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An extension of the van der Waals hadron resonance gas (VDWHRG) model which includes the in-
medium thermal modification of hadron masses, the thermal VDWHRG (TVDWHRG) model, is
considered in this paper. Based on the 2þ 1 flavor Polyakov linear sigma model (PLSM) and the scaling
mass rule of hadrons, we obtain the temperature behavior of all hadron masses for different fixed baryon
chemical potentials μB. We calculate various thermodynamic observables at μB ¼ 0 GeV in the
TVDWHRG model. An improved agreement with the lattice data from the TVDWHRG model in the
crossover region (T ∼ 0.16–0.19 GeV) is observed as compared to those from the VDWHRG and ideal
HRG (IHRG) models. We further discuss the effects of the in-medium modification of hadron masses and
VDW interactions between (anti)baryons on the dimensionless transport coefficients, such as the shear
viscosity to entropy density ratio (η=s) and scaled thermal (λ=T2) and electrical (σel=T) conductivities in the
IHRG model at different μB by utilizing quasiparticle kinetic theory with relaxation time approximation.
We find in contrast to the IHRG model, the TVDWHRG model leads to a qualitatively and quantitatively
different behavior of transport coefficients with T and μB.
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I. INTRODUCTION

Strongly interacting matter created in ultrarelativistic
heavy-ion experiments at the Relativistic Heavy-Ion
Collider of BNL and the Large Hadron Collider of
CERN has attracted intense theoretical and experimental
investigations. The study of strongly interacting matter can
give a deep understanding of the quantum chromodynamics
(QCD) phase diagram and equation of state of hot and dense
matter. Lattice QCD simulations as a reliable tool to study
QCD thermodynamics have demonstrated that at finite
temperature and vanishing baryon chemical potential μB,
there exists a smooth crossover [phase transition from
hadronic matter to a chirally symmetric quark-gluon plasma
(QGP)] ranging from 0.15 to 0.2 GeV [1,2]. The ideal
hadron resonance gas (IHRG) model is a widely used

statistical model which provides a remarkably good descrip-
tion of the lattice QCD data [3–5] at low temperature
(T < 0.15 GeV) and zero μB. However, the IHRG model
fails to fit the lattice QCD data in the crossover region
(T ¼ 0.16–0.19 GeV). So, an extended IHRGmodel called
thevan derWaals hadron resonance gas (VDWHRG)model,
which includes both the long-distance attractive and short-
distance repulsive van der Waals–(VDW) type interactions
between (anti)baryons, is implemented [6,7]. The results of
the thermodynamic quantities within the VDWHRG model
are closer to the latticeQCDdata in the crossover region than
that within the IHRG model.
The transport properties of strongly interacting matter

play a significant role in describing the dynamical evolu-
tion of hot and dense matter. Shear viscosity for the
hadronic sector has been analytically calculated in the
relativistic kinetic theory using the Chapman-Enskog (CE)
approximation [8–13] and relaxation time approximation
(RTA) [14–17]. In Ref. [18], shear viscosity for pion gas
has been obtained in the linear response theory using Kubo
formulas. The shear viscosity for the hadronic phase has
also been computed in the microscopic transport model
(e.g., SMASH [19], the ultrarelativistic quantum molecular
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dynamics (UrQMD) model [20], B3D transport model [21],
and PHSD [22]), excluded volume HRG (EVHRG) model
[23–25], chiral perturbative theory (ChPT) [26–28], effec-
tive QCD models [29–32], quasiparticle theory [33,34],
scaled hadron mass-couplings (SHMC) model [35], and so
on. A few articles also deal with electrical conductivity in
pure pion gas [27,36]. In hadronic matter, electrical
conductivity has been estimated by employing the
relativistic kinetic theory [37,38] and Kubo formalism
[39]. Furthermore, electrical conductivity in the hadronic
temperature domain was also recently computed in the
transport code SMASH [40] in the PHSD transport
model [41,42] in anisotropic lattice QCD simulation
[43]. Another important transport coefficient is thermal
conductivity which has been calculated in hot pion gas
[14,15,44–46] and a hadronic gas mixture [12,47,48]
using kinetic theory. Recently, the electrical and thermal
conductivities of the hadronic temperature domain have
also been estimated in effective QCD models [29,49,50]
and the EVHRG model [51]. However, so far most of
these calculations have taken the vacuum hadron masses
as inputs and have not taken into account the influence of
in-medium hadron masses on transport coefficients.
As we know, spontaneous chiral symmetry breaking is

an important feature in QCD vacuum, which is related to
the generation of hadron masses [52–54]. With the
increase of temperature or baryon chemical potential,
chiral symmetry will be restored, which implies that the
masses of constituent quarks should be reduced to zero.
Once the constituent quark masses are relevant to the
temperature and baryon chemical potential, the masses of
the subsequent hadrons should also be naturally depen-
dent on the temperature and baryon chemical potential.
In the literature, two main effective QCD-like models,
the Polyakov-Nambu-Jona-Lasinio (e.g., [55,56]) and the
Polyakov linear sigma model (PLSM) (e.g., [57–61]) are
widely used. These models are successful in explaining
the dynamics of both chiral-symmetry-breaking restora-
tion and the confinement-deconfinement transition, as
well as describing the thermal evolution of meson
masses in hot and dense QCD matter. So it is of
great interest to replace vacuum hadron masses with
temperature- and chemical-potential-dependent masses to
explore the thermal hadron mass effect on the thermo-
dynamic quantities and transport coefficients in hot and
dense hadronic matter.
In this work, we develop a thermal VDWHRG

(TVDWHRG) model, which is an extension of the
VDWHRG model by including the dependence of hadron
masses on temperature T and baryon chemical potential μB.
In the TVDWHRG model, we utilize the 2þ 1 flavor
PLSM combined with the generalized mass scaling rule of
hadrons to obtain the thermal behavior of hadron masses.
Then, these thermal hadron masses are taken as dynamic
inputs to calculate the thermodynamic quantities in the

VDWHRG model. We further explore how the effects of
thermal hadron masses and VDW interactions influence the
transport coefficients, such as shear viscosity and electrical
and thermal conductivities in hadronic matter. In our
model, the derivation of transport coefficients is performed
by solving the Boltzmann equation in the relaxation time
approximation.
The paper is organized as follows. In Sec. II, we review

the ideal and interacting HRGmodels. In Sec. III, we give a
brief overview of the PLSM and discuss the analytical
expressions for the medium modifications of hadron
masses at finite temperature and baryon chemical potential.
In Sec. IV, we present the formulas of the transport
coefficients in the quasiparticle kinetic theory under the
relaxation time approximation. In Sec. V, the numerical
results and discussions are presented. Section VI summa-
rizes our study.

II. HADRON RESONANCE GAS

A. Ideal hadron resonance gas model

In the IHRG model, all thermodynamic quantities
can be obtained from the sum of the logarithm of the
grand canonical partition function over all hadrons and
resonances [62]

lnZid ¼
X
i

lnZid
i ðT; μi; miÞ: ð1Þ

For particle species i,

lnZid
i ¼ � Vgi

ð2πÞ3
Z

d3p ln ½1� expð−ðEi − μiÞ=TÞ�: ð2Þ

Here, id refers to the ideal (noninteracting) gas, V is the
volume of the system, gi stands for the degeneracy factor
which satisfies the relation gi ¼ ð2Ji þ 1Þ, Ji is the angular
momentum of hadron species i, and the sign � is positive
for fermions and negative for bosons. Ei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

p
denotes the energy of the single particle. mi is the mass of
hadron species i, which is usually taken as the vacuum
hadron mass. In this paper, we also consider the effects of
the finite temperature and chemical potential on masses of
hadrons. μi ¼ BiμB þ SiμS þQiμQ is the chemical poten-
tial of particle species i, where Bi, Si, Qi are the baryon
number, strangeness, and electric charge, respectively, and
μB=S=Q gives the corresponding chemical potential. We
assume μS ¼ μQ ¼ 0, which is a reasonable approximation
in heavy-ion collision experiments [63]. The thermody-
namic quantities (pressure, energy density, and number
density) in the IHRG model can be given by [64,65]

Pid ¼ T
∂ lnZid

∂V ¼
X
i

gi

Z
d3p
ð2πÞ3

p2

3Ei
fidi ; ð3Þ
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ϵid ¼ −
1

V

�∂ lnZid

∂ 1
T

�
μi
T

¼
X
i

gi

Z
d3p
ð2πÞ3 Eifidi ; ð4Þ

nid ¼ T
V

�∂ lnZid

∂μi
�

V;T
¼

X
i

gi

Z
d3p
ð2πÞ3 f

id
i ; ð5Þ

where fidi is the ideal Fermi or Bose distribution func-
tion fidi ðT; p; μiÞ ¼ 1=ðexp½ðEi − μiÞ=T� � 1Þ.

