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I present a calculation of the topological susceptibility χT in SUðNcÞ gauge theory with Nc ¼ 3–5 colors
and Nf ¼ 2 degenerate flavors of fermions. The results lie on a common curve when expressed in terms

of the combination Ncm2
PSt0 where mPS is the pseudoscalar meson mass and t0 is the flow parameter.

χT approaches its quenched value as the pseudoscalar mass becomes large. The lattice simulations use
clover fermions. They are done at a single lattice spacing, roughly matched across Nc, and over a restricted
range of fermion masses.
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I. INTRODUCTION, MOTIVATION,
AND RESULTS

Real world QCD, with Nc ¼ 3 colors, shares many
features with its Nc → ∞ limit. Large Nc expectations
[1,2] mostly arise from graph counting, in that only planar
diagrams survive in the large Nc limit. The consequences
of these expectations are often applied to nonperturbative
observables, like masses or matrix elements, and these
applications are qualitatively satisfied by experimental data.
Nonperturbative predictions really need nonperturbative

checks, and there is a small lattice literature of simulations
of QCD with Nc > 3. (See [3–7] for a selection of reviews
and original work.) Simulation results generally agree with
expectations. This paper is another check of large Nc
counting. It is a calculation of the topological susceptibility
with two flavors (Nf ¼ 2) of degenerate mass fundamental
representation fermions and Nc ¼ 3, 4, and 5 colors.
There are at least three approaches in the literature for

studying large Nc QCD with lattice methods. The largest
Nc values are attained by assuming volume independence
and simulating on small spatial volumes (see [7] for a
recent review). Fairly large Nc values (up to Nc ¼ 17) have
been reached doing quenched simulations [5] on large
volumes. Simulations using full QCD, with dynamical
fermions, in large volumes are much more costly. However,
part of the large Nc phenomenology is that fermion effects
die away at large Nc. To see their effects die away, it is
necessary to include dynamical fermions from the start.

Naive large Nc counting does not address possible
effects depending on the fermion mass mq. For many
processes, Nc and mq effects approximately factorize:
QðNc;mqÞ ∼ Np

cfðmqÞ. Examples include meson masses
(mH vs mq), decay constants, and even baryon masses
(MBðNc;mq;JÞ ¼Ncm0ðmqÞþ ðJðJþ 1Þ=NcÞBðmqÞþ � � �
for angular momentum J). The qualitative agreement of full
QCD (Nc ¼ 3 with dynamical fermions) and quenched
QCD (replacing a dynamical fermion by a quenched
valence one) is a consequence of this factorization.
But there are (at least) two cases where this factorization

should not occur. These cases occur for chiral observables
and follow from the scaling of the pseudoscalar decay
constant fPS and condensate Σ: fPS ∝ N1=2

c and Σ ∝ Nc.
(The behavior of fPS is directly tested on the lattice; the
second relation is only known indirectly: the squared
pseudoscalar mass divided by the fermion mass m2

PS=mq

is seen to be independent of Nc and this ratio is also
proportional to Σ=f2PS.) The first case involves quantities
scaling as m2

PS=f
2
PS ∝ m2

PS=Nc or mq=Nc. Examples
include higher order corrections to chiral observables,
O ¼ O0ð1þ Cðm2

PS=f
2
PSÞ logðm2

PS=Λ2Þ þ…Þ. These are
typically hard to see in simulations because they are
subleading corrections. One example, though, has been
reported in Ref. [8], the dependence of the gradient
flow scale t0 on m2

PS=Nc as described by Golterman and
Shamir [9].
The second case is the subject of this note: the topo-

logical susceptibility χT. It has very different behavior
in the quenched limit and at small fermion mass. In the
former case χT is a constant (call it χQ), which is nearly
independent of Nc. In the latter case χT ∝ mqΣ or m2

PSf
2
PS,

so one ought to see scaling as χT ∝ Ncm2
PS at small Ncm2

PS.
In fact, there is an old prediction of a functional form for all
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mass values, due to Di Vecchia and Veneziano [10] and
Leutwyler and Smilga [11],

χT ¼ mqΣ
Nf

�
χQ

χQ þmqΣ=Nf

�
ð1Þ

or

1

χT
¼ Nf

mqΣ
þ 1

χQ
: ð2Þ

(The small mass limit of this formula was also derived by
Crewther [12].) With 2mqΣ ¼ f2PSm

2
PS (appropriate to the

fPS ¼ 93 MeV convention), Eq. (2) becomes

1

χT
¼ 2Nf

f2PSm
2
PS

þ 1

χQ
; ð3Þ

and with fPSðNcÞ ¼
ffiffiffiffiffiffi
Nc

p
f0 the expected scaling behavior

of the pseudoscalar decay constant across Nc, we can write

1

χT
¼ 2Nf

Ncf20m
2
PS

þ 1

χQ
: ð4Þ

That is, the inverse topological susceptibility rises linearly
from its quenched value with respect to the scaling variable
1=ðNcm2

PSÞ or 1=ðNcmqÞ.
The purpose of this paper is to take a first look at

χTðmq;NcÞ—as the title says, “a pilot study.” This means
(i) Nf ¼ 2
(ii) Nc ¼ 3, 4, 5
(iii) One lattice spacing (loosely speaking), roughly

matched across Nc using a gluonic observable
(alternatively, roughly matched in bare ’t Hooft
coupling λ ¼ g2Nc)

(iv) One simulation volume, a range of intermediate
mass fermions, and moderate statistics, so all ob-
servations are still tentative

The goal of the paper is to answer a set of physics
questions and a set of simulation questions. The physics
questions are
(1) Does χTðmq;NcÞ actually scale as χTðmqNcÞ [equiv-

alently χTðm2
PSNcÞ], smoothly connected to χQ at

large m2
PSNc?

