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In a nonperturbative gauge-invariant formulation of grand unified theories all low-energy vector states
need to be composite with respect to the high-scale gauge group, including the photon. We investigate this
by using lattice methods to spectroscopically analyze the vector channel in a toy grand unified theory: an
SU(2) adjoint Higgs model. Our results indeed support the existence of a massless composite vector
particle.
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I. INTRODUCTION

Observable particles need to be described by manifestly
gauge-invariant operators. Beyond perturbation theory,
BRST symmetry is insufficient to ensure this in non-
Abelian gauge theories. Instead composite operators are
needed, irrespective of the actual value of any coupling
constants [1–3]. Thus, in electroweak physics an identi-
fication of the observed particles and the elementary,
gauge-dependent degrees of freedom of the Lagrangian
is not directly possible. However, due to a combination of
the Brout-Englert-Higgs (BEH) effect together with the
Fröhlich-Morchio-Strocchi (FMS) mechanism [1,2] this
happens effectively, up to corrections suppressed by powers
of the Higgs vacuum expectation value. This has been
confirmed in lattice calculations [3–5], including sublead-
ing contributions [6–8], and has potentially experimentally
observable consequences [6,8–10]. For a review see
Ref. [3].
However, this can potentially change for theories with a

different structure than the standard model, in particular in
scenarios for new physics [11–13]. In particular, the
physical observable spectrum of particles can differ quali-
tatively from the one of the elementary particles, and thus
from those in perturbation theory. This has also been
supported in lattice calculations [14,15]. Though this does
not invalidate new physics scenarios as such, it does require
to take manifest gauge invariance in their construction into
account, by augmenting perturbation theory with the FMS
mechanism [3]. This yielded in all cases tested so far on the
lattice [14,15] correct predictions [12,14] even when
conventional perturbation theory did not.

In the context of grand unified theories (GUTs) [16,17],
this program faces a particular challenge when it comes to
model building [12,13]. In GUTs all low-energy inter-
actions are created from a single non-Abelian gauge group,
including QED.1 This requires the presence of a massless,
uncharged vector particle, which is composite with respect
to the GUT gauge group, to play the role of the low-energy
photon.2 FMS-augmented perturbation theory indeed pre-
dicts that such states can arise when adjoint Higgs fields are
present [12]. And, in fact, early exploratory lattice inves-
tigations seem to support the presence of such a composite
massless vector particle [26]. Our aim is to substantiate
these results. In addition, the massive vector states are also
predicted [12] to differ from those of perturbation theory.
Thus, we also test this.
To this end, we will simulate the simplest theory which is

expected to show this behavior: SU(2) Yang-Mills theory
with a single Higgs in the adjoint representation. We will
discuss this theory and the relevant predictions, both of
perturbation theory and the FMS mechanism, in Sec. II.
Our lattice implementation will be given in Sec. III, with
some details relegated to the Appendix. In particular, we
find that early investigations of the phase diagram of this
theory [27–31] likely underestimated systematic effects due
to the finite volume and length of Monte Carlo trajectories,
similar to what has happened in the fundamental case [32].
These effects are quite severe, and thus also in our case we
cannot yet offer a full systematic analysis in terms of
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1Gauge invariance is already nontrivial in QED, where a Dirac
string is needed to make the photon gauge invariant with respect
to the electromagnetic gauge group [3,18]. This has been
confirmed in lattice simulations; see e.g., Refs. [19,20]. This
can be included straightforwardly into the FMS description of the
electroweak sector of the standard model [3,21], which is again
confirmed by lattice investigations [22,23].

2Note that composite massless photons also appear in non-
GUT contexts, e.g., as bound states of new fermions [24,25].
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discretization artifacts, though volume effects will be
investigated in great detail.
Since perturbation theory uses gauge-fixed calculations,

we need to replicate this on the lattice to provide the
corresponding results for comparison. For this, we use the
minimal ’t Hooft–Landau gauge [3,14]. This also allows us
to determine the running gauge coupling in the miniMOM
scheme [33], and to compare gauge-fixed correlation
functions to their perturbative predictions. By this we
verify that we indeed work at weak coupling. This is also
a necessary step to obtain the FMS predictions [3,12]. This
is discussed in Sec. IV.
Finally, the central result is the spectroscopic analysis of

the vector channel in Sec. VI, which is obtained with the
methods described in Sec. V. The spectrum is found to be
compatible with the results from the FMS mechanism [12].
In particular, we find the massless composite vector state,
which would act as the photon in a GUT scenario. We do
not find evidence for further massive states. These findings
are summarized and put into perspective in Sec. VII. Some
preliminary results can be found in Ref. [34].

