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We calculate the step-scaling function, the lattice analog of the renormalization group β-function, for an
SU(3) gauge theory with ten fundamental flavors. We present a detailed analysis including the study of
systematic effects of our extensive data set generated with ten dynamical flavors using the Symanzik gauge
action and three times stout smeared Möbius domain wall fermions. Using up to 324 volumes, we calculate
renormalized couplings for different gradient flow schemes and determine the step-scaling β function for a
scale change s ¼ 2 on up to five different lattice volume pairs. In an accompanying paper we discuss that
gradient flow can promote lattice dislocations to instantonlike objects, introducing nonperturbative lattice
artifacts to the step-scaling function. Motivated by the observation that Wilson flow sufficiently suppresses
these artifacts, we choose Wilson flow with the Symanzik operator as our preferred analysis. We study
systematic effects by calculating the step-scaling function based on alternative flows (Zeuthen or
Symanzik), alternative operators (Wilson plaquette, clover), and also explore the effects of the perturbative
tree-level improvement. Further we investigate the effects due to the finite value of Ls.
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I. INTRODUCTION

Strongly coupled gauge-fermion systems play a central
role in different beyond the Standard Model scenarios.
Two prominent examples are models for composite dark
matter [1,2] and composite Higgs models [2–6]. The latter
require a large scale separation to accommodate that only a
light 125 GeV Higgs boson has been experimentally
observed but no other heavier resonances. Hence composite
Higgs models favor gauge-fermion systems featuring near-
conformal dynamics, i.e. a slowly running (walking) gauge
coupling. To identify promising candidate systems, it
is essential to understand the nature of near-conformal
models. Gauge-fermion systems are characterized by the
gauge group G and the number Nf of fermion flavors in
representation R. Given these three characteristics, the
infrared properties of gauge-fermion systems can be
derived by determining the renormalization group (RG)
β-function. Calculations based on perturbation theory
predict that systems with SU(3) gauge group and fermions
in the fundamental representation undergo a transition: as
the number of flavors is increased, a chirally broken system

with fast running coupling changes to a conformal system
where the gauge coupling is irrelevant [7]. For even larger
number of flavors, gauge-fermion systems become infrared
free and possibly asymptotically safe [8–10].
While perturbation theory provides guidance about the

Nf dependence, the inherently nonperturbative nature of
gauge-fermions systems limit the reliability of perturba-
tive predictions. Particularly challenging is to identify
the lowest, critical number of flavors Nc

f where a gauge-
fermion system of gauge group G and representation R
becomes conformal. It is known that for a system inside
the conformal window, the infrared fixed point moves to
stronger coupling as Nf decreases toward Nc

f. Non-
perturbative methods are required to determine Nc

f and
gain field theoretical insight into how a chirally broken
system changes to a conformal system.
Lattice field theory provides a nonperturbative frame-

work to determine the RG β-function from first principles.
We have studied the finite volume step-scaling function
[11] for SU(3) with ten and twelve fundamental flavors
[12–15] using domain wall (DW) fermions. Our work
complements earlier studies of the eight and twelve flavor
systems with staggered fermions [16–21]. Recently,
we explored a new method, the continuous gradient flow
β-function [22–24] presenting results for SU(3) with two
and twelve fundamental flavors. In the infinite volume
continuum limit both methods determine the renormaliza-
tion group (RG) β-function, though in different renormal-
ization schemes. Our recent DW results reveal that the two
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flavor system exhibits a fast running β function close to the
perturbative 1-loop prediction, whereas for Nf ¼ 12 our
step-scaling calculation shows that the β function is small
in magnitude and identifies an infrared fixed point (IRFP)
in the range 5.2 ≤ g2c ≤ 6.4 using the c ¼ 0.250 renorm-
alization scheme.
In this work we present a detailed analysis of our step-

scaling calculation for ten fundamental flavors. Compared
to our results published in Refs. [14,15], we performed
additional simulations at stronger bare couplings and added
further volumes to improve the infinite volume continuum
limit extrapolation. The additional simulations allowed
us to increase the explored coupling range for c ¼ 0.300
from g2c ≈ 6.5 in Refs. [14,15] to g2c ≳ 11. At that strong
coupling we also discovered previously unaccounted lattice
artifacts. In an accompanying paper we discuss that
gradient flow on coarse configurations can promote dis-
locations to instantonlike objects. This introduces a non-
perturbative lattice artifact to the step-scaling beta function
which leads to incorrect continuum limit extrapolations
[25]. We find that the perturbatively preferable Symanzik
and Zeuthen flows introduce many more of these artifacts.
In order to minimize this artifact, we choose Wilson flow as
our preferred analysis.
In Fig. 1 we present our final result of the continuum

limit extrapolated GF step-scaling β function in the
renormalization schemes c ¼ 0.300, 0.275, and 0.250.
Our predictions are labeled “MDWF” (for Möbius domain
wall fermions) and shown by green bands. For the c ¼
0.300 scheme we also show the nonperturbative lattice
determinations by Chiu (blue symbols) [26–28] and LatHC
(gray band) [21,29,30].1 In addition we display by the
yellow/orange/pink/purple/red lines the MS perturbative
predictions at 1–5-loop order [31–34].
Comparing the different nonperturbative lattice predic-

tions in the c ¼ 0.300 scheme, we find that our result is in
perfect agreement at weak coupling (g2c ≲ 5.8) with the
findings by Chiu and sits just below LatHC’s result in the
range 5.0≲ g2c ≲ 8. At present only our calculation has
reached the 8.0≲ g2c ≲ 11.0 range where we observe a
down-turn of the β function pointing to a possible IRFP
around g2c ∼ 13. Our nonperturbative results suggest that
Nf ¼ 10 is likely conformal.
The bottom two panels of Fig. 1 show our continuum

limit predictions in the c ¼ 0.275 and 0.250 schemes. The
results reveal that the GF step-scaling β-function exhibits a
dependence on the renormalization scheme parameter c.
However, cutoff effects on the finite volume step-scaling
function are more severe at smaller c. Unfortunately, our
available data set does not allow to rigorously scrutinize our
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FIG. 1. Our final results for GF step-scaling function for
SU(3) with ten fundamental flavors using the renormalization
schemes c ¼ 0.300, 0.275, and 0.250 (from top to bottom).
The green bands show our result based on domain wall
fermions in comparison to perturbative predictions (yellow/
orange/pink/purple/red) lines [31–34] and other lattice deter-
minations [21,26–30] in the c ¼ 0.300 scheme. Lattice correc-
tions due to small flow time in the c ¼ 0.250 scheme could be
significant, affecting the continuum limit shown on the last
panel.

1We estimate the values of the LatHC result (gray band) for
s ¼ 2 based on Fig. 5 of Ref. [30] as the numerical values are not
yet published. The blue data points are from private communi-
cation with T.-W. Chiu and from Ref. [28].
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findings for c ¼ 0.250 but we nevertheless include it in this
publication for future reference.
In the remainder of this paper we present the details of

our calculation and describe how we arrived at our final
results shown in Fig. 1. Section II gives a brief description
of the step-scaling function and Sec. III summarizes
the numerical details of our simulations. We continue by
discussing a novel nonperturbative lattice artifact of the
gradient flow in Sec. IV with a detailed investigation of this
topology-related artifact presented in our companion work
[25]. There we also demonstrate that nonzero topology is
correlated with an increased value of the gradient flow
coupling g2GF and the corresponding step-scaling
β-function. Afterwards we explain in Sec. V how we arrive
at our final results and how we check for systematic effects
including a discussion on the finite value of the fifth
dimension of domain wall fermion simulations. Finally,
in Sec. VI we summarize our results and comment on the
comparison with perturbative predictions.

II. STEP-SCALING FUNCTION

The finite volume gradient flow coupling in volumes
V ¼ L4 is

g2GFðt;L; βÞ ¼
128π2

3ðN2 − 1Þ
1

Cðt; L=aÞ ht
2EðtÞi; ð1Þ

where EðtÞ is the energy density, N ¼ 3 for SU(3),
and Cðt; L=aÞ is a perturbatively computed tree-level
improvement term2 [35]. Without tree-level improvement
Cðc; L=aÞ is replaced by the term 1=ð1þ δðt=L2ÞÞ that
compensates for the zero modes of the gauge fields in
periodic volumes [11]. In the finite volume renormalization
scheme the flow time t is set by renormalization scheme
parameter c and the lattice size L

t ¼ ðcLÞ2=8: ð2Þ
The discrete step-scaling β function of scale change s is
defined as in Ref. [11]

βc;sðg2c;L; βÞ ¼
g2cðsL; βÞ − g2cðL; βÞ

log s2
; ð3Þ

where g2cðL; βÞ ¼ g2GFðt ¼ ðcLÞ2=8;L; βÞ.
The gradient flow transformation can be performed with

different flow actions. In this work we consider Wilson,
Symanzik and Zeuthen flows [36,37]. Similarly, the energy
density EðtÞ at gradient flow time t can be approximated by
different lattice operators. We consider the Wilson pla-
quette (W), Symanzik (S) and clover (C) operators. We use
the shorthand notation [flow][operator] to refer to the

various combinations. When the tree-level improvement
term Cðc; L=aÞ is included we add “n” to our shorthand
notation, e.g. nWS for Wilson flow, Symanzik operator,
and tree-level improved coupling.
The renormalized couplingg2c is defined at a bare coupling

β, therefore it is contaminated by cutoff effects. The infinite
cutoff continuum limit requires t=a2 → ∞ or equivalently
L=a → ∞. At fixed value of g2c this means tuning the bare
coupling g20 ¼ 6=β → 0, the Gaussian fixed point.
In practice we perform simulations at many values of the

bare coupling β and combine them to cover the investigated
range of the renormalized coupling. At fixed g2c we take the
continuum limit (L=a → ∞) of the discrete step-scaling
function βc;sðg2c;LÞ and obtain the continuum step-scaling
β-function βc;sðg2cÞ in the renormalization scheme c.

