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Given the elusive nature of neutrinos, their self-interactio is particularly difficult to probe. Nevertheless,
upper limits on the strength of such an interaction can be set by using data from terrestrial experiments. In this
work, we focus on additional contributions to the invisible decay width of Z boson as well as the leptonic τ
decay width in the presence of a neutrino coupling to a relatively light scalar. For invisible Z decays, we derive
a complete set of constraints by considering both three-body bremsstrahlung as well as the loop correction to
two-body decays. While the latter is usually regarded to give rather weak limits, we find that through the
interference with the Standard Model diagram it actually yields a competitive constraint. As far as leptonic
decays of τ are concerned, we derive a limit on neutrino self-interactions that is valid across the whole mass
range of a light scalar mediator. Our bounds on the neutrino self-interaction are leading for mϕ ≳ 300 MeV
and interactions that prefer ντ. Bounds on such ν-philic scalars are particularly relevant in light of the recently
proposed alleviation of the Hubble tension in the presence of such couplings.
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I. INTRODUCTION

Recent studies have revealed a discrepancy between local
measurements of the Hubble constant [1–3] and those
obtained by analyzing the cosmic microwave background
(CMB) data [4] at a ≳4σ level. This has sparked an ongoing
controversy in cosmology, and the search for potential
solutions is currently ongoing. At the moment, the origin
of the Hubble tension is unclear; potential solutions include,
for example, early dark energy [5], light dark matter [6],
majorons [7], dark matter neutrino interactions [8], certain
classes of non-Gaussian primordial fluctuations [9], or,
more prosaically, underestimated systematics [10]. Most
of these ideas fall clearly into the realm of cosmology
and astrophysics and cannot be tested in laboratory experi-
ments. However, it was proposed recently that strong neu-
trino self-interactions (νSI) can alleviate this tension [11].1

The preferred value of the interaction strength is in the
ballpark of 107 ∼ 109 in units of Standard Model (SM)
weak interaction strength GF. In this regime, neutrino free-
streaming is suppressed at high redshift, and it is not
surprising that such an interaction can have remarkable
consequences for the physics of the early Universe.
Large νSI present a challenge from a particle physics

perspective, and it is expected that terrestrial experiments
can help scrutinize this option. In Ref. [13], the authors
explored different options for enhanced neutrino interac-
tion. While they found that the vector forces of the
aforementioned strength are already disfavored from labo-
ratory experiments, light [below Oð102Þ MeV] bosons
strongly coupled to neutrinos remain viable. The only
surviving option which alleviates the Hubble tension is a
ντ-philic light scalar; this is expected since it is well known
that new interactions of ντ are generically the least con-
strained compared to other flavors. Let us note that the
authors of Ref. [14] have recently reached similar con-
clusion by performing an analysis in the framework of
effective theory which respects SM gauge invariance. It is
therefore timely to revisit the constraints on such inter-
actions from particle physics processes and pay particular
attention to the interactions of the τ neutrino.
There are numerous studies of νSI through the exchange

of “light” mediators in the literature. This class of new
physics was explored in meson decays [15–19], double
beta decay [18,20–26], invisible Z decays [18,27,28], and τ
decays [16]. In addition, it has been recently pointed out
that strong νSI can also play a relevant role in producing
sterile neutrino dark matter [29,30] as well as testing
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1It was also noted in Ref. [11] that including the CMB
polarization data in the fit tends to reduce the statistical
significance of this scenario, though an earlier study [12] found
that including the polarization data increases the statistical
significance.
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ultralight dark matter scenarios [31,32]. We would also
like to point out further studies involving cosmological
[18,33–35] as well as astrophysical (primarily supernovae)
[36–43] probes.
For a light scalar interacting with ντ, many of the most

sensitive probes of new physics connected to νe and νμ are
not sensitive, and the two most relevant laboratory bounds
arise from τ and Z decays. The authors of Ref. [16] were the
first to estimate the bound on the neutrino coupling to light
scalar by studying the former process. The reported limit
only applies to a particular choice of mϕ and cannot be
extrapolated to the mass range of interest easily. One of our
goals in this paper is to derive this limit as a function of
scalar mass by using state-of-the-art numerical tools.
In Ref. [18], the authors present a comprehensive

analysis of constraints on light neutrinophilic scalars.
What is very interesting for us, in light of couplings to
ντ, is the constraint arising from invisible Z decay, namely
the process Z → ννϕ, where ϕ is a light scalar. In addition
to this process, we will also consider Z invisible decay
ðZ → ν̄νÞ via a triangle loop diagram. Naively, such a
contribution may appear subdominant since it contains
two powers of scalar coupling to neutrinos already at the
amplitude level. However, it interferes with the SM tree-
level diagram, and, therefore, the leading contribution is
of the same order in the new physics coupling as the
ϕ-bremsstrahlung and should be expected to give a
competitive constraint.
The paper is organized as follows. In Sec. II, we present

the main results of our investigation of the new physics
contribution to invisible Z decays while relegating the
details of the calculation to the Appendixes. In Sec. III, we
discuss the procedure for obtaining limits on new physics
from leptonic τ decays. We analyze the implications of our
results for the allowed interaction strength of a neutrino-
philic light mediator and comment on the implication for
the proposed solution of the Hubble tension in Sec. IV.
While the motivation for our study is mostly connected to τ
neutrino flavor, for completeness, we also present limits for
a νe and νμ-philic scalar as well as flavor universal coupling
scenario. In Sec. V, we summarize our results and present
our conclusions.