II. CONTINUUM SU(2) THEORY COUPLED
TO AN ADJOINT SCALAR

The theory we investigate is described by the Lagrangian

L ¼ −
1

4
Wa

μνWaμν þ tr½ðDμΦÞ†ðDμΦÞ� − VðΦÞ:

The scalar field can be expanded as ΦðxÞ ¼ ΦaðxÞTa,
where Ta are the generators of the Lie algebra of the group.
The components Φa form a three-dimensional real-valued
vector. The scalar field transforms under a gauge trans-
formation G as ΦðxÞ → GðxÞΦðxÞGðxÞ†. The covariant
derivative acts as DμΦ ¼ ∂μΦþ ig½Wμ;Φ�. The gauge
fields Wμ ¼ Wa

μTa and their field-strength tensor Wμν ¼
Wa

μνTa are the usual ones of Yang-Mills theory.
The potential is taken to be the most general one

renormalizable by power counting and conserving the Z2

transformation Φ → −Φ,

VðΦÞ ¼ −μ2tr½Φ�2 þ λ̄

2
tr½Φ2�2 þ λ̃tr½Φ4�: ð1Þ

However, in the case of the gauge group SU(2) trΦ2 is the
only nontrivial invariant Casimir, and we can therefore
combine the last two terms into one with a single coupling
constant λ. In addition, because the field is in the not-
faithful adjoint representation of the pseudoreal SU(2), the
Z2 symmetry is not an independent field transformation
when the theory is gauged. Hence, there is no global
(custodial) symmetry, and there are no global quantum
numbers in this theory except for spin and parity.

A. Gauge-variant description in a fixed gauge

To test the FMS mechanism and compare to usual
perturbative treatments it is necessary to consider the
gauge-fixed theory. Since our interest is the BEH domain,
only this case will be considered. For the present theory, the
(only) breaking pattern is SUð2Þ → Uð1Þ [35], i.e., an
unbroken U(1) subgroup is left.
It is then possible to choose a suitable gauge, here

minimal ’t Hooft–Landau gauge [3], where the scalar field
can be split into a constant and a fluctuating part, i.e.,

ΦðxÞ ¼ hΦi þ ϕðxÞ≡ wΦ0 þ ϕðxÞ: ð2Þ

Φ0 is the direction of the vacuum expectation value obeying
Φa

0Φa
0 ¼ 1, and w is its magnitude. Φ0 can always be

chosen inside the Cartan [35]. Gauge transformations in the
unbroken U(1) subgroup leave Φ0 invariant. The field
ϕ ¼ ϕaTa is the fluctuation field.
Inserting the split (2) into the Lagrangian yields the tree-

level mass matrix

ðM2
AÞab ¼ −2ðgwÞ2trð½Ta;Φ0�½Tb;Φ0�Þ;

for the gauge bosons. This leads to a massless gauge
field for the unbroken U(1) subgroup. The masses of the
two SU(2) coset gauge bosons are mA ¼ gw. In addition,
one degree of freedom of the scalar Higgs field remains
with mass mH ¼ ffiffiffi

λ
p

w.

B. Gauge-invariant spectrum

As discussed in the Introduction, the observable spec-
trum needs to be manifestly and nonperturbatively gauge
invariant [1,2]. For the present theory this spectrum has
been predicted in Ref. [12] for the 0þ and 1− channels,
implying the presence of nonscattering states in both. For
completeness, here we will restate the predictions of
Ref. [12] for these two channels.
Consider first the 0þ channel. The simplest composite

gauge-invariant operator with these quantum numbers is

O0þðxÞ ¼ tr½Φ2�ðxÞ:

To obtain the leading-order prediction for the associated
mass spectrum for this operator, FMS-augmented pertur-
bation theory requires to expand this operator in the
vacuum expectation value w to leading nonconstant order
[3], yielding

O0þðxÞ ¼
w2

2
þ wHðxÞ þOðw0Þ; ð3Þ

with the Higgs field HðxÞ ¼ 2trðΦ0ϕðxÞÞ. Thus, at this
order, the operator is, up to an irrelevant constant, identical
to the Higgs. States created by this operator should thus
have the same mass spectrum as the elementary Higgs.
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In particular, at tree level the scalar singlet should have the
mass of the Higgs at tree level, i.e., mH.
The situation is somewhat more involved for the vector

channel 1−. Because of the special features of the present
theory, the simplest operator, generalized from the funda-
mental case [1,2], is [12]

Oμ
1− ¼ ∂ν

∂2
tr½ΦFμν�: ð4Þ

Performing the same expansion yields [12]