(2) Does χTðmq;NcÞ follow the Di Vecchia, Veneziano,
Leutwyler, Smilga functional form?

The answers are (1) yes, apparently and (2) qualitatively,
but not quantitatively, at the lattice spacings studied.
The main simulation question is: it is well known that

in ordinary Nc ¼ 3 QCD χT has a very long simulation
autocorrelation time τ. How severe an issue is this across
Nc? The answer is: τ grows with Nc. Nc ¼ 3 or 4 seem to
be manageable with the naive approach I took to study the
problem, but Nc ¼ 5 already shows clear issues.

The result of the simulations described here is displayed
in Figs. 1 and 2 (the overall scale is set by the “flow
parameter” t0). Monte Carlo results collapse to a common
curve, which is a straight line in Fig. 1. In that figure we see
that the line extrapolates to the quenched topological
susceptibility measured by Ref. [13]. Evidently, the effects

FIG. 1. The inverse topological susceptibility, scaled by t20,
versus ðt0m2

PSNc=3Þ−1. Data are squares for Nc ¼ 3, octagons for
Nc ¼ 4 and diamonds for Nc ¼ 5.

FIG. 2. A more conventional presentation of the data: t20χT
versus t0m2

PSNc=3.
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of dynamical fermions for this observable do not depend
separately on Nc and the fermion mass, but on the
combination Ncmq or Ncm2

PS.
In 2001 Dürr [14] presented a similar plot, and com-

parison to Eq. (4), with Nc ¼ 3 data.
As a contrast, Fig. 3 shows the flow scale t0 versus

ðamPSÞ2=Nc, the other non-factorizing mass and Nc
dependence. I am just showing it in passing, since it has
been discussed before.
The outline of the paper is as follows: Section II

describes the calculations: it covers data sets, simulation
methodology, and has a discussion of gradient flow based
observables. Here is where I describe how I dealt with the
long autocorrelations in the data. Section III presents
results: first, comparisons of my data to high statistics
calculations of the quenched topological susceptibility,
then a comparison to previous calculations of the
Nf ¼ 2 SUð3Þ susceptibility. These are checks to make
sure that the present calculation seems to be in order. I then
discuss my results for the Nf ¼ 2 susceptibility across Nc.
Section IV is a brief summary. A reminder of the derivation
of Eq. (2) is given in an Appendix.

II. TECHNICAL ASPECTS OF THE
CALCULATION

A. Simulation methodology, lattice actions, data sets

The dynamical fermion simulations contained two
degenerate flavors of Wilson–clover fermions. The gauge
action is the usual plaquette action, with the bare gauge

coupling g0 parameterized by β ¼ 2Nc=g20. The fermion
action uses gauge connections defined as normalized
hypercubic (nHYP) smeared links [15–17] (with the
arbitrary Nc implementation of Ref. [6]). The bare
quark mass mq

0 is introduced via the hopping parameter
κ ¼ ð2mq

0aþ 8Þ−1. The clover coefficient is fixed to its tree
level value, cSW ¼ 1. The updating scheme is the Hybrid
Monte Carlo (HMC) algorithm [18–20] with a multilevel
Omelyan integrator [21] and multiple integration time
steps [22] with one level of mass preconditioning for the
fermions [23].
All lattice volumes are 163 × 32 sites. The gauge fields

experience periodic boundary conditions; the fermions are
periodic in space and antiperiodic in time.
All data sets are 5000 to 6000 trajectories in length.

Lattices used for analysis are spaced a minimum of 10
HMC time units apart, so individual bare parameter sets
contain 490-600 stored lattices. All data sets (individual
ðβ; κÞ values) are based on a single stream.
The data sets were collected at approximately equal

values of lattice spacing. (The bare gauge coupling is fixed
at eachNc and only κ is varied.) This precludes a discussion
of lattice artifacts. However, comparisons across Nc, or
with large Nc phenomenology, can be done at any value of
the lattice spacing.
The data sets are extensions of ones presented in

Refs. [6,8] and full spectroscopy is presented in the first
of these references. Table I summarizes relevant informa-
tion for the runs. Across the data sets, m2

PS the squared

FIG. 3. The flow scale t0ðmPSÞ, versus 1=Nc times the squared
pseudoscalar mass in lattice units, ðamPSÞ2=Nc, for Nc ¼ 3
(squares), 4 (octagons), and 5 (diamonds).

TABLE I. Nf ¼ 2 dynamical fermion data plotted in the
figures. The column labeled by N gives the number of lattice
analyzed for t0 and χT .

κ amq ðamPSÞ2 t0=a2 t20χT × 104 N

SUð3Þ β ¼ 5.4
0.1250 0.105 0.312(2) 1.657(3) 3.93(29) 500
0.1265 0.059 0.163(2) 2.019(6) 3.63(28) 500
0.1270 0.042 0.116(2) 2.165(6) 2.50(19) 500
0.1272 0.033 0.094(2) 2.243(7) 2.37(14) 500
0.1274 0.028 0.070(2) 2.333(7) 2.25(19) 500
0.1276 0.021 0.057(1) 2.413(8) 2.06(15) 500
0.1278 0.014 0.042(1) 2.500(9) 1.61(12) 500

