼ π=2, neither of which is phenomenologically
viable.
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IV. FERMION MASSES: NONRENORMALIZABLE
OPERATORS

As discussed in the previous section, the Yukawa
couplings at the renormalizable level do not give rise to
a phenomenologically acceptable CKM matrix. Hence, we
now explore the possibility that the renormalizable cou-
plings listed in Eq. (9) are supplemented by couplings of
the Higgs-messenger fields to the matter fields that arise
from higher-dimensional (nonrenormalizable) operators in
the superpotential. Such operators arise from new physics
associated with the cutoff scale of the operator. In the
canonical Froggatt-Nielsen approach [60] based on family
symmetries, such operators originate from renormalizable
Yukawa couplings of the SM fields to new heavy fields
(known as Froggatt-Nielsen fields) and flavon fields that
receive vacuum expectation values and thus participate in
the breaking of the family symmetry. Upon family sym-
metry breaking, therefore, these operators contribute to
fermion masses; in supersymmetric models they result in
effective operator contributions to the superpotential.
Here we are interested in effective operators that preserve

the S3 symmetry at high scales (at or close to the messenger
scale). Given the quantum numbers of the matter and
Higgs fields as given in Table I, this clearly requires
augmenting the theory to include a flavon sector that
consists of chiral superfields that have vacuum expectation
values in their scalar components (but no associated F
terms). Furthermore, the flavon sector must include fields
with nontrivial S3 quantum numbers, which then can easily

resemble the corresponding Hð2Þ
u;d fields. Quite generally,

with the introduction of such flavon fields, additional
model-building constraints are required to ensure, for
example, that such flavons do not couple directly to the
XH;T fields of the theory, for example. Our purpose in this
work is not to provide a comprehensive analysis of all
operators and the associated detailed dynamics of the
flavon sector, but rather to provide an explicit working
example of a higher-dimensional operator that can satisfy
the requirements of the previous section for generating a
viable Cabibbo mixing angle.
The working example we construct is as follows. Let us

consider the following contribution to the superpotential:

WðuÞ
NR ¼ ϵ

Λ0 ðQ2ϕ2ÞðHð2Þ
u ū2Þ; ð21Þ

in which ϕ2 is a flavon in the 2 representation of S3. Here ϵ
is a dimensionless parameter, and Λ0 is the scale of the new
physics that is responsible for generating this operator.
Through some dynamics (that as stated we will leave
unspecified in this work), ϕ2 acquires a vacuum expect-
ation value in its scalar component, but as previously just
discussed, not its F component, so it does not participate in
the mediation of supersymmetry breaking. We parametrize
this field’s vacuum expectation value as

hϕ2i ¼ v

�
cos θ

sin θ

�
; ð22Þ

in which v is a dimensionful parameter, and the dimension-
less parameter θ has been introduced (and we will shortly
see its identification with the parameter θ as given in the
previous section). After this flavon acquires a VEV, the
strength of the operator of Eq. (21) is given by βϵ ≡ vϵ=Λ0.
We then obtain an additional contribution to the SM up
quark Yukawa matrix:

YNR
u ¼ βϵffiffiffi

3
p

0
B@

sin θ sin θ 0

cos θ cos θ 0

0 0 0

1
CA; ð23Þ

as well as contributions to the messenger Yukawa cou-
plings, as follows:

Y 0NR
u1 ¼ βϵ

2

0
BBB@

�
1− 1ffiffi

3
p
�
sinθ −

�
1þ 1ffiffi

3
p
�
sinθ 0�

1− 1ffiffi
3

p
�
cosθ −

�
1þ 1ffiffi

3
p
�
cosθ 0

0 0 0

1
CCCA;

Y 0NR
u2 ¼ βϵ

2

0
BBB@

−
�
1þ 1ffiffi

3
p
�
sinθ

�
1− 1ffiffi

3
p
�
sinθ 0

−
�
1þ 1ffiffi

3
p
�
cosθ

�
1− 1ffiffi

3
p
�
cosθ 0

0 0 0

1
CCCA; ð24Þ

and we assume there are analogous relations for the down
quark and charged lepton sectors. The task at hand is once
again to diagonalize the SM Yukawa couplings, which now
take the form Yu → Yu þ YNR

u . Again, in this section we
will focus on the SM fermion masses, and defer the
discussion of the associated messenger Yukawa couplings
to the next section.
Here we will focus our attention on the case in which we

retain the relations of Eq. (16) for the renormalizable
couplings, such that β1 ¼ 1 and β2β3 ¼ β4. The SM up
quark Yukawa matrix then takes the form