B. Interacting hadron resonance gas

In this work, we also consider a more realistic system,
where the short-distance repulsive interaction and the long-
distance attractive interaction exist among the hadrons.
There are different phenomenological excluded-volume
models to simulate the repulsive interaction of hadrons,
such as the van der Waals [66] and Carnahan-Starling
excluded-volume models [67] with the effect of quantum
statistics. For the attractive interaction, four forms have
been discussed [6,68–70]: the van der Waals, Redlich-
Kwong-Soave (RKS), Peng-Robinson (PR), and Clausius
models. Therefore, to take into account both the repulsive
interaction and attractive interaction, eight interacting
hadron resonance gas models could be employed: the
VDW, RKS, PR, Clausius, VDW-CS, RKS-CS, PR-CS,
and Clausius-Carnahan-Starling (CS) models. In the
interacting hadron resonance gas model, the repulsive
and attractive interactions only exist between baryon-
baryon pairs and between antibaryon-antibaryon pairs
while the baryon-antibaryon, meson-baryon, and meson-
meson interactions are neglected [6,7]. So, the total
pressure in the grand canonical ensemble can be written
as [7]

PðT; μÞ ¼ PMðT; μÞ þ PBðT; μÞ þ PB̄ðT; μÞ; ð6Þ

with

PMðT; μÞ ¼
X
z∈M

Pid
z ðT; μzÞ; ð7Þ

PBðT; μÞ ¼ ½FðhBÞ − hBF0ðhBÞ�
X
z∈B

Pid
z ðT; μB�z Þ

þ n2Bu
0ðnBÞ; ð8Þ

PB̄ðT; μÞ ¼ ½FðhB̄Þ − hB̄F
0ðhB̄Þ�

X
z∈B̄

Pid
z ðT; μB̄�z Þ

þ n2B̄u
0ðnB̄Þ; ð9Þ

where μ is the baryon chemical potential in the
current work, and the subscriptsM, B, B̄ stand for mesons,
baryons, and antibaryons, respectively. The constructed
functions FðhBðB̄ÞÞ and uðnBðB̄ÞÞ are related to the repulsive
and attractive interactions between (anti)baryon pairs,

respectively. The analytical forms ofFðhBðB̄ÞÞ and uðnBðB̄ÞÞ
are different according to the choice of interacting
hadron resonance gas models listed previously. hBðB̄Þ
denotes the packing ratio of all (anti)baryonic volume
occupied in the total system volume that satisfies the
relation hBðB̄Þ ¼ b

4
nBðB̄Þ. nBðB̄Þ, which is the total number

density of (anti)baryons that can be obtained by using
nB ¼ ∂PB=∂μz,

nBðT; μÞ ¼ FðhBÞ
X
z∈B

nidz ðT; μB�z Þ: ð10Þ

Additionally, the shifted chemical potential of baryon μB�z
is given as [7]

μB�z − μz ¼
b
4
F0ðhBÞ

X
z∈B

Pid
z ðT; μB�z Þ

− uðnBÞ − nBu0ðnBÞ: ð11Þ

The key is to obtain μB�z . At a given T and μ, μB�z can be
calculated by solving Eqs. (10) and (11) numerically.
Accordingly, other thermodynamic quantities such as the
entropy density sB ¼ ð∂PB=∂TÞμ and the energy density
can be determined by

sBðT; μÞ ¼ FðhBÞ
X
z∈B

sidz ðT; μB�z Þ ð12Þ

and

ϵBðT; μÞ ¼ FðhBÞ
X
z∈B

ϵidz ðT; μB�z Þ þ nBuðnBÞ: ð13Þ

Equations (10)–(13) are also applicable to antibaryons. In
this work, we use the VDW model in which FðhBðB̄ÞÞ ¼
1–4hBðB̄Þ and uðnBðB̄ÞÞ ¼ −anBðB̄Þ. The parameters a and b
are determined by reproducing the properties of nuclear
matter in the ground state [71] according to the choice of
interacting hadron resonance gas models [72].

III. MASS SENSITIVITY OF HADRONS AT
FINITE TEMPERATURE AND BARYON

CHEMICAL POTENTIAL

A. The PLSM

As mentioned in Sec. I, the melting behavior of hadron
masses is related to the temperature- and chemical-
potential-dependent constituent quarks. In the present
work, the dynamical information of the constituent quark
masses in the QCD medium can be determined by employ-
ing the SU(3) PLSM. Next, we briefly introduce the linear
sigma model with Nf ¼ 2þ 1 flavor quarks coupled to the
Polyakov-loop dynamics to formulate the PLSM. The
related Lagrangian is given as [57–61]
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L ¼ Lchiral − Uðϕ;ϕ�; TÞ; ð14Þ

where the chiral part of the Lagrangian Lchiral ¼ Lquark þ
Lmeson has SUð3ÞL × SUð3ÞR symmetry (details can be
found in [73]). The first term in Lchiral corresponds to the
fermionic contributions from quarks, and the second term
represents the mesonic contribution; both contributions
have been extensively discussed in Refs. [58–61]. The
second term in Eq. (14), Uðϕ;ϕ�; TÞ, represents the
Polyakov-loop effective potential to introduce the gluon
degrees of freedom and the dynamics of the quark-gluon
interactions [74], which is expressed by using the dynamics
of the thermal expectation value of a color traced Wilson
loop in the temporal direction. Correspondingly, the traced
Polyakov-loop variable and its conjugate can read as

ϕ ¼ hTrcLi=Nc; ϕ� ¼ hTrcL†i=Nc; ð15Þ
where L is the Polyakov loop, and L can be represented by
a matrix in color space [74]

Lðx⃗Þ ¼ P exp

�
i
Z

β

0

dτA0ðx⃗; τÞ
�
; ð16Þ

where β ¼ 1=T denotes the inverse temperature, and P and
A0 are the path ordering and temporal component of the
Euclidean vector field, respectively [74]. At vanishing
chemical potential ϕ ¼ ϕ�, the Polyakov loop is recognized
as an order parameter for the deconfinement-phase tran-
sition. In this work, we use a logarithmically formed
Polyakov-loop effective potential [75], which is motivated
by the underlying QCD symmetries in the pure gauge limit

ULogðϕ;ϕ�; TÞ
T4

¼ −aðTÞ
2

ϕ�ϕþ bðTÞ ln½1 − 6ϕ�ϕ

þ 4ðϕ�3 þ ϕ3Þ − 3ðϕ�ϕÞ2�; ð17Þ

with

aðTÞ ¼ a0 þ a1ðT0=TÞ þ a2ðT0=TÞ2;
bðTÞ ¼ b3ðT0=TÞ3: ð18Þ

In Eq. (18), a0¼3.51, a1 ¼ −2.47, a2 ¼ 15.2, b3 ¼ −1.75,
which are determined by fitting pure gauge lattice data [75].
T0 ¼ 270 MeV is the critical temperature for the decon-
finement in Yang-Mills theory. In the mean field approxi-
mation [60], the grand canonical potential of the PLSM can
be written as

ΩðT; μflÞ ¼ Uðσx; σyÞ þ Uðϕ;ϕ�; TÞ þ Ωq̄qðT; μfl;ϕ;ϕ�Þ;
ð19Þ

where σx and σy stand for the nonstrange and strange chiral
condensates, respectively. The first term in Eq. (19), the
purely mesonic potential, is given as

