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Topological lumps are known to be present in gluonic fields of SUð3Þ gluodynamics. Near the transition
temperature they were classified either as constituents of nondissociated (anti)calorons, or as constituents
of (anti)dyon pairs, or as isolated (anti)dyons. In this paper we study the density and correlation functions
of these objects at temperature T=Tc ¼ 0.96.
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I. INTRODUCTION

In Ref. [1] we have investigated topological objects
formed in gluonic fields of SUð3Þ gluodynamics near the
transition temperature. It was done with the help of low
lying modes of the overlap Dirac operator. These modes
allow us to construct the topological charge density
corresponding to the three constituents (dyons) of a caloron
with nontrivial holonomy [2–4] when three types of
fermionic temporal boundary conditions are used.
The dyons play the decisive role in a recent model of the

QCD vacuum proposed by Shuryak and collaborators
[5–9]. The density of dyons and their interaction deter-
mined in the lattice simulations are important inputs for this
model. This motivated us to return to the investigation of
SUð3Þ pure gluodynamics. We will present the results
obtained just below the confinement-deconfinement phase
transition at T=Tc ¼ 0.96. In particular, we present a
numerical value for the dyon number density and compare
it with the model prediction [7]. Results for various dyon
correlation functions are presented for the first time.

We study the density and interaction of dyons using the
same method to construct the topological charge density as
in Ref. [1]. The new element introduced into this method is
the new criterion to determine the number of low lying
modes of the overlap Dirac operator that should be used for
the construction of the UV-filtered fermionic topological
charge density.
In Sec. II, the details of the lattice ensemble created at a

temperature near the deconfining transition are described.
In Sec. III, we sketch the fermionic construction of the
topological charge densities as applied for three types of
fermionic temporal boundary conditions. A cluster analysis
of the resulting topological charge densities provides us
with the possibility to localize dyons of different types. The
results for dyon densities and dyon correlation functions are
presented and discussed. Finally, we present our conclu-
sions in Sec. IV.

II. SETUP OF THE INVESTIGATION

The SUð3Þ gauge field configurations for this inves-
tigation have been generated on a lattice of size 243 × 6 by
sampling the pure SUð3Þ gauge theory using the Lüscher-
Weisz action [10].
In addition to the plaquette term (pl), the Lüscher-Weisz

action includes a sum over all 2 × 1 rectangles (rt) and a
sum over all parallelograms (pg), i.e., all possible closed
loops of length 6 along the edges of all 3-cubes,
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where β is the principal inverse coupling parameter, while
the coefficients c1 and c2 are computed using the results of
the one-loop perturbation theory and tadpole improvement
[11–13]:

c1 ¼−
1

20u20
½1þ 0.4805α�; c2 ¼−

1

u20
0.03325α: ð2Þ

For a given β, the tadpole factor u0 and the lattice coupling
constant α are self-consistently determined in terms of the
average plaquette,

u0 ¼
��

1

3
ReTrUpl

��
1=4

; α ¼ −
lnðh1

3
ReTrUpliÞ
3.06839

;

ð3Þ

in the course of a series of iterations.
The ensemble of 100 configurations for the overlap

analysis has been generated at β ¼ 8.20. According to
previous work [14], this ensemble corresponds to a temper-
ature of T ¼ 287 MeV [15], close to the phase transition
temperature Tc ¼ 300 MeV [16].

III. TOPOLOGICAL CLUSTERING

We have analyzed the configurations of the ensemble by
identifying and investigating N ≤ 30 zero and near-zero
eigenmodes of the overlap Dirac operator. The spectral
analysis has been performed for three types of temporal
boundary conditions (B.C.) applied to the fermion field ψ :

ψð1=TÞ ¼ expðiϕÞψð0Þ; ð4Þ

with

ϕ ¼

8><
>:

ϕ1 ≡ −π=3;
ϕ2 ≡þπ=3;

ϕ3 ≡ π:

ð5Þ

For these three types of B.C.s, the fermionic zero mode is
maximally localized at one of the three constituent dyons in
the case of a single-caloron solution with maximally
nontrivial holonomy. For each of these B.C.s, we have
determined the topological index and have checked that it
was independent of the choice of ϕ. The obtained spectral
density is also independent of B.C.s and is nonzero for
small eigenvalues signaling spontaneous violation of chiral
symmetry.