Yu →
1ffiffiffi
3

p

0
B@

yuþ βϵ sinθ yuþ βϵ sinθ yuβ2
yuþ βϵ cosθ yuþ βϵ cosθ yuβ2

yuβ3 yuβ3 yuβ2β3

1
CA: ð25Þ

Diagonalizing this matrix in the usual manner, the eigen-
values are easily shown to be nondegenerate. As we will
see, one eigenvalue remains massless, the second has mass
of order βϵ ≪ 1, and the third is to be identified with the top
quark Yukawa coupling yt.
While it is straightforward to obtain the diagonalization

matrices for arbitrary values of the parameters β2;3 and βϵ,
here we focus on leading order effects in βϵ. We also focus
on the limit studied in [32], wherein β2;3 are taken to be
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very large while yu is set such that yt remains constant. This
is done not only for simplicity but also because deviations
from that limit generically result in flavor off-diagonal
couplings in the messenger sector, which require more
detailed analysis [61]. In this paradigm, the SM up quark
Yukawa becomes

Yu ¼

0
BBB@

βϵ sin θffiffi
3

p βϵ sin θffiffi
3

p 0

βϵ cos θffiffi
3

p βϵ cos θffiffi
3

p 0

0 0 yt

1
CCCA; ð26Þ

while the messenger Yukawas take the form

Y 0
u1 ¼

0
BBB@

βϵ
�
1
2
− 1

2
ffiffi
3

p
�
sin θ −βϵ

�
1
2
þ 1

2
ffiffi
3

p
�
sin θ 0

βϵ
�
1
2
− 1

2
ffiffi
3

p
�
cos θ −βϵ

�
1
2
þ 1

2
ffiffi
3

p
�
cos θ 0

0 0 yt

1
CCCA;

Y 0
u2 ¼

0
BBB@

−βϵ
�
1
2
þ 1

2
ffiffi
3

p
�
sin θ βϵ

�
1
2
− 1

2
ffiffi
3

p
�
sin θ 0

−βϵ
�
1
2
þ 1

2
ffiffi
3

p
�
cos θ βϵ

�
1
2
− 1

2
ffiffi
3

p
�
cos θ 0

0 0 yt

1
CCCA:

ð27Þ

Upon first inspection, it appears that the Yukawa matrices
are dependent on the direction of the flavon vacuum
expectation value, and as such one might expect the
eigenvalues of Yu to also carry this dependence.
However, this is not the case, as we will soon see.
Following the standard procedure of rotating the SM up

quark Yukawa in Eq. (26) into the diagonal quark mass
basis using a biunitary transformation, the diagonalization
matrices UuL and UuR are found to take the simple forms

UuL ¼

0
B@

− cos θ sin θ 0

sin θ cos θ 0

0 0 1

1
CA;

UuR ¼

0
B@

− 1ffiffi
2

p 1ffiffi
2

p 0

1ffiffi
2

p 1ffiffi
2

p 0

0 0 1

1
CA: ð28Þ

In this basis, the SM up quark Yukawa matrix is

Yu ¼ Diag

�
0;

ffiffiffi
2

3

r
βϵ; yt

�
: ð29Þ

We now see that the dependence on the direction of the
vacuum expectation value of the flavon field drops out in
the Yukawa matrices, but is now carried by the unitary
matrices Uu∶ and UuR. It is immediately clear, however,

that θ enters into the flavor structure of this model.
Explicitly, assuming a corresponding structure in the down
quarks, (θ → θd, yu → yd, and βi → βdi), we obtain a CKM
matrix of the form