U ¼ −hxσx − hyσy þ
m2ðσ2x þ σ2yÞ

2
−
cσ2xσy
2

ffiffiffi
2

p

þ λ1σ
2
xσ

2
y

2
þ ð2λ1 þ λ2Þσ4x

8
þ ðλ1 þ λ2Þσ4y

4
: ð20Þ

Here, m2, hx, hy, λ1, λ2, and c are model parameters as
reported in Ref. [73]. The parameters used in the present
work are listed in Table I. The third term in Eq. (19)
Ωq̄qðT; μfl;ϕ;ϕ�Þ is the quark-antiquark potential, which
can be shown as [60]

Ωq̄q ¼ −2T
X

fl¼u;d;s

Z
d3p
ð2πÞ3 ðln g

þ
fl þ ln g−flÞ: ð21Þ

The expressions of gþfl and g−fl are defined as

gþfl ¼ ½1þ 3ðϕþ ϕ�e−E
þ
fl =TÞe−Eþ

fl =T þ e−3E
þ
fl =T �; ð22Þ

g−fl ¼ ½1þ 3ðϕ� þ ϕe−E
−
fl=TÞe−E−

fl=T þ e−3E
−
fl=T �; ð23Þ

where E�
fl ¼ Efl ∓ μfl, Efl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

fl

p
is the single

particle energy with the flavor-dependent constituent
(anti)quark mass mfl. For symmetric quark matter, we take
the uniform blind chemical potential, i.e., μfl ≡ μu ¼ μd ¼
μs ¼ μB=3 [31,73]. Neglecting the small difference in the
masses of light quarks, the mfl for the nonstrange and
strange quarks can be given by [76]

mq ¼ g
σx
2
; ms ¼ g

σyffiffiffi
2

p : ð24Þ

In order to obtain the T and μB dependence of order
parameters σx, σy, ϕ, and ϕ�, we minimize the thermody-
namic potential Eq. (19) with respect to these mean
variables; i.e.,

∂Ω
∂σx ¼

∂Ω
∂σy ¼

∂Ω
∂ϕ ¼ ∂Ω

∂ϕ�

����
min

¼ 0; ð25Þ

where σx ¼ σ̄x, σy ¼ σ̄y, ϕ ¼ ϕ̄, ϕ� ¼ ϕ̄� label the global
minimum.

TABLE I. The parameters of the PLSM employed in the present
calculation.

c (MeV) λ1 m2 (MeV2) λ2

4807.84 13.49 −ð306.26Þ2 46.48

hx (MeV3) hy (MeV3) mσðMeVÞ
ð120.73Þ3 ð336.41Þ3 800
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B. Hadron masses

We first present the procedure of calculating the T- and
μB-dependent masses of the pseudoscalar (π,η,η0,K) and
scalar (σ, a0, f0, κ) mesons in the framework of the PLSM.
In the thermal field theory, the scalar and pseudoscalar
meson masses are defined by the second derivative of
the temperature- and quark-chemical-potential-dependent
thermodynamic potential ΩðT; μflÞ with respect to corre-
sponding scalar fields αS;x ¼ σx and pseudoscalar fields
αP;x ¼ πxðx; y ¼ 0;…; 8Þ, which can be expressed as [73]

m2
i;xy

����
T
¼ ∂2ΩðT; μflÞ

∂αi;x∂αi;y
����
min

¼ ðmm
α;xyÞ2 þ ðδmT

α;xyÞ2; ð26Þ

where min denotes minimizing the grand potential, and
i ¼ SðPÞ corresponds to the scalar (pseudoscalar) mesons.
The first term in Eq. (26) is the vacuum meson mass
calculated from the second derivative of the purely mesonic
potential. The second term corresponds to the in-medium
modification of the meson mass due to the quark-antiquark
potential at finite temperature and baryon chemical poten-
tial, which can be given as

ðδmT
i;xyÞ2 ¼ 3

X
fl¼u;d;s

Z
d3p
ð2πÞ3

1

Efl

�
ðAþ

fl þ A−
flÞ

×

�
m2

fl;xy −
m2

fl;xm
2
fl;y

2E2
fl

�

þ ðBþ
fl þ B−

flÞ
�
m2

fl;xm
2
fl;y

2EflT

��
: ð27Þ

The squared constituent quark mass derivative with respect
to the meson field αi;a,mfl;a ≡ ∂m2

fl=∂αi;a, and with respect
to meson fields αi;aαi;b, mfl;ab ≡ ∂m2

fl=∂αi;a∂αi;b, can be
taken from Table III in Ref. [73]. The notations A�

fl and B
�
fl

in Eq. (27) have the following definitions:

Aþ
fl ¼

ϕe−E
þ
fl =T þ 2ϕ�e−2E

þ
fl =T þ e−3E

þ
fl =T

gþfl
; ð28Þ

A−
fl ¼

ϕ�e−E−
fl=T þ 2ϕe−2E

−
fl=T þ e−3E

−
fl=T

g−fl
; ð29Þ

and B�
fl ¼ 3ðA�

fl Þ2 − C�
fl , where C�

fl is defined as

Cþ
fl ¼

ϕe−E
þ
fl =T þ 4ϕ�e−2E

þ
fl =T þ 3e−3E

þ
fl =T

gþfl
; ð30Þ

C−
fl ¼

ϕ�e−E−
fl=T þ 4ϕe−2E

−
fl=T þ 3e−3E

−
fl=T

g−fl
: ð31Þ

Then, the squared masses of the four scalar mesons are
given as [73]

m2
a0 ¼ ðmm

a0Þ2 þ ðδmT
S;11Þ2; ð32Þ

m2
κ ¼ ðmm

κ Þ2 þ ðδmT
S;44Þ2; ð33Þ

m2
σ ¼ m2

S;00cos
2θS þm2

S;88sin
2θS

þ 2m2
S;08 sin θS cos θS; ð34Þ

m2
f0

¼ m2
S;00sin

2θS þm2
S;88cos

2θS

− 2m2
S;08 sin θS cos θS: ð35Þ

And the four pseudoscalar meson masses are

m2
π ¼ ðmm

π Þ2 þ ðδmT
P;11Þ2; ð36Þ

m2
K ¼ ðmm

KÞ2 þ ðδmT
P;44Þ2; ð37Þ

m2
η0 ¼ m2

P;00cos
2θP þm2

P;88sin
2θP

þ 2m2
P;08 sin θP cos θP; ð38Þ

m2
η ¼ m2

P;00 sin
2 θP þm2

P;88 cos
2 θP

− 2m2
P;08 sin θP cos θP; ð39Þ

where the mixing angles θSðPÞ are given by

tan 2θi ¼
�

2m2
i;08

m2
i;00 −m2

i;88

�
; i ¼ S; P; ð40Þ

and m2
i;00=88=08 ¼ ðmm

P;00=88=08Þ2 þ δðmT
P;00=88=08Þ2. The

detailed expressions of the vacuum contributions
[ðmm

a0Þ2, ðmm
κ Þ2, ðmm

π Þ2, ðmm
KÞ2 and ðmm

i;00=88=08Þ2] from
purely mesonic potential in Eqs. (32)–(39) can be obtained
from Refs. [60,73].
Next, for all baryons and other heavier mesons, the

dependence of their masses on T and μB can be obtained by
introducing a generalized scaling rule [77–81], which
assumes that hadron masses are linear in the constituent
quark masses,

MB=MðT; μBÞ ¼ MB=Mð0; 0Þ þ ðNq − NsÞδMqðT; μBÞ
þ NsδMsðT; μBÞ; ð41Þ

where the subscript B=M stands for a given baryon/meson,
andMq=s is the light/strange constituent quark mass. δMq=s

in Eq. (41) denotes the variation of the constituent quark
mass with the temperature and baryon chemical potential.
Nq and Ns are the number of total quarks and strangeness
content, respectively, in a given hadron. For the open
strange hadrons, Ns is simply the number of strange
(antistrange) quarks. For hidden strange mesons, Ns ¼
2=3 for the flavor singlet and Ns ¼ 4=3 for the flavor octet.
However, we bear in mind that this approach of obtaining
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the thermal hadron masses is sketchy and still needs
improvement in the future. Figure 1 shows the normalized
light constituent quark massMu;d=M0

u;d and the normalized
strange constituent quark mass Ms=M0

s as a function of T
for different fixed μB in the PLSM. The temperature
behavior of the normalized constituent quark mass shows
a smoothly decreasing feature. The initial temperature at
which the light/strange constituent quark masses begin to
melt is T ∼ 160=180 MeV (not the chiral pseudocritical
temperature) for μB ¼ 0 GeV. As μB grows, Mu;d=s=M0

u;d=s

begins to decrease at smaller temperature, and the decreas-
ing feature of the constituent quark masses becomes more
prominent.
Figure 2 shows the temperature and baryon chemical

potential dependences of the pseudoscalar mesons (π,K, η0,
η) and scalar mesons (a0; κ; σ; f0Þ in the PLSM. The
masses of these states degenerate at T ∼ 160 MeV for
the μB ¼ 0 and 0.1 GeV cases. For the μB ¼ 0.2 and
0.3 GeV cases, these states degenerate at T ∼ 130 MeV and
T < 100 MeV, respectively. Therefore, the melting behav-
ior of the hadron masses can quantitatively affect the
thermodynamic quantities and transport coefficients of
hadronic matter, which will be seen later in Sec. V.