SUð4Þ β ¼ 10.2
0.1245 0.108 0.309(1) 1.966(4) 6.32(72) 490
0.1252 0.086 0.238(2) 2.081(3) 4.63(58) 490
0.1262 0.054 0.142(1) 2.269(4) 4.26(57) 490
0.1270 0.029 0.074(1) 2.451(5) 2.95(39) 500
0.1275 0.013 0.035(1) 2.621(7) 1.70(16) 500

SUð5Þ β ¼ 16.4
0.1240 0.119 0.339(1) 2.029(2) 5.68(83) 590
0.1252 0.082 0.221(1) 2.185(3) 3.29(38) 590
0.1258 0.063 0.163(1) 2.281(4) 3.74(45) 490
0.1265 0.041 0.104(1) 2.385(4) 3.97(74) 490
0.1270 0.025 0.062(0) 2.483(4) 2.87(44) 490
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pseudoscalar meson mass is roughly linear in the Axial
Ward Identity fermion mass mq. The ratio ðmPS=mVÞ2
where mV is the vector meson mass, spans the range
0.16–0.64.

B. Gradient flow for length scale

The lattice spacing and the topological charge are
measured using the technique of gradient flow [24,25], a
smoothing method for gauge fields via diffusion in a
fictitious (fifth dimensional) time t. In continuum language,
a smooth gauge field Bt;μ is constructed through an iterative
process

∂tBt;μ ¼ Dt;μBt;μν

Bt;μν ¼ ∂μBt;ν − ∂νBt;μ þ ½Bt;μ; Bt;ν�; ð5Þ

beginning with the original one,

B0;μðxÞ ¼ AμðxÞ: ð6Þ

A squared length t0 is defined through the field strength
tensor built using smoothed degrees of freedom, Gt;μν,
using the observable

hEðtÞi ¼ 1

4
hGt;μνGt;μνi: ð7Þ

It is set by fixing the quantity t20hEðt0Þi to some value
CðNcÞ

t20hEðt0Þi ¼ CðNcÞ: ð8Þ

The choice of CðNcÞ across Nc is somewhat arbitrary, as it
is for Nc ¼ 3. There is a natural set of choices motivated by
the perturbative expansion

t2hEi ¼ 3

32π
ðN2

c − 1ÞαðqÞ½1þ k1αþ � � ��

¼ 3

32π

N2
c − 1

Nc
ð4πλðqÞÞ½1þ k1αþ � � �� ð9Þ

where αðqÞ is the strong coupling constant at momentum
scale q ∝ 1=

ffiffi
t

p
and λðqÞ is the corresponding ’t Hooft

coupling. The large Nc limit, where matching gluonic
observables is achieved by matching the bare ’t Hooft
couplings, is t2hEi ∝ Nc. Beyond that, there are many
possible choices. In Ref. [8], I tested the leading
CðNcÞ ∝ Nc behavior by matching t0 to another gluonic
observable, an inflection point on the static potential
called r1. This choice amounts to fixing the inflection point
across Nc. Most other people adopt a different convention,

CðNcÞ ¼ Cð3Þ
�
3

8

N2
c − 1

Nc

�
; ð10Þ

taking Cð3Þ ¼ 0.3 as the usual value used in SUð3Þ. This
amounts to saying that the ratio t0=r1 has a 1=Nc variation
away from itsNc ¼ 3 value (or, the largeNc limit is different
from the Nc ¼ 3 ratio), nothing more. I will follow this
choice, rather than the one of Ref. [8], because I want to
match the quenched results of Ref. [13], and they use the
convention of Eq. (10).
The extraction of t0 from lattice data is standard and

is described in Ref. [8]. The gradient flow differential
equation is integrated numerically as described by Lüscher
[25]. Calculations used the usual “clover” definition of
EðtÞ. An autocorrelation analysis will described after the
next subsection.

C. Gradient flow for topological charge—definitions

The topological charge density is defined as

qtðxÞ ¼ −
1

32π2
ϵμνρσTrGt;μνðxÞGt;ρσðxÞ ð11Þ

and is computed using gauge fields at flow time t as

QðtÞ ¼ a4
X
x

qtðxÞ: ð12Þ

In a system with periodic boundary conditions, the topo-
logical susceptibility is simply

χT ¼ 1

V
hQðtÞ2i: ð13Þ

This point actually needs a bit more discussion.
Equation (13) implicitly assumes that hQðtÞi ¼ 0 when
averaged over the measurements taken in the simulation.
The observation of hQðtÞi ≠ 0 is an artifact, indicating
that the data has long time autocorrelations. To see if this
affects my results, I will compare hQ2i to the full
correlator CðtÞ ¼ hQðtÞ2i − hQðtÞi2.
A second issue is that, at any nonzero lattice spacing,

χTðtÞ depends on t. Taking the continuum limit involves
measuring t20 χðtÞ at several lattice spacings and taking the
a → 0 limit. (This could be done by plotting the data versus
1=t or, reinserting the lattice spacing a, plotting versus
a2=t0). In principle, this could be done for any t. The data in
this study are all at one lattice spacing, so one has to ask
whether the physics hints given by a study at one value of a
sensitive to the choice of operator [choice of t for QðtÞ].

