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The spectrum of excited states observed in the finite volume of lattice QCD is governed by the discrete
symmetries of the cubic group. This finite group permits the mixing of orbital angular momentum quanta in
the finite volume. As experimental results refer to specific angular momentum in a partial-wave
decomposition, a formalism mapping the partial-wave scattering potentials to the finite volume is required.
This formalism is developed herein for Hamiltonian effective field theory, an extension of chiral effective
field theory incorporating the Lüscher relation linking the energy levels observed in finite volume to the
scattering phase shift. The formalism provides an optimal set of rest-frame basis states maximally reducing
the dimension of the Hamiltonian, and it should work in any Hamiltonian formalism. As a first example of
the formalism’s implementation, lattice QCD results for the spectrum of an isospin-2 ππ scattering system
are analyzed to determine the s, d, and g partial-wave scattering information.
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I. INTRODUCTION

The established nonperturbative approach to understand-
ing the emergent phenomena of the relativistic quantum
field theory of the strong interactions, quantum chromo-
dynamics (QCD), is the numerical approach of lattice
QCD. While experiment probes QCD through infinite-
volume scattering observables such as the phase shift and
inelasticity, the finite-volume and Euclidean-time aspects
of the lattice formulation render the accessible quantity to
be the spectrum of states in the finite-volume lattice. For the
case of elastic two-body scattering in the rest frame,
Lüscher [1–3] proved that these observables are related
by what is now known as Lüscher’s formula.
Up to exponentially suppressed corrections, the proof

shows that a quantum field theoretic system can be reduced
to a quantummechanical system with an effective potential.
The infinite-volume phase shift and the finite-volume
spectrum are then related by the potential independent
Lüscher’s formula. An equivalent approach is Hamiltonian
effective field theory (HEFT). In the standard approach, a
potential is parametrized, fit to the finite-volume lattice

QCD spectrum, and the infinite-volume phase shift is then
derived from the fit. HEFT was formulated in the baryon
sector with reference to the Delta baryon resonance. In the
simplest case, the scattering of a nucleon and a pion through
an intermediate Delta baryon basis state was considered.
Upon rearranging the formal equation arising from
detðH − λIÞ ¼ 0, one can make contact with the established
result of chiral perturbation theory, either in a finite volume
or in the continuum. Indeed, the structure of the terms of the
Hamiltonian is dictated by chiral perturbation theory. In the
weakly interacting perturbative limit, HEFT reproduces
chiral perturbation theory in a finite volume.
The equivalence, up to exponentially suppressed cor-

rections, between Lüscher’s method and HEFT has been
examined in detail for the single partial-wave case in
Ref. [4]. In other words, HEFT provides an alternate
bridge connecting the finite-volume spectrum and the
infinite-volume phase shifts, but does not change the fixed
relationship between them.
HEFT also provides insight into the structure of the

finite-volume eigenstates. In solving the Hamiltonian
eigenvalue equation for the finite-volume energy eigen-
states, one obtains an eigenvector describing the compo-
sition of the eigenstates in terms of the basis states of the
Hamiltonian matrix. The energy eigenvector describes
the contribution of each basis state in the Hamiltonian to
the eigenstate. When the regulator takes phenomenologi-
cally motivated forms associated with the finite size of the
hadrons participating in the scattering, one gains insight
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into the manner in which the Hamiltonian model states are
constructed by the basis states of the Hamiltonian [5]. For
example, in the low-lying nucleon spectrum, scattering
states excited by lattice QCD interpolating fields are
described within the Hamiltonian effective field theory
in terms of the same hadronic scattering degrees of freedom
[6–9].
While the model-independent finite-volume quantization

condition approach, based upon the Lüscher method, has
been extended to various cases, including asymmetric
boxes [10–12], moving frames [13–18], the multichannel
case [19–24], nonzero spins [25–28], twisted-boundary
conditions [29–32], and the multibody case [33–50], HEFT
is still in the early stages of development.
HEFT was first introduced in Ref. [51] to study a Δ →

Nπ system and was developed further in a series of works
[4–9,52]. It is worth mentioning that it is straightforward to
include more channels in the HEFT framework [4–9];
however, it has not been extended to the high partial-wave
case yet. Until now, HEFT has only been applied to single
partial-wave cases, in which the high dimension of the
Hamiltonian matrix can be significantly reduced through
the consideration of C3ðNÞ symmetry, i.e., the symmetry
associated with summing the squares of three integers to
the value N.
Once the mixing of higher partial waves is taken into

account, one must abandon the use of C3ðNÞ and work
with higher dimension matrices. The focus of this inves-
tigation is to create an optimal set of rest-frame cubic-group
basis states, maximally reducing the dimension of the
Hamiltonian and enabling the determination of several
partial-wave scattering parameters simultaneously. The
formalism developed herein for partial-wave mixing is
easily generalized to the nonzero spin case. For the moving-
frame case, a method based on the formalism here is under
development and will be presented in a future work. We
also note that the formalism works not only in HEFT, but
also in any Hamiltonian formalism, e.g., the harmonic
oscillator basis effective theory [53,54].
In Sec. II, the infinite-volume and finite-volume

Hamiltonians are introduced and relations between infinite-
and finite-volume potentials are established. Section III
presents the new formalism for creating the rest-frame
cubic-group basis states required to accommodate partial-
wave mixing. In Sec. IV, lattice QCD results for isospin-2
ππ scattering [55] are examined to illustrate the formalism
in practice and examine the consistency between the
formalism created here and Lüscher’s method. Finally,
results are summarized in Sec. V.

II. INFINITE- AND FINITE-VOLUME
HAMILTONIANS

The Hamiltonian operator of a three-dimensional
infinite-volume (IFV) system can be written in bra-ket
notation as

Ĥ ¼ Ĥ0 þ V̂ ¼
Z

d3k
ð2πÞ3 hðkÞjkihkj

þ
Z

d3p
ð2πÞ3

d3k
ð2πÞ3 Vðp;kÞjpihkj; ð2:1Þ

with the conventions

1 ¼
Z

d3xjxihxj ¼
Z

d3k
ð2πÞ3 jkihkj; hxjki ¼ eik·x;

hyjxi ¼ δ3ðy − xÞ; hpjki ¼ ð2πÞ3δ3ðp − kÞ; ð2:2Þ

where hðkÞ and Vðp;kÞ are the total kinematic energy and
the momentum-dependent potential of two particles,
respectively. Then from

hxjV̂jki ¼
Z

d3y Vðx; yÞhyjki; ð2:3Þ

we have

Vðp;kÞ ¼ hpjV̂jki

¼
Z

d3xd3y e−iðp·x−k·yÞVðx; yÞ; ð2:4Þ

where Vðx; yÞ (instead of VðxÞδ3ðx − yÞ) is introduced to
allow for the consideration of nonlocal potentials.
Correspondingly, in the finite periodic volume (FV)

where momenta are discrete, the Hamiltonian can be
written with bra-ket notation as follows:

ĤL ¼ Ĥ0L þ V̂L ¼
X
n∈Z3

h

�
2πn
L

�
jnihnj

þ
X

n0;n∈Z3

VL

�
2πn0

L
;
2πn
L

�
jn0ihnj; ð2:5Þ

with the conventions

1¼
Z
L3

d3xjxihxj; 1¼
X
n∈Z3

jnihnj; hn0jni ¼ δn0;n;

hyjxi ¼
X
n∈Z3

δ3ðy − xþnLÞ; hxjni ¼ L−3=2ei
2π
Ln·x;

ð2:6Þ

where the subscript L denotes the periodic boundary
condition of length L, and

R
L3 d3x denotes an integral

over the first period of coordinate space.
The relationship between Vðp;kÞ of Eq. (2.1) and

VLð2πn0=L; 2πn=LÞ of Eq. (2.5) is obtained through the
consideration of the conventions,
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1 ¼
Z

d3k
ð2πÞ3 jkihkj

→

�
2π

L

�
3X
n∈Z3

1

ð2πÞ3 L
3=2jnihnjL3=2; ð2:7Þ

where jki → L3=2jni to ensure the conventionP
n∈Z3 jnihnj ¼ 1. Now,

Z
d3p
ð2πÞ3

d3k
ð2πÞ3 Vðp;kÞjpihkj

→
X

n0;n∈Z3

�
2π

L

�
6 1

ð2πÞ6 L
3=2jn0ihnjL3=2

× V

�
2πn0

L
;
2πn
L

�
; ð2:8Þ

≡ X
n0;n∈Z3

jn0ihnjVL

�
2πn0

L
;
2πn
L

�
; ð2:9Þ

where VL ¼ V=L3.
Lüscher’s formula is a one-to-one relation only in the

simplest cases. In more general cases, most data fail to
find the partners required to apply Lüscher’s formula
directly. As a consequence, a fitting process is necessary.
In the normal Lüscher approach, e.g., Ref. [55], the phase
shift is parametrized and constrained by lattice results. In
contrast, the potential is parametrized and constrained in
this approach.
The phase shifts can be solved from the Lippmann-

Schwinger equation

T̂ ¼ V̂ þ V̂ðE − Ĥ0 þ iεÞ−1T̂; ð2:10Þ

where E is the total energy of system in the rest frame. With
the partial-wave expansions

hpjV̂jki ¼
X
l;m

vlðp; kÞYlmðp̂ÞY�
lmðk̂Þ;

hpjT̂jki ¼
X
l;m

tlðp; k;EÞYlmðp̂ÞY�
lmðk̂Þ; ð2:11Þ

we have

tlðp; k;EÞ ¼ vlðp; kÞ þ
Z

q2dq
ð2πÞ3

vlðp; qÞtlðq; k;EÞ
E − hðqÞ þ iε

:

ð2:12Þ

Then the phase shift is given by

e2iδlðEÞ ¼ 1 − i
q̄2

4π2

�
dhðqÞ
dq

�
−1
����
q¼q̄

tlðq̄; q̄;EÞ; ð2:13Þ

where q̄ is the on-shell momentum, i.e., hðq̄Þ ¼ E.

With a suitable momentum cutoff, the dimension of the
FV Hamiltonian of Eq. (2.5) remains too high to solve for
the spectrum. Moreover, one encounters an overwhelming
number of degeneracies in the spectrum. In the next
section, a formalism providing an optimal set of rest-frame
basis states is developed. The formalismmaximally reduces
the dimension of the Hamiltonian and thus resolves the
degeneracy problem.

III. MIXING BETWEEN PARTIAL WAVES

From rotational invariance, the infinite-volume potential
can be expanded as in Eq. (2.11),

Vðp;kÞ ¼
X
l;m

vlðp; kÞYlmðp̂ÞY�
lmðk̂Þ: ð3:1Þ

Then we will have

V̂L ¼
X
n0;n

X
l;m

L−3vlðkN0 ; kNÞYlmðn̂0ÞY�
lmðn̂Þjn0ihnj;

¼
X
N0;N

X
l;m

1

4πL3
vlðkN0 ; kNÞ

×

�X
n̂0

ffiffiffiffiffiffi
4π

p
Ylmðn̂0Þjn0i

��X
n̂

ffiffiffiffiffiffi
4π

p
Y�
lmðn̂Þhnj

�
;

¼
X
N0;N

X
l

ṽlðkN0 ; kNÞ
X
m

jN0; l; mihN; l; mj; ð3:2Þ

where we use N to represent n2, and we introduce

ṽlðkN0 ; kNÞ ¼
1

4πL3
vlðkN0 ; kNÞ;

kN ¼ 2π
ffiffiffiffi
N

p

L
and

X
n̂

¼
X
n2¼N

ð3:3Þ

to simplify the notation. We also define

jN; l; mi ¼
�P

n̂

ffiffiffiffiffiffi
4π

p
Ylmðn̂Þjni N ≠ 0

δl;0jn ¼ ð0; 0; 0Þi N ¼ 0
: ð3:4Þ

In fact, if we hold kN ¼ 2π
ffiffiffiffi
N

p
=L fixed and let L go to

infinity, then N will also go to infinity. Then the summation
in Eq. (3.4) will be approximately proportional to an
integral over solid angle, and hence, jN; l; mi will be
approximately proportional to an IFV form (Nk ≡ ðkL

2πÞ2),

jNk; l; mi ≔
Z

dΩk̂Ylmðk̂Þjki: ð3:5Þ

In the case of the infinite volume, with rotational
invariance, we can label the energy spectrum in a spin-l
representation of the orthogonal group Oð3Þ, and the
spectrum can be extracted from a reduced Hamiltonian
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Ĥl ¼
Z

k2dk
ð2πÞ3 hðkÞ

X
l;m

jNk; l; mihNk; l; mj

þ
Z

p2dp
ð2πÞ3

k2dk
ð2πÞ3 vlðp; kÞ

X
l;m

jNp; l; mihNk; l; mj:

ð3:6Þ

When we make the system finite, however, we can only
describe the energy spectrum in an irreducible representa-
tion Γ of the cubic group Oh. But the Γ is also constrained
by the initial rotational-invariant potential and the structure
of the lattice momentum sphere.
As states with different N are orthogonal to each other

(this is correct both for jni and jN; l; mi), we will restrict
our discussion to a fixed N first.
It is important to note that states jN; l; mi defined by

Eq. (3.4) are linear combinations of the C3ðNÞ states jni
with n2 ¼ N. Recall that C3ðNÞ is the number of ways to
represent the integerN as a sum of squares of three integers.
The states jN; l; mi are not necessarily orthonormal nor
linearly independent. If we define

VN ¼ spanfjnijn2 ¼ Ng;
VN;lcut ¼ spanfjN; l; mijl ≤ lcut; allmg; ð3:7Þ

we will have

dimðVN;lcutÞ ≤ dimðVNÞ ¼ C3ðNÞ ∀ lcut ∈ N: ð3:8Þ

Moreover, a positive definite Hermitian matrix PN for
each N can be introduced to represent their inner products
as follows:

½PN �l0;m0;l;m ¼ hN; l0; m0jN; l; mi

¼
�P

n̂ 4πY
�
l0m0 ðn̂ÞYlmðn̂Þ N ≠ 0

δl0;0δl;0 N ¼ 0
: ð3:9Þ

PN reflects the degree of partial-wave mixing for a givenN.
Examples are provided in the Appendix B. For values of N
having relatively small values of C3ðNÞ, ½PN �l0;m0;l;m con-
tains many large elements off the diagonal of l0 ¼ l and
m0 ¼ m indicating significant angular momentum mixing.
However, for other values of N, where C3ðNÞ is relatively
large, the averaging process brings ½PN �l0;m0;l;m closer to the
diagonal. In fact, as N tends to infinity, PN=C3ðNÞ will
approximate an identity matrix with index ðl; mÞ.
Considering the definition Eq. (3.4), jN; l; mi behaves as

the vectors of the irreducible representations (irreps) of
Oð3Þ. The irreps of Oð3Þ indicated as spin-parity JP will
decompose into the irreps of Oh. For l ¼ 0;…; 4, the
decomposition is

0þ ¼ Aþ
1 ;

1− ¼ T−
1 ;

2þ ¼ Eþ ⊕ Tþ
2 ;

3− ¼ A−
2 ⊕ T−

1 ⊕ T−
2 ;

4þ ¼ Aþ
1 ⊕ Eþ ⊕ Tþ

1 ⊕ Tþ
2 : ð3:10Þ

Thus, it is convenient to introduce another basis as follows:

jl;Γ; f; αi ¼
X
m

½Cl�Γ;α;mjl; mi; ð3:11Þ

with matrix elements of Cl given in Table I for l ≤ 4. Here,
Γ indicates the irrep, α runs from 1 to the dimension of the
irrep Γ, and f runs from 1 to the number of occurrences of
the irreducible representation Γ in the angular momentum l.

TABLE I. Matrix elements of Cl for l ¼ 0, 1, 2, 3, 4. This table
is provided in many papers, e.g., Table A.2 of [56], and the parity
is suppressed here.

l Γ α
P

m½Cl�m;Γ;f¼1;αjl; mi
0 A1 1 j0; 0i
1 T1 1 1ffiffi

2
p ðj1;−1i − j1; 1iÞ

2 iffiffi
2

p ðj1;−1i þ j1; 1iÞ
3 j1; 0i

2 E 1 j2; 0i
2 1ffiffi

2
p ðj2;−2i þ j2; 2iÞ

T2 1 − 1ffiffi
2

p ðj2;−1i þ j2; 1iÞ
2 iffiffi

2
p ðj2;−1i − j2; 1iÞ

3 − 1ffiffi
2

p ðj2;−2i − j2; 2iÞ
3 A2 1 1ffiffi

2
p ðj3;−2i − j3; 2iÞ

T1 1
ffiffi
5

p
4
ðj3;−3i − j3; 3iÞ −

ffiffi
3

p
4
ðj3;−1i − j3; 1iÞ

2 −i
ffiffi
5

p
4

ðj3;−3i þ j3; 3iÞ − i
ffiffi
3

p
4
ðj3;−1i þ j3; 1iÞ

3 j3; 0i
T2 1 −

ffiffi
3

p
4
ðj3;−3i − j3; 3iÞ −

ffiffi
5

p
4
ðj3;−1i − j3; 1iÞ

2 −i
ffiffi
3

p
4

ðj3;−3i þ j3; 3iÞ þ i
ffiffi
5

p
4
ðj3;−1i þ j3; 1iÞ

3 1ffiffi
2

p ðj3;−2i þ j3; 2iÞ
4 A1 1

ffiffiffiffi
30

p
12

ðj4;−4i þ j4; 4iÞ þ
ffiffiffiffi
21

p
6
j4; 0i

E 1 −
ffiffiffiffi
42

p
12

ðj4;−4i þ j4; 4iÞ þ
ffiffiffiffi
15

p
6
j4; 0i

2 − 1ffiffi
2

p ðj4;−2i þ j4; 2iÞ
T1 1 − 1

4
ðj4;−3i þ j4; 3iÞ −

ffiffi
7

p
4
ðj4;−1i þ j4; 1iÞ

2 i
4
ðj4;−3i − j4; 3iÞ − i

ffiffi
7

p
4
ðj4;−1i − j4; 1iÞ

3 1ffiffi
2

p ðj4;−4i − j4; 4iÞ
T2 1

ffiffi
7

p
4
ðj4;−3i þ j4; 3iÞ − 1

4
ðj4;−1i þ j4; 1iÞ

2 i
ffiffi
7

p
4
ðj4;−3i − j4; 3iÞ þ i

4
ðj4;−1i − j4; 1iÞ

3 1ffiffi
2

p ðj4;−2i − j4; 2iÞ
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For l ≤ 4, as shown in Table I, the value of f always
equals 1. Now, we can define a new basis as follows:

jN; l;Γ; f; αi ¼
X
m

½Cl�m;Γ;f;αjN; l; mi: ð3:12Þ

As Cl is a unitary matrix and independent of N, we haveX
m

jN0; l;mihN; l;mj ¼
X
Γ;f;α

jN0; l;Γ; f; αihN; l;Γ; f; αj;

ð3:13Þ

and the potential Eq. (3.2) will be

V̂L ¼
X
N0;N

X
l

ṽlðkN0 ; kNÞ
X
Γ;f;α

jN0; l;Γ; f; αihN; l;Γ; f; αj:

ð3:14Þ

Now jN; l;Γ; f; αi with different N, Γ, α are orthogonal, so
we can define matrix PN;Γ;α to represent their inner
products,

½PN;Γ;α�l0;f0;l;f ¼ hN; l0;Γ; f0; αjN; l;Γ; f; αi;
¼

X
m0;m

½Cl0 ��m0;Γ;f0;α½PN �l0;m0;l;m½Cl�m;Γ;f;α:

ð3:15Þ

That is, we first perform a unitary transformation to the
Pmatrix of Eq. (3.9) to make it block diagonal according to
the irreps of the cubic group and then isolate the Γ, α part
submatrix.
Now, we can impose an angular momentum cutoff lcut

such that

V̂L ¼
X
N0;N

Xlcut
l¼0

ṽlðkN0 ; kNÞ
X
Γ;f;α

jN0; l;Γ; f; αihN; l;Γ; f; αj:

ð3:16Þ

To extract the spectrum in a given representation Γ, we only
need a reduced potential