IV. TRANSPORT COEFFICIENTS

The transport coefficients in the medium composed of
quasiparticles whose masses depend on the temperature
and chemical potential can be derived by utilizing the
relativistic kinetic theory under the relaxation time approxi-
mation [32,82,83]. The general expressions of shear vis-
cosity (η), electrical conductivity (σel), and thermal
conductivity (λ) can be written as [32,82]

η ¼ 1

15T

X
i

gi

Z
d3p
ð2πÞ3

p4

E2
i
τifidi ð1� fidi Þ; ð42Þ

σel ¼
1

3T
4π

137

X
i

gie2i

Z
d3p
ð2πÞ3

p2

Ei
τifidi ð1� fidi Þ; ð43Þ

λ ¼
�

w
nBT

�
2X

i

gi

Z
d3p
ð2πÞ3

p2

3E2
i
τi

�
Bi −

nBEi

w

�
2

× fidi ð1� fidi Þ: ð44Þ

Here, ei and Bi are the electric charge and baryon
number of hadron species i, respectively. w is the total
enthalpy density. The sign � corresponds to bosons and
fermions, respectively. τi is the thermal relaxation time of
hadron species i. We assume only elastic scattering
between hadrons, so the inverse relaxation time τ−1i for
the collision process of iðp1Þ þ jðp2Þ → iðp3Þ þ jðp4Þ
can be given by [84]

τ−1i ¼
X
j

gj
1þ δij

Z Y4
k¼2

dΓk

2E1

ð2πÞ4δ4ðPtotÞjM̄j2fjðp2Þ;

ð45Þ

where dΓk ¼ d3pk=ð2πÞ3=ð2EkÞ, δ4ðPtotÞ ¼ δ3ðp1 þ p2−
p3 − p4ÞδðE1 þ E2 − E3 − E4Þ, and the factor 1=ð1þ δijÞ
is to avoid double counting for identical incoming particle
species. In Eq. (45), the average of the initial degeneracy
factor and the sum of the final degeneracy factor are
implicitly included in the matrix element ðM̄Þ. Using the
formula of the scattering cross section [85]

σij ¼
R Q

4
k¼3 dΓkð2πÞ4δ4ðPtotÞjM̄j2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP1 · P2Þ2 −m2

i m
2
j

q ð46Þ

with four-momentum P1ð2Þ ¼ ðE1ð2Þ; p1ð2ÞÞ, we can then
rewrite τ−1i and take the thermal averaging

τ−1i ≡X
j

nj
1þ δij

hσijviji; ð47Þ

where nj ¼ gj
R
d3p2=ð2πÞ3fjðp2Þ is the number density

of particle species j. It is important to note that if particle

�

�

�

�

�

�

�

�

(a)

(b)

FIG. 1. (a) The temperature dependence of the normalized light
(u, d) constituent quark mass (Mu;d=M0

u;d) for μB ¼ 0 (red solid
line), 0.1 GeV (blue dashed line), 0.2 GeV (green dotted line),
and 0.3 GeV (purple dash-dotted line). (b) The temperature
dependence of the normalized strange constituent quark mass
(Ms=M0

s) for different μB. The light and strange vacuum
constituent quark masses are taken as M0

u;d ¼ 300 MeV and
M0

s ¼ 433 MeV [73], respectively, in the PLSM.
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species j is a baryon/antibaryon, the detailed form of the
number density can be modified in the van der Waals
hadron resonance gas,

njðT; μjÞ ¼
8<
:

nidj ðT; μjÞ; in ideal HRG;

FðhBðB̄ÞÞnidj ðT; μBðB̄Þ�j Þ; inVDWHRG:

ð48Þ

The Lorentz scalar flow factor is defined as

vij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP1 · P2Þ2 −m2

i m
2
j

q
E1E2

: ð49Þ

Therefore, the thermal average cross section with the
Maxwell-Boltzmann distribution approximation after
some uncomplicated simplification can be written as the
following form:

hσabviji ¼
R
d3p1d3p2fidi ðp1Þfidj ðp2ÞσijvijR

d3p1d3p2fidi ðp1Þfidj ðp2Þ

¼
R
d3p1d3p2e−E1βe−E2βσijvijR

d3p1d3p2e−E1βe−E2β

¼
β
R∞
S0
σijγðSÞK1ðβ

ffiffiffi
S

p Þ 1

2
ffiffi
S

p dS

4m2
i m

2
jK2ðβmiÞK2ðβmjÞ

; ð50Þ

where
ffiffiffi
S

p
is the center-of-mass energy, S0 ¼ ðmi þmjÞ2,

and γðSÞ ¼ ½S − ðmi þmjÞ2�½S − ðmi −mjÞ2�. Kn is the
modified Bessel function of order n. In this work, we
regard all hadrons as hard spheres which have the same
radius rh as nucleons, so σij is a constant with σij ¼ 4πr2h.

V. NUMERICAL RESULTS AND DISCUSSION

In the following, we consider an extension of the
VDWHRG model by including thermal evolution of
hadron masses, and refer to this new model as the
TVDWHRG model. In the treatment of the HRG model,
we include all hadrons and resonances up to 2.0 GeV listed
by the Particle Data Group [86]. The VDW model yields

(a)

(e) (f) (g) (h)

(b) (c) (d)
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FIG. 2. The temperature dependences of the scalar mesons a0, [diagram (a)] κ, [diagram (b)] σ, [diagram (c)] f0, and [diagram (d)] the
pseudoscalar mesons π, [diagram (e)]K, [diagram (f)] η0, [diagram (g)] η [diagram (h)] at μB ¼ 0 GeV (solid red lines), 0.1 GeV (dashed
blue lines), 0.2 GeV (dotted black lines), and 0.3 GeV (dotted-dashed purple lines) in the framework of the PLSM.
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a ≈ 239 MeV fm3 and b ¼ 4πr3n
3

≈ 3.42 fm3 (rn is the radius
of the nucleons) from fitting the properties of nuclear
matter at zero temperature [72].
The temperature dependences of the scaled

pressure P=T4, the scaled energy density ϵ=T4, the scaled
entropy density s=T3, and speed of sound squared c2s ¼
dP=dϵ at μB ¼ 0 GeV within the IHRG, VDWHRG, and
TVDWHRG models, respectively, are depicted in Fig. 3. It
is noted that in Figs. 3(a)–3(c), comparing with the results
in the IHRG model, the pressure, energy density, and
entropy density within the VDWHRG and TVDWHRG
models has a modest suppression at T > 0.16 GeV due to
the suppression of the number density of (anti)baryons in
the medium. The scaled pressure P=T4, scaled energy
density ϵ=T4, and scaled entropy density s=T3 in the
TVDWHRG model have better agreement with the lattice
QCD data of the Wuppertal-Budapest [3] and the Hot QCD
Collaborations [4] up to T ¼ 0.195 GeV. The mild quan-
titative difference between these thermodynamics in the
VDWHRG model and the counterparts in the TVDWHRG

model at T > 0.16 GeV results from an enhancement
factor of exp½−mðT; μBÞ=T� with the decrease of the
hadron masses in the TVDWHRG model. In Fig. 3(d),
we observe that the speed of sound squared c2s in the
TVWDHRG model and VWDHRG model is consistent
with the lattice QCD data at T ¼ 0.165–0.18 GeV. While
c2s within all considered HRG models, it gives a bad fit to
the lattice QCD data of the Hot QCD Collaboration at
T ¼ 0.135–0.155 GeV. In addition, the pressure, energy
density, entropy density, and speed of sound squared are
not sensitive to the choice of the considered HRG models
at T < 0.16 GeV. It can be explained in two aspects.
(i) The VDW interactions between baryon-baryon pairs
and between antibaryon-antibaryon pairs for μB ¼ 0 GeV
are relatively weak at T < 0.16 GeV because at low T the
contribution of the mesons is dominant in the system
compared to the contribution of (anti)baryons. (ii) At
T < 0.16 GeV, the masses of the hadrons for μB ¼ 0

are nearly not affected by the temperature, as seen from
Figs. 1 and 2.