D. Data analysis

Both t0 and the topological charge show simulation time
autocorrelations. I attempted to estimate the autocorrelation
time through the autocorrelation function defined as

ρAðτÞ ¼
ΓAðτÞ
ΓAð0Þ

ð14Þ
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FIG. 4. Integrated autocorrelation time τintðWÞ for t2EðtÞ at fixed t versus W and versus t at fixed W ¼ 200: a) and b) SUð3Þ,
κ ¼ 0.127; c) and d) SUð4Þ, κ ¼ 0.1262; e) and f) SUð5Þ, κ ¼ 0.127.
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(for a generic observable A) where

ΓAðτÞ ¼ hðAðτÞ − ĀÞðAð0Þ − ĀÞi: ð15Þ

The integrated autocorrelation time, up to a window
size W, is

τintðWÞ ¼ 1

2
þ
XW
τ¼1

ρðτÞ: ð16Þ

Unless the total length in time of the data set is much larger
than the autocorrelation time, it is difficult to estimate an
error for τint. I analyzed my data sets by breaking them into
multiple parts, each part being order 1000 trajectories or
100 saved lattices, computing τ on each part, and taking an
error from the part-to-part fluctuations.
The analysis of t0 is straightforward. I show a few

representative figures, since the data look quite similar
across fermion mass and Nc. Figure 4 shows plots of the
integrated autocorrelation time τintðWÞ for t2EðtÞ at t ¼ 2.1
(for Nc ¼ 3 and 4) and t ¼ 2 for Nc ¼ 5 versus W, and
τintðW ¼ 200Þ vs flow time t. The values of t0 in the table
are taken from a jackknife analysis dropping two succes-
sive lattices, since these figures indicate that the autocor-
relation time is 15-20 trajectories.
Now for the topological charge. The autocorrelation time

is large for all SUð5Þ data sets. This can be seen by eye
from time histories: compare Figs. 5 for an SUð3Þ history
and an SUð5Þ one.
I repeat the calculation of autocorrelation times for QðtÞ.

In contrast to the results for t2EðtÞ, in general τintðWÞ is an
irregular function ofW. This is already an indicator of long
correlations in the data. Results for the same parameter
values as in Fig. 4 are shown in Fig. 6.
Fit results come from a jackknife analysis, removing

sets of lattices whose length is longer than the estimated
integrated autocorrelation time. This would be nJ succes-
sive lattices for τint ¼ 10nJ molecular dynamics time
units. To be explicit: for a given jackknife I compute the

averages hQðtÞi, hQ2ðtÞi and CðtÞ ¼ hQ2ðtÞi − hQðtÞi2;
the uncertainty of each comes from a jackknife. I varied the
size of the jackknife beyond the estimate of the integrated
autocorrelation time. I estimate the fractional error from
loss of statistics as

ΔðΔCðtÞÞ
ΔCðtÞ ¼

ffiffiffi
2

n

r
ð17Þ

where n ¼ N=nJ. That gives a rough error bar. The
uncertainty in CðtÞ increases with nJ and then either
saturates, or at least the growth becomes smaller than what
statistics allows one to see. Results for t ¼ 3 are shown are
shown in Fig. 7. Other t values are similar. The results of
Fig. 7 suggest the size of the jackknife used to present
results. For Nc ¼ 3, the autocorrelation analysis suggest
an autocorrelation time of about 20 trajectories, reason-
ably constant across κ values and for t in the range of
about 1 to 6, and hence a cut nJ ¼ 2. Figure 7 encourages
setting the jackknife cut at nJ ¼ 4. For Nc ¼ 4, the
autocorrelation time is about 30 trajectories but jackknife
errors do not saturate until nJ ¼ 8. Finally, for Nc ¼ 4, the
autocorrelation time is about 50 trajectories for the two
smallest κ values and 100 for the others, but Fig. 7
instructs us to take nJ ¼ 10 for the three smallest κ values
and 20 for the others.
Now for fits to the data. I observe, generally, that at small

t, QðtÞ has a Gaussian distribution. At large t, individual
configurations “cool,” that is, Q peaks at equally spaced,
roughly integer values. This appears to happen at smaller t
for Nc ¼ 5 than it does for Nc ¼ 3. I test that the data is
Gaussian using the Kolmogorov-Smirnov test [26]. It
compares the integrated distributions (the cumulants) of
the measured data CðxÞ and the theoretical prediction PðxÞ.
The cumulant of the measured data is CðxÞ ¼ nðxÞ=N
where nðxÞ is the number of data points with a value
smaller than x and N the total number of data points.
The theoretical prediction for this quantity is found by
integrating the distribution: PðxÞ ¼ R

x
−∞ fðyÞdy. The

FIG. 5. Time history of the topological charge at t ¼ 3 for (a) an SUð3Þ data set (κ ¼ 0.1274) and (b) an SUð5Þ one, κ ¼ 0.127.
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quantity of interest is the largest deviation of P and C:
D ¼ maxx jPðxÞ − CðxÞj. From this the confidence level is
given by

QKSðð
ffiffiffiffi
N

p
DÞ ð18Þ

where

QKSðxÞ ¼ 2
X∞
j¼1

ð−Þj−1 expð−2j2x2Þ: ð19Þ

(Note larger QKS is better.)
So far, I have not specified a flow time for CðtÞ, so I did

fits for a range of t values. Results for CðtÞ and hQðtÞi are

FIG. 6. Integrated autocorrelation time τintðWÞ for QðtÞ at fixed t versus W and versus t at fixed W ¼ 200: (a) and (b) SUð3Þ,
κ ¼ 0.127; (c) and (d) SUð4Þ, κ ¼ 0.1262; (e) and (f) SUð5Þ, κ ¼ 0.127.
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shown in Figs. 8 and 9. Plots of hQ2i are almost identical to
those ofCðtÞ. hQðtÞi, in contrast, is nearly independent of t.
QðtÞ should average to zero. The figures, and the data for

t ¼ 3 presented in Table II, show several cases where hQi
sit two standard deviations away from zero. However,
even for the most extreme deviations (SUð5Þ, κ ¼ 0.1265
and 0.1265) the difference between CðtÞ and hQ2ðtÞi is
less than the RMS value of the uncertainties of the two
determinations.
In all cases, the data is (nearly) Gaussian about its mean.