III. NUMERICAL SIMULATION DETAILS

We determine the gradient flow step-scaling function on
dynamical gauge field configurations with ðL=aÞ4 hyper-
cubic volumes. As for our project withNf ¼ 12 flavors, we
choose to generate ten flavor configurations using tree-level
improved Symanzik (Lüscher-Weisz) gauge action [38,39]
andMöbius domain wall fermions (MDWF) [40] with three
levels of stout-smearing [41] (ϱ ¼ 0.1) for the fermion
action.3 Our ensembles of gauge field configurations are
generated using the hybrid Monte Carlo (HMC) update
algorithm [47] with five massless two-flavor fermion fields
and trajectories of length τ ¼ 2 in molecular dynamics time
units (MDTU). Simulations with domain wall fermions are
performed by creating a five dimensional Dirac operator
where the fifth dimension, Ls, separates the chiral, physical
modes of 4-d space-time. We choose Ls ¼ 12 for β ≥ 4.40
and Ls ¼ 16 for β ≤ 4.30. We set the domain wall height
M5 ¼ 1 and simulate with bare fermion mass amf ¼ 0.
The finite extent of the fifth dimension leads to residual

breaking of chiral symmetry which conventionally is
parametrized by an additive mass term amres. Although
amres grows toward the strong coupling, we demonstrate in
Sec. V C that our choice of Ls is sufficient.
We set periodic boundary conditions (BC) for the gauge

field and antiperiodic BC for the fermion fields in all four
directions, i.e. the fermion BC trigger a gap in the
eigenvalues of the Dirac operator enabling simulations
with zero input quark mass. To determine the step-scaling β
function we use hypercubic ðL=aÞ4 volumes with L=a ¼ 8,
10, 12, 14, 16, 20, 24, 28, and 32 and generate for each
volume a set of 17 bare couplings, starting in the weak
coupling limit with β ¼ 7.00 and choosing 4.02 as the
value of our strongest bare coupling. Simulations at β ¼
4.02 are about the strongest bare coupling which can

2Numerical values for Cðt; L=aÞ are listed in Table III in the
Appendix of Ref. [12].

3The good properties of this action has been first demonstrated
for simulations in QCD [42,43] but is now also used in large scale
simulations of a composite Higgs model [44–46].
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be achieved for our choice of actions. As we detail in
Appendix A, a bulk phase transition prevents investigating
much stronger coupling. Typically our ensembles consist of
6-10k for L=a ≤ 14, 3-6k for L ¼ 16, 20, 24, and 2-4k for
L=a ¼ 28, 32 thermalized MDTU and we perform mea-
surements separated by 10 MDTU. The simulations are
carried out using Grid

4 [48] and we perform gradient flow
measurements using QLUA5 [49]. The subsequent data
analysis is performed using the Γ-method [50] to estimate
the integrated autocorrelation time and account for that as
part of the statistical data analysis.

IV. TOPOLOGICAL ARTIFACTS OF THE
GRADIENT FLOW

Before presenting details of our gradient flow calcula-
tion, we discuss a so far not considered lattice artifact
related to topology. In this section we provide a brief
description of the issue and refer for further details to our
companion work [25].
Our numerical simulations are performed using

massless, chirally symmetric domain wall fermions. With
strictly massless fermions all configurations would have
net topological charge zero. Configuration with nonvanish-
ing topological charge would have zero Boltzmann weight
because unpaired instantons create zero modes in the
eigenvalue spectrum of the Dirac operator. If the topologi-
cal charge is defined via the Dirac operator, Qferm ¼ 0. On
the lattice topology is not a conserved quantity and the
geometric definition of the charge

Qgeom ¼ 1

32π2

Z
dxtrðFμνðxÞF̃μνðxÞÞ ð4Þ

can differ fromQferm. Gradient flow removes the ultraviolet
fluctuations of the gauge field and at large enough flow
time Qgeom is expected to be a good estimate of the
topological charge.
In our simulations we monitor Qgeom and observe

Qgeom ≈ 0 on configurations at relatively weak gauge
coupling. However as the simulations are pushed into
the strong coupling regime, Qgeom ≠ 0 configurations
appear even at large flow time. We use the clover operator
to estimate FF̃. In Fig. 2 we show the Monte Carlo (MC)
histories of the topological charge Qgeom determined after
gradient flow time t=a2 ¼ 32 on our 324 ensembles at bare
couplings β ¼ 4.10, 4.05, and 4.02. Each of the three
plots has three panels showing the results with Wilson flow
(W, green), Zeuthen flow (Z, blue), and Symanzik flow
(S, red). Even though the fermions cannot see unpaired
instantons, apparently the gradient flow can promote
vacuum fluctuations (dislocations) to instantonlike objects.

This is an artifact of the gradient flow and not due to the
action. In fact we have observed this effect in simulations
with domain wall as well as with staggered fermions.
Different gradient flows find different values for the
topological charge on the same configuration, further
showing that Qgeom ≠ 0 is an artifact of the flow. The
fraction of nonzero topological charge configurations
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FIG. 2. MC history of topological charges Q determined after
gradient flow time t=a2 ¼ 32 on our 324 ensembles in the strong
coupling with β≡ 6=g20 ¼ f4.10; 4.05; 4.02g. For each bare
coupling the three panel shows the determination with Wilson
flow (W), Zeuthen flow (Z), and Symanzik flow, respectively.

4https://github.com/paboyle/Grid.
5https://usqcd.lns.mit.edu/w/index.php/QLUA.
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grows toward the strong coupling i.e. decreasing values of
the bare coupling β. We also observe that Wilson flow has
many fewer Qgeom ≠ 0 configurations than Symanzik or
Zeuthen flow.
In Ref. [25] we correlated Qgeom ≠ 0 with the value of

the gradient flow coupling and found that both the
renormalized coupling and the step-scaling function
increases when Qgeom ≠ 0. Since the number of instantons
is proportional to the square root of the volume, this non-
perturbative artifact contributes a term to the step-scaling
function that increases with the volume. This invalidates

the perturbatively motivated ða=LÞ2 → 0 continuum limit
extrapolation. The only way to control this artifact is to
limit simulations to sufficiently weak coupling or use a
gradient flow that suppresses Qgeom. As is evident from
Fig. 2, Wilson flow finds Qgeom ≠ 0 only on a statistically
negligible number of configurations for β > 4.02, while
Symanzik and Zeuthen flows may have large corrections.
Although at β ¼ 4.02 even Wilson flow might be slightly
affected, we choose Wilson flow for our preferred analysis.
In Sec. V B we revisit the effect of topology on the step-

scaling function when considering alternative flows.
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FIG. 3. Discrete step-scaling β-function in the c ¼ 0.300 gradient flow scheme for our preferred nWS (left) and WS (right) data sets.
The symbols in the top row show our results for the finite volume discrete β function with scale change s ¼ 2. The dashed lines with
shaded error bands in the same color of the data points show the interpolating fits. We take the continuum limit performing a linear fit
(black line with gray error band) in a2=L2 to the three largest volume pairs (filled symbols). The p-values of the continuum extrapolation
fit is shown in the plots in the second row. Further details of the continuum extrapolation at selected g2c values are presented in the small
panels at the bottom where the legend lists the extrapolated values in the continuum limit with p-values in brackets. Only statistical
errors are shown.
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V. GRADIENT FLOW β FUNCTION FOR TEN
FUNDAMENTAL FLAVORS

We have calculated renormalized couplings g2c using
three different gradient flows. However, we only consider
Wilson flow to be acceptable at strong coupling and
therefore obtain our preferred result using Wilson flow
combined with the Symanzik operator. Due to too many
configurations with nonzero topological charge, Zeuthen or
Symanzik flows are solely used to estimate systematic
effects.

A. Preferred (n)WS analysis

We present the values of the renormalized couplings
g2c according to Eq. (1) based on Wilson flow with the
Symanzik operator in the renormalization schemes c ¼
0.300, 0.275, and 0.250 in Appendix B, Table III. At
weaker couplings, discretization effects can be reduced
by applying perturbatively calculated tree-level normali-
zation factors as included in Eq. (1). Since it is, however,
not obvious if this perturbative correction is helpful at
strong coupling, we carry out our preferred analysis with
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FIG. 4. Discrete step-scaling β-function in the c ¼ 0.275 gradient flow scheme for our preferred nWS (left) and WS (right) data sets.
The symbols in the top row show our results for the finite volume discrete β function with scale change s ¼ 2. The dashed lines with
shaded error bands in the same color of the data points show the interpolating fits. We take the continuum limit performing a linear fit
(black line with gray error band) in a2=L2 to the three largest volume pairs (filled symbols). The p-values of the continuum extrapolation
fit is shown in the plots in the second row. Further details of the continuum extrapolation at selected g2c values are presented in the small
panels at the bottom where the legend lists the extrapolated values in the continuum limit with p-values in brackets. Only statistical
errors are shown.
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and without tree-level normalization and refer to the
two analysis by nWS and WS, respectively. Our results
show that for weaker couplings (g2c ≲ 6.0) tree-level
normalization clearly removes discretization effects but
also for stronger coupling leads to a prediction of the
continuum limit step-scaling function βc;sðg2cÞ which is
consistent with the WS determination without tree-level
normalization. We therefore present our results for the ten
flavor step-scaling function in Figs. 3–5 showing the
nWS analysis on the left and the and WS analysis on
the right.