� �

� �

(a)

(c) (d)

(b)

FIG. 3. The temperature dependences of the scaled pressure (a), scaled energy density (b), scaled entropy density (c) and square of the
speed of sound (d) within IHRG model (black dashed lines), VDWHRG model (blue dashed lines), and TVDHRG model (red solid
lines) at μB ¼ 0. The lattice QCD results are taken from the Wuppertal-Budapest [3] (red solid circle symbol with error bar) and
HotQCD Collaborations [4] (blue up-triangle symbol with error bar).
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Figures 4(a)–4(c) show the scaled pressure as a function
of the temperature for μB ¼ 0.1, 0.2, and 0.3 GeV. We see
that the scaled pressure is underestimated by all models at
T < 0.16 GeV. For the cases of μB ¼ 0.1 and 0.2 GeV, the
scaled pressure within the TVDWHRG model fits better
with the lattice QCD data at T ¼ 0.16–0.19 GeV than that
within the VDWHRGmodel or IHRG model. Compared to
the VDWHRG model, the scaled pressure for zero and
small μB (viz., μB ¼ 0.1 and 0.2 GeV) in the TVDWHRG
model has a small quantitative enhancement. At higher μB
(i.e., μB ¼ 0.3 GeV), we notice that the scaled pressure
within the TVDWHRG model is significantly higher than
that within the VDWHRG model, as shown in Fig. 4(c).
This means that with the increase of μB, the effect of the
thermal hadron masses on thermodynamics becomes more
influential. However, the scaled pressure for μB ¼ 0.3 GeV
fails to simulate the lattice QCD data within all considered
HRG models. There are two possible reasons for the
failure: (i) The parameters of the VDW model may vary
with μB [65]. (ii) It is a challenging task for the lattice QCD
simulation to give very reliable prediction of these quan-
tities due to the so-called sign problem at nonzero μB. The
lattice QCD data we used here are only estimated up to μ2B
[87]. Therefore, in the case of nonzero baryon chemical
potential, we may not pay much attention to comparing our
results with the lattice QCD data in precision; instead, we
explore the effects of thermal hadron masses and VDW
interactions on thermodynamic quantities and transport
coefficients in hot hadronic matter.
The temperature dependence of the shear viscosity to

entropy density ratio η=s within the TVDWHRG model at
μB ¼ 0 GeV (purple solid line) is shown in Fig. 5. We can
note that η=s decreases with increasing temperature, and
the value of η=s within the TVDWHRG model meets the
quantum lower bound η=s ¼ 1=4π proposed by Kovtun,
Son, and Starinets (KSS) [88] in the vicinity of

T ¼ 0.17 GeV. This means that the applicability of the
TVDWHRG model should be restricted to the temperature
domain in which η=s > 1=4π. At μB ¼ 0.35 GeV, our
result of η=s (green dotted-dashed line) remains above
the KSS bound in the entire temperature domain we
considered here. We also notice that in the low T domain,
η=s is slightly smaller at μB ¼ 0.35 GeV than at
μB ¼ 0 GeV; however, in the high T domain, η=s is higher
at μB ¼ 0.35 GeV than at μB ¼ 0 GeV. This behavior is
also observed in Fig. 7 of Ref. [9] and in Fig. 6 of Ref. [89],
and we will discuss this behavior later.
Figure 5 also demonstrates the comparison of our

calculations with the results from other related models

� � �

(a) (b) (c)

FIG. 4. The temperature dependence of the scaled pressure (P=T4) within the IHRG model (dashed black lines), VDWHRG model
(wide dashed purple lines), and TVDWHRG model (solid red lines) at μB ¼ 0.1 (a), 0.2 (b), and 0.3 GeV (c). The lattice QCD results
(red symbol with error bar) are taken from Ref. [87].
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FIG. 5. Comparison of several calculations for the shear
viscosity to entropy density ratio η=s at μB ¼ 0 GeV; see text
for more explanations.
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for μB ¼ 0 GeV. The open red circles correspond to the
result of η=s for the hadron phase using the RTA within
the SHMCmodel [35]. The blue star line corresponds to the
result of η=s for hadron gas using the Kubo-Green
formalism in the SMASH transport code [19]. The result
of η=s by Dash et al. (orange diamond-dashed line) is
computed in the framework of an S-matrix-based HRG
model using the CE approximation and K-matrix cross
sections [9]. The red dotted line represents the result of η=s
using the Green-Kubo formalism in unitarized ChPT,
which is a low-energy effective model of QCD describing
the dynamics of the Nambu-Goldstone bosons [27]. The
result of η=s by Moroz (cyan short dotted line) is obtained
from solving the Boltzmann equation in the RTA, while the
cross sections are extracted from UrQMD [16]. The pink
triangles show the calculation of η=s for hadron gas in the
EVHRG model [25]. All aforementioned works except
the SMASH model give qualitative results which are similar
to ours, although the exact magnitude of η=s differs in
different model estimations. The result of Moroz [16] is
about 3 times larger than ours, mainly due to the discrep-
ancies in the cross sections. In Moroz’s calculation, the
cross sections extracted from the UrQMD model for
different hadron-hadron elastic collisions are different,
whereas an overall constant cross section is used in the
current work. The SHMC result [35] is close to ours at
T < 0.12 GeV and is about 2 times larger than our
estimation at T > 0.12 GeV. This is mainly because
although the hadron masses in the SHMC model and
TVDWHRG model are in-medium dependent, the cross
sections in the SHMC model are temperature dependent
rather than a constant. The result of Dash et al. [9] is a
factor of 2 smaller than ours at T < 0.14 GeV; however, as
the temperature increases further, their result is very close
to ours. The quantitative difference can be attributed to the
uses of various approximation methods and cross sections.
In our work, the transport coefficients are calculated in the
RTA, which is different from the CE method. We empha-
size that in the current work the cross sections are taken as
constant, whose assumption could be improved in future
studies. Furthermore, η=s calculated by Dash et al. also
violates the KSS bound near the critical temperature taken
from Ref. [90]. The estimation of η=s in SMASH [19] is
close to ours at T < 0.12 GeV, while as the temperature
increases, the SMASH result remains almost constant. This
behavior can be explained as follows: First, in our work we
only include elastic binary collisions between hadrons with
constant cross sections, while the energy-dependent cross
sections and hadron interactions dominated by resonance
formation are included in SMASH. Second, the effect of
resonance lifetimes on the relaxation time is considered in
SMASH, whereas we use the thermal averaged relaxation
time which contains no feedback from the resonance
lifetimes (zero decay width used in our work for reso-
nances). The result in the EVHRG model [25] and the