This is checked through a cumulant analysis where the
expectation is (the integral of) a Gaussian with hQi and
hQ2i − hQi2 taken from Table II. Deviations from
Gaussianity occur at long flow time because Q has cooled
to approximate integers, as revealed by steps in the
cumulant. It did not seem to be worthwhile to guess a
more complicated (Gaussian with steps) distribution for
comparison.
A few pictures of cumulants shown in Fig. 10 illustrate

the fits.
Figure 8 shows that once t becomes greater than about

2.5, the value of CðtÞ (and hQðtÞ2i, which is almost

identical) roughly forms a plateau. In a better study, I
would fix t to any convenient value and extrapolate hQðtÞ2i
to a ¼ 0. For the remainder of this study I will just fix
t to t ¼ 3. Results are summarized in Table II. All
phenomenology in the next section will be done
with χT ¼ hQðt ¼ 3Þ2i=V.

III. RESULTS

With data sets at one bare gauge coupling per Nc it is
hard to quantify lattice artifacts. I can compare my results to
other simulations and ask if they look reasonable. There are
two places where this is done.

A. Comparison with high precision
quenched results

The first one is the quenched limit. The authors of
Refs. [27] and [13] published high statistics data for t20χT
for Nc ¼ 2–6. I collected a data set much smaller than
theirs but comparable to my dynamical sets in size and in
lattice spacing, to check against theirs. It is recorded in
Table III. My sets are 500 measurements per Nc, each

FIG. 7. Uncertainty in CðtÞ at t ¼ 3 as a function of the inverse jackknife size for (a) SUð3Þ, (b) SUð4Þ, and (c) SUð5Þ. The different
plotting symbols correspond to different κ values, the ordering top to bottom is with decreasing fermion (or pseudoscalar meson) mass.
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spaced 100 sets of sweeps through the lattice, each sweep
consisting of a mix of four Brown—Woch microcanonical
over-relaxation steps [28] and a Cabibbo—Marinari heat
bath update [29], performed on all NcðNc − 1Þ=2 SUð2Þ
subgroups of the SUðNcÞ link variables.
Figure 11 shows the comparison. Within my large errors,

my results are compatible with the high statistics results of
Refs. [13,27].

B. Comparison with high precision Nf = 2 SUð3Þ
The next comparison is with high precision Nc ¼ 3,

Nf ¼ 2 results. I have only been able to find a few
recent calculations (most recent studies are for Nf > 2

with physical strange (and beyond) fermion masses). But
there are three useful sets.
The first is that of Ref. [30]. I used essentially their

techniques: the topological susceptibility is measured from
flow. Reference [30] presented data from three small lattice
spacings, a ¼ 0.075 fm, 0.065 fm and 0.048 fm (speaking
nominally; flow parameters, and hence the lattice spacing a
are computed at each value of bare fermion mass) on very

large lattices. The authors of Ref. [30] provided me with
tables of t20χT versus t0m2

PS. Most of their data is at smaller
pseudoscalar mass than mine.
The next set is that of Ref. [31]. It is a calculation using

overlap fermions in a sector of fixed topology. The
topological susceptibility is computed from the autocor-
relation function of the topological charge density, which
in turn is defined in terms of fermionic observables. The
lattice spacing is about 0.12 fm. They publish a table of
χTr40 versus mPSr0, where r0 is the Sommer parameter
[32], an inflection point on the heavy quark potential. I
take their value r0 ¼ 0.49 fm and the value of t0 quoted in
the review by Sommer, Ref. [33],

ffiffiffiffi
t0

p ¼ 0.154 fm (from
Refs. [34,35]) to rescale the data.
The third paper is Ref. [36]. It is a calculation with

dynamical domain wall fermions. The topological charge
is determined from the eigenmodes of valence overlap
fermions. Taking pseudoscalar masses from their
Ref. [37], I rescale their numbers (quoted in GeV units
but determined from r0). Their data is also shown
in Fig. 12.

FIG. 8. CðtÞ versus t as a function for (a) SUð3Þ, (b) SUð4Þ, and (c) SUð5Þ. The different plotting symbols correspond to different κ
values; the ordering top to bottom is with decreasing fermion (or pseudoscalar meson) mass.
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The line in the figure is t20χT ¼ ðt0f2PS=4Þm2
PS withffiffiffiffi

t0
p ¼ 0.154 fm and fPS ¼ 93 MeV. I show my own data
for χTðtÞ for two choices of t, 3 and 1.2.
What points am I trying to make with this busy figure?

To begin, at the lattice spacings of these data sets, lattice
artifacts are large and are rather different for the two
simulations based on flow and the ones based on fermions
with exact or nearly exact chiral symmetry. The suscep-
tibility measured by flow is expected to have a lattice
artifact A of the form

t20 χT ¼ bt0m2
PS þ A ð20Þ

where A scales as a2. This is what the authors of Ref. [30]
saw. This has been checked in the chiral limit by Münster
and Wulkenhaar [38]. In contrast, fermionic zero modes
should drive χT to zero as the fermion mass vanishes. My
own fits to the data of Refs. [31] and [36] have intercepts
A ¼ −0.1ð1Þ × 10−4 and −0.04ð3Þ × 10−4 respectively,
while the three sets of Ref. [30] are A ¼
1.23ð14Þ × 10−4, 1.02ð14Þ × 10−4, and 0.02ð4Þ × 10−4.
Equation (20) is a good fit to all these data sets. The
interesting quantity in Eq. (20) is b, which should be

FIG. 9. hQðtÞi versus t as a function for (a) SUð3Þ, (b) SUð4Þ, and (c) SUð5Þ. The different plotting symbols correspond to different κ
values; for numerical values in this cluttered graph, see Table II. The x axes are slightly displaced for viewing.