UCKM ¼ U†
uLUdL

¼

0
B@

cosðθ − θdÞ sinðθ − θdÞ 0

− sinðθ − θdÞ cosðθ − θdÞ 0

0 0 1

1
CA: ð30Þ

We note that the structure of the CKM as given in Eq. (30)
is unambiguous, as the quark masses are nondegenerate [as
seen in Eq. (29)], and it describes mixing between the first
and second generations. This form explicitly allows for the
generation of appropriately Cabibbo-sized mixing between
the first and the second families if sinðθ − θdÞ ≃ λ, as
anticipated from the general discussion of the last section.
Indeed, upon a comparison of Eq. (30) with the renorma-
lizable level structure of Eq. (19), we see that we have
obtained a viable CKM matrix to leading order in the
Cabibbo angle λ, and that the parameters θ̃ and θ̃d of the
previous section can be identified with the quantities θ and
θd of this section, which parametrize the vacuum expect-
ation values of the flavon fields in the up and the down
quark sectors [compare Eqs. (20) and (30)]. Furthermore,
we note that as we have explicitly taken the limit that
β2;3 ≫ 1 and β2d;3d ≫ 1, at this order no 1–3 or 2–3 CKM
mixing is generated. To summarize, this operator has
indeed led to a working example of lifting the mass
degeneracy of the couplings of the renormalizable sector
in the case that β1 ¼ 1, β4 ¼ β2β3 (and analogously for the
down quark sector), in such a way that a Cabibbo mixing
angle of the appropriate size can be generated within this
framework.

V. MESSENGER YUKAWA COUPLINGS AND
SUPERPARTNER MASS SPECTRA

In this section, we turn our attention to the messenger
Yukawa couplings and resulting mass spectra of the MSSM
superpartners. Here we will confine our attention to the
large β2;3 regime, for which the structure of the resulting
soft terms is particularly simple, and is flavor diagonal. We
defer a more comprehensive analysis of general β2;3 that
satisfies Eq. (16) for a future study.
Messenger Yukawa couplings and soft supersym-

metry breaking terms. We begin by writing the messenger
Yukawa couplings in the diagonal SM fermion mass basis.
For the up quark sector, it is straightforward to determine
that starting from Eq. (24), the messenger Yukawas in the
diagonal quark mass basis, in the limit that β2;3 ≫ 1, are
given by
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Y 0
u1¼

0
B@

0 0 0

− βϵffiffi
2

p − βϵffiffi
6

p 0

0 0 yt

1
CA; Y 0

u2¼

0
B@

0 0 0
βϵffiffi
2

p − βϵffiffi
6

p 0

0 0 yt

1
CA: ð31Þ

With these simple forms of the up quark and messenger
Yukawa matrices as given in Eqs. (29) and (31), the
corrections to the soft supersymmetry breaking terms are
easily calculated. The methods for doing so are standard in
the literature (see, e.g., [16,19,62]), and are summarized for
these classes of models in [31].
As before, we assume that the doublet and triplet

messengers are determined by the same value of

Λ ¼ F2;3=MMess ≈ F=M, and that the down quark and
charged lepton sectors are analogous to the up quark
sector. As a first step in exploring the phenomenology
of this scenario, and to examine in detail the effects of
Eq. (21), for simplicity we assume a single βϵ parameter for
each of the sectors, and allow it to vary (while keeping
βϵ ≪ 1). The soft terms include the usual gauge-mediated
contributions (not shown for simplicity), as well as cor-
rections due to the messenger Yukawa couplings.
The nonvanishing corrections to the soft terms from

the messenger Yukawas are presented below [here the
relevant factors of Λ=ð4πÞ2 are suppressed for notational
convenience]:

ðδm2
Q̃
Þ
22

¼
�
−2y2b − 2y2t −

2y2τ
3

−
16g21
9

− 8g22 −
128g23
9

�
β2ϵ ;

ðδm2
Q̃
Þ
33

¼ 36y4b þ 8y2t y2b þ 8y2τy2b −
14g21y

2
b

15
− 6g22y

2
b −

32g23y
2
b

3
þ 36y4t −

26g21y
2
t

15
− 6g22y

2
t −

32g23y
2
t

3
þ
�
−
8y2b
3

− 2y2t

�
β2ϵ ;