Our analysis proceeds in the following steps:
(i) We calculate the discrete βc;sðg2c;LÞ function defined

in Eq. (3) for our five different volume pairs with
scale change s ¼ 2. The outcome is shown by the
colored data symbols in the top panels of Figs. 3–5.
Since simulations at different bare coupling β are
statistically independent, also these data points are
statistically independent.

(ii) Next we interpolate the data for each pair of lattice
volumes using a polynomial form motivated by the
perturbative expansion
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FIG. 5. Discrete step-scaling β-function in the c ¼ 0.250 gradient flow scheme for our preferred nWS (left) and WS (right) data sets.
The symbols in the top row show our results for the finite volume discrete β function with scale change s ¼ 2. The dashed lines with
shaded error bands in the same color of the data points show the interpolating fits. We take the continuum limit performing a linear fit
(black line with gray error band) in a2=L2 to the three largest volume pairs (filled symbols). The p-values of the continuum extrapolation
fit is shown in the plots in the second row. Further details of the continuum extrapolation at selected g2c values are presented in the small
panels at the bottom where the legend lists the extrapolated values in the continuum limit with p-values in brackets. Only statistical
errors are shown.
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βc;sðg2c;LÞ ¼
Xn
i¼0

big2ic : ð5Þ

We find that n ¼ 4 is sufficient to describe our data
well over the full g2c range, and the corresponding fits
have all excellentp-values. Since discretization effects
are sufficiently small at weak coupling for nWS, we
constrain the intercept b0 ¼ 0 but fit b0 for WS. We
report the (correlated) fit coefficients in Table I. Some
of the coefficients are not resolved statistically. This is
not a concern, as longas the interpolations describeour
data well. This is evident from the χ2=d.o.f. or p-
values also given in Table I and visible by the color-
shaded bands (with dashed lines indicating the central
values) passing through the same color data points in
the top row panels of Figs. 3–5.

(iii) The interpolating fits provideuswith finitevolumedis-
crete step-scaling functions βc;sðg2c;LÞ at continuous

values of g2c. Due to the constraint b0 ¼ 0, nWS starts
at zero but WS begins with our first data point. The
range of g2c covered varies with the scheme c.

(iv) To obtain βc;sðg2cÞ in the continuum, we perform an
infinite volume continuum limit extrapolation of the
interpolated βc;sðg2c;LÞ functions at fixed g2c values.
Since in the strong coupling limit our smallest volume
pair 8 → 16, and in some cases also 10 → 20 pair
shows large discretization effects, we predict the con-
tinuum limit by performing a linear fit in a2=L2 on the
three largest volume pairs. In Figs. 3–5 we show the
8 → 16 and 10 → 20 volume pairswith open symbols
and solely for illustrative purposes. Only volume pairs
12 → 24, 14 → 28, and16 → 32 displayedwith filled
symbols enter our final continuum limit result.

(v) The quality of the continuum limit extrapolation is
monitored by the p-value shown by the second row
panels in Figs. 3–5. While overall the p-values are

TABLE I. Results of the interpolation fits for the five lattice volume pairs for our preferred nWS (top half) and WS (bottom half)
analysis using renormalization schemes c ¼ 0.300, 0.275, and 0.250. Since discretization effects are sufficiently small for nWS, we
constrain the constant term b0 ¼ 0 in Eq. (5) and perform fits with 13 degrees of freedom (d.o.f.) For WS the intercept b0 is fitted and we
have 12 d.o.f. In addition we list the χ2=d.o.f. as well as the p-value.

Analysis c χ2=d.o.f. p-value b4 b3 b2 b1 b0

8 → 16 nWS 0.300 0.712 0.753 0.000147(52) −0.00449ð88Þ 0.0323(43) −0.0158ð60Þ � � �
10 → 20 nWS 0.300 0.909 0.543 0.000080(45) −0.00388ð84Þ 0.0294(46) −0.0116ð64Þ � � �
12 → 24 nWS 0.300 0.862 0.593 0.000122(52) −0.00452ð98Þ 0.0326(53) −0.0155ð74Þ � � �
14 → 28 nWS 0.300 0.714 0.751 0.000093(63) −0.0041ð12Þ 0.0351(66) −0.026ð10Þ � � �
16 → 32 nWS 0.300 0.833 0.625 −0.000125ð91Þ 0.0002(17) 0.0118(87) 0.015(13) � � �
8 → 16 nWS 0.275 0.836 0.621 0.000193(53) −0.00461ð85Þ 0.0330(40) −0.0180ð53Þ � � �
10 → 20 nWS 0.275 1.010 0.438 0.000105(39) −0.00429ð72Þ 0.0314(38) −0.0161ð53Þ � � �
12 → 24 nWS 0.275 1.075 0.376 0.000121(41) −0.00463ð77Þ 0.0330(42) −0.0171ð59Þ � � �
14 → 28 nWS 0.275 0.722 0.743 0.000078(47) −0.00393ð89Þ 0.0330(50) −0.0229ð79Þ � � �
16 → 32 nWS 0.275 0.740 0.724 −0.000100ð69Þ −0.0004ð13Þ 0.0138(67) 0.0108(98) � � �
8 → 16 nWS 0.250 1.238 0.244 0.000350(58) −0.00568ð87Þ 0.0378(38) −0.0230ð48Þ � � �
10 → 20 nWS 0.250 1.139 0.319 0.000119(36) −0.00436ð63Þ 0.0318(32) −0.0184ð44Þ � � �
12 → 24 nWS 0.250 1.523 0.100 0.000131(33) −0.00484ð62Þ 0.0338(33) −0.0192ð47Þ � � �
14 → 28 nWS 0.250 0.858 0.598 0.000083(34) −0.00409ð65Þ 0.0329(37) −0.0229ð59Þ � � �
16 → 32 nWS 0.250 0.734 0.731 −0.000071ð51Þ −0.00099ð93Þ 0.0163(50) 0.0058(73) � � �
8 → 16 WS 0.300 0.614 0.832 0.000095(46) −0.0033ð12Þ 0.030(10) −0.168ð36Þ 0.037(40)
10 → 20 WS 0.300 0.767 0.686 0.000109(53) −0.0044ð14Þ 0.039(12) −0.137ð40Þ 0.060(43)
12 → 24 WS 0.300 0.908 0.538 0.000071(76) −0.0031ð19Þ 0.024(16) −0.049ð51Þ −0.012ð51Þ
14 → 28 WS 0.300 0.741 0.712 0.00012(10) −0.0047ð25Þ 0.042(21) −0.093ð66Þ 0.036(67)
16 → 32 WS 0.300 0.880 0.567 −0.00005ð16Þ −0.0012ð38Þ 0.022(30) −0.047ð95Þ 0.036(95)

8 → 16 WS 0.275 0.627 0.821 0.000105(40) −0.0032ð10Þ 0.0303(92) −0.203ð32Þ 0.046(37)
10 → 20 WS 0.275 0.755 0.698 0.000116(42) −0.0044ð11Þ 0.0394(96) −0.157ð33Þ 0.063(36)
12 → 24 WS 0.275 1.111 0.345 0.000100(56) −0.0040ð14Þ 0.032(12) −0.088ð40Þ 0.017(40)
14 → 28 WS 0.275 0.724 0.729 0.000106(72) −0.0044ð18Þ 0.040(15) −0.097ð48Þ 0.037(50)
16 → 32 WS 0.275 0.754 0.699 −0.00001ð12Þ −0.0021ð28Þ 0.027(23) −0.067ð72Þ 0.048(72)

8 → 16 WS 0.250 0.740 0.713 0.000144(35) −0.00361ð93Þ 0.0344(83) −0.256ð30Þ 0.067(35)
10 → 20 WS 0.250 0.779 0.673 0.000109(33) −0.00400ð88Þ 0.0367(78) −0.178ð27Þ 0.060(30)
12 → 24 WS 0.250 1.426 0.145 0.000122(41) −0.0046ð11Þ 0.0378(92) −0.125ð31Þ 0.041(32)
14 → 28 WS 0.250 0.749 0.704 0.000117(49) −0.0047ð12Þ 0.042(11) −0.119ð35Þ 0.052(38)
16 → 32 WS 0.250 0.668 0.784 0.000029(83) −0.0030ð20Þ 0.033(16) −0.092ð53Þ 0.063(54)

A. HASENFRATZ, C. REBBI, and O. WITZEL PHYS. REV. D 101, 114508 (2020)

114508-8



excellent for most of the g2c range, the values rapidly
drop for the weakest coupling. Theoretically not
expected, we can only guess that poor p-values at
weak coupling are an artifact of very precise data.
Since all five volume pairs sit very close to each
other, there is little doubt on the continuum limit.
Moreover, the weak coupling range is in good
agreement with perturbative predictions which are
certainly trustworthy for g2c ≲ 2.0. More concerning
is the drop of the p-value for c ¼ 0.250 in the range
of 9≲ g2c ≲ 11. Here a low p-value around or even
below 5% gives rise to concerns that the three
volumes included in the continuum extrapolation
may not be large enough [51].