V̂L;Γ;α ¼
X
N0;N

Xlcut
l¼0

ṽlðkN0 ; kNÞ

×
X
f

jN0; l;Γ; f; αihN; l;Γ; f; αj ð3:17Þ

for any α.
As we know, the angular momentum quantum number l

is not a good quantum number in the finite volume.
Therefore, l cannot appear in a good basis. Indeed, the
states labeled as jN; l;Γ; f; αi are not orthogonal. Shells
defined in [37] can show this point clearly. Shells can

divide states jni with n2 ¼ N further, and there are seven
different kinds of shells: ð0; 0; 0Þ × 1, ð0; 0; cÞ × 6,
ð0; b; bÞ × 12, ð0; b; cÞ × 24, ða; a; aÞ × 8, ða; a; cÞ × 24,
and ða; b; cÞ × 48, where the numbers indicate how many
different states are referred. As shells are representations of
Oh, they can be decomposed into irreps as well. The
decomposition is given as follows:

ð0; 0; 0Þ ¼ Aþ
1 ;

ð0; 0; cÞ ¼ Aþ
1 ⊕ Eþ ⊕ T−

1 ;

ð0; b; bÞ ¼ Aþ
1 ⊕ Eþ ⊕ T−

1 ⊕ Tþ
2 ⊕ T−

2 ;

ð0; b; cÞ ¼ Aþ
1 ⊕ Aþ

2 ⊕ 2Eþ ⊕ Tþ
1 ⊕ 2T−

1 ⊕ Tþ
2 ⊕ 2T−

2 ;

ða; a; aÞ ¼ Aþ
1 ⊕ A−

2 ⊕ T−
1 ⊕ Tþ

2 ;

ða; a; cÞ ¼ Aþ
1 ⊕ A−

2 ⊕ Eþ ⊕ E− ⊕ Tþ
1 ⊕ 2T−

1

⊕ 2Tþ
2 ⊕ T−

2 ;

ða; b; cÞ ¼ Aþ
1 ⊕ A−

1 ⊕ Aþ
2 ⊕ A−

2 ⊕ 2Eþ ⊕ 2E−

⊕ 3Tþ
1 ⊕ 3T−

1 ⊕ 3Tþ
2 ⊕ T−

2 : ð3:18Þ

It is easy to find only one shell in N ¼ 1, namely, (0,0,1).
As there is no Tþ

2 in (0,0,1), the state jN; l; mi ¼ j1; 2; mi
has no Tþ

2 , even though l ¼ 2 has. Similarly, there is only
one Aþ

1 in (0,0,1), so Aþ
1 in j1; 0; mi and j1; 4; mi will be

linearly dependent. Therefore, jN ¼ 1; l ¼ 0;Γ ¼ Aþ
1 ;

f ¼ 1;α ¼ 1i and jN ¼ 1; l ¼ 4;Γ ¼ Aþ
1 ; f ¼ 1; α ¼ 1i

are linearly dependent.
Furthermore, there are two shells in N ¼ 9, (0,0,3) and

(2,2,1). Some irreps, such as Aþ
1 , appear more than once,

which means jN ¼ 9; l ¼ 0;Γ ¼ Aþ
1 ; f ¼ 1; α ¼ 1i and

jN ¼ 9; l ¼ 4;Γ ¼ Aþ
1 ; f ¼ 1; α ¼ 1i can be linearly in-

dependent. Thus, another state label, F, is introduced to
replace l and f. The largest value of F is denoted as Fmax
and this value is governed by Γ, lcut and N, i.e.,
FmaxðΓ; lcut; NÞ. Fmax is at most Fcut, which counts the l
and f, and does not depend on N, i.e., FcutðΓ; lcutÞ.
For example, when Γ¼Aþ

1 and lcut¼4, FcutðAþ
1 ;4Þ¼2,

as Aþ
1 appears twice in Eq. (3.10). For N ¼ 9,

FmaxðAþ
1 ; 4; 9Þ ¼ 2, as there are two independent states

originating from shells (0,0,3) and (2,2,1). However,
FmaxðAþ

1 ; 4; 1Þ ¼ 1 for N ¼ 1. In Appendix A, we give
a detailed calculation for N ¼ 1 and 9 cases.
Now, we proceed to orthonormalize the basis

jN; l;Γ; f; αi to get the final basis labeled as jN;Γ; F; αi.
From the Wigner-Eckart theorem, vΓ;F0;FðkN0 ; kNÞ is α
independent and we have

V̂L ¼
X
N0;N

X
Γ;F0;F

vΓ;F0;FðkN0 ; kNÞ

×
X
α

jN0;Γ; F0; αihN;Γ; F;αj: ð3:19Þ
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Using Eq. (3.14),

vΓ;F0;FðkN0 ; kNÞ ¼ hN0;Γ; F0; αjV̂LjN;Γ; F; αi

¼
Xlcut
l¼0

ṽlðkN0 ; kNÞ

×
X
f

hN0;Γ; F0; αjN0; l;Γ; f; αi

× hN; l;Γ; f; αjN;Γ; F; αi;

¼
Xlcut
l¼0

ṽlðkN0 ; kNÞ½Gl;Γ�N0;F0;N;F ∀ α;

ð3:20Þ

where

½Gl;Γ�N0;F0;N;F ¼
X
f

½Ml;Γ;α��f;N0;F0 ½Ml;Γ;α�f;N;F ∀ α;

ð3:21Þ

with

½Ml;Γ;α�f;N;F ¼ hN; l;Γ; f; αjN;Γ; F; αi: ð3:22Þ

The inner product matrix Eq. (3.15) tells us not only how to
do the orthonormalization, but also how to compute the
mixed inner product in Eq. (3.22), so it summarizes all the
things needed to solve for G.
As a specific implementation of the orthonormalization

procedure, we present an eigenmode-based method here.
An alternative approach based on the Gram-Schmidt
procedure is presented in Appendix A. We discuss the case
FcutðΓ; lcutÞ ¼ 1þ 1 (we use 1þ 1 to mean that the two l
containing Γ are different) here, and the generalization
should be straightforward. One proceeds by selecting
particular values for N, Γ, α, and f and constructing the
inner-product matrix

P̃N;Γ;α ¼
� hl1jl1i hl1jl2i
hl2jl1i hl2jl2i

�
: ð3:23Þ

Here indices N, Γ, α, and f have been suppressed in the
bra-ket notation, i.e., jl1i ¼ jN; l1;Γ; f; αi. One then solves
the eigenvalue equation

P̃N;Γ;αXi ¼ λiXi; ð3:24Þ

providing the orthonormalized eigenvectors Xi with eigen-
values λi. States jN;Γ; F; αi≡ jFi can be constructed from

jF̃1i ¼ X1
j jlji;

jF̃2i ¼ X2
j jlji: ð3:25Þ

These states are easily normalized via the consideration of

hF̃ijF̃ii ¼ Xi�
j hljjlkiXi

k;

¼ Xi�
j ½P̃N;Γ;α�jkXi

k;

¼ λiXi†Xi ¼ λi: ð3:26Þ
Thus, the orthonormal vectors jN;Γ; Fi; αi are

jN;Γ; Fi; αi ¼
(
0; λi ¼ 0

Xi
jffiffiffi
λi

p jN; lj;Γ; f; αi; λi ≠ 0
: ð3:27Þ

Fmax is given by the number of nonzero eigenvalues, i.e.,
the rank of P̃N;Γ;α.
Now we have the correct orthonormal basis jN;Γ; F; αi

with the mixed inner products of Eq. (3.22) given by

½Mlj;Γ;α�f;N;Fi
¼ hN; lj;Γ; f; αjN;Γ; Fi; αi

¼
X
k

1ffiffiffiffi
λi

p ½P̃N;Γα�jkXi
k;

¼ λiXi
jffiffiffiffi
λi

p ¼
ffiffiffiffi
λi

p
Xi
j: ð3:28Þ

With a momentum cutoff Ncut imposed such that
N ≤ Ncut, a Hamiltonian of dimension at most NcutFcut ×
ðΓ; lcutÞ þ 1 is generated to extract the spectrum of the
representation Γ. Here, FcutðΓ; lcutÞ counts the representa-
tion Γ in all l ≤ lcut and the þ1 accounts for N ¼ 0.
In summary, the general approach proceeds as follows.