ðδm2
ũÞ11 ¼

�
−
26g21
15

− 6g22 −
32g23
3

�
β2ϵ ; ðδm2

ũÞ22 ¼
�
−4y2t −

26g21
45

− 2g22 −
32g23
9

�
β2ϵ ;

ðδm2
ũÞ33 ¼ 72y4t þ 8y2by

2
t −

52g21y
2
t

15
− 12g22y

2
t −

64g23y
2
t

3
− 4β2ϵy2t ;

ðδm2
d̃
Þ
11

¼
�
4y2τ −

14g21
15

− 6g22 −
32g23
3

�
β2ϵ ; ðδm2

d̃
Þ
22

¼
�
−4y2b −

14g21
45

− 2g22 −
32g23
9

�
β2ϵ ;

ðδm2
d̃
Þ
33

¼ 72y4b þ 8y2t y2b þ 24y2τy2b −
28g21y

2
b

15
− 12g22y

2
b −

64g23y
2
b

3
;

ðδm2
L̃
Þ
22

¼
�
−2y2b −

2y2τ
3

−
12g21
5

− 4g22

�
β2ϵ ; ðδm2

L̃
Þ
33

¼ 20y4τ þ 24y2by
2
τ −

18g21y
2
τ

5
− 6g22y

2
τ −

8β2ϵy2τ
3

;

ðδm2
ẽÞ11 ¼

�
−
18g21
5

− 6g22

�
β2ϵ ; ðδm2

ẽÞ22 ¼
�
−4y2b −

4y2τ
3

−
6g21
5

− 2g22

�
β2ϵ ;

ðδm2
ẽÞ33 ¼ 40y4τ þ 48y2by

2
τ −

36g21y
2
τ

5
− 12g22y

2
τ −

16β2ϵy2τ
3

;

δm2
H̃u

¼ −6y2t ðy2b þ 3y2t Þ; δm2
H̃d

¼ −6ð3y4b þ y2by
2
t þ 3y4τÞ;

ðÃuÞ33 ¼ −2ytðy2b þ 3y2t Þ; ðÃdÞ33 ¼ −2ybð3y2b þ y2t Þ; ðÃeÞ33 ¼ −6y3τ : ð32Þ

We see that there is no introduction of off-diagonal flavor-
violating couplings at leading order in this limiting case in
which for the up, down, and charged lepton sectors,
Eq. (16) is satisfied and the relevant β2;3 are taken to be
very large while keeping the third generation SM fermion
masses fixed. Furthermore, the corrections to the first two
generations arise at order β2ϵ.
Superpartner mass spectra. We now explore the phe-

nomenology of the soft terms as given in Eqs. (32). As is de
rigueur, our model parameters are MMess, Λ, tan β, and the
sign of μ, where we have replaced μ and b by tan β, sgnðμÞ,
and the Z boson mass. We set sgnðμÞ ¼ 1. The renormal-
ization group equations are run using SoftSUSY 4.1.4 [63].

In previous work [32], we explored the behavior of the
superpartner mass spectra for the renormalizable sector
Yukawa couplings in the large βi limit, focusing on the
dependence of the spectra on tan β and the messenger scale.
For continuity, as well as a check on the phenomenological
consistency of the higher-dimensional operator correction
introduced in Eq. (21), we begin with the example spectra
as shown in Fig. 1. The left-hand side of Fig. 1 shows
results for the model studied in [32]. The messenger scale is
MMess ¼ 1 × 1012 GeV and tan β ¼ 10. The value of Λ is
set such that mh ≃ 125 GeV. The right-hand side of Fig. 1
displays the Higgs and superpartner mass spectra that arise
from the soft supersymmetry breaking terms as given in

EVERETT, GARON, and ROCK PHYS. REV. D 101, 115003 (2020)