(vi) Further details of the continuum limit extrapolation
are shown by the four panels at the bottom of
Figs. 3–5. Selecting g2c ¼ 3.0, 5.5, 9.0, and 10.8
we show the continuum limit extrapolation vs.
ða=LÞ2. At weaker coupling (g2c ¼ 3.0 and 5.5),
our preferred linear fit for the three largest volume
pairs is shown together with a quadratic fit using all
five volume pairs. At stronger coupling (g2c ¼ 9.0
and 10.8), the smallest volume pairs exhibit large
cutoff effects and quadratic fits to all five volume
pairs have very low p-values introducing significant
corrections for the smaller volume pairs. This may
indicate the need for even higher order terms or
nonperturbative corrections to reliably describe all
five data points. Performing a linear continuum limit
extrapolation using only two data points correspond-
ing to our largest volume pairs predicts a step-
scaling function with larger uncertainties but still in
agreement with our preferred result at the 1σ level.
Hence we show only a linear fit to the three largest
data points. In all cases we observe excellent agree-
ment between fits to the nWS and WS data.

Taking a closer look at the nWS analysis shown on the
left of Figs. 3–5, it is noteworthy to point out that
discretization effects are barely, if at all, visible for
g2c ≲ 4.5. This range coincides with the value of g2 where
the perturbative predictions of the β-function at 3-, 4, and
5-loop order are also in good agreement (see e.g. Fig. 1).

B. Alternative flow/operators

Considering different operators and/or gradient flows
can help to understand systematic effects. Compared to our
Nf ¼ 12 calculation, our simulations for ten flavors extend
to much stronger coupling. This has two consequences: on
the one hand we established that Zeuthen and Symanzik
flows exhibit novel lattice artifacts showing up as nonzero
topological charge, on the other hand we know that
discretization effects of different operators and gradient
flows can also differ significantly. Hence care must be
taken when considering alternative flows/operators in order
to avoid that a particularly poor choice dominates the result.

To understand the effect of nonzero topological charge,
we repeat our analysis for each flow/operator combination
with a filtering option where we select only configurations
with jQj < 0.5,6 i.e. we discard all configurations with
topological charge jQj > 0.5 at flow time t ¼ ðcLÞ2=8.
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FIG. 6. Impact of nonzero topological charge Q on the
continuum limit of the β functions for scheme c ¼ 0.275.
Performing the analysis with the Symanzik operator we show
Wilson (top), Zeuthen (middle), and Symanzik (bottom) flow.

6From now on we simply use Q in place Qgeom.
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FIG. 7. Systematic effects on βc;sðg2cÞ due to tree-level improvement, different flows and operators as well as nonzero topological
charge. The continuum limit is in all cases obtained by linear extrapolation to the three largest volume pairs. The columns show our
continuum limit results at selective g2c values of 3.0, 5.5, 8.0, and 10.0; the rows correspond to renormalization schemes c ¼ 0.300,
0.275, 0.250. Open symbols indicate extrapolations with a p-value below 5% and light shaded data points are considered not reliable.
The vertical shaded bands highlight our preferred (n)WS analysis.
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Of course such an ad hoc measure is not theoretically
sound. It gives, however, insight into the effect due to
nonzero Q. For all three flows (Wilson, Zeuthen,
Symanzik) we use the Symanzik operator in c ¼ 0.275
scheme to calculate the continuum limit of the step-scaling
function. The three plots in Fig. 6 show the overlay for each
flow with and without filtering the topological charge.
Further details of the Zeuthen flow analysis are presented in
Figs. 13 and 14 in Appendix C. We would like to stress that
for our preferred analysis based on Wilson flow filtering on
Q has no effect, but filtering lowers the predicted step-
scaling function in the strong coupling regime both for
Zeuthen and Symanzik flow.
In total we consider nine flow/operator combinations:

Wilson (W), Symanzik (S), and Zeuthen (Z) flow each with
three operators Wilson plaquette (W), Symanzik (S), or
clover (C) and refer to the analysis by two capital letters
indicating the flow and the operator. In addition we analyze
the data without and with tree-level normalization, prefix-
ing in the latter case “n” to our short hand notation. Further,
we perform the analysis with and without topological
filtering. Choosing four selected values of g2c ¼ 3.0, 5.5,
8.0, and 10.0 to cover the full range of g2c, we show the
predicted values of βc;sðg2cÞ in Fig. 7. The first row uses
c ¼ 0.300, the second row c ¼ 0.275, and the last row
c ¼ 0.250. In all cases we show continuum limit results
obtained from a linear fit in a2=L2 to our three largest
volume pairs. The shape of the symbol indicates the
operator (square: Wilson plaquette, circle: Symanzik,
triangle: clover) and the color distinguishes the flow (green:
Wilson, blue: Zeuthen, red: Symanzik). At the strongest
coupling (g2c ¼ 10.0) shown, the effect of nonzero topo-
logical charge is most significant for Zeuthen and
Symanzik flow. Hence the determination without filtering
is shown in pale colors. In addition operators of the same
flow exhibiting large discretization effects are displayed in
pale colors.
Focusing on determinations we consider reliable and

displayed in vivid colors, we observe a very good con-
sistency with our preferred (n)WS determinations indicated
by the vertical green bands. Most determinations agree
better than at the 1σ level and only the tree-level improved
determinations with Symanzik flow (red) differ by more
than 2σ. Moreover, Fig. 7 shows that systematic effects
significantly grow at very strong coupling making a non-
perturbative determination more and more challenging. The
overall good consistency nevertheless bolsters confidence
in our result.

C. Effect of finite Ls

As mentioned in Sec. III, domain wall fermions exhibit a
small residual chiral symmetry breaking because for
practical simulations the extent Ls of the fifth dimension
has to be finite. The residual chiral symmetry breaking is
conventionally expressed in terms of an additive mass term

amres. As part of our simulations we monitor amres by
numerically determining it from the ratio of the midpoint-
pseudoscalar over the pseudoscalar-pseudoscalar correla-
tor. In Fig. 8 we show amres as a function of the bare
coupling β for our simulations with ten and twelve
dynamical flavors. Starting at β ¼ 4.5 we observe a rapid
growth of amres as β is decreased. While for our Nf ¼ 12

simulations we force amres < 5 × 10−6 [12], this is not
viable for Nf ¼ 10 where we intend to explore much
stronger couplings. Instead we use Ls ¼ 16 for all simu-
lations with bare coupling β ≤ 4.30 and generated addi-
tional ensembles at β ¼ 4.05 using Ls ¼ 32 to verify that
Ls ¼ 16 is indeed sufficient.
Choosing β ¼ 4.05 has the advantage that Wilson flow

still suppresses topological charges sufficiently well (see
Fig. 2) and the effect of varying Ls does not get obscured by
nonzero topological charge contributions. Repeating our
preferred WS analysis on the Ls ¼ 32 ensembles, we list in
Table II the values for g2cðL; βÞ and βc;sðg2c;L; βÞ for our
four largest volume pairs using the three renormalization
schemes c ¼ 0.300, 0.275 and 0.250. Even though increas-
ing Ls from 16 to 32 leads to statistically resolved changes
in g2cðL; βÞ, the effect on βc;sðg2c;L; βÞ is much less
significant. The difference is even further attenuated when
one compares βc;sðg2c;L; βÞ vs. g2cðL; βÞ for Ls ¼ 32 to our
default Ls ¼ 16 analysis as shown in Fig. 9. Overlaying the
Ls ¼ 32 data point with an open symbol on the segments of
our preferred WS analysis, the Ls ¼ 32 data points “slide”
along the interpolated band to the right and are largely
consistent with Ls ¼ 16 analysis. Since simulations with
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FIG. 8. Residual chiral symmetry breaking, measured in terms
of the residual mass amres, as function of the bare gauge coupling
β using ðL=aÞ4 volumes with L=a ¼ 24 and 32 for systems with
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dependence on the number of flavors or volumes is resolved.
Only statistical errors are shown and Nf ¼ 12 data have a small
horizontal offset.
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Ls ¼ 32 are about five times more expensive than Ls ¼ 16
simulations, all Ls ¼ 32 ensembles have considerably less
statistics and consequently larger statistical uncertainties.

Additional aspects of simulations with Ls ¼ 32 are pre-
sented in Ref. [25].