II. Z DECAY

The new neutrino interactions to be considered in this
work are parametrized by

L ⊃
X
α;β

1

2
yαβνcαPLνβϕþ H:c:; ð1Þ

where να and νβ are Dirac spinors of neutrinos (νcα is the
charge conjugate of να) and α and β stand for flavor indices.
Furthermore, yαβ ¼ yβα is a symmetric Yukawa matrix,
and ϕ is a scalar field. Finally, note that the left projector

PL ¼ ð1 − γ5Þ=2 ensures that only left-handed neutrinos
are involved in the interaction. This interaction term can be
generated for instance in the seesaw scenario; the coupling
of singlet ϕ with right-handed neutrinos induces interaction
of ϕ with active neutrino states through lepton mixing [31].
In the presence of these interactions, two new physics

processes contribute to invisible Z decays, and we show
the corresponding Feynman diagrams in Fig. 1. The loop
contribution contains two Yukawa vertices being pro-
portional to jyαβj2, while the bremsstrahlung diagram is
proportional to yαβ. Therefore, at the amplitude level, the
left diagram is suppressed with respect to the right one
by a higher power of Yukawa coupling. However, the loop
diagram can interfere with the SM invisible Z decay, and
this substantially enhances its contribution to the decay
width. Consequently, there is no obvious hierarchy between
the two processes, and both contributions to the invisible
width should be considered in a complete analysis.

A. Loop contribution

Let us first consider that two neutrino species with
flavors denoted by α and β (α ≠ β) are coupled to ϕ and
other couplings in Eq. (1) are absent. The result obtained
for this simple case can be easily generalized to the most
general Yukawa matrix.
In the presence of a νcαPLνβϕ interaction with α ≠ β,

there are new physics contributions to both Z → ν̄ανα and
Z → ν̄βνβ which have identical amplitude, and therefore it
is enough to only consider Z → ν̄ανα. The 1-loop amplitude
for Z → ν̄ανα reads

iMðZ → ν̄αναÞ ¼
ijyαβj2
16π2

ϵμðqÞūðp2ÞðgZγμPLÞvðp1Þ

×

�
1

2ϵ0
þ log

mϕ

mZ
þ 1þ iπ

2
þO

�
m2

ϕ

m2
Z

��
;

ð2Þ

where gZ is the gauge coupling of the Z boson to neutrinos;
ϵμðqÞ, ūðp2Þ, and vðp1Þ denote the external legs associated
to the Z boson, neutrino, and antineutrino, respectively,
whilemϕ (mZ) is the mass of ϕ (Z). The 1-loop diagram for

FIG. 1. Representative Feynman diagrams contributing to
invisible Z decays.
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this process is UV divergent. We have adopted gauge
invariant dimensional regularization. The typical terms
appearing in such calculation are abbreviated by ϵ0,

1

ϵ0
≡ 1

ϵ
− γE þ logð4πÞ þ log

μ2

m2
ϕ

: ð3Þ

Here, ϵ ¼ ð4 − dÞ=2 with d representing the number of
dimensions, while γE is the Euler-Mascheroni constant.
The interaction in Eq. (1) can also generate other loop

diagrams corresponding to neutrino self-energy corrections
to the Z → ν̄ανα process; see e.g., diagrams in Fig. 6. In the
conventional renormalization scheme where only ampu-
tated diagrams need to be computed, such diagrams are
included by computing the correction to the Z − ν − ν
counterterm caused by the wave function renormalization.
Without adding such a counterterm, one can also compute
these diagrams directly and add them to Eq. (2). These two
methods are known to be equivalent; see Appendix A for
explicit verification.
Adding the neutrino self-energy corrections to Eq. (2),

we obtain

iMðZ → ν̄αναÞ ¼
ijyαβj2
16π2

ϵμðqÞūðp2ÞðgZγμPLÞvðp1Þ

×

�
1

ϵ0
þ log

mϕ

mZ
þ 3þ 2iπ

4
þO

�
m2

ϕ

m2
Z

��
:

ð4Þ

Compared to Eq. (2), the logðmϕ=mZÞ term is not changed.
In a complete model, the UV divergence arising from

the considered diagram is expected to be canceled by
other diagrams (including counterterms). Here, “complete”
means not only that all operators should be of dimension 4
or lower but also that gauge invariance has to be respec-
ted. We would like to stress that the UV cancellation is
model dependent and, consequently, the finite part cannot
be predicted fully without committing to a specific UV
completion. Nevertheless, the logðmϕ=mZÞ term is a
generic feature and is independent of the regularization
scheme. This can for instance be seen by considering only
the loop integral with the loop momentum running between
the scales of mϕ and mZ, which yields a result proportional
to logðmϕ=mZÞ. This implies that this term can be physi-
cally interpreted as the contribution of the loop momentum
running in the intermediate scale and being insensitive to
the UVor IR behavior of the underlying complete models.
We refer the interested reader to Appendix A where we
show the cancellation explicitly in a toy model and find the
behavior detailed above.
In the SM, the tree-level amplitude for Z → ν̄ανα is

iMSMðZ → ν̄αναÞ ¼ −iϵμðqÞūðp2ÞðgZγμPLÞvðp1Þ; ð5Þ

which leads to the decay width2 [44]

