
 

Towards the decay properties of deuteron-like state dNΩ
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Recent lattice QCD calculations showed that a dNΩ similar to the deuteron with baryon number B ¼ 2

and with a small binding energy might exist. In this work we propose a hadronic molecular approach to
study the dynamical properties of this exotic state. We employed a phenomenological Lagrangian approach
to describe the coupling of the dNΩ to its constituents and the strong decays into conventional hadrons,
dNΩ → ΛΞ and dNΩ → ΣΞ. Predictions for the sum of the decay rates are in the range of a few hundred
keV. In addition, we find that the dNΩ → ΛΞ mode is dominant, preferably searched for in a future
Relativistic Heavy Ion Collider (RHIC) experiment.
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I. INTRODUCTION

Since the discovery of the Xð3872Þ state in 2003 [1],
the study of exotic resonances with heavy flavors, like
Xð3872Þ, Zcð3900Þ or the Pc states, turns out to be
extremely important in unravelling their unusual internal
structure both in theoretical and experimental investiga-
tions [2]. In particular, many experimental efforts at world-
wide facilities (like BEPC II, BELLE, CERN, JLab, LHCb,
etc.) have been carried out for hunting and identifying those
exotics [2–7]. Numerous theoretical calculations were also
devoted to the understanding of those unusual hadron states
with respect to their composite structure, mass spectrum
and decay properties (for a detailed list of references and
reviews, see e.g., Refs. [2,8–17]). Different interpretations
have been proposed and developed in the literatures:
hadronic molecular scenarios, multiquark states–tetraquark

or pentaquark configurations, kinematic triangle singular-
ities, and scattering cusps, among some others.
Multiquark states can be realized not only as four-quark

(meson sector) and five-quark (baryon sector) systems, but
also as six-quark state. Correspondingly, there are meson-
meson, meson-baryon and baryon-baryon molecular states.
The deuteron, discovered in 1931, is the prototype of a
baryon-baryon molecular state, mainly residing in a proton-
neutron configuration with a weak binding energy of
Eb ≃ 2.22 MeV. Dyson and Xuong were the first to study
nonstrange two-baryon systems in terms of SUð6Þ even
before the quarkmodelwas established [18]. TheH-particle,
originally proposed by Jaffe [19] and other candidates, like
thed�, were searched for in experiments for a very long time.
Recently, the nonstrange resonance d�ð2380Þwas observed
and confirmed by the WASA@COSY collaboration [20–
23]. So far, the understanding of the nature of the d�ð2380Þ
resonance is not conclusive. The three-diquark state [24],
compact six-quark state [25–29], or hadronic molecule
structure [30] are three possible interpretations (see the
review article [31]).
Possible nucleon-hyperon states with baryon number

B ¼ 2 have also been studied in the literature [19,32–36].
The NΩ state is a typical example among them as it is
believed to be bound. The first investigation of a six-quark
system with strangeness S ¼ −3 was done by Goldman
et al. using the relativistic quark model [37]. They proposed
a bound S-wave NΩ state with total angular momentum
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J ¼ 1 or 2. Later on, in Ref. [38] it was pointed out that the
treatment with a single NΩ channel cannot lead to a
bound state since there is no quark exchange effect in
this channel. When considering the coupled channels,
like NΩ − ΛΞ� − ΣΞ� − Σ�Ξ − Σ�Ξ�, a bound state might
exist. The NΩ system was also studied in a quark
delocalization and color screening model (QDCSM), where
the bound state can be obtained both for the single NΩ or
coupled channel configurations [39]. The predicted masses
are M ¼ 2566 MeV and M ¼ 2549 MeV for the two
cases, respectively. A further analysis of the QDCSM
was recently performed in Ref. [40], and the updated
results were consistent with the previous ones. A bound
NΩ state is also supported by chiral quark model calcu-
lations, where the binding energy varies from ten to around
one hundred MeV depending on the specific approach
[40,41]. Moreover, Ref. [42] found a quasibound NΩ state
with a pole at Epole ¼ 2611.3 − 0.7i MeV based on a
meson exchange model.
Besides those model calculations, recently, a lattice