Oμ
1− ¼ −wtr½Φ0W̄

μ
⊥�ðxÞ þOðw0Þ; ð5Þ

where

W̄μ
⊥ ¼ Wμ

⊥ þ g
∂ν

∂2
½Wμ;Wν�; ð6Þ

is the field-strength tensor with one index transversely
contracted and

Wμ
⊥ ¼

�
δμν −

∂μ∂ν

∂2

�
Wν;

is the transverse part of the gauge field.
At tree level Eq. (5) reduces to

Oμ
1− ¼ −wtr½Φ0W

μ
⊥�ðxÞ þOðw0; g0; λ0Þ: ð7Þ

The trace withΦ0 projects precisely to the transverse gauge
boson of the unbroken U(1) subgroup. Thus, the state
created by this operator should contain a massless pole.
Hence, this predicts [12] a massless, composite vector
boson. This gauge-invariant state could potentially play the
role of an effective low-energy photon in a GUT setup.
At leading order in w, but next-to-leading order in g, this

changes. While the first term in Eq. (6) will give rise only to
a scattering threshold, this is no longer obvious for the
second term. A detailed analysis in a constituent-like
evaluation [12] yields that a second pole at 2mA could
arise, and thus a second, massive vector particle. Of course,
such a particle, like the scalar, will not be stable against
decay into the massless vectors, but the level can still show
up in the spectrum as a resonance, if it is present and decays
weakly enough.
Unfortunately, it turns out that the scalar is far too noisy

to obtain reliable results with about five million core hours
of computing time available to us in this project. The reason
is that it has vacuum quantum numbers, and thus suffers
from the presence of disconnected contributions. This
substantially enlarges the noise. Though we saw a signal
in the lattice simulations presented here at short times, the
signal drowned too quickly in noise to determine spectral
information. We estimate that at least an order of magnitude
more statistics, and probably further improved operators,

will be necessary for a result of similar quality as in the
vector channel.
Thus, here we will concentrate only on the predictions in

the vector channel. In principle, there could also be non-
scattering states in other channels. But because of the lack of
elementary particles with other spin-parity quantum num-
bers no one-to-one mapping in the sense of the FMS
mechanism, e.g., as in Eq. (3) for the 0þ channel and the
Higgs, is possible. They would therefore be nontrivial bound
states, and could be searched for along the lines of
Refs. [36,37] in the fundamental case. Based on the
experience with these cases, this will likely require sub-
stantially more statistics than even for the 0þ, and we will
therefore leave these others channels to future investigations.

III. SETUP

A. Lattice setup and parameters

The lattice action can be obtained by discretization of the
action as [38]

S½Φ; U� ¼ SW ½U�
þ
X
x

ð2tr½ΦðxÞΦðxÞ�

þ λð2tr½ΦðxÞΦðxÞ� − 1Þ2

− 2κ
X4
μ¼1

tr½ΦðxÞUμðxÞΦðxþ μ̂ÞUμðxÞ†�Þ;

where SW is the standard Wilson action and UμðxÞ are the
usual links. The action can be rewritten in component form:

S½Φ; U� ¼ SW ½U�

þ
X
x

�X3
a¼1

ðΦaðxÞΦaðxÞ

þ λðΦaðxÞΦaðxÞ − 1Þ2Þ

− 2κ
X4
μ¼1

X3
a;b¼1

ΦaðxÞVab
μ ðxÞΦbðxþ μ̂Þ

�
;

with

Vab
μ ðxÞ ¼ tr½TaUμðxÞTbUμðxÞ†�;

which are the links in the adjoint representation. In fact, the
latter form of the action has been used for our simulations.
Lattice of sizes L4 ¼ 84, 124, 164, 204, 244, and 324 have

been used. For the simulation, a multihit Metro-
polis Monte Carlo algorithm has proven to be effective
for the purpose of generating the configurations, like in
Refs. [12,14]; see also the Appendix. For every update of
the scalar field five updates of the gauge field have been
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employed, and five hits have been used for every update.
This created a new configuration.

B. Phase diagram and simulation points

We have scanned, similarly to Refs. [14,15], a wide
range of lattice parameters within the ðβ; κ; λÞ volume.
However, we encountered severe critical slowing down.
This is discussed in detail in the Appendix. In particular, we
found that with better thermalization properties the results
on the phase diagram from exploratory investigations
[27–31] changed, and in particular the phase transition
shifted to larger values of κ for larger volumes. The reason
for this is likely the presence of the massless gauge-
invariant vector particle, and thus slow decorrelation and
large finite-volume effects.
However, these results, together with our own, suggest a

transition from a QCD-like phase to a BEH phase at any
fixed values of β and λ when increasing κ sufficiently.
Based on the scan, and since we do aim at a proof of
principle, we thus decided to fix β ¼ 4 and λ ¼ 1, and
perform a scan in κ from κ ¼ 1=8, i.e., a tree-level massless
scalar, to κ ¼ 2. As will be seen, we find a transition at
about κ ≈ 0.5 between both phases, and thus concentrate
primarily on the range κ ∈ ½0.5; 0.7�. For our spectroscopic
analysis we take as special cases κ ¼ 0.55 and κ ¼ 0.65.
For the purpose of thermalization, we drop 1000 con-