ΓSMðZ → ν̄αναÞ ¼
GFm3

Z

12
ffiffiffi
2

p
π
: ð6Þ

By comparing Eqs. (2) and (5), we can obtain the decay
width including the loop contribution, which yields

ΓnewðZ→ ν̄αναÞ ¼ ΓSMðZ→ ν̄αναÞ
����1þ jyαβj2

16π2
ðLþ iπ=2Þ

����
2

;

with L¼ log
mZ

mϕ
þ 3

4
: ð7Þ

One can check that the final result for the case α ¼ β
turns out to be the same as Eq. (7) with β → α. Therefore, in
the presence of the most general Yukawa matrix, one only
needs to replace jyαβj2 with

P
β jyαβj2 in Eq. (7). If we sum

over α indices and restrict ourselves to terms proportional
to the second power of Yukawa coupling or lower, we get

ΓnewðZ → ν̄νÞ≡X
α

ΓnewðZ → ναναÞ

≈
GFm3

Z

12
ffiffiffi
2

p
π

�
3þ tr½YY†�

16π2
2L

�
; ð8Þ

where Y is the 3 × 3Yukawa matrix with yαβ elements. One
can also see that Eq. (8) is invariant under ν → Uν, Y →
UYU† basis transformations whereU is an arbitrary unitary
matrix.

B. Bremsstrahlung

The bremsstrahlung process is depicted by the right
diagram in Fig. 1. Again, we first consider Z → ναϕνβ with
α ≠ β. The decay width in case of α ≠ β reads

ΓnewðZ → ναϕνβÞ ¼
g2Zjyαβj2mZ

24ð2πÞ3 F; ð9Þ

where

F ≈
�
1þ 3

m2
ϕ

m2
Z

�
log

mZ

mϕ
−
17

12
:

For details of the derivation including the expression
with the full mϕ dependence of ΓnewðZ → ναϕνβÞ, see
Appendix B. The expression for the total width of the ϕ
bremsstrahlung with the most general Yukawa couplings is
given by

2The relation between neutrino coupling to Z boson and the
weak interaction strength GF reads g2ZmZ ¼ ffiffiffi

2
p

GFm3
Z.
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Γnewðϕ bremsst:Þ ¼ 1

2

X
α≠β

ΓnewðZ → ναϕνβÞ

þ
X
α

ΓnewðZ → ναϕναÞ ð10Þ

¼ 1

2

X
α≠β

ΓnewðZ → ναϕνβÞ

þ 1

2

X
α

ΓnewðZ → ναϕνβÞ
���
β→α

; ð11Þ

where the first 1=2 factor is due to double counting of
P

α≠β
and the last 1=2 factor accounts for the phase space of
identical particles. In the last term of Eq. (11), ΓnewðZ →
ναϕνβÞ takes the same expression as Eq. (9). Equation (11)
allows the formulation in a basis-independent form similar
to Eq. (8),

Γnewðϕ bremsst:Þ ¼ 1

2

g2ZmZtr½YY†�
24ð2πÞ3 F: ð12Þ

The bremsstrahlung diagram in Fig. 1 represents
Z → ν̄ϕ�ν̄ process. By flipping the arrows in the diagram,
one obtains a similar diagram for Z → νϕν with identical
decay width.
Also note that there is the charge conjugate process

Z → ν̄ϕ�ν̄, which has the same decay width as Z → νϕν.
Therefore, upon combining all the bremsstrahlung proc-
esses, we reach the expression for the total contribution to
invisible Z decay

Γnewðϕ=ϕ� bremsst:Þ ¼
ffiffiffi
2

p
GFm3

Ztr½YY†�
24ð2πÞ3 F: ð13Þ

We would like to stress that we simulated this three-body
decay numerically in CalcHEP [45] and found excellent
agreement with our analytic results.
Note that in the limit of mϕ → 0 the sum of loop and

bremsstrahlung contribution is divergent. In some theories
such as QED, it is well known that the IR divergence in the
triangle diagram cancels the IR divergence in the brems-
strahlung diagram. But here, one should not expect
such cancellation due to the chirality-flipping feature of
scalar interactions. The processes Z → ν̄ν and Z → ννϕ, in
the limit of mϕ → 0 and zero momentum of ϕ, are still
physically distinguishable since ν̄ and ν are different and
the IR divergence is regulated by neutrino masses (mν).
A careful treatment of the case when mϕ is comparable
or lower than mν is beyond the scope of this work.
Nonetheless, our results are valid in regime mϕ≫mν>0

that is considered throughout this work.

III. TAU DECAY

Another relevant probe of neutrino self-interactions that
is particularly relevant for ντ is the decay of τ leptons.