TABLE II. Topological charge and related quantities for
Nf ¼ 2, all at flow time t ¼ 3.

κ hQi hQ2i − hQi2 hQi2
SUð3Þ β ¼ 5.4
0.1250 0.14(27) 18.73(139) 18.75(139)
0.1265 −0.47ð22Þ 11.45(84) 11.68(90)
0.1270 0.13(17) 6.99(54) 7.00(54)
0.1272 −0.13ð15Þ 6.15(37) 6.17(37)
0.1274 −0.24ð14Þ 5.36(44) 5.42(45)
0.1276 0.26(13) 4.58(35) 4.65(35)
0.1278 0.09(11) 3.36(26) 3.37(26)

SUð4Þ β ¼ 10.2
0.1245 −0.24ð46Þ 21.38(242) 21.44(245)
0.1252 −0.26ð36Þ 13.92(177) 14.01(177)
0.1262 0.31(32) 10.73(140) 10.84(146)
0.1270 −0.49ð22Þ 6.16(76) 6.44(86)
0.1275 0.45(16) 3.02(33) 3.24(30)

SUð5Þ β ¼ 16.4
0.1240 −0.28ð46Þ 18.00(263) 18.09(263)
0.1252 −0.28ð30Þ 8.95(103) 9.03(103)
0.1258 −0.97ð35Þ 8.46(109) 9.41(113)
0.1265 −0.93ð47Þ 8.25(180) 9.15(172)
0.1270 −0.18ð39Þ 6.00(92) 6.10(93)
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b ¼ t0f2PS=4 from the leading chiral behavior. This is about
13.3 × 10−4 with

ffiffiffiffi
t0

p ¼ 0.154 fm and fPS ¼ 93 MeV.
The line shows this behavior. A comparison with a ruler
shows that the other groups’ SUð3Þ data is consistent with
this value, even though, strictly speaking, b should have its
own lattice artifacts and one would expect agreement only
in the continuum limit.
Most of my data is at too large pseudoscalar mass to be

expected to be in the linear regime. At best, the lightest three

FIG. 10. Cumulants and fits for selected data sets, all at flow
time t ¼ 3.D is the maximum deviation of the cumulant from the
error function and Q is defined in Eqs. (18). The mean and
deviation are taken from Table II. SUð3Þ, (a) κ ¼ 0.125—D ¼
0.027, Q ¼ 0.84, (b) κ¼0.1276—D ¼ 0.028, Q ¼ 0.80; SUð4Þ,
(c) κ ¼ 0.1245—D ¼ 0.035, Q ¼ 0.57, (d) SUð4Þ, κ ¼
0.1275—D ¼ 0.075, Q ¼ 0.007; SUð5Þ, (e) κ ¼ 0.124—D ¼
0.037, Q ¼ 0.38, (f) κ ¼ 0.127—D ¼ 0.066, Q ¼ 0.027.

TABLE III. Quenched data (hQi etc at t ¼ 3) plotted in Fig. 11.

Nc β t0=a2 hQi hQ2i − hQi2 hQi2
3 5.9 2.255(10) −0.24ð17Þ 15.43(96) 15.49(95)
4 10.8 2.316(3) 0.37(17) 15.17(97) 15.31(100)
5 17.1 2.267(2) −0.19ð20Þ 15.49(99) 15.52(99)

FIG. 11. Quenched t20χT from Refs. [13,27] (with the small
error bars) and by me (with the large error bars), versus a2=t0.
Data are squares for Nc ¼ 3, octagons for Nc ¼ 4 and diamonds
for Nc ¼ 5.

FIG. 12. Comparison of Nc ¼ 3 results for t20χT versus t0m2
PS.

My results are black squares for χTðt ¼ 3Þ and black octagons for
χTðt ¼ 1.2Þ, while the blue points are data from [30]: fancy
crosses, squares, and crosses are data at lattice spacing
a ¼ 0.075 fm, 0.065 fm and 0.048 fm, respectively. Red fancy
diamonds are from Ref. [36]. Purple bursts are data from
Ref. [31]. The line is t20χT ¼ ðt0f2PS=4Þm2

PS with
ffiffiffiffi
t0

p ¼
0.154 fm and fPS ¼ 93 MeV.

TOPOLOGICAL SUSCEPTIBILITY IN QCD WITH TWO … PHYS. REV. D 101, 114509 (2020)

114509-11



points might be light enough. (Note that mPSL ¼ 3.26 and
3.74 for the two lightest points; smaller mPS would require
bigger simulation volumes than I used, to avoid finite
volume contamination.) This is to be contrasted with the
other SUð3Þ simulations, where t0m2

PS is generally lower
than 0.16–0.19. My three lowest points lie in the range
0.10–0.16. Fits to Eq. (20) with more than three points
produce b values which are a factor of two smaller that
the expected result, but keeping the lowest three points
produces ðA; bÞ ¼ 0.36ð49Þ × 10−4; 12.0ð38Þ × 10−4 for
the t ¼ 3 susceptibility and ðA; bÞ ¼ −0.18ð57Þ × 10−4;
13.4ð45Þ × 10−4 for the t ¼ 1.2 susceptibility. The two
choices should have different lattice artifacts, but the
important term (b) does not seem to be a ridiculous value,
nor does it seem to be too dependent on the choice of t
for χT.