ChPT result [27] match well with ours at T < 0.12 GeV;
however, their estimations are about 3 times larger than
ours at high T. The numerical difference between the ChPT
result and ours might be due to the fact that at high T more
meson-baryon scatterings are included in the TVDWHRG
model, while only π − π scattering is considered in ChPT.
The deviation between the estimation of η=s in the EVHRG
model and ours at high T mainly arises from that, in
Ref. [25] the authors consider that the repulsive interaction
is related to all hadrons with the same radius (rh ¼ 0.5 fm),
whereas in the TVDWHRG model, only VDW interactions
between pairs of (anti)baryons are included, and all hadrons
have the same radius as nucleons. Actually, the thermal
mass effect on η=s is not obvious within the TVDWHRG
model at zero μB or small μB, while as μB increases, this
effect becomes more pronounced, which is shown in Fig. 7.
Here we refer to the hadron resonance gas model that

only includes the effect of thermal hadron masses as the
thermal HRG (THRG) model. To better understand how the
effects of in-medium hadron masses and VDW interactions
between (anti)baryons influence the transport coefficients
in hadronic matter, we compute the variation of transport
coefficients with T and μB in four HRG models: IHRG,
THRG, VDWHRG, and TVDWHRG. The temperature
dependence of the shear viscosity η at μB ¼ 0.1, 0.2, 0.3,
0.35 GeV for all considered HRG models is depicted in
Fig. 6. We observe that η within the IHRG model increases
monotonically as T increases at a fixed μB. This is because
the variation of the shear viscosity η with T and μB in the
IHRG model mainly comes from the number density in
Eq. (42) rather than the relaxation time. Alternatively, at a
given T the value of η in the IHRG model increases as μB
grows. Considering the effect of thermal hadron masses,
the value of η for μB ¼ 0.1 GeV within the THRG model
has a mild enhancement in the relatively high T domain as
shown in Fig. 6(a), which is similar to the result in Fig. 3(a)
of Ref. [77]. This is due to the fact that the number density
has an enhancement by considering the effect of thermal
hadron masses. As μB increases, the improvement of η in
the THRG model is more obvious than in the IHRG model,
which arises because the positive effect of thermal hadron
masses on the number density strengthens significantly
with increasing μB. When the VDW interactions are taken
into account in the estimation of η [as in Fig. 6(b)], η rises at
a larger incremental rate at high temperature in the
VDWHRG model as compared to the IHRG model. This
can be interpreted as follows: First, at low T the dominant
contributions to total η are light mesons which are nearly
not affected by VDW interactions. Second, with increasing
T, more and more baryons emerge in the system, and the
baryon density can be suppressed in the VDWHRG model
as compared to the IHRG model. However, the relaxation
times for all hadrons in the VDWHRG model have a
significant enhancement due to the scattering with baryons.
As the temperature increases, the effect of a rapid rise in the
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relaxation time wins over the impact of a fall in the number
density within the VDWHRG model. Furthermore, we see
that the evolution of η with μB in the VDWHRG model
mimics that in the IHRG model. At high μB (viz., μB ¼ 0.3
or 0.35 GeV), considering simultaneously the effects of
VDW interactions and in-medium hadron masses, the
number density in the TVDWHRG model increases more
sharply than that in the VDWHRG model, although the
relaxation time in the TVDWHRG model is slightly
reduced compared with that in the VDWHRG model.
The final result of the interplay of the number density
and the relaxation time in Eq. (42) shows the TVDWHRG
model gives a further improvement in η compared to the
VDWHRG model, as shown in Fig. 6(b).

Figure 7(a) presents our calculation of η=s for various μB
in the IHRG and THRG models. We note that the T
dependence of η=s within the IHRG and THRG models is
mainly governed by the inverse entropy density 1=s. The
ratio η=s in the IHRG and THRG models decreases as T
and μB increase solely due to the larger value of the entropy
density for high T and high μB. Compared to the IHRG
model, the THRG model leads to a suppression of η=s,
which arises from the significant enhancement of the
entropy density in the THRG model. At small μB
(μB ¼ 0.1 and 0.2 GeV) or zero μB, η=s is nearly unaffected
by the inclusion of in-medium hadron masses. The reasons
are twofold. On the one hand, the effect of thermal hadron
masses is weaker in the small μB case than in the high μB
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(a) (b)

FIG. 6. Left panel (a) shows the temperature dependence of shear viscosity ηwithin the IHRG (lines) and THRG (symbols) models for
μB ¼ 0.1 GeV (black solid line and square symbol), 0.2 GeV (red dotted line and circular symbol), 0.3 GeV (blue dashed line and up-
triangle symbol), and 0.35 GeV (green dashed-dotted line and down-triangle symbol). Right panel (b) shows the temperature
dependence of η within the VDWHRG (lines) and TVDWHRG (symbols) models for μB ¼ 0.1, 0.2, 0.3, and 0.35 GeV.
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FIG. 7. Same as Fig. 6 for the ratio η=s. The gray dotted line is the KSS bound.
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case. On the other hand, with the consideration of the
thermal hadron masses, the increase in η is nearly neutral-
ized by the decrease in 1=s. Hence, from a quantitative
aspect, the effect of the thermal hadron masses on η=s is
important, especially at high μB.
Figure 7(b) displays η=s in the VDWHRG and

TVDWHRG models as a function of the temperature at
various μB. It is interesting to note that in the VDWHRG or
TVDWHRG model, as μB grows η=s decreases at low T,
whereas it increases at high T, which is qualitatively akin to
the result of η=s in Ref. [89]. This nontrivial behavior of
η=s in the VDWHRG model case is not observed in the
EVHRG model [25]. The nonmonotonic variation of η=s
with μB is because in the high T domain, as μB grows the
rapid increase of η (as in Fig. 6) greatly overwhelms the
decrease of 1=s in the VDWHRG model. Furthermore, at
high μB (viz., μB ¼ 0.3 and 0.35 GeV), the effect of VDW
interactions on η=s in the high T domain can be strength-
ened further by the inclusion of thermal hadron masses,
even though thermal hadron masses themselves have a
negative effect on η=s. Hence, the consideration of VDW
interactions (thermal hadron masses) mainly changes
qualitatively (quantitatively) the behavior of η=s. In
Fig. 7(b), we also observe the location where η=sðT; μBÞ ≃
1=4π shifts toward higher temperature with increasing μB in
the TVDWHRG and VDWHRG models, contrary to the
IHRG and THRG models case.
In regard to the scaled electrical conductivity σel=T at

vanishing μB, we compare our result of the TVDWHRG
model (olive-green solid line) with existing estimations, as
shown in Fig. 8. The pink short dotted line represents the
result for pion gas in the unitarized ChPT via the Green-
Kubo technique [27]. The blue open triangles show the
result obtained from the PHSD approach [41], which is a
covariant extension to the Boltzmann-Uehling-Uhlenbeck
approach [91] in the hadronic sector. The cyan solid
squares represent the calculation of σel=T for hadronic
gas employing SMASH using the Green-Kubo formalism
[40]. The orange dotted-dashed line shows the result of the
EVHRG model using the RTA [51]. The gray open circles
show the computation of σel=T for π − K − N gas in kinetic
theory (KT) using a CE-like expansion of the distribution
function [37]. The red full circles are the data from the
2þ 1 flavor anisotropic lattice QCD calculation [43]. The
black dashed line is the estimation of σel=T in a conformal
super-Yang-Mills (SYM) theory [92]. In Ref. [39], Ghosh
provided an estimation of σel=T for the π − N system from
electromagnetic current-current correlators in the static
limits (brown stars). The bright green diamonds show
the result of σel=T in the NJL model [30].
From Fig. 8, we notice that the variation of σel=T with

the temperature in the Nambu-Jona-Lasinio (NJL) model
and the KT and SYM theory is not obvious, and other
model estimations and our result indicate that σel=T for
μB ¼ 0 GeV significantly decreases at T ¼ 0.1–0.18 GeV.