Similar to the ϕ-bremsstrahlung from Z decays, the basic
idea here is to constrain the scalar-neutrino coupling by
investigating the impact of attaching a scalar line to the
final state neutrino line; this for instance turns the diagram
for the standard three-body decay into a charged lepton
(electron or muon) and a pair of neutrinos into a four-body
process containing an extra light scalar boson in the final
state. We illustrate this process in the left panel of Fig. 2.
Most τ leptons decay hadronically, but with a leptonic

branching ratio Brl¼e;μ ≈ 34%, the leptonic final states are
hardly suppressed. As the leptonic channels are much
cleaner, we focus on them in the following. A similar
process has been considered previously in the context of a
model with light majorons [16]. In principle, the majoron
limits from the literature, available for mϕ ¼ 1 keV, could
be used to estimate the bounds in the model under
consideration here. However, as our analysis shows, such
a bound cannot simply be extrapolated to higher mϕ, and
limits derived from rescaling the results of Ref. [16]
become unreliable in the mass range of interest here.
We supplement the interaction term in Eq. (1) to the

full SM implementation provided by the FeynRules [46]
team. Then, we generate a UFOmodel [47] which allows us
to simulate the process of interest with MadGraph5_aMC@NLO

[48]. As a cross-check, we first calculate the partial width
for τ− → l−ν̄lντ where l ¼ μ− or e− in the SM and find
good agreement with the observed values. We determine
the decay rate of the process τ− → l−ν̄lν̄τϕ as a function of
mϕ numerically and construct a fit function to derive the
limit on the Yukawa coupling. In principle, the rates for
the decay into electrons and muons are different due to the
different masses of final state particles. In practice, the dis-
crepancies are expected to be rather small due to the large
hierarchy of charged lepton masses. We find that the
differences between electron and muon channels are within
the numerical uncertainties. The obtained partial width for
the Yukawa coupling yττ equal to 1 is shown in Fig. 3 as a
function of scalar mass, mϕ. This decay rate is used for
obtaining the limit as will be demonstrated in Sec. IV.
Finally, we would like to comment on another channel

that can be constrained from τ decays. In the diagram for

FIG. 2. Representative Feynman diagrams contributing to τ
decays due to real emission of the new scalar ϕ (left panel) and at
one loop (right panel).
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SM process τ− → l−ν̄lντ, the two neutrino lines could be
connected with a scalar similar to the loop correction to
Z → νν̄; see the right panel of Fig. 2 for an illustrative
diagram. Note, however, that in contrast to Z decays only
off-diagonal components of the Yukawa lead to a contri-
bution that can interfere with the SM amplitude. These off-
diagonal couplings are already strongly constrained by
meson decays, and, therefore, we do not consider this
process further.

IV. CONSTRAINTS OF NEUTRINO INTERACTION
WITH LIGHT SCALAR

With all the necessary ingredients available, we can now
turn to actual observables and derive limits on the parameters
of the neutrino self-interaction model under consideration
here. Wewill first consider the impact of the measurement of
invisible Z decay before turning to τ decays.
Combining the results in Eqs. (8) and (13), the total Z

invisible width is given by

ΓnewðZ → inv:Þ ≈ GFm3
Z

12
ffiffiffi
2

p
π

�
3þ tr½YY†�

16π2
2Lþ tr½YY†�

8π2
F

�
:

ð14Þ

Conveniently, the experimental measurement of Z invisible
width can be expressed in terms of the number of light
neutrino species [49–51] (see also Refs. [52–56])

Nν ¼ 2.9963� 0.0074; ð15Þ

which means that the observed invisible width is about
2σ lower than the SM prediction. Since both L and F in

Eq. (14) are positive, the new physics we introduce can
only enhance the Z invisible width. To get our limits, we set
the confidence level to 3σ so that the exclusion bound can
be obtained by requiring

3þ tr½YY†�
16π2

2Lþ tr½YY†�
8π2

F < 2.9963þ 0.0074 × 3: ð16Þ

In the case of τ decays, the situation is more subtle. Since
a ντ is emitted in every τ decay, a correction to all decay
modes is expected for yτα ≠ 0. Naively, one could assume
that the correction of the different decay modes is very
similar since a ϕ emitted from the ντ is only sensitive to the
total momentum of the remaining final state. Consequently,
the branching ratios remain similar to the SM prediction,
while the total width/lifetime of the τ changes. In contrast, a
coupling to νe or νμ only affects the partial width of the
leptonic decay modes. In order to derive reliable bounds on
yττ and yμμ, we make use of the partial width Γτμ for the
three-body decay τ− → μ−ντν̄μ which can be determined by
combining the measured lifetime ð290.6� 1.0Þ × 10−15 s
with the observed branching ratio of ð17.41� 0.04Þ% [57].
The central value for the partial decay rate reads 3.94×
10−13 GeV. In order to get an estimate of the relative error
on the leptonic partial width, we add the relative errors of
the lifetime and the branching ratio in quadrature and find
δΓτμ=Γτμ ≈ 0.004. Therefore, we set the 3σ exclusion limit
on the couplings by requiring