figurations, and drop 50 configurations for decorrelation
between measurements. This is sufficient to decorrelate the
plaquette, but for κ ≳ 0.7 it is not sufficient for a full
decorrelation of other observables. This is discussed in
more detail in the Appendix. As is shown in Fig. 1, the
plaquette shows a behavior characteristic for a rapid
transition around κ ≈ 0.5. However, the susceptibility
suggests either a crossover or at least a very small critical
region for a phase transition, due to the absence of volume

scaling. Although being close to an actual second-order
transition point,3 if it exists, would be preferable for a better
approach to large correlation lengths, for the purpose at
hand it will be sufficient to have sufficiently large corre-
lation lengths. As will be seen, our choice of large-statistics
simulation points, κ ¼ 0.55 and κ ¼ 0.65, indeed provide
suitable conditions.
In total, we have simulated then 12 lattice setups in

detail: for each κ ¼ 0.55 and κ ¼ 0.65 we used six lattice
volumes, 84, 124, 164, 204, 244, and 324. For the gauge-
invariant states, we used ð1 − 4Þ × 105 configurations for
the smaller volumes, 84 and 124, and ð1 − 3Þ × 104 for the
larger volumes, while for the gauge-fixed calculations an
order of magnitude fewer configurations were used. This
was necessary to compensate for the substantially increased
computing time for gauge fixing, which increases with
volume by 1–2 orders of magnitude in comparison with the
generation of not-gauge-fixed configurations. However, as
the elementary gauge-fixed observables contain less field
operators than the composite gauge-invariant ones, a
similar level of statistical accuracy was nonetheless
achieved, as it is expected from results on gauge-dependant
observables in Yang-Mills theories [40,41].

IV. GAUGE-FIXED OBSERVABLES

As Sec. II B shows, testing the FMS mechanism requires
information from the gauge-dependent spectrum. We there-
fore fix a subset of the configurations to minimal ’t Hooft–
Landau gauge. This is done like in Refs. [14,15], by first
fixing minimal Landau gauge, and then performing a global
gauge transformation to satisfy the ’t Hooft gauge condition

FIG. 1. The plaquette as a function of κ (left panel) for various volumes, as well as its derivative with respect to κ (right panel). The
scatter of the susceptibility at large values of κ is an artifact of the critical slowing down discussed in the Appendix.

3Even if no genuine second-order phase transition exists, we
expect [39] that low-energy observables are sufficiently reliable,
just as is the case with the standard model Higgs sector [3].
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by rotating the expectation value of the Higgs field into the
Cartan. In a finite volume this is always possible, even in a
QCD phase, where the vacuum expectation value in any
gauge vanishes in the infinite-volume limit.
Once fixed, we calculate separately the gauge boson

propagators in the Cartan direction and in the remainder
direction, as in Ref. [15]. Furthermore, we calculate the
ghost propagator to determine the running gauge coupling
in the miniMOM scheme [33], again as in Ref. [15]. This
allows us to verify that we are indeed in a weak-coupling
regime. Finally, we also investigated the scalar boson
propagator to confirm the existence of the Goldstone
boson, as in Ref. [15].
The results for the gauge boson propagators for both

simulation points are shown in Fig. 2. In addition tree-level
fits based on Sec. II A

DðpÞ ¼ Z
ðapÞ2 þ ðamÞ2 ; ð8Þ

FIG. 2. The gauge boson propagator (left panels) and dressing function (right panels) for κ ¼ 0.55 (top panels) and κ ¼ 0.65 (bottom
panels) against tree-level fits for the 164 case in lattice units. Momenta are along an edge of the lattice. The masses used to calculate the
dressing functions are zero for the Cartan propagator and the fitted mass amA in Table I for the broken sector in the right panels.
Momenta are along a lattice edge.

TABLE I. The fit parameter for the fit form (8) of the gauge-
fixed gauge boson propagator for different lattice sizes L=a. For
the 84 lattice no stable fit was possible. In Fig. 2 the values for the
164 lattices have been used.

L=a κ amA

32 0.55 0.338(1)
24 0.55 0.261(1)
16 0.55 0.207(2)
32 0.65 0.54(2)
24 0.65 0.623(3)
16 0.65 0.585(9)
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for the propagators are shown, where p is the standard
improved momentum pμ ¼ 2 sinð2πnμ=LÞ. This fit
describes the data quite well, except for the two lowest
momentum points. However, the comparison of different
volumes shows that these points are strongly affected by
finite-volume effects, and can thus be dismissed from the
fits. The fit values for the masses of the massive propagator
are an important ingredient in Sec. VI and therefore we list
them in Table I. This yields that the gauge boson in the
unbroken sector is indeed compatible with a massless
particle, while the ones in the broken sector are compatible
with tree-level massive ones. However, we observe quali-
tatively different, and strong, volume dependencies for the
different κ values. This is actually consistent with the