The result of SMASH [40] is roughly 3 times larger than
ours. This is mainly attributed to the choices of the
calculation methodology and cross sections, as well as
the lack of elastic collisions of some possible particle pairs
(e.g., elastic πþπþ and π−π−) in SMASH. The ChPT result
[27] is close to ours at T < 0.14 GeV; however, with
increasing T, the ChPT result is a factor of 3 larger than
ours. In the ChPT, the degrees of freedom are only mesons;
thus, we deduce that the inclusion of more hadron species
(baryons) may reduce the electrical conductivity of system.
The results of the NJL model [30] and PHSD model [41]
are much larger than ours. This great deviation may be due
to the fact that the elementary degrees of freedom in the
NJL model and PHSD model are (anti)quarks instead of
hadrons. The significant numerical difference between the
KT result [37] and ours mainly arises from the uncertainties
in the realistic cross sections and the different choices of the
hadron spectrum. The result of Ghosh [39] is a factor of 2
smaller than ours, which is mainly due to the differences in
the inputs of the medium constituents and the relaxation
times. The reason for the numerical difference between the
estimation of σel=T in the EVHRG model [51] and ours is
similar to what we discussed earlier about η=s. It is worth
noting that at high T, our result is close to the lattice QCD
data, though our model contains no quark-gluon degrees of
freedom.
Figure 9 displays the variation of the scaled electrical

conductivity σel=T with respect to the temperature at
μB ¼ 0.1, 0.2, 0.3, and 0.35 GeV in all considered HRG
models. The T and μB dependence on the total electrical
conductivity is basically coming from the number density
and the relaxation time in Eq. (43). The number density is
more dominating than the relaxation time in determining

�

�

�

FIG. 8. Comparison of several calculations for the scaled
electrical conductivity σel=T at μB ¼ 0 GeV; see text for more
explanations.
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the T and μB dependence on electrical conductivity for the
baryonic contribution. However, for the mesonic contribu-
tion, the variation of the electrical conductivity in the IHRG
model with T and μB is primarily governed by the
relaxation time rather than the number density. This arises
from the mathematical analysis of the electrical conduc-
tivities of mesons and baryons. As we can see from Fig. 9,
the total σel=T in the IHRG model decreases as T increases
for μB ¼ 0.1 GeV. One can understand this behavior as
follows: First, the numerical strength of σel=T in the IHRG
model mainly comes from the contribution of mesons. At a
given μB, the contribution of the mesons to the total σel=T,
σM=T decreases due to the decrease of the relaxation time
via scattering with more hard spheres at high T. Second, the
contribution of baryons to the total σel=T, σB=T increases
as T grows, although the value of σB=T is very small
compared to that of σM=T. Thus, after adding mesonic and
baryonic contributions to the total σel=T, the qualitative
behavior of the total σel=T in the IHRG model is still
dominated by mesons (pions). With the increase of μB, the
baryonic concentration increases and pions scatter with
more baryons, leading to a reduction in the relaxation time
of mesons. As a result, σM=T decreases with increasing μB.
Although σB=T increases with growing μB, the increment
in σB=T cannot win over the reduction in σM=T. Hence, the
total σel=T in the IHRG model decreases with increasing
μB, as shown in Fig. 9(a). Similar to shear viscosity, we
also discuss the effects of in-medium hadron masses and
VDW interactions on the total σel=T. As we can see from
Fig. 9(a), at μB ¼ 0.2 GeV the value of the total σel=T is
relatively smaller in the THRG model than in the IHRG
model, which is mainly due to the reduction in the
relaxation time of mesons within the THRG model,
although σB=T within the THRG model has a slight
cancellation effect on the decrease of σM=T. We notice
that in Fig. 9(a) at μB ¼ 0.1 GeV or zero μB the effect of

thermal hadron masses on the total σel=T is negligible due
to the small in-medium modification of masses, whereas
with the further increase of μB, the negative impact of
thermal hadron masses on the total σel=T becomes stronger.
So at high μB, the effect of in-medium hadron masses on
σel=T is significant and nonignorable. Nonetheless, the
THRG model does not change the qualitative behavior of
σel=T. Hence, we can deduce that the total σel=T in the
IHRG and THRG models is still quantitatively and quali-
tatively dominated by mesonic contribution, i.e., σM=T.
Next we consider the effect of VDW interactions on the

total σel=T. In Fig. 9(b), the total σel=T for μB ¼ 0.1 GeV is
significantly enhanced at high T in the VDWHRG model
compared to the IHRG model. The reasons are as follows:
First, the increase in the relaxation time of mesons due to
the inclusion of VDW interactions makes an enhancement
in σM=T at high T. Second, compared to the IHRG model,
the VDWHRG model leads to an improvement (reduction)
in the relaxation time (the number density) of baryons at
high T. And the strong rise in the relaxation time of baryons
within the VDWHRG model makes σB=T have a large
enhancement at high T after dominating over the decrease
of the number density of baryons. Nevertheless, the total
σel=T is still decreasing over the entire temperature domain
in the VDWHRG model similar to that in the IHRG model.
The dependence of σel=T on μB in the VDWHRG model is
nonmonotonic, in stark contrast to that in the IHRG model,
as shown in Fig. 9(b). More exact, as μB grows, the total
σel=T in the VDWHRG model first decreases at low T then
increases at high T. In order to better understand this
nontrivial behavior, the temperature dependences of σB=T
and σM=T within the VDWHRG model at various μB are
plotted in Fig. 10(a). At high T, σB=T in the VDWHRG
model is comparable to σM=T, and the increase of σB=T is
enough to compensate for the inconspicuous decrease of
σM=T with the increase in μB. Thus, at high temperature,
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FIG. 9. Same as Fig. 6 for the scaled electrical conductivity σel=T.
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the variation of the total σel=T with μB is dominated by
σB=T, as shown in Fig. 10(a). We also study the mix effects
of thermal hadron masses and VDW interactions on the
total σel=T at various μB. In Fig. 9(b), we observe that the
variation of the total σel=T with μB in the TVDWHRG
model is analogous to that in the VDWHRG model. It is
worth noting that σel=T in the TVDWHRG model at μB ¼
0.3 and 0.35 GeV shows a broad hollow with a minimum,
which is qualitatively similar to the result in Ref. [39],
where σel=T for the π − N system is calculated at μN ¼ 0.4,
0.5, and 0.6 GeV. Similarly, the results in the PHSD model
[42] and NJL model [30] show that σel=T at μB ¼ 0 GeV
decreases in the hadronic temperature region but increases
in the partonic temperature region and the minimum of
σel=T around the critical temperature. This nonmonotonic
behavior of σel=T is because the value of σB=T for μB ¼ 0.3
and 0.35 GeV in the TVDWHRG model significantly
overshoots the value of σM=T at high T, as shown in
Figs. 10(b) and 10(c). Therefore, we conclude that at high
μB the positive effect of the VDW interactions on electrical
conductivity will be further improved by the inclusion of
thermal hadron masses, even if the thermal mass effect
itself leads to a reduction in electrical conductivity.
Figure 11 displays the temperature dependence of the

scaled thermal conductivity λ=T2 within the TVDWHRG
model at μB ¼ 0.1 GeV (black solid line). We remind the
reader that in a baryon-free (nB ¼ 0) hadronic system, there
is no thermal conduction which is related to the relative
flow of energy and baryon number; hence, thermal con-
ductivity vanishes. But for pure pion gas with conserved
number, thermal conductivity can be nonzero at vanishing
μB [14]. We also compare our result with the results of

some earlier works. The orange dashed line and blue
double-dotted-dashed line correspond to the estimation
of λ=T2 at μB ¼ 0.1 GeV in the SU(3) NJL model [30]
and in the SU(2) Polyakov quark meson (PQM) model
[32], respectively. The red dotted line represents the result
of the EVHRG model [51]. The green triangles represent
the estimation of λ=T2 by Mitra and Sarkar for pion gas
using the RTA [45]. The purple open circles show the result
for pion gas in unitarized ChPT using the Green-Kubo
formalism [27]. We notice our result is more or less
qualitatively similar to these existing results, whereas the
calculations of various models have significantly different
orders of magnitude. The estimation of λ=T2 by Mitra and
Sarkar [45] and the ChPT result [27] are far less than ours,
since the total λ=T2 in pion gas is only coming from π − π
elastic scatterings. The numerical difference between the
result of the EVHRG model and our result may again be
attributed to the fact that in Ref. [51] the repulsive
interactions are related to all hadrons rather than only
baryon-baryon pairs and antibaryon-antibaryon pairs. In
addition, the results of λ=T2 in the NJL [30] and PQM
models [32] are larger than ours since the elementary
degrees of freedom in the NJL model (PQM model) are
quarks (quarks and light mesons), whereas the degrees of
freedom in the HRG models are hadrons.
The temperature dependence of λ=T2 for μB ¼ 0.1, 0.2,

0.3, 0.35 GeV within all considered HRG models is plotted
in Fig. 12. At a given μB, the monotonically decreasing
behavior of λ=T2 in the IHRG model is in large part
qualitatively determined by the heat function w=nB as
shown in Eq. (44). Furthermore, at a given temperature,
λ=T2 decreases as μB increases within the IHRG model.
This mainly arises from the baryon density nB increasing
by the significant amount with increasing μB; although the

�

�

� � � �

� �

�

�

� � � �

�

(a)

(b)

(c)