115003-8



Eq. (32), but with βϵ ¼ 0. The spectra are in agreement, as
expected.
In the βϵ → 0 limit, the heavyHiggs particles are between 5

and 6 TeV, along with the gluino at around 5 TeV. The squark
masses fall into two general categories, one significantly
heavier than the other. The heavier squarks are the left-handed
sdown, sup, and scharm squarks, as well as both scharms and
the heavier of the two stops. Their masses are close to the
heavier charginos and neutralinos. The lower group is com-
posed of the right-handed sdown, sup, and scharm squarks, as
well as both sbottoms and the lighter stop, whose masses are
closer to the gluino. The next-to-lightest supersymmetric
particle (NSLP) in this scenario is a binolike neutralino.
Let us now include the effects of Eq. (21), such that βϵ is

now nonzero. Here we note that as βϵ is connected with the
masses of the charged SM fermions of the second gen-
eration, this quantity is expected to take small values. As
explicit examples, the resulting spectra for small values of
the coupling strengths βϵ are given in Fig. 2. The left-hand
side of Fig. 2 has taken βϵ ¼ 0.01, and the right-hand side
has βϵ ¼ 0.02. The spectra follow the same general pattern
as seen in Fig. 1, but with minor changes to the splitting of

the superpartner masses. We see that the masses of the
right-handed down and up squarks are pushed down, as
well as the lightest left-handed charged slepton and
sneutrino. The masses of the heavy Higgses are almost
entirely unaffected, as are the masses of the gauginos.
It is illustrative to consider what occurs for larger values

of βϵ for comparative purposes (note that significant values
of βϵ are inconsistent with SM charged fermion mass
predictions). We find that the pattern described above
continues for such larger values of βϵ, as shown in
Fig. 3. On the left-hand side, for βϵ ¼ 0.1, we see that
the first two families of charged sleptons and sneutrinos are
now lighter than one of the staus, with the other stau being
the lightest slepton. Additionally, we see that the tight
groupings of the squarks into two bands, as seen in Fig. 1
are splitting with the right-handed sup becoming the
lightest colored superpartner. On the right-hand side, which
has βϵ ¼ 0.2, the lightest right-handed charged slepton is
now lighter than all third generation sleptons. Furthermore,
the squarks continue to display larger mass splittings, with
the mass splittings within the original two groupings that
appeared for smaller βϵ clearly demonstrated.

FIG. 2. Mass spectra forMMess ¼ 1 × 1012 GeV (both sides), tan β ¼ 10 and βϵ ¼ 0.01 (left), and βϵ ¼ 0.05 (right). In each case, Λ is
fixed by the Higgs mass constraint.

FIG. 1. The mass spectra for MMess ¼ 1 × 1012 GeV and tan β ¼ 10 for the scenario explored in [32] and for the case explored here
with βϵ ¼ 0 (right). In each case, Λ is fixed by the Higgs mass constraint. As expected, the two cases are in agreement.
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In Figs. 4 and 5, we consider a smaller messenger mass
of MMess ¼ 1 × 106 GeV. Displayed on the left-hand side
of Fig. 4 is the superpartner mass spectrum for this
messenger mass, with βϵ ¼ 0.01. As seen previously in
[32], a lower messenger scale leads to a large mass

spectrum for a fixed value of tan β, due to the smaller
size of the stop mixing. Since we choose Λ such that
mh ≃ 125 GeV, a low messenger mass necessitates a
larger value of Λ, and therefore leads to a heavier
spectrum. The squark masses are no longer demarcated

FIG. 3. Mass spectra for MMess ¼ 1 × 1012 GeV (both sides), tan β ¼ 10 and βϵ ¼ 0.1 (left), and βϵ ¼ 0.2 (right). In each case, Λ is
fixed by the Higgs mass constraint.

FIG. 4. Mass spectra forMMess ¼ 1 × 106 GeV (both sides), tan β ¼ 10 and βϵ ¼ 0.01 (left), and βϵ ¼ 0.05 (right). In each case, Λ is
fixed by the Higgs mass constraint.