VI. CONCLUSION

Using gauge field configurations generated with stout-
smeared Möbius domain wall fermions and Symanzik
gauge action, we have calculated the gradient flow step-
scaling function for SU(3) with ten dynamical flavors. Our
simulations explore the range of strong coupling so far not
investigated in lattice calculations. Pursuing simulations in
the range for g2c ≳ 8.0, we observe that the gradient flow
occasionally promotes vacuum fluctuations (dislocations)
to instantonlike objects. This is a lattice artifact that has not
been described previously. The effect is more pronounced
for some gradient flows than for others but always causes
the gradient flow coupling to increase and run faster. Since
Wilson flow does the best job in suppressing such dis-
locations compared to Zeuthen or Symanzik flow, we
choose Wilson flow with Symanzik operator for our
preferred analysis. Further we consider performing our
analysis with and without tree-level normalization to
reduce cutoff effects. Although justified only in the weak
coupling limit, we find that our result with tree-level
normalization is consistent to our unimproved result
throughout the full range covered in g2c. Hence we quote,
as shown in Fig. 10, the envelope covering our nWS and
WS prediction as our final result.7 The two determinations
mostly overlap with each other. Thus this choice may only
account for some of the systematic effects. Using alter-
native flow/operator combinations to obtain a better esti-
mate of systematic effects is however troublesome because
of lattice artifacts induced by nonzero topological charge in
the strong coupling regime. Discretization effects of some
flow-operator combinations also grow substantially at
strong coupling. Moreover, we studied the effect due to
the finite extent of Ls which results in a small chiral
symmetry breaking. Increasing Ls from 16 to 32 at β ¼
4.05we observe changes in g2cðL; βÞwhich however mostly
cancel in the difference βc;sðg2c;L; βÞ. In relation to our
preferred analysis based on Ls ¼ 16 ensembles, the Ls ¼
32 data are largely consistent with the interpolated Ls ¼ 16
result. This suggests that the overall effect due to the finite
value of Ls is negligible compared to other effects. Another
possible systematic effect may enter when predicting the
continuum limit. We extrapolate the three largest volume
pairs using a linear Ansatz in ða=LÞ2. This form is
motivated perturbatively because for our actions the irrel-
evant operators enter at Oða2Þ at the Gaussian FP. At a
strongly coupled IRFP, the leading irrelevant exponent
could be different. We are however not able to resolve a

TABLE II. Renormalized coupling g2cðL; βÞ and βc;sðg2c;L; βÞ
determined at β ¼ 4.05 for our preferred WS analysis using
ensembles with Ls ¼ 16 and 32.

Ls c L g2cðL; βÞ s · L g2cðsL; βÞ βc;sðg2c;L; βÞ
16 0.250 10 11.266(47) 20 9.471(27) −1.295ð39Þ
32 0.250 10 11.658(56) 20 9.739(84) −1.384ð73Þ
16 0.250 12 10.766(30) 24 9.350(34) −1.021ð33Þ
32 0.250 12 11.184(71) 24 9.596(45) −1.146ð60Þ
16 0.250 14 10.196(27) 28 9.452(33) −0.537ð30Þ
32 0.250 14 10.654(41) 28 9.747(87) −0.654ð69Þ
16 0.250 16 9.844(21) 32 9.543(44) −0.217ð35Þ
32 0.250 16 10.261(43) 32 9.669(59) −0.427ð52Þ
16 0.275 10 10.997(50) 20 9.429(33) −1.132ð43Þ
32 0.275 10 11.469(63) 20 9.664(99) −1.302ð85Þ
16 0.275 12 10.456(31) 24 9.362(45) −0.789ð39Þ
32 0.275 12 10.854(69) 24 9.587(61) −0.914ð67Þ
16 0.275 14 9.950(29) 28 9.532(45) −0.301ð39Þ
32 0.275 14 10.332(41) 28 9.85(11) −0.348ð86Þ
16 0.275 16 9.689(22) 32 9.654(56) −0.025ð43Þ
32 0.275 16 10.054(46) 32 9.768(72) −0.206ð61Þ
16 0.300 10 10.726(51) 20 9.429(41) −0.936ð47Þ
32 0.300 10 11.242(68) 20 9.65(11) −1.152ð96Þ
16 0.300 12 10.204(30) 24 9.400(59) −0.580ð48Þ
32 0.300 12 10.538(66) 24 9.615(84) −0.666ð77Þ
16 0.300 14 9.790(32) 28 9.639(66) −0.108ð53Þ
32 0.300 14 10.105(45) 28 9.99(14) −0.08ð10Þ
16 0.300 16 9.611(26) 32 9.782(70) 0.124(54)
32 0.300 16 9.939(53) 32 9.882(85) −0.041ð73Þ
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FIG. 9. Effect of changing Ls ¼ 16 to 32 at β ¼ 4.05. The filled
symbols show our preferred WS analysis using Ls ¼ 16 data and
the dashed lines with shaded error band the corresponding
interpolation for a section in g2c. Overlayed with open symbols
are the Ls ¼ 32 data points at β ¼ 4.05. Increasing Ls increases
g2c but slightly decreases βc;sðg2c;LÞ and the data points effectively
slides along the interpolated curve to the lower right.

7ASCII files containing the data corresponding to our final
results (envelope of nWS and WS) are uploaded as Supplemental
Material [52].

A. HASENFRATZ, C. REBBI, and O. WITZEL PHYS. REV. D 101, 114508 (2020)

114508-12



nontrivial exponent. Eventually different, nontrivial expo-
nents may explain the difference between different oper-
ators and flows.
For all three values of the renormalization scheme c

considered, we observe that the step-scaling β function

exhibits a maximum in the range 8≲ g2c ≲ 9 and rapidly
decreases for stronger coupling pointing to an IRFP at
g2c ≳ 11. Although our analysis shows the β function
changes sign in the c ¼ 0.250 scheme, this result has to
be taken with caution because poor p-values for the
continuum extrapolation in that range may signal sig-
nificant finite volume effects. Nevertheless, our results
strongly suggest that the RG β function for Nf ¼ 10

exhibits an IRFP i.e. the SU(3) gauge-fermion system
with ten flavors is likely conformal. This observation is
fully in agreement with the spectrum analysis of the
composite Higgs model featuring SU(3) with four light
and six heavy flavors. There hyperscaling of ratios has
been demonstrated [44–46] which also implies that Nf ¼
10 is most likely conformal. Further, our data for the
step-scaling β-function resolve a dependence on the
renormalization scheme c.
As already shown in Fig. 1, our result is in excellent

agreement with the determination by Chiu [26–28] for g2c ≲
5.8 but significantly differ from his prediction for stronger
coupling. At stronger coupling our result is however
compatible with LatHC [21,29,30] who reached g2c ∼ 8.0.
Although the nonperturbative gradient flow results corre-
spond to a different renormalization scheme than the
perturbative MS calculation, it is nevertheless instructive
to compare to perturbative predictions [31–34]. Up to
g2c ∼ 4, predictions at three, four, and five loop order are
close. While 3- and 4-loop predict an IRFP around g2 ∼ 10,
the 5-loop MS result does not have a fixed point.
Reference [33] suggested to improve the convergence of
the perturbative series by using Padé approximation, and
Ref. [53] has considered Borel re-summation to extend the
perturbative range. Both references conclude that Nf ¼ 10

is so strongly coupled that these analytic calculations do not
give a reliable result. Thus Nf ¼ 10 demonstrates the
difficulties to obtain a perturbative prediction on the RG
β-function and highlights the need for nonperturbative
lattice calculations.
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APPENDIX A: BULK PHASE STRUCTURE

We have scanned the range of bare coupling β using
small L=a ¼ 8 volumes to identify any possible bulk
phase transition of our system. We identified a first order
phase transition around β ∼ 4.00 where the plaquette, as
shown in Fig. 11, is discontinuous. This motivates the
choice of β ¼ 4.02 as the strongest coupling in our step-
scaling analysis.
In addition to the average plaquette, we also monitor

the Polyakov loop. In Fig. 12 we show the scatter plot of
the real and imaginary parts of the Polyakov loop in all

four space-time directions for simulations at β ¼ 4.30 and
4.02 on lattices with L=a ¼ 32. Due to our choice of
antiperiodic boundary conditions for the fermions in all
four directions, the Polyakov loop in a deconfined regime
is expected to fluctuate around a positive real value. Were
the system confining, the Polyakov loop would fluctuate
around zero. We measure the Polyakov loop at our
maximal flow time, t ¼ L2=32 to reduce statistical
fluctuations. Even at the strongest bare coupling β ¼
4.02 the expectation value of the Polyakov loop is
positive. While occasionally it wanders toward zero in
one direction or an other, we never observe even two
directions at once close to zero. Our simulations are
clearly in the deconfined phase.
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FIG. 11. Average value of the plaquette as function of the bare
gauge coupling β. Around β ∼ 4.00 we find a bulk phase
transition on the smaller L=a ¼ 8 lattices. Larger volumes predict
the same values for the plaquette suggesting that the observed
first order transition is a bulk transition and not related to finite
volume.
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APPENDIX B: RENORMALIZED COUPLINGS g2c

TABLE III. Details of our preferred analysis based on Wilson flow and Symanzik operator. For each ensemble specified by the spatial
extent L=a and bare gauge coupling β we list N, the number of measurements, as well as the renormalized couplings g2c for the analysis
with (nWS) and without tree-level improvement (WS) for the three renormalization schemes c ¼ 0.300, 0.275 and 0.250. In addition the
integrated autocorrelation times determined using the Γ-method [50] are listed in units of 10 MDTU.

c ¼ 0.300 c ¼ 0.275 c ¼ 0.250
L=a β N g2c (nWS) g2c (WS) τint g2c (nWS) g2c (WS) τint g2c (nWS) g2c (WS) τint