predictions from the FMS mechanism and the fact that
the physical states cross various decay thresholds as a
function of volume, as will be discussed in detail in
Sec. VI, and can be seen in Fig. 7.
The running gauge coupling in the miniMOM scheme is

shown in Fig. 3. The picture is quite similar to the case with
a fundamental Higgs [15]. At large momenta the running
coupling of the broken sector and the unbroken sector
unifies. The momenta where they split depends on the
lattice parameter, and is larger for larger mA, as expected.
For the lower scale with its larger volume and lower
maximal physical momenta this is at apsplit ≈ 1.6, while
for the finer lattice it is at apsplit ≈ 1.1. The lowest momenta
are visibly affected by finite-volume effects. Ignoring them,

FIG. 3. The running gauge coupling in the miniMOM scheme. The left panel shows the result for κ ¼ 0.55 and the right panel for
κ ¼ 0.65. Note that, the lowest momentum point is very strongly affected by finite-volume effects, and thus often outside the plotting
range. Momenta are along an edge of the lattice.

FIG. 4. The renormalized Higgs dressing function normalized to the tree-level propagator in the would-be pole scheme of Ref. [42].
The left panel shows the result for κ ¼ 0.55 and the right panel for κ ¼ 0.65. Note that the lowest momentum point is very strongly
affected by finite-volume effects, and thus often outside the plotting range. Momenta are along an edge of the lattice.
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the coupling in the broken sector is typical for a theory with
BEH effect [5], and never exceeds about 0.1. For the
unbroken sector, the coupling is almost momentum inde-
pendent, but also is at most 0.12, even at the smallest
momenta. Thus, both lattice settings are indeed weakly
coupled, at least for the gauge interaction.
Finally, we show the Higgs dressing function in Fig. 4.

Because the Higgs propagator also requires a mass
renormalization, we needed to choose a scheme. For this
purpose, we used the one of Ref. [42], which shows almost
no volume dependence [43], and appears to be a suitable
approximation to the pole scheme on a Euclidean lattice
[3], at least in a BEH phase. However, as we do not know
the corresponding pole mass without access to the gauge-
invariant scalar [3], we could only choose arbitrary masses
for the renormalization condition, except for the Goldstone
masses. These are massless in ’t Hooft–Landau gauge. For
the fluctuation propagator, we set the renormalized masses
to 0.5 and 1.2 for κ ¼ 0.55 and κ ¼ 0.65, respectively.
They provided reasonably stable results for all volumes,
though in particular the fluctuation mode on κ ¼ 0.65
turned out to be quite fickle. The resulting dressing func-
tion does not deviate substantially from the tree-level
form 1=ððapÞ2 þ ðamÞ2Þ, and in particular the Goldstone
modes are well compatible with being massless. However,
strong volume dependencies are also seen here at small
momenta.

V. GAUGE-INVARIANT OBSERVABLES

As the scalar channel is too strongly dominated by noise
from the disconnected contributions, we concentrate here
on the vector channel. To determine the spectrum in this

channel, we employ a standard variational analysis, solving
a generalized eigenvalue problem [44].
The following operators have been employed in this

variational analysis for the study of the JP ¼ 1− channel.
All operators are averaged over time slices to reduce noise.
The first operator is the simplest discretization of the
continuum operator (4) (see Ref. [26]):

Bi
1−ðxÞ ¼

Imtr½ΦðxÞUjkðxÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tr½ΦðxÞ2�

p ; ð9Þ

where Ujk is the usual plaquette, and the indices ðijkÞ are
even permutations of the spatial indices (123). We enlarge
the basis by adding two more operators

BΦ;i
1− ðxÞ ¼ 2tr½ΦðxÞ2�Bi

1−ðxÞ; ð10Þ

B2;i
1− ðxÞ ¼

�X3
j¼1

Bj
1−ðxÞBj

1−ðxÞ
�
Bi
1−ðxÞ: ð11Þ

These represent scattering states in this channel. The first
one has an insertion of another operator with quantum
numbers 0þ constructed from the scalar field. The second
one also has an insertion of a 0þ operator, but this one has
been constructed using a product of the vector operator.
Both insertions are multiplied with the operator described
in Eq. (9) to provide the spin parity. The additional two
operators therefore describe a scattering state of a scalar
and a vector, and of three vectors, respectively, with zero
relative momenta.
In addition, we performed APE smearing, like in the

fundamental case [45,46], up to n ¼ 5 levels. The smearing
procedure for the fields reads as follows:

UðnÞ
μ ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detRðnÞ
μ ðxÞ

q RðnÞ
μ ðxÞ;