In order to proceed further, we have reconstructed from
the zero and nonzero modes the profiles of the UV-filtered
topological charge density corresponding to the chosen
fermionic boundary condition according to its spectral
representation (for details see [17,18]),

qi;NðxÞ ¼ −
XN
j¼1

�
1 −

λi;j
2

�
ψ†
i;jðxÞγ5ψ i;jðxÞ; ð6Þ

where j enumerates the eigenvalues λi;j equal and closest to
zero. These precise eigenvalues λi;j, as well as the corre-
sponding modes ψ i;jðxÞ, are characterized by the ith
boundary condition. Correspondingly, the UV-filtered
topological density qi;NðxÞ depends on the boundary
condition too.
Note that the average over three fermionic topological

charge densities computed for three types of the boundary
conditions can be used as a definition of the fermionic
topological charge density. It was shown in Ref. [19] that
this fermionic topological charge density has strong corre-
lation with the gluon topological charge density computed
after some smoothing (the gradient flow was used in [19] as
a smoothing procedure).
We have applied a cluster analysis where the minimal (in

absolute value) topological density inside all clusters qcut is
variably chosen for each lattice configuration. The cutoff
qcut has been chosen such as to resolve a maximal number
of internally connected (while mutually separated) clusters.
It has been independently adapted for each configuration.
The purpose of the cluster analysis was to discover
extended objects that we are going to consider as dyon
candidates (of the respective type).
We have found the following average numbers of

clusters per configuration (comprising all 100 configura-
tions) corresponding to the three boundary conditions
i ¼ 1, 2, 3:

N1;30 ¼ 27.0ð4Þ; N2;30 ¼ 27.0ð4Þ; N3;30 ¼ 27.0ð4Þ;

which completely agree within errors (the latter given in
parentheses). Therefore, in the confining (center symmet-
ric) phase the abundance of all three types of clusters is
equal, and the clusters can be interpreted as dyons with
maximally nontrivial holonomy. For further comparison,
we made the same calculations with N ¼ 10 and N ¼ 20
low lying modes taken into account in the reconstruction of
the topological density:

N1;10 ¼ 14.6ð3Þ; N2;10 ¼ 14.2ð3Þ; N3;10 ¼ 14.1ð3Þ;

N1;20 ¼ 21.0ð3Þ; N2;20 ¼ 21.2ð4Þ; N3;20 ¼ 21.0ð4Þ:

While the mutual equality of multiplicity remains, the total
number of clusters changes monotonically with the number
of analyzing modes.
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Taking the lattice spacing value a ¼ 0.115 fm from
Ref. [14], we obtain the physical three-dimensional dyon
cluster density ρ ¼ ðN1;30 þ N2;30 þ N3;30Þ=ð24aÞ3 ¼
3.9ð6Þ fm−3.
Next, we have checked whether clusters of different

types, i.e., clusters determined for three types of the
boundary conditions (5), are correlated. To this end, we
computed a number of isolated clusters, Nd;30, a number
of pairs of different type clusters connected to each other,
Ndd;30, and a number of triplets of connected clusters of
different types (full calorons), Nddd;30. The clusters of
different types were counted as being connected in pairs or
triplets if the distance between them was less than two
lattice spacings. We found (on average per configuration),

Nd;30¼ 40ð1Þ; 2Ndd;30 ¼ 24.3ð7Þ; 3Nddd;30¼ 16.7ð7Þ:

Interpreted in terms of calorons of nontrivial holonomy, this
means that we see full caloronlike clusters consisting of
three constituents on one hand and also completely dis-
solved caloron constituents on the other hand.
Again, for further comparison, we made the same

calculations with N ¼ 10, 20 low lying modes taken into
account:

Nd;10¼ 22ð1Þ; 2Ndd;10¼ 11.6ð4Þ; 3Nddd;10¼ 9.1ð5Þ;

Nd;20¼32.4ð9Þ; 2Ndd;20¼17.4ð6Þ; 3Nddd;20¼13.3ð7Þ:

We computed the topological susceptibility χ ¼
hQ2i=V4 (with Q being the topological charge of configu-
ration and V4 being its 4d volume) and found χ ¼
ð187� 6 MeVÞ4. This result is in very good agreement
with that of Ref. [14], obtained at the same temperature and
for the same action as in our work. Our modeling of the
topological susceptibility by an ensemble of dyons, dyon
pairs, and full calorons gives rise to the expression