8 4.02 1005 10.89(10) 13.74(13) 2.5(6) 10.290(84) 13.73(11) 2.5(6) 9.485(64) 13.623(92) 2.5(6)
8 4.03 1001 10.004(59) 12.621(75) 1.4(3) 9.536(49) 12.723(65) 1.4(3) 8.879(37) 12.752(54) 1.4(3)
8 4.05 1003 8.962(37) 11.307(47) 1.0(2) 8.633(31) 11.518(41) 1.0(2) 8.140(24) 11.691(34) 1.0(2)
8 4.07 1024 8.171(28) 10.309(36) 1.0(2) 7.925(24) 10.574(31) 1.0(2) 7.541(19) 10.831(27) 0.9(1)
8 4.10 721 7.465(24) 9.418(30) 0.8(1) 7.280(20) 9.712(27) 0.7(1) 6.977(16) 10.021(23) 0.7(1)
8 4.15 640 6.614(23) 8.345(29) 0.9(2) 6.488(19) 8.656(26) 0.9(2) 6.274(15) 9.010(22) 0.9(2)
8 4.20 561 6.046(17) 7.628(21) 0.7(1) 5.944(14) 7.930(19) 0.7(1) 5.771(12) 8.288(17) 0.7(1)
8 4.25 730 5.612(12) 7.080(15) 0.7(1) 5.530(10) 7.378(14) 0.7(1) 5.3872(85) 7.737(12) 0.66(10)
8 4.30 740 5.2494(94) 6.623(12) 0.49(5) 5.1810(79) 6.912(11) 0.49(5) 5.0609(65) 7.2687(93) 0.50(5)
8 4.40 750 4.7230(94) 5.959(12) 0.62(9) 4.6681(78) 6.228(10) 0.61(9) 4.5722(61) 6.5668(88) 0.57(7)
8 4.50 749 4.2858(78) 5.4072(98) 0.59(9) 4.2419(64) 5.6595(85) 0.58(8) 4.1654(51) 5.9825(73) 0.58(8)
8 4.70 720 3.6604(62) 4.6182(79) 0.55(7) 3.6316(49) 4.8452(66) 0.51(5) 3.5786(39) 5.1397(55) 0.49(5)
8 5.00 746 3.0310(45) 3.8241(57) 0.46(5) 3.0147(37) 4.0222(50) 0.47(5) 2.9812(30) 4.2818(44) 0.48(5)
8 5.50 716 2.3744(36) 2.9956(46) 0.50(5) 2.3663(30) 3.1571(40) 0.50(4) 2.3476(24) 3.3717(34) 0.49(4)
8 6.00 653 1.9601(31) 2.4729(39) 0.50(8) 1.9566(26) 2.6104(35) 0.55(7) 1.9454(20) 2.7941(28) 0.51(6)
8 6.50 716 1.6756(23) 2.1140(29) 0.47(4) 1.6732(18) 2.2324(25) 0.45(3) 1.6652(14) 2.3917(21) 0.44(3)
8 7.00 694 1.4571(21) 1.8384(26) 0.50(5) 1.4573(17) 1.9443(22) 0.49(5) 1.4530(13) 2.0869(19) 0.49(5)

10 4.02 1002 12.00(10) 13.69(12) 2.9(7) 11.874(93) 13.96(11) 3.1(8) 11.473(81) 14.091(99) 3.2(8)
10 4.03 1002 10.651(53) 12.157(61) 1.6(3) 10.595(49) 12.459(57) 1.5(3) 10.334(42) 12.692(51) 1.5(3)
10 4.05 1002 9.398(45) 10.726(51) 1.6(3) 9.353(42) 10.997(50) 1.8(4) 9.173(39) 11.266(47) 1.9(4)
10 4.07 1005 8.530(28) 9.736(32) 1.2(2) 8.487(26) 9.979(30) 1.2(2) 8.352(22) 10.257(27) 1.2(2)
10 4.10 1002 7.749(23) 8.844(26) 1.0(2) 7.702(20) 9.056(23) 0.9(2) 7.593(17) 9.326(20) 0.9(1)
10 4.15 921 6.799(15) 7.760(17) 0.8(1) 6.758(13) 7.946(16) 0.8(1) 6.682(11) 8.206(14) 0.8(1)
10 4.20 994 6.235(11) 7.116(13) 0.61(8) 6.1924(96) 7.281(11) 0.58(7) 6.1262(80) 7.5240(98) 0.55(7)
10 4.25 936 5.767(11) 6.582(13) 0.69(10) 5.7268(90) 6.734(11) 0.64(9) 5.6690(75) 6.9624(93) 0.65(8)
10 4.30 941 5.402(11) 6.165(12) 0.8(1) 5.3654(86) 6.309(10) 0.7(1) 5.3141(68) 6.5265(83) 0.64(9)
10 4.40 767 4.836(10) 5.520(12) 0.8(1) 4.8048(83) 5.6498(98) 0.7(1) 4.7617(66) 5.8482(81) 0.7(1)
10 4.50 783 4.4037(77) 5.0264(88) 0.58(8) 4.3750(62) 5.1444(73) 0.55(8) 4.3370(50) 5.3266(61) 0.54(8)
10 4.70 569 3.7667(75) 4.2993(85) 0.57(8) 3.7428(61) 4.4011(72) 0.56(8) 3.7123(47) 4.5593(57) 0.50(4)
10 5.00 821 3.0877(57) 3.5242(65) 0.7(1) 3.0755(46) 3.6164(54) 0.7(1) 3.0585(35) 3.7564(43) 0.63(9)
10 5.50 599 2.4106(43) 2.7515(49) 0.50(6) 2.4044(35) 2.8273(41) 0.49(6) 2.3951(28) 2.9415(34) 0.48(6)
10 6.00 736 1.9846(33) 2.2652(37) 0.57(8) 1.9809(27) 2.3292(31) 0.57(7) 1.9751(21) 2.4257(26) 0.56(8)
10 6.50 612 1.6967(34) 1.9366(39) 0.7(1) 1.6944(27) 1.9924(32) 0.6(1) 1.6901(21) 2.0757(26) 0.63(10)
10 7.00 735 1.4722(21) 1.6803(24) 0.49(4) 1.4720(17) 1.7309(20) 0.48(4) 1.4703(14) 1.8058(17) 0.47(4)

12 4.02 1022 11.565(82) 12.617(89) 4(1) 11.794(84) 13.095(94) 4(1) 11.918(83) 13.573(94) 5(1)
12 4.03 1021 10.560(59) 11.520(64) 2.8(7) 10.711(59) 11.893(65) 2.9(7) 10.798(57) 12.298(65) 2.9(7)
12 4.05 1009 9.353(27) 10.204(30) 1.1(2) 9.417(28) 10.456(31) 1.2(2) 9.453(26) 10.766(30) 1.2(2)
12 4.07 1001 8.553(22) 9.330(24) 1.1(2) 8.571(20) 9.517(22) 1.0(2) 8.579(18) 9.770(21) 1.0(2)
12 4.10 770 7.737(19) 8.440(21) 0.8(1) 7.717(17) 8.568(18) 0.8(1) 7.693(14) 8.761(16) 0.8(1)
12 4.15 766 6.898(16) 7.525(17) 0.8(1) 6.863(13) 7.621(14) 0.7(1) 6.824(11) 7.771(12) 0.7(1)
12 4.20 743 6.342(15) 6.918(16) 0.8(1) 6.303(12) 6.998(13) 0.7(1) 6.2559(95) 7.124(11) 0.7(1)
12 4.25 727 5.877(14) 6.411(15) 0.9(2) 5.839(12) 6.483(13) 0.9(2) 5.7938(92) 6.598(10) 0.8(1)
12 4.30 687 5.523(13) 6.025(14) 0.8(1) 5.485(10) 6.091(11) 0.7(1) 5.4403(78) 6.1955(89) 0.65(10)
12 4.40 393 4.922(14) 5.369(15) 0.7(1) 4.891(11) 5.431(12) 0.6(1) 4.8543(86) 5.5281(98) 0.6(1)
12 4.50 416 4.482(12) 4.889(13) 0.7(2) 4.454(10) 4.946(11) 0.7(1) 4.4207(82) 5.0344(93) 0.7(1)
12 4.70 525 3.8157(97) 4.163(11) 0.8(2) 3.7940(81) 4.2127(90) 0.8(2) 3.7682(65) 4.2913(74) 0.8(1)

(Table continued)
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TABLE III. (Continued)

c ¼ 0.300 c ¼ 0.275 c ¼ 0.250
L=a β N g2c (nWS) g2c (WS) τint g2c (nWS) g2c (WS) τint g2c (nWS) g2c (WS) τint

12 5.00 414 3.1372(83) 3.4225(90) 0.8(2) 3.1223(65) 3.4669(73) 0.7(1) 3.1044(52) 3.5353(59) 0.7(1)
12 5.50 524 2.4403(45) 2.6622(49) 0.49(4) 2.4316(37) 2.6999(41) 0.47(4) 2.4209(30) 2.7570(34) 0.45(4)
12 6.00 377 2.0120(57) 2.1950(62) 0.8(2) 2.0057(46) 2.2271(51) 0.8(2) 1.9979(37) 2.2753(42) 0.7(2)
12 6.50 515 1.7077(45) 1.8630(49) 1.0(2) 1.7044(34) 1.8926(38) 0.8(2) 1.6999(25) 1.9358(28) 0.7(1)
12 7.00 386 1.4846(38) 1.6195(41) 0.7(1) 1.4833(31) 1.6470(34) 0.6(1) 1.4807(25) 1.6863(28) 0.6(1)