First, one performs the summation in Eq. (3.9) to get the
ðlcut þ 1Þ2 × ðlcut þ 1Þ2 matrices PN≤Ncut

. Second, the uni-
tary transformation of Eq. (3.15) is performed to make
these matrices block diagonal according to the irreps of the
cubic group. One then considers the Γ, α portions, which
are Fcut × Fcut matrices. Finally, one uses these inner pro-
duct matrices to orthonormalize the states jN; l;Γ; f;αi to
construct the final jN;Γ; F; αi basis states and compute the
combination coefficients G through Eqs. (3.21) and (3.22).
At last, we generalize our discussion for particles with

spin. The first step is to add the spin quantum number
ðs; szÞ to jki to give jk; s; szi, then one combines them with
spherical harmonics as in Eq. (3.5) to define

jk; l; lz; s; szi ≔
Z

dΩk̂Yl;lzðk̂Þjk; s; szi; ð3:29Þ

and it can be further combined with the ClebschGordan
coefficients hl; lz; s; szjj; jzi to produce

jk; l; s; j; jzi ≔
X
lz;sz

jk; l; lz; s; szihl; lz; s; szjj; jzi: ð3:30Þ

Since ðj; jzÞ are now the good rotation quantum numbers,
Wigner-Eckart theorem will only allow the interactions
built with
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jk0; l0; s0; j; jzihk; l; s; j; jzj: ð3:31Þ

We also note that when in the finite volume, one will need
the P-matrix for jN; l; s; j; jzi (that is the finite-volume
counterpart for jk; l; s; j; jzi) defined as

½PN;s�l0;j0;j0z;l;j;jz ¼ hN; l0; s; j0; j0zjN; l; s; j; jzi
¼

X
l0z;lz;sz

hj0; j0zjl0; l0z; s; szi½PN �l0;l0z;l;lz

× hl; lz; s; szjj; jzi; ð3:32Þ
where PN is the P-matrix defined in Eq. (3.9). Second, one
constructs the cubic basis as in Eq. (3.12) to be

jN; l; s;Γ; f; αi ¼
X
m

½Cj�Γ;f;α;jz jN; l; s; j; jzi; ð3:33Þ

where the coefficient matrix Cj can be found in many
papers, e.g., Table A.2 (for bosons) and Table A.4 (for
fermions) of Ref. [56]. It is now straightforward to get
the P-matrix for jN; l; s;Γ; f; αi, to use it to orthonor-
malize these states, and to obtain the final combination
coefficients.

IV. EXAMPLE OF ISOSPIN-2 ππ SCATTERING

In this section, the formalism developed herein is applied
to analyze lattice QCD results for the isospin-2 ππ
scattering system. In doing so, we will explore the con-
sistency of a separable potential analysis result with that
from Lüscher’s method.
The lattice QCD results are from Ref. [55] where an

anisotropic action is used. They quote the spatial lattice
spacing as ∼ 0.12 fm, temporal lattice spacing a−1t ∼
5.6 GeV, and the anisotropy ξ ¼ as=at ¼ 3.444ð6Þ.
When setting the scale, we refer to at and ξ. The pion
mass for the simulation results atmπ ¼ 0.06906ð13Þ –
396 MeV. In our analysis, only ξ ¼ 3.444ð6Þ and atmπ ¼
0.06906ð13Þ will be used, since we did not find sufficiently
precise values for as and at in Ref. [55]. In the analysis of
Ref. [55], lattice results above the 4π threshold are not
included and since our formalism does not include the four-
body contributions, we apply the same cut. The results we
fit are illustrated in Fig. 1.

A. Separable potential analysis

Following Ref. [55], we work with dimensionless lattice
units. The energy h of Eq. (2.1) is taken as

athðkÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðatmπÞ2 þ ðatkÞ2

q
; ð4:1Þ

and when going to the finite-volume system, we have

atk → atkN ¼ at
2π

ffiffiffiffi
N

p

L
: ð4:2Þ

Onlys,d, andgwaveswill be taken intoaccount as inRef. [55].
With the partial-wave expansion of Eq. (3.1), the partial-wave
potentials are taken to be of a simple separable form

a−2t vlðp; kÞ ¼
Gl

ðatmπÞ2
flðpÞflðkÞ; ð4:3Þ

with

f0ðkÞ ¼
1

ð1þ ðd0atkÞ2Þ2
;

f2ðkÞ ¼
ðd2atkÞ2

ð1þ ðd2atkÞ2Þ3
;

f4ðkÞ ¼
ðd4atkÞ4

ð1þ ðd4atkÞ2Þ4
; ð4:4Þ

with parameters Gl and dl dimensionless.

16 18 20 22 24 26
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FIG. 1. Lattice spectrum for irreps Aþ
1 , Eþ, Tþ

2 —from
Ref. [55]. Dashed curves represent the noninteracting rest-frame
pion-pair energies 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ k2N
p

.
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There are two fit parameters Gl and dl for each partial
wave. The amplitude of the potential is governed by Gl.
The s-wave potential reaches its peak value at k ¼ 0, while
the peak positions of the d- and g-wave potentials are
determined by dl. The shapes of these potentials are shown
in Fig. 2. For G0 ∼ G2 ∼G4, the potentials have the natural
progression v0 > v2 > v4.
The spectrum is solved from the reduced Hamiltonian

discussed in Sec. III. Then the phase shifts are determined
through the Lippmann-Schwinger as discussed around
Eq. (2.10). With the cutoff Ncut chosen to be 600
(∼10 GeV) as in Ref. [4], the full Hamiltonian involvesP

600
N¼0 C3ðNÞ ¼ 61565 states and can be reduced to

Hamiltonians of dimension 923, 965, and 963 for Aþ
1 ,

Eþ, and Tþ
2 , respectively.