C. My results across Nc

Results acrossNc were displayed in Figs. 1 and 2. Do the
data lie on a common curve? I test that by performing a
simple linear fit

1

t20χ
¼ 1

t20χQ
þ C

1

t0ðNc=3Þm2
PS

ð21Þ

to individual Nc values and to various combinations of Nc.
I use my quenched data as inputs to fix the intercept
(at 1=ðt0ðNc=3Þm2

PSÞ ¼ 0). Fit results and the chi-squared
per degree of freedom are shown in Table IV. The Nc ¼ 3
and 4 data sets are clearly consistent, and the Nc ¼ 5
topological susceptibility falls on the same curve, although
the uncertainty in the slope C is clearly much greater.
Figure 13 replaces the straight-line presentation with a

conventional one of t20χT versus t0m2
PSNc=3. There are

four lines: Line (1) is just linear dependence with the slope
from the fit to Eq. (21). Line (2) is linear dependence
(C ¼ 4=ðt0f2PSÞ) with physical (SUð3Þ) values for t0 and
fPS. Line (3) is the entire fit function of Eq. (21). Line (4) is
the fit function but with physical C. Panel (b) blows up the
small mass region of panel (a).
Finally, Fig. 14 shows a third view of curve collapse,

t0χT=ðm2
PSNc=3Þ versus t0m2

PSNc=3. This one is a bit
dangerous, since χT from flow does not extrapolate to
zero at zero fermion mass: the parameterization blows up
there. Overlaid on the data is the expectation of Eq. (4) with
physical (SUð3Þ) values for t0 and fPS, and t20χQ taken to be
a a nominal 6.25 × 10−4.
What conclusions can be drawn from these figures?

First, it is clear that χT is, broadly speaking, a function of
the combinationm2

PSNc. Second, it is also clear that Eq. (4)
with physical (SUð3Þ) values for t0, fPS and t20χQ taken
from high precision lattice data does not reproduce the data.
At this point there are two obvious things to say.
First, this difference could just be due to discretization

artifacts at the lattice spacing where the simulations were
carried out. A real check requires several lattice spacings
and an extrapolation.
Second, the formula Eq. (4) itself could have issues. It is

a combination of lowest order chiral perturbation theory

TABLE IV. Results of fits to Eq. (21).

Nc 1=ðt20χQÞ × 104 C × 104 χ2=DoF

3 0.165(9) 0.048(3) 7.0=6
4 0.146(9) 0.045(5) 9.4=4
5 0.165(10) 0.051(10) 7.5=4
3, 4 0.155(7) 0.048(3) 19.8=11
3, 4, 5 0.158(5) 0.048(3) 29.1=18

FIG. 13. t20χT versus t0m2
PSNc=3 with several lines. Line (1) is just linear dependence with the slope from the fit to Eq. (21). Line (2) is

linear dependence with physical values for t0 and fPS. Line (3) is the entire fit function of Eq. (21). Line (4) is the fit function but with
physical C. Panel (b) blows up the small mass region from panel (a).
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combined with a plausible assumption, that the eta-prime
correlator is a bubble sum. Scaling with m2

PSNc is actually
scaling with respect to mPS=μ20 where μ0 is the eta-prime
mass, combined with scaling of μ20 ∝ 1=Nc as expected
from the Witten-Veneziano relation [39,40]. QCD at
intermediate to large sea quark mass does not have to be
described by chiral perturbation theory.

IV. CONCLUSIONS

This pilot study shows that fermions influence the
topological susceptibility through the product Ncm2

PS.
Perhaps it is not a surprising result, but it does illustrate
that there are quantities whose Nc and fermion mass
dependence is nonfactorizing.
The other nonfactorizing dependence (∝ m2

PS=Nc) may
be more ubiquitous. It appears in all chiral logarithm
corrections. High quality data for the topological suscep-
tibility would most likely observe it in the one loop [41]
(and beyond) corrections to χT in the chiral limit. Probably
the easiest place to see this generic behavior is in the
dependence of t0 on the pseudoscalar mass, as shown
in Fig. 3.
Scaling as Ncmq is expected for observables in the

epsilon regime (the limit of simulation volume V ¼ L4 and
pseudoscalar mass wheremPSL ≪ 1whilemHL > 1 for all
other mass scales mH). It appears in predictions for
chiral observables such as the finite-volume condensate
which involve the scaling combination mqΣV (for
example, ΣðVÞ ¼ mqΣVfðmqΣVÞ). I do not know of
any Monte Carlo checks of this scaling.

This is a pilot study: what would it take to produce higher
quality data? This presumably means larger volumes, several
lattice spacings, and maybe larger Nc. Larger volumes are
needed to push to smaller fermion mass and check for
m2

PSNc scaling in a theoretically clean regime. Several lattice
spacings are needed, of course, to give a continuum result.
Such data sets already exist for Nc ¼ 3, and the only reason
to repeat them is to use them as checks of the methodology
for the more interesting larger Nc cases.
I suspect that such Nc ¼ 4 data sets could be generated

with the same techniques as either I or (better) Ref. [30]
used, simply consuming more resources. (Neglecting auto-
correlation effects, the simulations are dominated by calcu-
lation of fermion propagators, involving matrix-times-vector
operations; the scaling is roughly N2

c.) My experiences with
Nc ¼ 5 raise a flag, however. The long autocorrelation time
forNc ¼ 5 compared to lowerNc values is a clear issue. It is
hard to imagine the Nc > 5 will have a shorter autocorre-
lation time. Of course, I should not say more: I have not
tried to do extensive running for Nc > 5 with dynamical
fermions at the same lattice spacing as the data presented
here. But if I were to keep going with this project, I think
I would adopt the open boundary conditions used by
Ref. [30] to try to shorten the autocorrelation time.
Another “pilot area” would be to move away from