RðnÞ
μ ðxÞ ¼ αUðn−1Þ

μ ðxÞ þ 1 − α

6

X
ν≠μ

½Uðn−1Þ
ν ðxþ μ̂ÞUðn−1Þ

μ ðxþ ν̂Þ†Uðn−1Þ
ν ðxÞ†

þ Uðn−1Þ†
ν ðxþ μ̂ − ν̂ÞUðn−1Þ

μ ðx − ν̂Þ†Uðn−1Þ
ν ðx − ν̂Þ�;

ΦaðnÞðxÞ ¼ 1

7

�
Φaðn−1ÞðxÞ þ

X
μ

ðVab
μ ðxÞΦbðn−1Þðxþ μ̂Þ þ Vba

μ ðx − μ̂ÞΦbðn−1Þðx − μ̂ÞÞ
�
; ð12Þ

where Uð0Þ ¼ Rð0Þ and Φð0Þ describe the unsmeared fields.
We select the tuning parameter α ¼ 0.55, as in the
fundamental case [37]. This created in total a maximal
basis of four operators per smearing level, and 24 in total.
From these we chose a subset of up to six operators, which
provided for every lattice setting the least noisy results for
the lowest energy levels.
One particular problem is that, even in Euclidean space-

time and on a finite lattice, massless vector particles cannot

have a finite mass. Otherwise, a third degree of freedom
would be necessary. This additional degree of freedom
cannot be provided by the finite volume. Thus, to study a
massless vector particle requires working in a boosted
frame.4

4An alternative may be to use twisted boundary conditions
[47]. In this context see also Refs. [20,26].
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Thus we boosted our operators to a nonzero momentum
via

Ojðp⃗; tÞ ¼ 1ffiffiffiffiffiffi
L3

p Re
X
x⃗

Ojðx⃗; tÞeip⃗·x⃗; ð13Þ

with the operators Oj being Eqs. (9)–(11), and it is found
that the boosted operators also remain real. We chose the
momentum in the z direction

p⃗ ¼
�
0; 0; pz ¼

2π

L
nz

�
;

and consider nz ¼ 1 for all operators. In addition, we
enlarge the operator basis further by using the operator (9)
also with nz ¼ 2. This turned out to be necessary to capture
all relevant trivial scattering states for the analysis
in Sec. VI.
The correlators are divided into a transverse component

C⊥ and a longitudinal component Ck defined as

C⊥ðtÞ ¼
1

L

XL−1
t0¼0

X2
j¼1

hOjðp⃗z; t0ÞOjðp⃗z; tþ t0Þ†i; ð14Þ

CkðtÞ ¼
1

L

XL−1
t0¼0

hO3ðp⃗z; t0ÞO3ðp⃗z; tþ t0Þ†i; ð15Þ

where time-slice averaging is performed over the points in
the 4 direction of the lattice. We find that the longitudinal
component is zero for the ground state within statistical
uncertainties; see also Ref. [34]. This is shown for an
example in Fig. 5, and required for a massless vector
particle. Hence, this is already a strong hint for the

existence of a massless state in this channel. As for massive
states the longitudinal component can be at most constant;
we will concentrate in the following on the transverse
part only.
Because we work with boosted states, we need to take

the kinetic energy into account when searching for the
energy levels. For this, we employ the lattice dispersion
relation [44]

coshðaEÞ ¼ coshðamÞ þ
X3
i¼1

ð1 − cosðapiÞÞ: ð16Þ

In particular, in the case of massless states with a nonzero
momentum component pz only in the third direction the
behavior should be

coshðaEÞ ¼ 2 − cosðapzÞ: ð17Þ

In addition, there can be massless states with higher
momenta. Furthermore, because of the perturbative and
FMS predictions, we also test for other energy levels with
once or twice the mass of the elementary gauge boson. In
this case we can use Eq. (16) and the results in Table I for the
lattice energy prediction with either m ¼ mA or m ¼ 2mA.
We demonstrate the resulting fits in Fig. 6 for a particular

lattice setup. Shown are the effective masses from the
lowest eigenvalues of the variational analysis. They are
compared to the expected lowest levels for a massless
particle. While in this case only a single cosh was necessary
for the fits, sometimes at short times the fits deviate from
the expected levels due to contamination from higher
levels. In these cases we included a second cosh in our
fits. The resulting fits then agree very well with the
expected levels at large times. Thus, our operator basis

FIG. 5. Examples for the correlator decomposition (15), showing the transverse part (left panel) and longitudinal part (right panel) of
the gauge-invariant vector correlator (9) in a boosted frame on a 164 lattice. The simulation has been performed at κ ¼ 3=4. We also
indicate the expected behavior for a massless vector particle (solid lines).
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is not sufficient to disentangle very heavy states, but is
suitable to identify the lowest levels quite well. Higher
eigenvalues turned out to be too noisy on all but the
smallest volumes, and thus we could usually only identify
two levels for each volume.