B. Fitting to lattice QCD results

Our fitting procedure is to minimize χ2 defined by

χ2 ¼ ½ESep − ELattice�T ½C�−1½ESep − ELattice�; ð4:5Þ

where ESep − ELattice denotes the vector of the differences
between the spectrum obtained in the separable potential

model and the lattice. The covariance matrix C denotes the
covariances in the lattice spectrum of Ref. [55].
When fitting with all six parameters free, the phase

shifts δ2 and δ4 show an unreasonable behavior in the high-
momentum range due to the exclusion of high-energy
lattice QCD results above the 4π threshold which would
otherwise constrain the regulator parameters d2 and d4. In
the absence of lattice constraints, we consider three models
for the parameters d2 and d4.
Introducing the more familiar regulator parameter Λ via

k
Λi

¼ diatk; ð4:6Þ
0 1 2 3

4

8

12

FIG. 2. The s, d, and g partial-wave potential, a−2t vlðk; kÞ,
with illustrative parameters G0 ¼ 1=20 and G2 ¼ G4 ¼ d0 ¼
d2 ¼ d4 ¼ 1.

TABLE II. Parameters optimizing the fit of the separable
potential model to the lattice QCD results of Ref. [55] for
isospin-2 ππ scattering. Three cases for the regular parameters d2
and d4 are considered as described in the text. In each case, four
parameters are constrained by 11 lattice QCD results leaving
7 degrees of freedom.

l ¼ 0 l ¼ 2 l ¼ 4

Case χ2 G0 d0 G2 d2 G4 d4

A 13.4 68.5 4.63 56.4 dA 7.43 × 101 dA
B 10.5 67.8 4.57 90.6 dB 3.40 × 102 dB
C 9.8 67.2 4.54 187. dC 2.34 × 103 dC

16 18 20 22 24 26
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0.25

0.15

0.20

0.25

0.15

0.20

0.25

FIG. 3. Finite-volume spectrum fit of the separable potential
model to the lattice QCD results of Ref. [55] for isospin-2 ππ
scattering. Solid curves illustrate the energies resolved in the
separable potential model as the fit parameters of Table II Case B
are optimized to fit the lattice QCD results (square points).
Dashed curves illustrate the noninteracting rest-frame pion-pair
energies as in Fig. 1.
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we consider values dA ¼ 7.17; dB ¼ 4.78, and dC ¼ 3.58
corresponding to ΛA ∼ 0.8 GeV, ΛB ∼ 1.2 GeV, and
ΛC ∼ 1.6 GeV, respectively.
We proceed with d0 as a fit parameter and constrain d2 ¼

d4 ¼ di with i ¼ A, B, or C. The resulting parameters are
shown in Table II. The volume-dependent spectra are
shown in Fig. 3 using the parameters for case B with
ΛB ∼ 1.2 GeV. The phase shifts and potentials are illus-
trated in Fig. 4 for all three cases considered.
In the top pair of figures in Fig. 4, the phase shifts and

potentials for s-wave scattering are given. Because of the
similar fit parameters in the three cases considered, it is not
surprising that their corresponding phase shifts and poten-
tials are similar. It illustrated how these lattice QCD results
constrain the s-wave phase shift of ππ scattering well.
Moreover, the separable potential model result is consistent
with that of Ref. [55] employing Lüscher’s method.
In the remaining panels of Fig. 4, the d- and g-wave

phase shifts and potentials are shown. They show different

features from the s-wave case. In the low-momentum range
where lattice QCD results constrain the effective field
theory, all three cases predict phase shifts in a consistent
manner and in agreement with Lüscher’s method for the
phase shifts away from the 4π cut [55]. Beyond the 4π cut,
the various cases diverge.
The behavior of the potentials provides an explanation

for this. The lattice QCD results prefer a potential increas-
ing steadily in the low-momentum range. However, there is
freedom to lower the value of d with a suitable increase in
G at the same time to maintain the behavior of the potential
in the low-momentum regime. If we increase d, we do get
smaller χ2, but that may not be reasonable. If one expects
v0 > v2 > v4, d2 ¼ d4 ¼ dB is favored over dC. To con-
strain these parameters, one needs information from the
lattice at higher energies.
We now proceed to estimate the uncertainties associated

with the separable potential analysis. Here we focus on the
preferred case with ΛB ∼ 1.2 GeV.
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FIG. 4. Phase shifts (left) and potentials (right) for s, d, and gwaves from the separable potential model are illustrated by the curves for
the three cases considered as described in the text. The square points from Ref. [55] are those that can be extracted from the finite-
volume spectrum of Fig. 1 using Lüscher’s method. The vertical lines denote the 4π threshold with ðatkÞ2 ¼ 0.0143.
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Our covariance for parameters λi is defined as ½H=2�−1,
where ½H� is the Hessian of χ2, the matrix of second-order
partial derivatives over parameters

½H�i;j ¼
∂2χ2

∂λi∂λj : ð4:7Þ

As two dl are fixed, we only have four parameters and the
final covariance returned by MINUIT 2 (ordered as G0, d0,
G2, G4) is

0
BBB@

11.4 0:674 58.4 −1.97 � 102
0.674 0.0773 1.53 −9.61
58.4 1.53 8.02 � 102 −1.28 � 103

−1.97 � 102 −9.61 −1.28 � 103 9.45 � 104

1
CCCA:

ð4:8Þ

As the different values of l are decoupling in solving for the
phase shifts, the values underlined in Eq. (4.8) are used in
calculating the errors in the phase shifts. To obtain error
estimates, we resample the parameters by using Eq. (4.8) to
give 10000 sets of parameters for each l. These parameter
sets are then used to solve for the phase shifts at 10000
different momenta, as illustrated by the scattered points
in Fig. 5. Results from our analysis and from Ref. [55]
are consistent, as shown in Fig. 5. Thus, the reduction
formalism is working well and the Hamiltonian formalism
is indeed consistent with the Lüscher method. Furthermore,
one advantage of our method might convey is that to
formally disentangle unphysical partial-wave mixing using
the Lüscher method without any assumptions (even EFT
assumptions), one needs different physical volumes where
the same scattering momentum is allowed. Arranging this
for each energy level is, computationally, impractical, at
least in a lattice QCD setting. On the other hand, it is worth
mentioning that the ππ phase shifts are all very small in our
calculation. Noting our energy range is below the 4π
threshold, we expect chiral perturbation theory (χPT) to
be applicable in this energy regime. Thus, it is no surprise
that the spectrum and resulting phase shifts can be
described by our phenomenological model with four free
parameters.
We can also examine the free state constituents of the

energy eigenstates. Table III describes the composition of
the first three levels for L ¼ 24 and Γ ¼ Aþ

1 . Note that the
further an eigenenergy is away from the free energy, the
more complex is its structure. Only when an eigenstate is
close in energy to the noninteracting basis state will the
eigenstate be dominated by single free state. For the first
few energy eigenstates in the other representations con-
sidered, it is not surprising that they are almost 100%
composed by a single free state as their energies are almost
the free energies.