calculation for the dNΩ system was performed by the HAL
QCD Collaboration [43,44]. As a result, they reported that
an S-wave dNΩ with JP ¼ 2þ and with deuteronlike
binding energy of Eb ¼ 2.46 MeV indeed does exit.
The HAL QCD Collaboration performed their lattice
simulations for nearly physical quark masses correspond-
ing to pseudoscalar masses of mπ ≃ 146 MeV and
mK ≃ 525 MeV. The possible strong short range attraction
in the proton-Ω system can also be accessed by the
momentum correlation of pΩ emission in relativistic
heavy ion collisions [45]. The corresponding measure-
ment has been carried out by the STAR Collaboration at
the Relativistic Heavy Ion Collider (RHIC) using the
Auþ Au collision [46]. The results slightly favor a
bound dNΩ with a binding energy of about 27 MeV.
Besides the first work in Ref. [45], the authors extended
their analysis on the pair momentum correlation func-
tions in [47].
To check for the existence of a dNΩ, a direct search for a

signal in the invariant mass of the final decay channels is
necessary. Therefore, also a theoretical calculation on the
decay properties of the dNΩ is needed. In this work we
consider the dNΩ as a loosely bound state of a nucleon and
an Ω with a value for the binding energy set by the lattice
calculation. Then we employ an effective Lagrangian
approach to calculate the strong decays. It should be
mentioned that the phenomenological Lagrangian approach
is a reasonable method to describe the properties of weakly
bound states. We have successfully applied it to a wide
range of exotic resonances like D�

s0ð2317Þ, Xð3872Þ,
Zcð3900Þ, and Yð4260Þ in the meson sectors [48–58]
and for Λcð2940Þ, Σcð2800Þ, Ωð2012Þ, and Pc in the
baryon sector [59–64]. We also employed this method to
study deuteron properties [65,66]. Since the binding of this
dNΩ state is expected to be similar to that of the deuteron,

we expect that our phenomenological Lagrangian approach
will result in reasonable predictions for the strong decay
properties of the dNΩ.
This paper is organized as follows. In Sec. II, we discuss

the setup of the hadronic structure of the dNΩ bound state
and follow up with the formalism of the strong decay
modes in the context of an effective Lagrangian approach.
Section III is devoted to the numerical evaluation and
discussion of the strong decays of this NΩ molecular state.
Finally, a short summary will be given in Sec. IV.

II. STRONG DECAYS OF THE dNΩ

In the following we assume that the dNΩ is a loosely
bound state of a nucleon and an Ω− hyperon. Following
the results of the recent lattice calculations [43], the
quantum numbers of the dNΩ weakly bound state are
chosen as IðJPÞ ¼ 1

2
ð2þÞ. The bound state has two

isospin components, pΩ for I3 ¼ 1=2 and nΩ for
I3 ¼ −1=2. To set up a framework for the treatment of
a bound state of two hadrons, we construct a phenom-
enological Lagrangian describing the interaction of the
dNΩ with its constituents as

L ¼ gdNΩ
dμν†NΩ

Z
dyΦðy2ÞΩ̄c

μðxþ ωNΩyÞγνNðx − ωΩNyÞ

þ H:c:; ð1Þ

where ψc ¼ Cψ̄T , ψ̄c ¼ ψTC, and ψ̄c
1γ

μψ2 ¼ ψ̄c
2γ

μψ1.
Here C ¼ iγ2γ0 is the charge-conjugation matrix, super-
script T denotes the transposition and ωij¼mi=ðmiþmjÞ
is the hadron mass fraction parameter, where mi is the
mass of the ith particle. To describe the distribution of
the constituents in the hadronic molecular system, we
introduce the correlation function Φðy2Þ, which, in
addition, plays the role to render the Feynman diagrams
ultraviolet finite. Note that Φðy2Þ is related to its Fourier
transform in momentum space Φ̃ð−p2Þ as