14 4.02 1001 11.176(44) 11.893(47) 1.9(4) 11.382(43) 12.259(46) 2.0(4) 11.654(44) 12.765(48) 2.1(5)
14 4.03 961 10.244(35) 10.901(37) 1.5(3) 10.377(34) 11.178(36) 1.6(3) 10.562(33) 11.569(36) 1.6(3)
14 4.05 961 9.199(30) 9.790(32) 1.7(3) 9.238(26) 9.950(29) 1.6(3) 9.309(24) 10.196(27) 1.5(3)
14 4.07 961 8.496(21) 9.042(23) 1.2(2) 8.495(18) 9.150(20) 1.2(2) 8.518(16) 9.330(18) 1.2(2)
14 4.10 961 7.799(16) 8.300(17) 0.9(2) 7.769(13) 8.368(15) 0.9(1) 7.750(12) 8.489(13) 0.9(1)
14 4.15 963 6.982(18) 7.431(19) 1.3(2) 6.950(14) 7.486(15) 1.1(2) 6.919(11) 7.579(13) 1.0(2)
14 4.20 961 6.422(18) 6.834(19) 1.5(3) 6.375(14) 6.867(15) 1.4(3) 6.329(11) 6.932(12) 1.3(2)
14 4.25 963 5.970(12) 6.353(12) 0.9(1) 5.9264(94) 6.383(10) 0.8(1) 5.8802(73) 6.4406(80) 0.7(1)
14 4.30 962 5.564(12) 5.921(13) 1.0(2) 5.5274(95) 5.954(10) 0.9(2) 5.4876(75) 6.0107(82) 0.8(1)
14 4.40 963 4.993(10) 5.314(11) 0.8(1) 4.9619(81) 5.3444(87) 0.8(1) 4.9259(64) 5.3954(70) 0.7(1)
14 4.50 963 4.5411(96) 4.833(10) 0.9(1) 4.5108(77) 4.8585(83) 0.8(1) 4.4769(59) 4.9036(65) 0.8(1)
14 4.70 962 3.8704(78) 4.1189(83) 0.8(1) 3.8454(62) 4.1419(67) 0.8(1) 3.8176(47) 4.1815(51) 0.65(8)
14 5.00 963 3.1796(65) 3.3837(69) 1.0(2) 3.1630(50) 3.4068(54) 0.8(1) 3.1441(38) 3.4438(41) 0.70(10)
14 5.50 963 2.4607(48) 2.6187(51) 1.0(2) 2.4532(38) 2.6423(41) 0.9(1) 2.4434(28) 2.6763(31) 0.7(1)
14 6.00 963 2.0298(39) 2.1601(41) 0.9(1) 2.0232(31) 2.1792(33) 0.8(1) 2.0153(24) 2.2073(26) 0.7(1)
14 6.50 963 1.7257(30) 1.8365(32) 0.7(1) 1.7212(23) 1.8539(25) 0.63(8) 1.7152(18) 1.8787(20) 0.57(7)
14 7.00 963 1.5008(26) 1.5971(27) 0.7(1) 1.4976(21) 1.6131(23) 0.7(1) 1.4933(17) 1.6357(18) 0.67(9)

16 4.02 595 10.799(56) 11.317(59) 2.6(8) 10.923(52) 11.549(55) 2.6(8) 11.138(53) 11.921(57) 2.8(9)
16 4.03 631 10.139(40) 10.626(42) 1.6(4) 10.196(35) 10.780(37) 1.6(4) 10.318(33) 11.043(35) 1.6(4)
16 4.05 601 9.170(25) 9.611(26) 1.0(2) 9.164(21) 9.689(22) 1.0(2) 9.197(19) 9.844(21) 1.1(2)
16 4.07 632 8.501(25) 8.909(26) 1.1(2) 8.473(21) 8.959(22) 1.0(2) 8.466(18) 9.061(20) 1.1(2)
16 4.10 379 7.814(41) 8.190(43) 2.2(7) 7.779(33) 8.225(35) 2.0(6) 7.752(27) 8.296(29) 2.0(6)
16 4.15 519 7.000(18) 7.336(19) 0.9(2) 6.963(15) 7.363(15) 0.9(2) 6.928(12) 7.415(13) 0.8(2)
16 4.20 200 6.448(33) 6.757(35) 1.1(4) 6.399(27) 6.766(28) 1.1(4) 6.354(21) 6.800(22) 0.9(3)
16 4.25 611 6.031(23) 6.320(24) 1.7(4) 5.982(18) 6.324(19) 1.6(4) 5.933(14) 6.349(15) 1.5(3)
16 4.30 605 5.656(17) 5.928(18) 1.2(3) 5.611(13) 5.933(14) 1.1(2) 5.5658(100) 5.957(11) 0.9(2)
16 4.40 485 5.067(17) 5.310(18) 1.2(3) 5.026(13) 5.314(14) 1.1(3) 4.985(10) 5.335(11) 1.0(2)
16 4.50 428 4.589(15) 4.810(15) 1.0(3) 4.556(12) 4.818(12) 1.0(2) 4.5212(89) 4.8389(95) 0.9(2)
16 4.70 551 3.897(11) 4.084(12) 1.1(3) 3.8726(93) 4.0945(98) 1.1(2) 3.8464(72) 4.1167(77) 1.0(2)
16 5.00 446 3.216(12) 3.371(13) 1.4(4) 3.1965(94) 3.3798(100) 1.2(3) 3.1751(70) 3.3982(75) 1.0(3)
16 5.50 551 2.4979(64) 2.6178(67) 1.0(2) 2.4866(53) 2.6291(56) 0.9(2) 2.4732(45) 2.6470(48) 1.0(2)
16 6.00 307 2.0508(63) 2.1492(66) 0.7(2) 2.0415(52) 2.1585(55) 0.7(2) 2.0315(41) 2.1742(44) 0.7(1)
16 6.50 323 1.7313(60) 1.8145(63) 1.2(4) 1.7277(47) 1.8267(49) 1.1(3) 1.7226(35) 1.8437(37) 0.9(2)
16 7.00 352 1.5057(49) 1.5780(52) 1.0(3) 1.5029(38) 1.5890(40) 0.9(2) 1.4991(30) 1.6044(32) 0.8(2)

20 4.02 477 10.754(56) 11.076(58) 2.7(9) 10.741(45) 11.123(46) 2.4(7) 10.792(38) 11.258(39) 2.2(7)
20 4.03 465 10.020(52) 10.319(54) 2.3(7) 9.991(43) 10.346(44) 2.2(7) 10.002(35) 10.434(37) 2.1(6)
20 4.05 490 9.155(40) 9.429(41) 2.2(7) 9.105(32) 9.429(33) 2.0(6) 9.079(25) 9.471(27) 1.7(5)
20 4.07 502 8.626(36) 8.884(37) 2.0(6) 8.559(29) 8.863(30) 1.8(5) 8.508(24) 8.875(25) 1.7(4)
20 4.10 301 7.981(49) 8.219(51) 2.5(9) 7.895(39) 8.176(40) 2.3(9) 7.822(30) 8.160(32) 2.1(7)
20 4.15 353 7.155(32) 7.369(33) 1.7(5) 7.086(25) 7.337(26) 1.6(5) 7.023(20) 7.327(21) 1.4(4)
20 4.20 333 6.593(37) 6.790(39) 1.9(6) 6.534(30) 6.766(31) 1.8(6) 6.477(23) 6.757(24) 1.6(5)
20 4.25 302 6.088(34) 6.270(36) 2.4(9) 6.047(28) 6.261(29) 2.3(8) 6.005(21) 6.264(22) 1.9(7)
20 4.30 346 5.771(25) 5.943(25) 1.4(4) 5.722(19) 5.926(20) 1.2(3) 5.672(14) 5.917(15) 1.0(2)
20 4.40 284 5.152(33) 5.306(34) 2.3(8) 5.110(26) 5.292(26) 2.0(7) 5.067(20) 5.286(21) 1.8(6)
20 4.50 304 4.728(26) 4.869(27) 1.8(6) 4.679(19) 4.845(20) 1.5(5) 4.631(14) 4.831(14) 1.2(3)
20 4.70 255 3.978(24) 4.097(25) 2.0(7) 3.950(19) 4.090(19) 1.8(6) 3.920(14) 4.089(15) 1.5(5)
20 5.00 316 3.287(22) 3.385(23) 3(1) 3.261(17) 3.376(18) 2.5(9) 3.234(13) 3.374(13) 2.1(7)
20 5.50 368 2.536(10) 2.612(11) 1.4(4) 2.5222(83) 2.6118(86) 1.3(4) 2.5068(62) 2.6151(65) 1.1(3)
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TABLE III. (Continued)

c ¼ 0.300 c ¼ 0.275 c ¼ 0.250
L=a β N g2c (nWS) g2c (WS) τint g2c (nWS) g2c (WS) τint g2c (nWS) g2c (WS) τint

20 6.00 411 2.0719(78) 2.1339(80) 1.3(4) 2.0625(61) 2.1357(63) 1.2(3) 2.0525(46) 2.1411(48) 1.0(2)
20 6.50 381 1.7539(59) 1.8064(61) 1.4(4) 1.7476(47) 1.8097(48) 1.2(3) 1.7405(35) 1.8157(37) 1.0(2)
20 7.00 279 1.5276(53) 1.5733(55) 0.9(2) 1.5219(43) 1.5760(44) 0.8(2) 1.5157(34) 1.5812(36) 0.7(2)