FIG. 5. Mass spectra for MMess ¼ 1 × 106 GeV (both sides), tan β ¼ 10 and βϵ ¼ 0.1 (left), and βϵ ¼ 0.2 (right). In each case, Λ is
fixed by the Higgs mass constraint.
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into two distinct groupings, but rather split between 4 and
6.4 TeV. The lightest squark is a sbottom, while the
heaviest is a stop. There are four major squark groups. In
decreasing mass order they are as follows: the heaviest
stop, the lighter stop and heavier sbottom, the left-handed
squarks in generations one and two, and last the right-
handed first and second generation squarks along with the
other sbottom. The NSLP in this scenario is a binolike
neutralino.
The right-hand side of Fig. 4 shows the spectrum for

βϵ ¼ 0.05. Much as Fig. 2, the increase in βϵ pushes the
masses of the right-handed sdown and sup down, as well as
the lightest left-handed charged slepton and sneutrino. The
lightest squark continues to be a sbottom, but one can see
the splitting among the masses of the lighter squarks begin
to take shape. If we now turn to the left-hand side of Fig. 5,
where βϵ ¼ 0.1, we see that the general behavior as seen in
the previous three spectra for MMess ¼ 1 × 106 GeV con-
tinues. What is new, however, is that the lightest squark is

now a right-handed sup, much as was the case for the
messenger scale MMess ¼ 1 × 1012 GeV. We see that the
lighter squark masses continue to split. Last, the right-hand
side of Fig. 5 exhibits new behavior as compared to the
spectra for a higher messenger mass. For example, the
NSLP is a left-handed slepton, as opposed to a neutralino,
allowing for the possibility of collider tests for superweakly
interacting massive particle dark matter, [64].
It is instructive to investigate the behavior of this

model over a wider range of Λ and messenger mass. In
Figs. 6 and 7, we plot the predicted Higgs mass (solid
contours), lightest slepton mass (dotted contours), and right-
handed sup mass as Λ and MMess are varied. We do this for
four different values of βϵ. We see that for a phenemono-
logically viable point of parameter space (i.e., mH ¼
125 GeV), the mass of the lightest slepton decreases.
Eventually, there are points in ðΛ;MMessÞ parameter space
that both provide a viable Higgs mass, and predict a slepton
NLSP of less than 1 TeV.

FIG. 6. The Higgs mass (solid contours), right-handed sup mass (color shading), and right-handed selectron masses (dotted contours)
in this scenario with βϵ ¼ 0 (left) and βϵ ¼ 0.05 (right).

FIG. 7. The Higgs mass (solid contours), right-handed sup mass (color shading), and right-handed selectron masses (dotted contours)
in this scenario with βϵ ¼ 0.1 (left) and βϵ ¼ 0.2 (right).
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VI. CONCLUSIONS

In this paper, as the next step in a broader program of
exploring the phenomenological implications of a specific
flavored gauge mediation framework in which discrete
non-Abelian symmetries govern the Higgs-messenger mix-
ing, we have investigated the generation of fermion masses
and quark mixing angles within a three-family scenario.
The discrete non-Abelian symmetry group is chosen to be
S3, and one hypothesis of this line of exploration is that this
symmetry group also provides a framework for a partial
family symmetry. This scenario requires the introduction of
two messenger doublets that mix with the electroweak
Higgs doublets via the S3 symmetry, rendering it an
effective N ¼ 2 gauge mediation model with messenger
Yukawa corrections. The phenemenology of this scenario
in the case that only MSSM Yukawa couplings at the
renormalizable level were included, and only the third
generation SM fermions had nonzero masses was inves-
tigated in [31,32].
We build on those previous analyses with the introduc-

tion of a higher-dimensional operator perturbation of the
superpotential couplings, which generates a hierarchically
smaller mass for the second generation SM fermions and
leaves the first generation massless. In this paper, we

showed that with a judicious choice of this operator,
mixing among the first and second generations can result,
and a Cabibbo angle of an appropriate size was able to be
generated. While the scenario generically results in the
possibility of flavor-violating couplings, we show that in a
specific limiting case of the model parameters, the resulting
messenger Yukawas in the diagonal quark mass basis yield
flavor-diagonal corrections to the soft supersymmetry
parameters, resulting in a scenario with few input para-
meters. We see in this context that the superparticle spectra
are at most 4–6 TeV, with the distribution of sparticle
masses within this range being affected by the strength of
the higher-dimensional operator. This highly predictive
model thus provides a window into TeV-scale supersym-
metry. Furthermore, as this model generically introduces
nontrivial flavor structure, it provides a starting point for
more stringent tests of supersymmetric theories of this type
using precision flavor experiments.
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