Φðy2Þ ¼
Z

d4p
ð2πÞ4 e

−ipyΦ̃ð−p2Þ; ð2Þ

where p ¼ ωNΩpΩ − ωΩNpN is the Jacobi momentum.
Here, Φ̃ð−p2Þ is the correlation function describing the
distribution of constituents in the molecular state. It was
widely and successfully used in the investigation of
hadronic molecules [48–51,55,57,65]. For simplicity, Φ̃
is chosen as a Gaussian-like form Φ̃ð−p2Þ¼ expðp2=Λ2Þ,
where Λ is the model parameter, which has dimension of
mass and defines a scale for the distribution of the
constituents inside the molecule. All calculations are
performed in Euclidean space after Wick transformation
for loop and all external momenta: pμ ¼ ðp0; p⃗Þ → pμ

E ¼
ðp4; p⃗Þ with p4 ¼ −ip0. In Euclidean space the Gaussian
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correlation function provides that all loop integrals are
ultraviolet finite.
The coupling constant gdNΩ

in Eq. (1) is determined using
the Weinberg-Salam compositeness condition [67–70].
This condition means that the probability to find the
dressed bound state as a bare (structureless) state is equal
to zero. It also means that the corresponding wave function
renormalization constant Z is set to be zero. In the case of
dNΩ, the compositeness condition reads:

ZdNΩ
¼ 1 −

∂Σð1Þ
dNΩ

ðm2
dNΩ

Þ
∂m2

dNΩ

¼ 0; ð3Þ

where Σð1Þ
dNΩ

ðm2
dNΩ

Þ is the nonvanishing part of the mass
operator of the dNΩ having spin-parity 2þ. In Fig. 1 we
display the diagram contributing to the mass operator of the
dNΩ. Note that the respective mass operator of the 2þ
hadron is given by the rank-4 tensor Σμναβ sandwiched by

the polarization vectors ϵðλÞμν ðpÞ for the spin 2þ tensor:

Σ̂ðpÞ ¼ ϵ†ðλÞμν ðpÞΣμναβðpÞϵðλÞαβ ðpÞ: ð4Þ

The polarization vector ϵðλÞμν ðpÞ obeys the conditions of

symmetry ϵðλÞμν ðpÞ ¼ ϵðλÞνμ ðpÞ, transversality pμϵðλÞμν ðpÞ ¼ 0,

and tracelessness gμνϵðλÞμν ðpÞ ¼ 0.
The expression for the mass operator Σμναβ reads as

follows:

Σμναβ ¼ g2dNΩ

Z
d4q
ð2πÞ4i Φ̃

2ð−ðq − wΩNpÞ2Þ

× Tr½γνSμαðq;mΩÞγβSðq − p;mNÞ�; ð5Þ

where S and Sμα are the free fermion propagators for spin-1
2

and spin-3
2
particles with

Sðp;mÞ ¼ ð=p −mÞ−1; ð6Þ

Sμνðp;mÞ

¼ ð=p−mÞ−1
�
−gμνþ

γμγν
3

þ2pμpν

3m2
þ γμpν− γνpμ

3m

�
: ð7Þ

Using properties of the polarization vector ϵðλÞμν ðpÞ men-
tioned above, Σμναβ can be decomposed into the Lorentz

structures LðiÞ
μναβ (i ¼ 1;…; 5) multiplied by the scalar

functions ΣðiÞðp2Þ with

ΣμναβðpÞ ¼
X5
i¼1

LðiÞ
μναβΣðiÞðp2Þ; ð8Þ

where

Lð1Þ
μναβ ¼

1

2
½gμαgνβ þ gναgμβ�;

Lð2Þ
μναβ ¼ gμνgαβ;

Lð3Þ
μναβ ¼

1

2
½gμνpαpβ þ gαβpμpν�;

Lð4Þ
μναβ ¼

1

4
½gμαpνpβ þ gμβpνpα þ gναpμpβ þ gνβpμpα�;

Lð5Þ
μναβ ¼ pμpνpαpβ: ð9Þ

As already mentioned, due to the properties of the

polarization vector ϵðλÞμν ðpÞ, only the first term in the sum
of Eq. (8) contributes while the others vanish. The scalar
function Σð1Þðp2Þ contributing to the compositeness con-
dition Eq. (3) is obtained from the full mass operator
ΣμναβðpÞ when acting with the following Lorentz projector:

Tμναβ
⊥ ¼ 1

10
ðPμα

⊥ Pνβ
⊥ þ Pμβ

⊥ Pνα⊥ Þ − 1

15
Pμν
⊥ Pαβ

⊥ : ð10Þ

The projector Pμν
⊥ is defined as Pμν

⊥ ¼ gμν − pμpν=p2 and
satisfies the conditions

gαμP
μν
⊥ ¼Pαν⊥ ; gμνP

μν
⊥ ¼ 3; pμP

μν
⊥ ¼pνP

μν
⊥ ¼ 0: ð11Þ

The full projector Tμναβ
⊥ satisfies the following conditions:

piT
μναβ
⊥ ¼ 0; i¼ μ;ν;α;β;

Lð1Þ
μναβT

μναβ
⊥ ¼ 1; LðjÞ

μναβT
μναβ
⊥ ¼ 0; j¼ 2;3;4;5: ð12Þ

Finally, the required scalar function Σð1Þðp2Þ is fixed using
the identity

Σð1Þðp2Þ ¼ Tμναβ
⊥ ΣμναβðpÞ: ð13Þ

Based on the quantum number assignment IðJPÞ ¼
1
2
ð2þÞ of the dNΩ, we consider the strong decays into

the baryon pairs ΛΞ and ΣΞ. In the hadronic molecular
picture the decays dNΩ → ΛΞ and dNΩ → ΣΞ are described
by the triangle diagrams induced by the exchange of K and
K� mesons in the t-channel. The corresponding diagrams
are shown in Fig. 2.
To determine the matrix elements corresponding

to the diagrams in Fig. 2, we apply a phenomenological

FIG. 1. Mass operator of the dNΩ.
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Lagrangian including the coupling of the dNΩ to its
constituents [which has been already specified in
Eq. (1)] and the couplings of the constituents to the final
hadrons. Thus, we need additional phenomenological
Lagrangians describing the couplings between baryons B
(octet and decuplet states) and mesons (pseudoscalar P and
vector V states). In the present calculation we use the BBP
and BBV type Lagrangians with [71–76],

LΛNK ¼ fΛNK

mπ
N̄γμγ5Λ∂μK þ H:c:;

LΣNK ¼ fΣNK

mπ
N̄γμγ5Σ̂∂μK þ H:c:;

LΛNK� ¼ −gΛNK�N̄

�
γμΛ −

κΛNK�

2mN
σμνΛ∂ν

�
K�

μ þ H:c:;

LΣNK� ¼ −gΣNK�N̄

�
γμΣ̂ −

κΣNK�

2mN
σμνΣ̂∂ν

�
K�

μ þ H:c:;

LΩΞK ¼ fΩΞK
mπ

∂μKΩ̄μΞþ H:c:;

LΩΞK� ¼ gΩΞK�

mρ
ð∂μK�

ν − ∂νK�
μÞΩ̄μiγνγ5Ξþ H:c:; ð14Þ

where Σ̂ ¼ Σ⃗ · τ⃗. The couplings of the octet baryons to
pseudoscalar/vector mesons are constrained by SUð3Þ-
flavor symmetry relations [72,76],

fΛNK ¼ −
1ffiffiffi
3

p gNNπð1þ 2αBBPÞ; ð15Þ

fΣNK ¼ gNNπð1 − 2αBBPÞ; ð16Þ

gΛNK� ¼ −
1ffiffiffi
3

p gNNρð1þ 2αBBVÞ; ð17Þ

gΣNK� ¼ gNNρð1 − 2αBBVÞ: ð18Þ

The remaining parameter κ in the BBV coupling is fixed
using the relation between vector and tensor couplings
fYNK� ¼ gYNK�κYNK� and the relation of the tensor cou-
plings fYNK� to the fNNω and fNNρ couplings [72],

fΛNK� ¼ −
1

2
ffiffiffi
3

p fNNω −
ffiffiffi
3

p

2
fNNρ; ð19Þ

fΣNK� ¼ −
1

2
fNNω þ 1

2
fNNρ: ð20Þ

For the couplings between the baryon decuplet and the
pseudoscalar/vector meson octets gΔNπ and gΔNρ, we use
SUð3Þ symmetry constraints [72],