24 4.02 401 10.727(54) 10.947(55) 2.5(8) 10.670(40) 10.929(41) 1.9(6) 10.647(31) 10.960(32) 1.6(5)
24 4.03 388 10.088(56) 10.295(58) 2.4(8) 10.024(44) 10.267(46) 2.3(7) 9.986(34) 10.280(35) 2.0(7)
24 4.05 510 9.211(58) 9.400(59) 4(1) 9.140(44) 9.362(45) 3(1) 9.083(33) 9.350(34) 2.9(9)
24 4.07 501 8.638(38) 8.815(39) 2.3(7) 8.570(32) 8.778(32) 2.2(7) 8.511(26) 8.761(27) 2.2(7)
24 4.10 500 8.070(53) 8.236(54) 4(1) 7.988(43) 8.182(44) 4(1) 7.911(34) 8.144(35) 4(1)
24 4.15 203 7.263(44) 7.412(45) 2.1(9) 7.201(36) 7.375(37) 1.9(7) 7.140(29) 7.350(30) 1.8(7)
24 4.20 191 6.712(48) 6.849(49) 2.3(9) 6.643(37) 6.805(38) 2.0(8) 6.576(28) 6.769(29) 1.7(6)
24 4.25 315 6.242(50) 6.370(51) 3(1) 6.184(38) 6.334(39) 3(1) 6.125(28) 6.305(29) 2.3(8)
24 4.30 307 5.838(33) 5.958(33) 2.1(7) 5.791(27) 5.932(27) 1.9(6) 5.741(20) 5.909(21) 1.7(5)
24 4.40 324 5.299(33) 5.407(34) 3(1) 5.237(26) 5.364(27) 3(1) 5.176(21) 5.329(21) 2.5(9)
24 4.50 257 4.783(39) 4.881(40) 3(1) 4.742(31) 4.857(31) 3(1) 4.698(24) 4.836(25) 3(1)
24 4.70 282 4.053(23) 4.136(24) 2.4(9) 4.019(19) 4.116(19) 2.3(8) 3.983(14) 4.100(15) 2.0(7)
24 5.00 334 3.355(24) 3.424(25) 3(1) 3.323(19) 3.403(19) 2.6(10) 3.290(14) 3.387(15) 2.4(8)
24 5.50 241 2.568(16) 2.621(17) 2.1(8) 2.553(12) 2.615(13) 1.8(6) 2.5373(93) 2.6118(96) 1.6(5)
24 6.00 430 2.1055(78) 2.1487(79) 1.4(4) 2.0933(62) 2.1441(64) 1.2(3) 2.0802(49) 2.1413(51) 1.2(3)
24 6.50 227 1.7862(90) 1.8228(92) 1.6(6) 1.7762(69) 1.8193(71) 1.3(4) 1.7656(53) 1.8175(54) 1.1(3)
24 7.00 301 1.5286(44) 1.5599(44) 0.8(2) 1.5262(35) 1.5633(36) 0.7(2) 1.5225(28) 1.5672(29) 0.6(1)

28 4.02 397 10.893(67) 11.056(68) 3(1) 10.774(53) 10.964(54) 2.6(9) 10.682(41) 10.910(42) 2.3(8)
28 4.03 383 10.223(55) 10.375(56) 2.7(10) 10.117(42) 10.295(43) 2.3(8) 10.031(32) 10.245(33) 2.0(7)
28 4.05 376 9.497(65) 9.639(66) 4(2) 9.367(45) 9.532(45) 2.8(10) 9.254(32) 9.452(33) 2.2(7)
28 4.07 374 8.870(64) 9.002(65) 4(2) 8.765(50) 8.919(51) 4(2) 8.666(36) 8.851(37) 3(1)
28 4.10 377 8.265(48) 8.388(49) 3(1) 8.145(40) 8.288(40) 3(1) 8.034(31) 8.205(32) 2.7(10)
28 4.15 353 7.420(51) 7.531(52) 4(1) 7.331(43) 7.460(43) 3(1) 7.246(35) 7.400(35) 3(1)
28 4.20 354 6.858(57) 6.961(57) 4(2) 6.785(42) 6.904(43) 4(1) 6.708(29) 6.852(30) 2.6(9)
28 4.25 357 6.435(47) 6.531(48) 4(2) 6.354(36) 6.466(37) 4(2) 6.271(27) 6.405(28) 3(1)
28 4.30 352 6.040(47) 6.130(48) 4(2) 5.964(37) 6.069(38) 3(1) 5.886(28) 6.011(29) 3(1)
28 4.40 364 5.375(35) 5.456(35) 3(1) 5.313(26) 5.407(27) 3(1) 5.251(19) 5.363(20) 2.3(8)
28 4.50 362 4.936(22) 5.010(23) 2.0(7) 4.869(17) 4.955(18) 1.8(6) 4.802(13) 4.905(14) 1.5(5)
28 4.70 365 4.167(28) 4.230(29) 3(1) 4.117(23) 4.190(23) 3(1) 4.067(18) 4.154(18) 3(1)
28 5.00 284 3.363(16) 3.414(16) 1.7(6) 3.338(13) 3.397(13) 1.5(5) 3.311(10) 3.382(10) 1.3(4)
28 5.50 272 2.600(14) 2.639(14) 2.0(7) 2.584(10) 2.629(10) 1.6(5) 2.5654(76) 2.6202(77) 1.3(4)
28 6.00 211 2.096(14) 2.127(14) 2.3(9) 2.090(11) 2.126(12) 2.0(8) 2.0816(87) 2.1260(89) 1.7(7)
28 6.50 201 1.790(14) 1.817(14) 3(1) 1.783(11) 1.814(11) 2(1) 1.7744(83) 1.8122(84) 2.1(9)
28 7.00 211 1.541(12) 1.564(12) 3(1) 1.5374(87) 1.5645(89) 2.3(9) 1.5326(66) 1.5653(68) 2.0(7)

32 4.02 372 10.905(97) 11.029(98) 5(2) 10.790(75) 10.935(76) 5(2) 10.691(55) 10.864(56) 4(2)
32 4.03 372 10.387(64) 10.505(65) 3(1) 10.262(54) 10.400(54) 3(1) 10.150(44) 10.314(45) 3(1)
32 4.05 373 9.672(69) 9.782(70) 4(2) 9.526(55) 9.654(56) 4(2) 9.391(43) 9.543(44) 4(1)
32 4.07 372 9.018(67) 9.121(68) 5(2) 8.903(54) 9.023(55) 5(2) 8.791(42) 8.934(43) 4(2)
32 4.10 387 8.443(85) 8.539(85) 8(4) 8.302(61) 8.414(62) 7(3) 8.173(44) 8.306(45) 5(2)
32 4.15 361 7.702(42) 7.790(42) 3(1) 7.575(34) 7.677(35) 3(1) 7.450(28) 7.571(28) 3(1)
32 4.20 403 6.983(51) 7.062(52) 5(2) 6.888(40) 6.980(40) 4(2) 6.796(30) 6.906(30) 4(1)
32 4.25 340 6.525(37) 6.599(37) 2.6(9) 6.446(30) 6.532(30) 2.4(8) 6.362(24) 6.465(24) 2.2(8)
32 4.30 342 6.103(49) 6.173(49) 5(2) 6.024(38) 6.105(39) 4(2) 5.947(29) 6.043(30) 3(1)
32 4.40 318 5.525(38) 5.588(38) 3(1) 5.441(29) 5.514(30) 2.5(9) 5.359(23) 5.446(23) 2.3(8)
32 4.50 341 5.001(35) 5.058(35) 4(2) 4.934(26) 5.000(27) 3(1) 4.867(20) 4.946(20) 3(1)
32 4.70 361 4.192(35) 4.239(36) 6(3) 4.148(29) 4.203(29) 6(3) 4.102(23) 4.168(23) 6(2)
32 5.00 361 3.449(29) 3.488(29) 5(2) 3.413(22) 3.459(23) 4(2) 3.376(17) 3.431(17) 4(1)
32 5.50 301 2.621(25) 2.651(26) 6(3) 2.607(20) 2.642(20) 5(3) 2.589(15) 2.631(16) 5(2)
32 6.00 281 2.166(19) 2.191(19) 5(2) 2.147(14) 2.176(14) 4(2) 2.128(10) 2.162(11) 3(1)
32 6.50 201 1.8208(92) 1.8415(93) 1.7(6) 1.8093(75) 1.8336(76) 1.5(6) 1.7969(60) 1.8260(61) 1.4(5)
32 7.00 201 1.571(14) 1.589(14) 4(2) 1.567(10) 1.588(10) 4(2) 1.5604(76) 1.5857(77) 3(1)
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APPENDIX C: ALTERNATIVE ZEUTHEN FLOW ANALYSIS

Figure 13 shows the determination of the discrete beta function using Zeuthen flow and Symanzik operator both with and
without tree-level improvement in the c ¼ 0.300, 0.275, and 0.250 renormalization schemes. Fig 14 shows the result of the
same analysis on topologically filtered jQj < 0.5 data set. When filtering we discard all configurations with topological
charge jQgeomj > 0.5 at flow time t ¼ ðcLÞ2=8. We compare the filtered and direct results in Fig. 10.
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FIG. 13. Alternative determination of the discrete β function using Zeuthen flow with Symanzik operator (without topological charge
filtering). Plots on the left show the analysis including the tree-level improvement (nZS), plots on the right without (ZS). From top to
bottom we present results for the renormalization scheme c ¼ 0.300, 0.275, and 0.250. Only statistical errors are shown.
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