Γτ−→μ−ν̄τ ν̄μϕ ≤ 3 × 0.004 × 3.94 × 10−13 GeV: ð17Þ

A similar procedure utilizing τ− → e−ν̄τν̄eϕ leads to
essentially identical results for yee since δΓτμ=Γτμ ≈
δΓτe=Γτe. When there are contributions to both τ− →
μ−ν̄τν̄μϕ and τ− → e−ν̄τν̄eϕ, we combine both channels
together to set our limit.
In Fig. 4, we present our results; constrains on the

diagonal elements of Y are calculated assuming the other
elements of the Yukawa matrix are zero. More specifically,
for the case of nonvanishing yee, yμμ, and yττ, we take
tr½YY†� ¼ jyeej2, jyμμj2, and jyττj2, respectively. For the
yee ¼ yμμ ¼ yττ figure (lower right), we take tr½YY†� ¼
jyeej2 þ jyμμj2 þ jyττj2. For flavor off-diagonal elements
(yαβ with α ≠ β), one can simply interpret bounds from any

of these figures as the bounds on
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½YY†�

p
and convert

them to the bounds on yαβ. For the coupling of νe, νμ as well
as flavor universal scenario (upper panels as well as lower
right panel), we also superimpose limits from meson
decays [18]. As can be seen, these bounds are stronger
than those derived in this work for mϕ ≲ 300 MeV. In the
cosmologically most interesting case of a ντ-philic scalar
(lower left panel), we also show the preferred region for
alleviating the Hubble tension (green) as well as a con-
straint from big bang nucleosynthesis [13]. While the

FIG. 3. Partial width of the four-body decay τ− → μ−ν̄μν̄τϕ for
a representative Yukawa coupling yττ ¼ 1.
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derived laboratory constraints are certainly a relevant player
for excluding the parameter space in the yττ ≳ 0.1 range,
the viable region still remains in the range 0.1≳ yττ ≳ 0.01.
This points toward mϕ ∼Oð10Þ MeV.

V. CONCLUSIONS

In this work, we revisited constraints on neutrino self-
interactions arising from a neutrinophilic light scalar ϕ.
The employed probes are invisible Z decays and the
leptonic decay modes of the τ. For invisible Z decays,
we consider two contributions: one with ν̄ν in the final state
where we find that the 1-loop diagram interfering with the
usual SM contribution yields rather significant limit; the
other, complementary, contribution to the invisible width
arises from bremsstrahlung where two neutrinos (or anti-
neutrinos) appear in the final state alongside ϕ. Summing
both contributions, we derive bounds on the new inter-
actions for the case where the light scalar interacts with all
flavors individually as well as a flavor universal scenario.
In addition, we derive a new limit from leptonic τ decays.
To the best of our knowledge, these are the first results that
take the dependence on the ϕ mass and the coupling fully
into account, while previous calculations in the literature
only apply for a restricted set of parameters. We provide a
full picture of our results in Fig. 4 and compare them to

constraints from meson decays. Our results constitute the
leading bound on scalars with mϕ ≳ 300 MeV irrespective
of the preferred flavor. In the case of ντ self-interactions,
which is a particularly relevant scenario in light of recently
proposed solution to the Hubble tension, these constraints
constitute the leading laboratory limit throughout the con-
sidered mass range. However, a scalar in the mass range
10–100 MeV remains a viable option for large neutrino
self-interactions, and we are not able to exclude the whole
parameter space preferred by cosmology.
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APPENDIX A: LOOP CALCULATION IN A
CHIRAL U(1) TOY MODEL

In this Appendix, we discuss a toy model, which is
complete and rather minimal containing only a chiral
fermion νL, a gauged Uð1Þ with the gauge boson denoted
as Zμ, and a scalar boson ϕ. Although the toy model is not
realistic, it illustrates how the UV cancellation works
explicitly and, in addition, shows the potential difference

FIG. 4. Constraints on νSI from Z invisible decay (blue) and τ decay (orange) shown together with other known constraints taken from
Ref. [18]. For the case of a ντ-philic scalar, we also show the preferred region to relax the Hubble tension [13].
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between the results in an incomplete model with respect to
the complete one.
The model is formulated by the following Lagrangian:

L ⊃ ν̄Li=DνL þ jDμϕj2 −m2ϕ†ϕ −
1

4
FμνFμν −

1

2
m2

ZZ
μZμ

−
�
y
2
ν̄cLϕνL þ H:c:

�
: ðA1Þ

Here, all terms are gauge invariant with the charge
assignments νL ∼Qν ¼ −1 and ϕ ∼Qϕ ¼ þ2, except for
the gauge boson mass term m2

ZZ
μZμ, which can be easily

generated by, e.g., introducing another scalar that has a
charge of þ3 and a nonzero vacuum expectation value.
Note that such details are irrelevant for our discussion
below. The covariant derivatives can be explicitly expressed
as Dμ ¼ ∂μ − igQZμ, where Q takes Qν or Qϕ.
In Fig. 5, we present the Feynman diagrams involved in

our analyses. We will show explicitly that the UV divergent
parts in these diagrams cancel each other, as long as the
Uð1Þ charge is conserved (2Qν þQϕ ¼ 0).
First, we compute the 1PI diagram generated by the

Yukawa interaction, which will only lead to renormaliza-
tion of the wave function of νL. It will not lead to mass
renormalization as one can expect from the chiral sym-
metry, so νL remains massless after the loop corrections.
The self-energy generated by the top left diagram in Fig. 5
reads

−iΣð=pÞ ¼
Z

4
d4k
ð2πÞ4

−iy�

2
PR

i
=p − =k

PL
−iy
2

i
k2 −m2

ϕ

ðA2Þ

¼jyj2Iðp2ÞpPL; ðA3Þ

with

Iðp2Þ ¼ i
16π2

�
1

2ϵ0
þ 1 −

m2
ϕ

2p2
þ ðp2 −m2

ϕÞ2
2p4

log
m2

ϕ

m2
ϕ − p2

�
:

ðA4Þ

Here, we used Package-X [58] to evaluate the loop integral.
When p2=m2

ϕ is small, we have the following expansion:

Iðp2Þ ¼ i
16π2

�
1

2ϵ0
þ 1

4
þ p2

6m2
ϕ

þ p4

24m4
ϕ

þO
�
p6

m6
ϕ

��
:

ðA5Þ
The UV divergence in the neutrino self-energy is

canceled by wave function renormalization

νL → ð1þ δZÞ1=2νL: ðA6Þ
The wave function renormalization generates a counterterm
δZνLi=DνL, which then can be split into two counterterms
δZνLi=∂νL and δZν̄LgQνZμνL. The first term, corresponding
to the top right diagram in Fig. 5, cancels the UV diver-
gence in Eq. (A4), while the second term, corresponding
to the bottom right diagram in Fig. 5, cancels the UV
divergences of the two triangle diagrams in Fig. 5.3

Now, by adding the counterterm iδZpPL to Eq. (A3) and
requiring the UV cancellation, we obtain

δZ ¼ ijyj2Iðp2Þjp2→0 ¼
−jyj2
16π2

�
1

2ϵ0
þ 1

4

�
: ðA7Þ

Next, we compute the Feynman diagrams for the Zμ →
ν̄LνL decay. The amplitudes of the three bottom diagrams in
Fig. 5 are

FIG. 5. Feynman diagrams in the chiral Uð1Þ toy model.

3Note that in this toy model, if we are only interested in loop
corrections of the Yukawa interactions to the Zν̄LνL vertex, then
only the wave function renormalization is sufficient to remove all
the UV divergences in the loop diagrams shown in Fig. 5.
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iMðaÞ ¼
Z

d4k
ð2πÞ4 ūðp2Þð−iy�ÞPR

i
=p2 − =k

ð−igQνcγ
μÞ −i
=p1 þ =k

PLð−iyÞvðp1Þ

×
i

k2 −m2
ϕ

ϵμðqÞ; ðA8Þ

iMðbÞ ¼
Z

d4k
ð2πÞ4 ūðp2Þð−iy�ÞPR

i
=k
PLð−iyÞvðp1Þ

×
i

ðp2 − kÞ2 −m2
ϕ

ðigQϕÞðp2 − p1 − 2kÞμ i
ðp1 þ kÞ2 −m2

ϕ

ϵμðqÞ; ðA9Þ

iMðcÞ ¼ ūðp2Þð−igδZQνγ
μPLÞvðp1ÞϵμðqÞ: ðA10Þ

Note that Qνc ¼ −Qν because, instead of νLðgQνÞZμνL, the Z-vertex should take the charge conjugate −νcLðgQνÞZμν
c
L

in the left bottom diagram. Also note that the neutrino propagators running in the loops are related to hνcνci instead of
hνν̄i, so when a fermion current arrow is opposite to a momentum arrow in the loops, it implies that the antifermion
current is aligned with the momentum arrow. Hence, the numerators above p2 − =k, p1 þ =k, and =k in Eqs. (A8) and (A9)
should be i, −i, and i, respectively. After computing the loop integrals and expanding the results in m2

ϕ=q
2 (q2 ¼ m2

Z),
we obtain

iMðaÞ ¼
ijyj2Qν

16π2
ϵμðqÞūðp2ÞðgγμPLÞvðp1Þ

�
1

2ϵ0
þ 1

2
log

m2
ϕ

q2
þ 1þ iπ

2
þO

�
m2

ϕ

q2

��
; ðA11Þ

iMðbÞ ¼
ijyj2Qϕ

16π2
ϵμðqÞūðp2ÞðgγμPLÞvðp1Þ

�
1

2ϵ0
þ 1

2
log

m2
ϕ

q2
þ 3þ iπ

2
þO

�
m2

ϕ

q2

��
; ðA12Þ

iMðcÞ ¼
ijyj2Qν

16π2
ϵμðqÞūðp2ÞðgγμPLÞvðp1Þ

�
1

2ϵ0
þ 1

4

�
: ðA13Þ

Now, we can clearly see that the UV divergent parts in the above expressions cancel out if

Qν þQϕ þQν ¼ 0: ðA14Þ

This corresponds to Qϕ ¼ −2Qν, which can be understood from symmetry: νcLϕνL in Eq. (A1) respects the Uð1Þ
symmetry only if Qϕ ¼ −2Qν.

Taking Qϕ ¼ −2Qν and q2 → m2
Z, we get

iMðaÞ þ iMðbÞ þ iMðcÞ ¼ −
ijyj2Qν

16π2
ϵμðqÞuðp2ÞðgγμPLÞvðp1Þ

�
1

2
log

m2
ϕ

m2
Z
þ 9þ 2iπ

4
þO

�
m2

ϕ

m2
Z

��
: ðA15Þ

In the above calculation, we have adopted the conven-
tional renormalization scheme which involves counter-
terms. In such a renormalization scheme, one only needs
to compute amputated diagrams, while the diagrams in
Fig. 6 should not be added [59]. Actually, since the
counterterm δZνLi=DνL is generated by the 1PI diagram,
the two diagrams in Fig. 6 have already been taken into
account by the last diagram in Fig. 5. Nonetheless, it is
still interesting to compute the diagrams in Fig. 6 to
explicitly check that they give results equivalent to the
counterterm diagram. From Fig. 6, we write down the
sum of the two amplitudes:

FIG. 6. Loop corrections to the external neutrino legs in the
chiral Uð1Þ toy model. These two diagrams are equivalent to the
last counterterm diagram in Fig. 5; see the text for more
discussions.
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iM0
ðcÞ ¼

Z
d4k
ð2πÞ4 uðp2Þ

�
i

ðp2 − kÞ2 −m2
ϕ

ð−iy�ÞPR
i
=k
PLð−iyÞ

i
=p2 −m1

ð−igQνγ
μÞ

þð−igQνγ
μÞ −i
=p1 −m2

ð−iy�ÞPR
−i
=k
PLð−iyÞ

i
ðk − p1Þ2 −m2

ϕ

�
vðp1ÞϵμðqÞ: ðA16Þ

Here, we have inserted two masses m1 and m2 in order to treat singularities properly. At the end of the calculation, we
will take the zero limit for both. Performing the loop integral, we obtain

iM0
ðcÞ ¼ uðp2Þjyj2

�
Iðp2

2Þ=p2PL
gQν

=p2 −m1

γμ þ γμ
gQν

=p1 −m2

Iðp2
1Þ=p1PL

�
vðp1ÞϵμðqÞ

¼ uðp2Þjyj2gQν

�
Iðp2

2Þ=p2

=p2γ
μ
L þm1γ

μ
R

p2
2 −m2

1

þ γμL=p1 þ γμRm2

p2
1 −m2

2

Iðp2
1Þ=p1

�
vðp1ÞϵμðqÞ; ðA17Þ

where in the second line we have moved PL to the left side of γμ and defined γμL=R ≡ γμPL=R, so that all the other

gamma matrices can meet either uðp2Þ or vðp1Þ. Then, using uðp2Þ=p2 ¼ uðp2Þm2 and p1vðp1Þ ¼ −m1vðp1Þ, we obtain

iM0
ðcÞ ¼ uðp2Þjyj2gQν

�
Iðm2

2Þ
m2

2γ
μ
L þm2m1γ

μ
R

m2
2 −m2

1

þ −m2
1γ

μ
L þ γμRm1m2

m2
2 −m2

1

Iðm2
1Þ
�
vðp1ÞϵμðqÞ

≈ uðp2Þ
ijyj2gQν

16π2
γμL

�
1

2ϵ0
þ 1

4
þ m4

2 −m4
1

6m2
ϕðm2

2 −m2
1Þ
�
vðp1ÞϵμðqÞ; ðA18Þ

where in the second line we have used the expansion in
Eq. (A5) and ignored higher order terms. In addition, γμR
terms are also ignored because they vanish in the limit of
m2 → 0 andm1 → 0. Comparing Eq. (A18) with Eq. (A13),
we can see that iM0

ðcÞ ¼ iMðcÞ in the limit of m2 → 0 and
m1 → 0. This verifies that the two diagrams in Fig. 6 are
indeed equivalent to the counterterm diagram in Fig. 5.
The result in Eq. (A15) contains an IR divergence if

mϕ → 0. In the main text, we have discussed that this result
is only valid for mZ ≫ mϕ ≫ mν. In the presence of
nonzero mν, one needs to insert mν in all the neutrino

propagators in Eqs. (A3), (A8), and (A9). Then, following a
straightforward but lengthy calculation, we obtain a result
which can be written in a form similar to Eq. (A15) with the
1
2
log

m2
ϕ

m2
Z
replaced by another function,

1

2
log

m2
ϕ

m2
Z
→ Lðmϕ; mνÞ; ðA19Þ

where

Lðmϕ; mνÞ ¼
1

4m4
νm2

Zðm2
Z − 4m2

νÞ
ðA20Þ

×

�
−4m4

ν log

�
m2

ϕ

m2
ν

�
ð−m2

ϕð4m2
ν þm2

ZÞ þm2
Zðm2

Z − 2m2
νÞ þm4

ϕÞ − 4m4
νm2

ϕð−8m4
ν þm2

ϕð2m2
ν −m2

ZÞ

þ 2m2
νm2

ZÞCνϕν
0 þ 8m4

νðm4
ϕðm2

Z − 2m2
νÞ þm2

ϕð8m4
ν − 4m2

νm2
ZÞ þm2

νm2
Zðm2

Z − 2m2
νÞÞCϕνϕ

0

þ 8m6
νðm2

ϕ − 4m2
νÞΛðm2

ν; mϕ; mνÞ þ 2m4
νð8m4

ν þm2
ϕð2m2

Z − 4m2
νÞ þ 2m2

νm2
Z −m4

ZÞΛðm2
Z;mν; mνÞ

− 4m4
νð2m2

ν −m2
ZÞðm2

Z − 2m2
ϕÞΛðm2

Z;mϕ; mϕÞ − 2m2
νm2

Zðm2
ϕ − 2m2

νÞð4m2
ν −m2

ZÞΛðm2
ν; mϕ; mνÞ

þ 2m4
νð4m2

ν −m2
ZÞð4m2

ν − 5m2
Z þ 2m2

ϕÞ − 2m2
νm2

Zðm2
ϕ − 3m2

νÞð4m2
ν −m2

ZÞ

þm2
Zm

2
ϕðm2

ϕ − 4m2
νÞð4m2

ν −m2
ZÞ log

�
m2

ϕ

m2
ν

��
−
�
9

4
þ iπ

2

�
: ðA21Þ
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Here, Cνϕν
0 and Cϕνϕ