gΩΞK ¼ gΔNπ; gΩΞK� ¼ gΔNρ: ð21Þ

In Table I, we present the values for the meson-baryon
coupling constants used in our calculations [see Eqs. (15)–
(21)]. Note that gNNπ ¼ 0.989 was determined in Ref. [71],
based on πN scattering, where it is found that the πN phase
shift, scattering length, and the πNΣ term were in agree-
ment with the experimental data. We also use αBBP ¼ 0.4
and αBBV ¼ 1.15, taken from an analysis of elastic Nπ
scattering [72]. For the coupling gΔNπ, we take the value
2.12 [71] determined from the Δ → Nπ decay rate. Besides
these well determined parameters, the value of κρ can vary
in a wider range, e.g., from κρ ¼ 1.825 in Ref. [73] to κρ ¼
6.1 in Ref. [71]. The values for the gNNρ coupling cited in
these two references do not vary too much and are also
presented in Table I. The difference in values for κρ and
gNNρ consequently has an impact on the coupling constant
gΔNρ [73],

gΔNρ ¼
ffiffiffiffiffi
72

25

r
gNNρð1þ κρÞ

2mN
mρ; ð22Þ

with gΔNρ ¼ 6.08 in Ref. [73] and gΔNρ ¼ 16.0 in Ref. [71].
Since there is no way to distinguish the cases of parameter
values for gNNρ, κρ, and gΔNρ, we use both sets in the
present calculation. Further details will be discussed in the
next section.

FIG. 2. Typical diagrams contributing to the processes dNΩ →
ΞΛ [diagrams (1)–(2)] and ΞΣ [diagrams (3)–(4)], respectively.

TABLE I. Meson-baryon coupling constants.

Coupling Set I Set II

gNNπ 0.989 [71,72]
gΔNπ 2.12 [71,72]
fNNω 0 [72,75]
αBBP 0.4 [72,75]
αBBV 1.15 [72,75]
gNNρ 3.1 [73] 3.25 [71,76]
κρ 1.825 [73] 6.1 [71]
gΔNρ 6.08 [73] 16.0 [71]
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Starting from our total effective Lagrangians, we gen-
erate matrix elements corresponding to the diagrams of
Fig. 2. Their expressions read as follows:

Mi ¼ ūðp4ÞΛαβ
i ðp3;p4ÞCūTðp3ÞϵðλÞαβ ðpÞ i¼ 1;2; ð23Þ

where

Λαβ
1 ðp3; p4Þ ¼ −gdNΩ

fΩΞKfΛpK
m2

π

Z
d4q

ð2πÞ4i qμqν
×Dðq;mKÞSναðp2; mΩÞγβSð−p1; mpÞγ5γμ
× Φ̃ð−ðp1 − wpΩpÞ2ÞF ðmt; qÞ; ð24Þ

Λαβ
2 ðp3;p4Þ¼ gdNΩ

gΩΞK�gΛpK�

mρ

Z
d4q

ð2πÞ4i ½gρσqτ−gρτqσ�

× γτγ5Sσαðp2;mΩÞγβSð−p1;mpÞDμρðq;mK� Þ

×

�
γμ− iσμνqν

κK�Λp

2mp

�

× Φ̃ð−ðp1−wpΩpÞ2ÞF ðmt;qÞ; ð25Þ

whereDðq;mKÞ¼ðq2−m2
KÞ−1 andDμνðq;mK�Þ ¼ ð−gμν þ

qμqν=m2
K� Þðq2 −m2

K� Þ−1 are the propagators of the K and
K� mesons, respectively.
A phenomenological dipole form factor,