Nf ¼ 2. For Nc ¼ 3, this is reasonably well explored by
simulations with up, down, and strange quarks, and a recent
study by Nogradi and Szikszai [42] covers Nf ¼ 2–6.
These are all tests at low quark mass: what happens as the
mass grows? Varying Nc and Nf together would allow tests
of the Veneziano limit [43,44], Nc → ∞ at fixed Nf=Nc. Is
there a universal curve for χTðm2

PSÞ across a wide range of
Nc and Nf, with a scaling variable just m2

PSNc=Nf?
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FIG. 14. t0χT=ðm2
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showing the expectation of Eq. (4).
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APPENDIX: REVIEW OF THE DERIVATION
OF EQ. (2)

Just for completeness, I give a quick derivation of
Eq. (2). Since this paper is a lattice calculation, I will
assume that we have overlap fermions: their zero modes are
chiral and their nonzero ones are not. With nonchiral lattice
fermions, this result will be modified by lattice artifacts, but
let us neglect them for now. No claim for the originality of
this derivation is implied.
Consider the propagator for a bound state of a single

flavor of quark, the correlation function of two local
pseudoscalar densities, ψ̄γ5ψ . The first ingredient of the
derivation is a plausible assumption for this amplitude, a
bubble sum, shown in Fig. 15. The hairpin diagram, the
second term in the sum, is

Hðx; yÞ ¼ hTrγ5D̂ðx; xÞ−1Trγ5D̂ðy; yÞ−1i ðA1Þ
where D̂ðx; yÞ−1 is the fermion propagator, the inverse of
the Dirac operator. Because only zero modes of the overlap
Dirac operator are chiral, the volume integral of the hairpin
graph is proportional to the zero mode susceptibility

1

V

X
x;y

Hðx; yÞ ¼ hQ2i
Vm2

q
¼ χ

m2
q
; ðA2Þ

where Q is just the difference of positive and negative
chirality zero modes, Q ¼ nþ − n−.
In quenched QCD, as described by quenched chiral

perturbation theory, there is an anomalous coupling of
two Goldstone bosons in the flavor singlet channel, para-
metrized by a coupling with the dimensions of a squared
mass. The hairpin graph is analyzed as if each of its
quark loops is a propagator for an ordinary pseudoscalar
Goldstone meson. That is, the momentum space amplitude
for the connected graph (the first term in Fig. 15) is

CðqÞ ¼ fP
1

q2 þm2
PS

fP ðA3Þ

while the hairpin amplitude involving a single flavor is

HðqÞ ¼ fP
1

q2 þm2
PS

μ20
Nf

1

q2 þm2
PS

fP: ðA4Þ

In these expressions, fP ¼ h0jψ̄γ5ψ jPSi ¼
ffiffiffi
2

p
m2

PSfPS=
ð2mqÞ from the PCAC relation. (Here fPS ¼ 93 MeV.)
The quantity μ20 which couples the fermion loops is the
squared mass of the “quenched approximation eta-prime”
in the chiral limit. (The factor 1=Nf converts the single-
flavor graph into the expectation of the eta-prime mass in
Nf-flavor QCD, since each closed loop has a multiplicity of
Nf, and the wave function (vertex) is scaled by a factor of
1=

ffiffiffiffiffiffi
Nf

p
.) In full QCD the correlator which gives the mass

of the isosinglet meson is the difference CðtÞ − NfHfullðtÞ,
and HðtÞ is supposed to represent the first term in a
geometric series, the rest of the terms in Fig. 15. This
series sums up to

CðqÞ − NfHfullðqÞ ¼ CðqÞ − NfHðqÞ þ � � �

¼ fP
1

q2 þm2
PS þ μ20

fP; ðA5Þ

shifting the squared mass of the pseudoscalar meson from
m2

PS to m2
PS þ μ20.

Computing the quenched susceptibility directly from
Eq. (A4) gives

1

V

X
x;y

Hðx; yÞ ¼ f2P
m4

PS

μ20
Nf

¼ μ20f
2
PS

2Nfm2
q
: ðA6Þ

Equating Eqs. (A2) and (A6), we obtain the Witten-
Veneziano [39,40] relation μ20 ¼ 2Nfχ=f2PS, where χQ is
the quenched zero mode susceptibility.
In full QCD, with dynamical fermions, Eq. (A2) gives

the quenched topological susceptibility χQ. In full QCD,
the hairpin is still saturated by zero modes, but Eq. (A5)
(evaluated at q2 ¼ 0) says

χ

m2
q
¼ f2P

Nf

�
1

m2
PS

−
1

m2
η

�
: ðA7Þ

Substituting for the condensate via m2
PSf

2
PS ¼ 2mqΣ,

recalling m2
η ¼ μ20 þm2

PS, and using the Witten-
Veneziano relation to replace μ20 by χQ, we find

χ ¼ mqΣ
Nf

�
χQ

χQ þmqΣ=Nf

�
ðA8Þ

or

1

χ
¼ Nf

mqΣ
þ 1

χQ
: ðA9Þ

This interpolates between the small-mq suppression and the
quenched result.

FIG. 15. A set of quark line graphs for the eta-prime meson.
geometric series to shift the eta-prime mass away from the mass
of the flavor nonsinglet pseudoscalar mesons. The first two terms
in the series are the “connected” and “hairpin” graphs.
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