VI. SPECTROSCOPIC RESULTS

Before studying the final results, it is worthwhile to list
the expectations. On the one hand, there should be a
massless state. In our boosted frame we expect it to have
energies corresponding to one or more units of kinetic
energy, which behave like aEnz ≈ 2πnz=L. In addition,
there are two different predictions for massive states. The
one from perturbation theory should have a massmA, while
the one from the FMS mechanism should have 2mA. In the
boosted frame, both will have at least one unit of kinetic
energy E1 as well. In addition, any massive state of mass
am in this frame can only decay into at least three massless
ones. Thus, this is only possible if

3þ coshðamÞ − cos

�
2π

L

�
< 2 − cos

�
6π

L

�

is satisfied. Though the masses show some volume
dependence, this effect is dominated for our lattice setups
by the volume dependence of the kinetic energy. As a
function of volume, both predicted massive states even-
tually cross the elastic decay threshold when increasing the
volume, though at different ones.
Note that adding the perturbative state directly does not

make full sense, as it has different quantum numbers: it is
charged under the residual gauge U(1). Thus, it cannot be
observable at all. However, it could be argued that it should
still be manifest in the spectrum, by dominating some other

state. Its absence is again a prediction of the FMS
mechanism [12], which warrants checking.
The final results are shown in Fig. 7, compared to these

expectations. While we were not able to extract more than
the two lowest-lying states on all volumes, a rather clear
picture emerges.
First, the ground state is consistent throughout with the

expected massless state. Hence, the ground state in the
vector channel in this theory is very likely a massless,
composite particle. Thus, this basic prediction of a
composite massless vector from the FMS mechanism is
confirmed. We also see very clearly and consistently a state
which is compatible with a massless state with two units of
kinetic energy. Thus, the existence of a massless, composite
vector particle in this theory is well supported.
We do not, however, see any indications of either of the

massive states. In particular, we do not see any hints of
these states even on volumes were we would expect them to
be stable, as they are below the corresponding decay
threshold, the third massless level, which is also indicated
in Fig. 7. We also see no deformation indicative of avoided
level crossing or additional states. Thus, at the moment,
neither of the additional massive states is seen.
The reason for this may, of course, be the operator basis,

which always included the primitive operator (9). Other
operators [13] may be needed, e.g., like those employed in
Ref. [36]. Unfortunately, for massless (vector) particles no
Lüscher analysis is (yet) available to check for possible
resonances. There is, of course, also the possibility of
further discretization artifacts, finite-volume effects, or too
little statistics for only small admixtures. Such improve-
ments would be straightforward, but would require sub-
stantially more computing time.
If even such extensionswould not detect theses states, this

would have different implications. In perturbation theory,
the (unstable) massive vector state is unambiguously

FIG. 6. The plots show the effective energy obtained at κ ¼ 0.55 (left panel) and κ ¼ 0.65 (right panel) and a volume of 124. They
have been obtained in a basis with four operators smeared five times. Besides single-cosh fits to the data (dotted lines) the expected
behavior for a massless particle (17) with one unit of kinetic energy is also shown (dashed lines).
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predicted. Its absence would therefore be in direct contra-
diction to perturbation theory. In the FMS approach, this
would invalidate the simplified constituent model in
Ref. [12], but may be understood in a more advanced
analysis [13] yet to be performed.

VII. CONCLUSIONS

Summarizing, we have obtained substantial evidence for
a massless, composite vector state in the Brout-Englert-
Higgs regime of the SU(2) theory with a Higgs in the
adjoint representation. This confirms the exploratory study
[26]. Moreover, we found no indications for additional
massive states. The latter would, however, necessarily be
resonances in the infinite-volume limit.
We have thus provided evidence that such a theory can

create, in a manifestly gauge-invariant way, a particle which
could be regarded as a low-energy effective photon in a grand
unified theory setting. This is needed to obtain a nonpertur-
batively gauge-invariant construction of a GUT [12,13]. In
addition, this is also a proof of principle that massless
nonscalar bound states can emerge without a broken (global)
symmetry, and thus not as a Goldstone boson. This may also
be an interesting option in other extensions of the standard
model, and may also be relevant to quantum gravity [48].
In addition, by comparison to the gauge-fixed vector

particles, we support the analytic prediction for the bound
state spectrum in the vector channel by the FMS mecha-
nism for this theory for the ground state [12]. That the
ground state comes out correctly in such calculations is by
now familiar from other theories [4,5,14,15]. However,
we do not see additional massive states with nontrivial
internal structure, which have been argued for [12,13]. So
far this has only happened for trivial internal structure,

experimentally confirmed, in the standard model for the
photon and the Z boson [3].
In total, these results are therefore a vital step towards a

fully gauge-invariant construction of a GUT, and another
example that FMS-mechanism augmented perturbation
theory is the best method to deal with (non-Abelian) gauge
theories involving the Brout-Englert-Higgs effect.
Nonetheless, a full determination of the spectrum in

other channels remains desirable for the outlined gauge-
invariant description of GUTs. A logical next step is
therefore to focus on the scalar channel in the future.
Understanding the scalar channel would potentially also
help to shed more light on the results in the vector channel,
and is a necessary input for further analytic calculations in
FMS-augmented perturbation theory.
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APPENDIX: THERMALIZATION PROPERTIES
OF THE ALGORITHM

As noted in Sec. III B, we found that the theory is very
hard to thermalize, especially when deep in the BEH
region. Given the observation of the massless mode, this
does not come as a significant surprise, as light modes
usually yield long correlations.