F ðmt; qÞ ¼ ðm2
t − Λ2

1Þ2=ðq2 − Λ2
1Þ2; ð26Þ

is introduced to take into account off-shell effects and
the nonlocal structure of the interacting particles [77].
Here, Λ1 ¼ mt þ αΛQCD is a cut-off parameter with mt
being the mass of the exchange particle and the QCD scale
parameter ΛQCD ¼ 0.22 GeV. The other two transition
amplitudes corresponding to the diagrams in Figs. 2(3)
and 2(4) are generated from the underlying phenomeno-
logical Lagrangian in analogy.
Finally, the total contribution to the matrix element of the

dNΩ → ΞΛ process is

MtotðdNΩ → ΞΛÞ ¼ M1 þM2 ð27Þ

and for the dNΩ → ΞΣ transition,

MtotðdNΩ → ΞΣÞ ¼ M3 þM4: ð28Þ

The expression for the decay widths of dNΩ → ΞΛ=ΞΣ is
evaluated as

Γ ¼ 1

2J þ 1

jp⃗j
8πm2

dNΩ

jMtotj2; ð29Þ

where J is the total angular momentum of the initial state
dNΩ, p⃗ is the relative 3-momentum of the final states in the

rest frame of the initial state, and the overline denotes the
sum of spin polarizations for initial/final states.

III. NUMERICAL RESULTS

First, in Table II we summarize the mass values used in
the present calculation [2]. Although different masses were
predicted for the dNΩ, we choose a mass for the dNΩ as
reliably determined in the recent lattice calculation where
the binding energy is about 2.46 MeV.
Values for the coupling gdNΩ

of the dNΩ bound state to the
constituents are generated by the compositeness condition
and are listed in Table III. The values depend on the model
parameterΛ, which is introduced in the correlation function
of Eq. (2) and phenomenologically represents the distri-
bution of the N and Ω baryons in the dNΩ. In Ref. [65],
utilizing the same approach for the rather weakly bound
deuteron, the parameter Λ was deduced to be less than
0.5 GeV. The numerical results for the deuteron electro-
magnetic form factors of Ref. [65] are in fairly good
agreement with data. Based on the similarity between the
dNΩ and the deuteron, we choose four typical values for the
phenomenological cutoff parameter Λ ¼ 0.2, 0.3, 0.4, and
0.5 GeV. The resulting values for gdNΩ

are 2.38, 2.11, 1.97,
and 1.88, respectively (see Table III).
Finally, we have a remaining parameter α in the

phenomenological form factor of Eq. (26). The parameter
α cannot be fixed from first principles, instead we choose
α ¼ 0.9–1.1, previously determined from an extended
analysis of decay data on possible baryon-antibaryon
bound states (see, e.g., the detailed discussion in Ref. [78]).
In Tables IVand V, the partial strong decay widths of the

dNΩ → Λ0Ξ0, dNΩ → Σ0Ξ0, and dNΩ → ΣþΞ− transitions,
together with their dependence on Λ, are displayed. For a
fixed value of Λ, the range in results corresponds to a
variation of the parameter α from 0.9 to 1.1 entering in the
transition form factor.
Using the values for the coupling constants of Set I, we

find that the partial strong decay width for dNΩ → Λ0Ξ0

varies from 154–275 keV to 355–646 keV and that for
dNΩ → Σ0Ξ0 from 4.0–6.61 keV to 7.03–12.0 keV.
Therefore, the mode dNΩ → Λ0Ξ0 dominates over the

TABLE II. Masses of the relevant particles (in units of
GeV) [2].

Particle dNΩ p Λ0 Σ0 Ξ0 Ω−

Mass 2.608 0.9383 1.116 1.193 1.315 1.672

TABLE III. Dependence of the coupling gdNΩ
on Λ.

Λ (GeV) 0.20 0.30 0.40 0.50

gdNΩ
2.38 2.11 1.97 1.88
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dNΩ → Σ0Ξ0 decay. From the relations of Eqs. (15) and
(16) for the couplings, it is clear that gΛpK is much larger
than gΣpK , therefore resulting in a dominant branching
fraction of the ΛΞ mode. In addition, the partial width of
the charged ΣþΞ− mode was obtained by isospin symmetry
where isospin breaking effects, like mass differences of
charged and neutral baryons, are not considered. Assuming
that the sum of the three partial decay widths results in the
total decay width, we can conclude that the total decay
width of the dNΩ is in the range of 166–682 keV.
With the other set of coupling constants (Set II), we