V. SUMMARY

In this work, a formalism based on Hamiltonian effective
field theory has been developed to address partial-wave
mixing in a periodic finite volume. The formalism is
required to connect infinite-volume partial-wave scattering
phase shifts to the finite-volume spectra of lattice QCD.
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FIG. 5. Phase shifts predicted by the separable potential model
for s (top), d (middle), and g (bottom) partial waves. Solid curves
illustrate the central value of our fit as in Fig. 4 and the scattered
points describe the uncertainty.

TABLE III. The noninteracting (free) basis-state composition
of the first three energy eigenstates for L=as ¼ 24 and Γ ¼ Aþ

1 .
Basis states with momenta kN span the columns. Each row
describes the contributions of the basis states as a percentage to an
energy eigenstate.

Eigenstate N ¼ 0 N ¼ 1 N ¼ 2 N ¼ 3 N ¼ 4 � � �
First 99.7 0.2 0.0 0.0 0.0 � � �
Second 0.1 97.4 1.9 0.2 0.0 � � �
Third 0.0 1.5 94.5 2.8 0.3 � � �
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Our formalism has been developed with reference to the
rest frame.
A key step is to introduce a momentum cut and an

angular momentum cut in the finite volume, enabling one to
reduce the dimension of the Hamiltonian in the finite
volume. Indeed, the formalism presented herein provides
an optimal set of rest-frame basis states maximally reducing
the dimension of the Hamiltonian. To obtain the optimal
rest-frame basis states, we introduced several intermediate
bases as shown in Eqs. (3.4) and (3.12). Calculation of their
inner products not only illustrates partial-wave mixing but
also enables the determination of the link from the original
infinite-volume Hamiltonian, where the scattering poten-
tials are defined, to the finite volume of the lattice where
irreps of the cubic group are considered. Finally, we
presented a specific step-by-step implementation of the
process to determine the infinite-volume potentials con-
tributing to the irreps of the finite volume.
We then considered an in-practice example of isospin-2

ππ scattering to test the consistency between a separable
potential model and Lüscher’s method as implemented in
Ref. [55]. The results demonstrate that the formalism
developed herein is consistent with that of Lüscher.
While relating the finite-volume spectrum and phase

shifts as in Lüscher’s method, a Hamiltonian formalism
also provides insight into the composition of the finite-
volume energy eigenstates. In this analysis, one observes
only mild mixing between the noninteracting basis states.
This provides a deeper understanding of why current lattice
methods for exciting these two-particle states are so
effective.
Additional information is available from the consider-

ation of scattering systems in moving frames. In light of the
limited information available in contemporary lattice QCD
simulations in the rest frame, we consider the development
of the moving frame formalism to be necessary. The
moving frame formalism is also necessary for a three-body
formalism, since two of the three particles can have a
nonvanishing total momentum. In the three-body case, a
direct Hamiltonian fit should be formally simpler than the
three-body Lüscher formalism. Of course, one of the
challenges is the significant increase of the dimension of
the Hamiltonian matrix.
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APPENDIX A: EXAMPLE OF SOLVING FOR
THE COMBINATION COEFFICIENTS G

THROUGH THE GRAM-SCHMIDT PROCESS

Wewill discuss FcutðΓ; lcutÞ ¼ 1 and FcutðΓ; lcutÞ ¼ 1þ 1
(we use 1þ 1 to mean that the two l containing Γ are
different) cases in detail, these cases cover all cases of
lcut ≤ 4. The P-matrix Eq. (3.15) is assumed to be solved
already, as the calculation process is straightforward by
using Eqs. (3.9) and (3.15) and Table I.

1. Case of FcutðΓ;lcutÞ= 1
There is only one l ≤ lcut containing Γ now. For any α,

jN;Γ; F ¼ 1; αi are just normalized jN; l;Γ; f ¼ 1; αi. So
from Eq. (3.22), we have

½Gl;Γ;α�f¼1;N;F¼1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½PN;Γ;α�l;f¼1;l;f¼1

q
; ðA1Þ

and states with ½Gl;Γ;α�f¼1;N;F¼1 ¼ 0 should be discarded.
Then,

½Gl;Γ�N0;F0¼1;N;F¼1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½PN0;Γ;α�l;f¼1;l;f¼1½PN;Γ;α�l;f¼1;l;f¼1

q
;

ðA2Þ

so we have

V̂L;Γ;α ¼
X
N0;N

ṽlðkN0 ; kNÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½PN0;Γ;α�l;f¼1;l;f¼1½PN;Γ;α�l;f¼1;l;f¼1

q
× jN0;Γ; f0; αihN;Γ; f; αj: ðA3Þ

a. Cases of pure s wave and pure p wave

As

½PN;Aþ
1
;α¼1�l¼0;f¼1;l¼0;f¼1 ¼ ½PN �l¼0;m¼0;l¼0;m¼0 ¼ C3ðNÞ

ðA4Þ

and

½PN;T−
1
;α�l¼1;f¼1;l¼1;f¼1 ¼ ½PN �l¼1;m;l¼1;m

¼ C3ðNÞ ∀ α; m; ðA5Þ

we have the same combination coefficients

½Gl;Γ�N0;F0¼1;N;F¼1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C3ðN0ÞC3ðNÞ

p
ðA6Þ
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for the pure s-wave and pure p-wave cases. So, we just
reproduce the result in Ref. [4].
In fact, there can be no state in some N, e.g., we know

C3ð7Þ ¼ 0. If these states are not discarded, there will be
spurious states in the spectrum, which are not physical.

b. Splitting of the d wave

Here only N ¼ 1 (6 states) and N ¼ 9 (30 states) will be
considered. Then, we have

½Gl¼2;Eþ;α¼1�f¼1;N¼1;F¼1 ¼
ffiffiffiffiffi
15

p
;

½Gl¼2;Eþ;α¼1�f¼1;N¼9;F¼1 ¼
ffiffiffiffiffi
65

3

r
;

Discarded∶ ½Gl¼2;Tþ
2
;α¼1�f¼1;N¼1;F¼1 ¼ 0;

½Gl¼2;Tþ
2
;α¼1�f¼1;N¼9;F¼1 ¼

ffiffiffiffiffiffiffiffi
320

p

3
: ðA7Þ

So, the matrix form of the reduced V̂L in Eþ will be

1

4πL3

�
15v2ðk1; k1Þ 5

ffiffiffiffiffi
13

p
v2ðk1; k9Þ

5
ffiffiffiffiffi
13

p
v2ðk9; k1Þ 65

3
v2ðk9; k9Þ

�
; ðA8Þ

and the matrix form of the reduced V̂L in Tþ
2 will be

1

4πL3

�
320
9
v2ðk9; k9Þ

�
; ðA9Þ

where vlðk; k0Þ is the l partial-wave potential and ki ¼
2π

ffiffi
i

p
=L is the discrete momentum.