FIG. 10. The temperature dependence of the scaled electrical
conductivity for meson (dotted lines) and baryon components
(dashed lines), and their total (solid lines) at various μB.
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FIG. 11. Comparison of several calculations for the scaled
thermal conductivity λ=T2 at μB ¼ 0.1 GeV; see text for more
explanations.
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enthalpy density w also increases as μB grows, this effect is
small. In Fig. 12(a), for high μB (viz., μB ¼ 0.3 and
0.35 GeV), λ=T2 in the THRG model is reduced quanti-
tatively compared to that in the IHRG model. This is
because although the values of both w and nB have an
enhancement by the inclusion of in-medium hadron
masses, the enhancement of nB is so large that w=nB in
the THRG model as a whole has a reduction compared to
that in the IHRG model. At small μB (μB ¼ 0.1 and
0.2 GeV) or zero μB, λ=T2 is nearly unaffected by the
inclusion of in-medium hadron masses. This is mainly
because, with the consideration of thermal hadron masses,
the increase in nB is nearly neutralized by the decrease in
1=w. Hence, the in-medium hadron masses play an impor-
tant role in the calculation of λ=T2, especially at high μB.
We observe that the qualitative variation of λ=T2 with T

and μB in the THRG model is akin to that in the IHRG
model, as shown in Fig. 12(a). However, when we consider
the effect of VDW interactions on λ=T2, its behavior
becomes unusual. In Fig. 12(b), λ=T2 for μB ¼ 0.1 GeV
in the VDWHRG model first decreases, reaches a mini-
mum, and then increases with increasing temperature,
which is not observed in the EVHRG model [51], and
the minimum of λ=T2 for μB ¼ 0.1 GeV is around
T ¼ 0.16 GeV. Similarly, λ=T2 in the PQM model [32]
and NJL model [93] for μB ¼ 0.1 GeV also shows a
nonmonotonic behavior with a minimum near the critical
temperature. This valley structure of λ=T2 in the
VDWHRG model may be explained as follows: At low
T, the hadronic system is dominated by light mesons whose
contributions to λ=T2 are nearly not affected by VDW
interactions. Thus, at low T, the T and μB dependence on
λ=T2 in the VDWHRG model mimics that in the IHRG
model. With increasing T, the baryonic states increase, and
the VDW interactions lead to a reduction in both w and nB;
however, the reduction of nB is so prominent that it makes

λ=T2 an increasing function of T in the high T domain. In
short, the μB dependence on λ=T2 in the VDWHRG model
is still analogous to that in the THRG and IHRG models.
We also notice that the minimum of λ=T2 in the VDWHRG
model shifts to a lower temperature as μB increases.
Furthermore, the effect of the VDW interactions on λ=T2

is more pronounced by the inclusion of thermal hadron
masses at high μB (μB ¼ 0.3 and 0.35 GeV), even though
the effect of thermal masses themselves can result in a
numerical decrease of λ=T2. Thus, for μB ¼ 0.3 and
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FIG. 12. Same as Fig. 6 for the scaled thermal conductivity λ=T2.
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FIG. 13. The minima for σel=T in the VDWHRGmodel (purple
solid triangles) and minima for λ=T2 in the VDWHRG model
(orange open squares) and TVDWHRG model (green solid
circles) in the T − μB plane. The phase diagram obtained by
analytic continuation of lattice QCD simulations from imaginary
to real μB [94,95]. The blue dashed band and orange solid band
indicate the width of the phase transition. The blue solid band is
the critical line from Ref. [95]. The widening around 0.3 GeV is
coming from the uncertainty of the curvature and from the
contribution of higher order. The orange dashed line shows the
transition line from Ref. [94] The yellow band is the expected
crossover region (T ¼ 0.14–0.19 GeV) for μB ¼ 0 GeV in
Ref. [2].
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0.35 GeV, λ=T2 in the TVDWHRG model increases
faster at high T compared to that in the VDWHRG model,
and the value of λ=T2 at μB ¼ 0.35 GeV even overshoots
the value of λ=T2 at μB ¼ 0.3 GeV, which can be shown in
Fig. 12(b).
Figure 13 shows the minima of σel=T for the

TVDWHRG model and the minima of λ=T2 for the
VDWHRG and TVDWHRG models in the T − μB plane.
We notice that these minima are phenomenologically
located inside or slightly deviate the phase transition region
obtained from lattice QCD simulations [94,95]. For λ=T2,
the minima in the VDWHRG and TVDWHRG models are
very close to the critical transition lines. Based on previous
results in Refs [30,42,49,93] where the minimum of σel=T
(λ=T2) is near the critical temperature at μB ¼ 0 GeV
(μB ¼ 0.1 GeV), we expect the scaled electrical and
thermal conductivities in the TVDWHRG model at differ-
ent μB to exhibit a minimum near the QGP-hadron phase
transition region making it a crucial signature of the phase
transition. To our knowledge, there are no results of the
scaled conductivities based on lattice QCD calculations and
the effective QCD models at different nonzero μB, so
whether the minimum is really a sign of a phase transition
still needs to be verified in the future.

VI. CONCLUSION

In this work, we investigate the thermodynamics and
transport coefficients with the TVDWHRGmodel, which is
the extension of the VDWHRG model by including the
effect of the temperature T- and baryon chemical potential
μB-dependent hadron masses. In the TVDWHRG model,
thermal hadron masses are obtained by the 2þ 1 flavor
Polyakov linear sigma model combined with the scaling
rule of hadron masses. We estimate the thermodynamics,
such as the pressure, energy density, entropy density, and
square of sound velocity in the TVDWHRG model and
compare them with the lattice QCD data. We show that at
T ∼ 0.16–0.195 GeV, the thermodynamics for μB ¼
0 GeV in the TVDWHRG model gives an improved
agreement with the available lattice QCD data compared
to that in the VDWHRG model. And with the increase of
μB, the thermodynamics, e.g., the pressure, have a sizable
improvement in magnitude due to the inclusion of thermal
hadron masses.
We also investigate the scaled transport coefficients, such

as the shear viscosity to entropy density ratio η=s, scaled
electrical conductivity σel=T, and scaled thermal conduc-
tivity λ=T2 of hadronic matter in all considered HRG
models by using the quasiparticle kinetic theory under the

relaxation time approximation. From the qualitative and
quantitative perspectives, taking into account the effects of
VDW interactions and thermal hadron masses, the scaled
transport coefficients are modified considerably. When we
only consider the effect of T- and μB-dependent hadron
masses compared to the IHRG model case, the values of all
scaled transport coefficients for fixed μB are relatively
suppressed in the THRG model even though η itself is
enhanced in the THRG model. Though the suppression of
the scaled transport coefficients due to the thermal mass
effect is relatively weak at small μB (viz., μB ¼ 0, 0.1,
0.2 GeV), with the increase of μB its effect becomes more
pronounced. Nonetheless, the general behaviors of the
transport coefficients in the THRG and IHRG models
are similar qualitatively.
However, compared to the IHRG model, the VDWHRG

model leads to a qualitatively and quantitatively different
behavior of the scaled transport coefficients. On the one
hand, the VDW interactions between (anti)baryons give a
significant enhancement of the scaled transport coefficients
at high T and even change the dependence of λ=T2 on the
temperature. On the other hand, as μB grows, η=s and σel=T
in the VDWHRG or TVDWHRG model decrease at low T,
whereas they increase at high T. Furthermore, the effect of
VDW interactions on the scaled transport coefficients for
μB > 0.2 GeV is strengthened further at high T by the
inclusion of in-medium hadron masses, though thermal
hadron masses themselves have a negative effect on the
scaled transport coefficients. The minimum of σel=T in
the TVDWHRG model and the minimum of λ=T2 in the
TVDWHRG or VDWHRG model may be related to the
phase transition, which needs to be verified based on
the research from different effective models. It is noted
that we make some simple assumptions in the present
TVDWHRG model, and there is much room for further
improvement (e.g., the approaches we obtain all in-medium
hadron masses could be improved, the VDW parameters
may vary with μB, the quantitative changes of the con-
stituent quark masses in various effective QCDmodels may
be modified, etc.). However, we expect the improved
TVDWHRG model does not break down the existing
qualitative behaviors for the scaled transport coefficients
in the present TVDWHRG model.
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