χmodel ¼ Q2
dnd;N þQ2

ddndd;N þQ2
dddnddd;N; ð7Þ

where Qd ¼ �1=3; Qdd ¼ �2=3 and Qddd ¼ �1, nd;N ¼
Nd;N=V4; ndd;N ¼ Ndd;N=V4; nddd;N ¼ Nddd;N=V4 are the
densities of isolated dyons, dyon pairs, and full calorons,
respectively. We found χmodel ¼ ð169� 2 MeVÞ4, ð187�
2 MeVÞ4 and ð201� 2 MeVÞ4 for N ¼ 10, 20, 30, respec-
tively. This is an estimate of the topological susceptibility
for uncorrelated “objects” [20] of the respective charge.
As one can see, the best agreement of our modeling with

our own results and the result of Ref. [14] is obtained for
N ¼ 20 modes of the overlap operator. We take this
agreement as a criterion for choosing the number of
modes N, and we further use exclusively N ¼ 20 modes
of the overlap operator in calculations of correlation
functions. The three-dimensional dyon cluster density in
this case is equal to ρ ¼ 3.03 fm−3. Note that the respective

dimensionless value ρ=T3 ¼ 0.98 should be compared with
the value 0.74 obtained in Ref. [7] for the density of dyons
in the case of the SU(2) dyon model at a temperature close
to Tc.
For each configuration, we calculated the distances

between topological lump objects of different types
(dyons/antidyons of three types): two dyons (or antidyons)
of the same type (didi), a dyon and an antidyon of the same
type (did̄i), two dyons (or antidyons) of different types
(didj), and a dyon and antidyon of different types (did̄j).
The numbers of these pairs in bins of (three-dimensional)
distances from x to xþ dx divided by the numbers of lattice
points falling in the same bins are presented as functions of
the calculated distances over the range from zero distance
to the maximal distance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð24=2Þ2 þ ð24=2Þ2 þ ð24=2Þ2

p
≈

20 lattice units. Normalized (to the total density of dyons
and antidyons of all types squared), the correlators of dyon
and antidyon densities,

hdidiðxÞi≡
P

ihdiðxÞdið0Þ þ d̄iðxÞd̄ið0Þi
ðPihdi þ d̄iiÞ2

; ð8Þ

hdid̄iðxÞi≡
P

ihdiðxÞd̄ið0Þ þ d̄iðxÞdið0Þi
ðPihdi þ d̄iiÞ2

; ð9Þ

hdidjðxÞi≡
P

i≠jhdiðxÞdjð0Þ þ d̄iðxÞd̄jð0Þi
ðPihdi þ d̄iiÞ2

; ð10Þ

hdid̄jðxÞi≡
P

i≠jhdiðxÞd̄jð0Þ þ d̄iðxÞdjð0Þi
ðPihdi þ d̄iiÞ2

; ð11Þ

are shown in Fig. 1 as histograms with bins of one lattice
spacing size. The errors are shown in the centers of the
corresponding bins.
In Fig. 1(c), the first two bins are not shown. Respective

correlator values are equal to 51.6 and 4.47 for the first and
second bins, correspondingly. We see that two dyons (or
antidyons) of different types are attracting (positively
correlated) at small distances. At this point we are in
agreement with the model results of Ref. [7]. As a result
of this attraction, half of the dyons and antidyons are
combined in dyon pairs and dyon triplets (full calorons). In
Fig. 1(a), one can also see some attraction at small distances
for two dyons (or antidyons) of the same type (which
cannot form dyon pairs and full calorons). This is in
contrast to the repulsion postulated in Ref. [7]. As for
dyon and antidyon interaction, we observe a repulsion at
small distances of strength independent of the types of
dyons and antidyons [see Figs. 1(b) and 1(d)]. At larger
distances, in all four cases, we do not see any interaction
(nontrivial correlation). We note that our results for
correlators (8)–(11) computed with N ¼ 10 and 30 are
qualitatively the same as shown in Fig. 1.
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IV. CONCLUSIONS

In SUð3Þ lattice gauge theory, using a small number of
modes of the overlap Dirac operator with eigenvalues closest
to zero, we have investigated the clusters formed by the UV-
filtered fermionic topological charge density. The topological
charge density has been computed for three different types of
temporal boundary conditions applied to the overlap Dirac
operator. Assuming that these clusters correspond to dyons,
we have obtained their frequency of occurrence and demon-
strated the tendency to combine into triplets (calorons) or to
form pairs of dyons apart from the remaining isolated dyons.
We accomplished a first lattice computation of the dyon

correlation functions defined in Eqs. (8)–(11). We found, at

small distances, attraction for two dyons (or antidyons) and
repulsion for dyons and antidyons. The attraction for two
dyons (or antidyons) of different types is larger than the
attraction for two dyons (or antidyons) of the same type.
Repulsion for dyons and antidyons does not depend on the
types of dyons and antidyons. At larger distances, in all
cases, we do not see any correlations.
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