2. Case of FcutðΓ;lcutÞ= 1 + 1
For the case FcutðΓ; lcutÞ ¼ 1þ 1, f is always one, and

therefore there are two states jN; l1;Γ; f ¼ 1; αi and
jN; l2;Γ; f ¼ 1; αi, for some fixed N, α. We follow the
same notation introduced around Eq. (3.23), which sup-
presses the indices N, Γ, α, and f, and uses jlii and jFii to
represent jN; li;Γ; f ¼ 1; αi and jN;Γ; Fi; αi, respectively.
For completeness, we reintroduce the reduced P-matrix
equation (3.23)

P̃N;Γ;α ¼
� hl1jl1i hl1jl2i
hl2jl1i hl2jl2i

�
: ðA10Þ

To calculate the combination coefficients ½Mli;Γ;α�f¼1;N;Fj
¼

hlijFji, the states jlii must be transformed to the new,
orthonormal basis in jFii. This orthonormalization can be
performed in a number of ways, one is the eigenmode-
based method introduced around Eq. (3.23), another is the
Gram-Schmidt process.
For this process, the projection of jYi onto the span of

jXi is defined as

projjXiðjYiÞ ¼
(
0; jXi ¼ 0

hYjXi
hXjXi jXi; jXi ≠ 0

: ðA11Þ

Defining some jF̃i, where jFi ¼ jF̃i=
ffiffiffiffiffiffiffiffiffiffiffiffi
hF̃jF̃i

p
, the Gram-

Schmidt process gives

jF̃1i ¼ jl1i; ðA12Þ

jF̃2i ¼ jl2i − projjF̃1iðjl2iÞ: ðA13Þ

Normalizing these states requires careful consideration of
the cases where jl1i ¼ 0 and jl2i ¼ 0. When the original
states jlii are nonzero, jF̃ii must be normalized to jFii ¼
jF̃ii=hF̃ijF̃ii. These normalization factors hF̃1jF̃ii and
hF̃2jF̃2i are given by

hF̃1jF̃1i ¼ hl1jl1i; ðA14Þ

hF̃2jF̃2i ¼ hl2jl2i −
hl2jl1i2
hl1jl1i

;

¼ 1

hl1jl1i
ðhl1jl1ihl2jl2i − hl1jl2i2Þ;

¼ detðP̃N;ΓαÞ
hl1jl1i

: ðA15Þ

Therefore, the final, orthonormal states are given as

jF1i ¼
(
0; jl1i ¼ 0

jl1iffiffiffiffiffiffiffiffiffi
hl1jl1i

p ; jl1i ≠ 0
; ðA16Þ

jF2i ¼

8>>>>><
>>>>>:

0; jl1i ¼ jl2i ¼ 0

jl2iffiffiffiffiffiffiffiffiffi
hl2jl2i

p ; jl1i ¼ 0; jl2i ≠ 0

jl2i−hl2 jl1i
hl1 jl1ijl1iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det P̃N;Γ;α=hl1jl1i
p ; jl1i ≠ 0; detðP̃N;Γ;αÞ ≠ 0

:

ðA17Þ

From these expressions of jFii, we see that there are three
possible values for Fmax. When jF1i and jF2i both vanish,
we have that Fmax ¼ 0. Fmax ¼ 1 when only one jFii
vanishes but the other does not, and Fmax ¼ 2 for only the
second entry of Eq. (A16) and the third entry of Eq. (A17).
As these states are now constructed in terms of only jlii
as given in the elements of P̃N;Γα from Eq. (3.15), it
is therefore simple to calculate the matrix defined in
Eq. (3.22),

½Ml;Γ;α�f;N;F ¼ hN; lj;Γ; f; αjN;Γ; Fi; αi;
¼ hljjFii: ðA18Þ
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a. Mixing between s wave and g wave

Here only N ¼ 1 (6 states) and N ¼ 9 (30 states) will be
considered as before, we have

P̃N¼1;Aþ
1
;α¼1 ¼

�
6 3

ffiffiffiffiffi
21

p

3
ffiffiffiffiffi
21

p
63
2

�
ðA19Þ

and

P̃N¼9;Aþ
1
;α¼1 ¼

0
B@ 30 − 25

3

ffiffi
7
3

q
− 25

3

ffiffi
7
3

q
9835
162

1
CA: ðA20Þ

The determinants give

detðP̃N¼1;Aþ
1
;α¼1Þ ¼ 0; detðP̃N¼9;Aþ

1
;α¼1Þ ¼

44800

27
;

ðA21Þ

so there is only one state in N ¼ 1, while there are two
states in N ¼ 9. Then we have (we use ½Gl�N;F to represent
½Gl;Γ¼Aþ

1
;α¼1�f¼1;N;F)

½Gl¼0�N¼1;F¼1 ¼
ffiffiffi
6

p
; ½Gl¼0�N¼9;F¼1 ¼

ffiffiffiffiffi
30

p
;

½Gl¼0�N¼9;F¼2 ¼ 0; ½Gl¼4�N¼1;F¼1 ¼ 3

ffiffiffi
7

2

r
;

½Gl¼4�N¼9;F¼1 ¼ −
5

9

ffiffiffiffiffi
35

2

r
; ½Gl¼4�N¼9;F¼2 ¼

8

9

ffiffiffiffiffi
70

p
:

ðA22Þ

So the matrix form of the reduced V̂L in Aþ
1 will be

1

4πL3

0
BBB@

12v1;1
0
þ63v1;1

4

2

ffiffi
5

p ð36v1;9
0
−35v1;9

4
Þ

6

56
ffiffi
5

p
v1;9
4

3ffiffi
5

p ð36v9;1
0
−35v9;1

4
Þ

6

5ð972v9;9
0
þ175v9;9

4
Þ

162

−1400v9;9
4

81

56
ffiffi
5

p
v9;1
4

3

−1400v9;9
4

81

4480v9;9
4

81

1
CCCA;

ðA23Þ

where vi;jl ¼ vlðki; kjÞ.

APPENDIX B: CHARACTERISTICS OF THE
P-MATRIX

The P-matrix is calculated via the definition of Eq. (3.9).
Here we provide a few examples of the numerical values for
PN ¼ P1, P581 and P941 in Figs. 6–8, respectively. The off-
diagonal nature of the matrices is a direct illustration of
partial-wave mixing in the periodic finite volume of the
cubic group.
The values of N selected provide an overview of the

characteristic properties of PN . P1 is characteristic of low
values of N where off-diagonal elements can be the same
order of magnitude as the diagonal elements. The values of
N ¼ 581 and 941 illustrate moderate and large levels of
shell mixing which can aid in suppressing off-diagonal
elements. As N grows, the opportunity for shell mixing
increases and the P-matrix will approach the identity as
discussed in Sec. III. Also, we note the P-matrix of the
cubic-group basis defined in Eq. (3.15) also respects this
behavior, as the unitary transformation of an identity matrix
is still an identity matrix.

FIG. 6. P1=C3ð1Þ with C3ð1Þ ¼ 6: 25 × 25 matrix ordered as ðl; mÞ ¼ ð0; 0Þ; ð1;−1Þ; ð1; 0Þ; ð1; 1Þ;…; ð4; 4Þ. As only one shell is
contributing, off-diagonal elements can be the same order of magnitude as the diagonal elements.
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