0 involve two-dimensional integrals that
have to be evaluated numerically:

Cνϕν
0 ≡ C0ðm2

ν; m2
ν; m2

Z;mν; mϕ; mνÞ; ðA22Þ

Cϕνϕ
0 ≡ C0ðm2

ν; m2
ν; m2

Z;mϕ; mν; mϕÞ; ðA23Þ

C0ðs1; s2; s3;m2; m1; m0Þ

≡ lim
ε→0þ

Z
1

0

dy
Z

1−y

0

dz½s1y2 þ s2z2 þ ðs1 þ s2 − s3Þyz

þyð−m2
0 þm2

1 − s1Þ þ zð−m2
0 þm2

2 − s2Þ þm2
0 − iε�:

ðA24Þ

The Λ functions is defined as

Λðx; y; zÞ≡ log ½ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 2xy2 − 2xz2 þ y4 − 2y2z2 þ z4

p
− xþ y2 þ z2Þ=ð2yzÞ�

xðx2 − 2xy2 − 2xz2 þ y4 − 2y2z2 þ z4Þ−1=2 : ðA25Þ

In Fig. 7, we show result of numerical evaluation of Lðmϕ; mνÞ. In particular, it is demonstrated that the IR divergence in
the limit of mϕ → 0 is removed when mν ≠ 0. It is also shown that for mϕ ≫ mν, Lðmϕ; mνÞ expectedly converges

to 1
2
log

m2
ϕ

m2
Z
.

APPENDIX B: ANALYTICAL CALCULATION OF THREE-BODY INVISIBLE Z DECAY

The amplitude for the process ZðqÞ → ναðp1Þνβðp2ÞϕðkÞ reads

M ¼ iϵ�ðqÞgZyαβūðp2Þ
�
γμPLð=p1 þ =kÞ
ðp1 þ kÞ2 þ ð=p2 þ =kÞγμPL

ðp2 þ kÞ2
�
vðp1Þ; ðB1Þ

which leads to

jMj2 ¼ 1

3

X
polarizations

MM� ¼

¼ g2Zjyαβj2
3

�
2ð2E2 −mZÞð2E1 −mZÞmZð8E1E2ðE1 þ E2Þ − 12E1E2mZ þm3

ZÞ
m2

ZðmZ − 2E1Þ2ðmZ − 2E2Þ2

−
2m2

ϕð16E1E2ðE1mZ þ E2mZ − E1E2 −m2
ZÞ þm4

ZÞ
m2

ZðmZ − 2E1Þ2ðmZ − 2E2Þ2
�
; ðB2Þ

where we used the expression for the massive vector polarization sum

X
polarizations

ϵðqÞϵ�ðqÞ ¼
�
−gμν þ

qμqν
m2

Z

�
; ðB3Þ

while E1 and E2 are energies of particles with 4-momenta p1 and p2, respectively. By employing energy conservation
E1 ¼ mZ − E2 − Ek, the square matrix element jMj2 can be expressed only in terms of two energies—one of a massive

FIG. 7. Numerical evaluation of the Lðmϕ; mνÞ function given

in Eq. (A21). When mϕ is not well above mν, the 1
2
log

m2
ϕ

m2
Z
in

Eq. (A15) should be replaced by Lðmϕ; mνÞ. The plot shows that
the IR divergence in the limit of mϕ → 0 is removed when
mν ≠ 0.
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ðEkÞ and one of an effectively massless (E2) final state particle. This allows for a straightforward evaluation of nontrivial
three-body phase space integrals.
The differential decay rate reads

dΓ ¼
Z mZ

2
þ

−Ekþ
ffiffiffiffiffiffiffiffiffi
E2
k
−m2

ϕ

p
2

mZ
2
−
Ekþ

ffiffiffiffiffiffiffiffiffi
E2
k
−m2

ϕ

p
2

1

16mZð2πÞ4
d3jkjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
k −m2

ϕ

q
Ek

g2Zjyαβj2
3

fðE2; EkÞdE2; ðB4Þ

where fðE2; EkÞ is Eq. (B2) with the aforementioned substitution for E1. The integral gðEkÞ ¼
R
fðE2; EkÞdE2 can be

evaluated analytically. We obtain the following result:

gðEkÞ ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k −m2

ϕ

q
ð−2EkmZ − 3m2

Z þm2
ϕÞ

m2
Z

þ 8EkArcCoth

2
64 Ekffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
k −m2

ϕ

q
3
75: ðB5Þ

After inferring d3jkj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k −m2

ϕ

q
Ek ¼ 4πdEk, one obtains the expression for the decay rate

ΓðZ → νανβϕÞ ¼
4πg2Zjλj2αβ

16 × 3mZð2πÞ4
Z ðm2

ϕþm2
ZÞ=2mZ

mϕ

gðEkÞdEk

¼ g2Zjyαβj2mZ

24ð2πÞ3
�
ð1þ 3r2Þ log

�
1

r

�
−
17 − 9r2 − 9r4 þ r6

12

	
; ðB6Þ

where r ¼ mϕ=mZ. Notice that in case α ¼ β we get an extra 1=2 factor from the phase space.
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