FIG. 7. The plots show the volume-dependent low-lying spectrum for κ ¼ 0.55 (left) and κ ¼ 0.65 (right). Besides the simulation
results we also show the predictions for the three lowest-lying massless states (dashed lines), the massive state from perturbation theory
(cyan dotted lines) and the FMS prediction for an additional massive state (magenta dotted lines). In the latter cases masses amA ¼ 0.25
and amA ¼ 0.6, respectively, have been used, as reasonable proxies to the masses in Table I. For the massive predictions effects from
avoided level crossing have not been included in this plot.
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Originally, we started this project using a modified [49]
variant of the HiRep code [50]. This code is based on a
hybrid Monte Carlo. We have augmented it to deal with the
adjoint Higgs. For this purpose, we used various decom-
positions of the Higgs field. In particular we explicitly
attempted to decouple the radial and angular modes. We
found that this algorithm suffered from a lack of thermal-
ization for values of κ larger than 0.2. In particular, for all
practical purposes even volumes as small as 244 effectively
no longer thermalized. The algorithm required an extensive
amount of time for updates and in general a really low
acceptance rate for the new proposed configurations in the
regime with κ larger than 0.2. This applied to both the
vacuum expectation value of the Higgs and local quantities
like the plaquette. We are not sure what precisely created
this behavior, but we suspect that the attempted global

FIG. 8. The norm of the Polyakov loop (top panel), the
Higgs vacuum expectation value (middle panel), and the
plaquette (bottom panel) for various volumes as a function of
κ for β ¼ 4 and λ ¼ 1. For the Higgs vacuum expectation value
the statistical error has been enlarged by a factor of 10 to
demonstrate that the observed effect is definitely not a statistical
problem.

FIG. 9. Monte Carlo time evolution of the first 1000 measure-
ments of the plaquette (top panel) and Higgs length (bottom
panel) for various volumes and κ ¼ 0.55 and κ ¼ 0.65. The
measurements have been done with the same configurations used
for the spectroscopic analysis in the main text.
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update in the hybrid Monte Carlo yielded only too small
steps inside the potential trough of the Higgs, and could
therefore not move efficiently.
We thus reverted to a local algorithm, a multihit

Metropolis algorithm, as was already successfully used
previously for Yang-Mills-Higgs systems [14,15]. This also
proved successful in our case, allowing us to perform
simulations with a set of parameters which were practically
inaccessible with the previous algorithm. However, we
found that even in this case thermalization became prob-
lematic at too large values of κ ≳ 0.7. This is shown in
Fig. 8. It is visible that the ultralocal plaquette now behaves
well throughout, but both the Higgs vacuum expectation
value and the Polyakov loop, which are both objects
obtained from nonlocal quantities, do not. It must be
stressed that the natures of the thermalization issues in
the two cases are quite different. In general, we observed
much more severe difficulties in generating the configura-
tion with a global update, since with increasing values of κ
the acceptance rate decreased significantly, while this effect
was much less harsh with local updates.
When investigating Monte Carlo trajectories, we find

that the reason for the jumping behavior comes from

excursions to configurations with vastly different values
of the Higgs vacuum expectation value and the Polyakov
loop norm. Occasionally, it also happens that the algorithm
gets stuck. Since the plaquette seems to change discontin-
uously, this could be due to a two-state system. However,
neither of the phases shows a vanishing Higgs vacuum
expectation value, as is also visible in Fig. 8. Also, it would
usually not be expected that this becomes a stronger
problem further away from the phase transition. We there-
fore expect that this is still a sign of slow thermalization,
which allows for large excursions in configuration space.
This is also consistent with the observation that the values
of the observables in the various trajectories seems to be
rather random. We therefore conclude that our multihit
Metropolis algorithm is also not able to thermalize quickly
enough for κ ≳ 0.7, and hence restrict ourselves to smaller
values of κ in the main analysis. This is exemplified in
Fig. 9, showing the Monte Carlo evolution of the plaquette
and the Higgs length. They are measured using the same
configurations employed in the spectroscopic analysis, and
no signs of thermalization issues are present. In particular,
none of the excursions of the plaquette to different values
observed at κ ≳ 0.7 are seen.
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