found that the partial decay widths for both the ΛΞ and ΣΞ
modes increase by a factor of about two. The obtained
partial decay width for the Λ0Ξ0 mode is from 329 to
1550 keV, and for the Σ0Ξ0 decay width we have values
from 10.3 to 40.0 keV when varying Λ and α in the allowed
range. For Set II of the coupling constant, we conclude
that the total decay width of dNΩ is in the range of 360–
1670 keV.
To check for the contribution of individual diagrams to

the processes dNΩ → ΞΛ and dNΩ → ΞΣ, as well as the
effect of different coupling values, we analyze the particu-
lar results for the partial decay widths as given in Table VI.
The detailed results are based on the choice Λ ¼ 0.2 GeV
and α ¼ 0.9. The entry for K in Table VI represents the
contribution from the K meson exchange as shown in
Fig. 2, whileK�

V andK�
T correspond to the vector and tensor

parts of the K� meson exchange contribution. For the
couplings of Set I, it is clearly seen that K exchange plays

the essential role in both dNΩ → Ξ0Λ0 and dNΩ → Ξ0Σ0

processes. The contribution of K� exchange is, at least, one
order of magnitude smaller where the tensor part is much
smaller than the vector part. For Set II, the K meson
exchange results in the same values for the partial decay
widths since the relevant coupling constants gΩΞK, fΣNK ,
and fΛNK are the same in the two cases. But now the
contribution fromK� exchange increases since the coupling
constant gΩΞK� and κ are larger, where the tensor contri-
bution dominates over the vector part.
Therefore, we conclude that for both sets of couplings

the K meson exchange contribution is dominant for both
ΛΞ and ΣΞ modes; hence, the full decay widths do not
change dramatically within the two different sets of
parameter values. The uncertainties in the parameters Λ
and α obviously have a sizable impact on the calculated
decay widths. The total decay width can reach from a few
hundred to above a thousand keV although the transitions
of the dNΩ to the possible final states occur via a D-wave.
This analysis of the partial decay widths indicates that the
process dNΩ → ΛΞ dominates in the dNΩ decays with a
branching fraction of around 95% independent of the
particular parameter choice.
The partial decay width for the process dNΩ → ΛΞ

was also estimated in Ref. [39] in the context of a quark
model. They relied on a different mass MdNΩ

¼ 2566 MeV
or on the corresponding binding energy of Eb ¼ 44.5MeV,
and used quark rearrangement for the decay mechanism.
Quantitatively, the results for quark rearrangement and for
the meson exchange process are very different. To directly
compare our results with theirs, we indicate our results for
the partial decays width of dNΩ → ΛΞ for the mass of the
dNΩ being 2566MeVas well. Results are listed in Table VII
for the comparison. Here, we take the averaged value
α ¼ 1.0 and the coupling parameters of Set I. For parameter
Set II, our results for the decay width are about twice as
large compared to those of Set I.
Compared to the numbers obtained for the mass of the

lattice prediction, the values of the coupling constant gdNΩ

increase. This is a natural result since the larger binding
also corresponds to a stronger interaction reflected by gdNΩ

.
Our results are almost one order of magnitude larger than
the one of the quark model [39] although the input mass is
the same. It should be addressed that another estimate for

TABLE IV. Two-body decay widths of the dNΩ in keV for
different values of Λ. The uncertainties of results for a fixed Λ
reflect the variation in α ranging from 0.9 to 1.1. Coupling
constants are taken from Set I.

Parameters Set I

Λ (GeV) 0.20 0.30 0.40 0.50

Λ0Ξ0 mode 154–275 253–455 321–582 355–646
Σ0Ξ0 mode 4.00–6.61 6.00–10.0 6.75–11.4 7.03–12.0
ΣþΞ− mode 8.00–13.2 12.0–20.0 13.5–22.8 14.1–24.0
Total 166–295 271–485 341–616 376–682

TABLE V. Two-body decay widths of the dNΩ in keV for
different values of Λ. The range of results for Λ corresponds to
the variation in α from 0.9 to 1.1. Coupling constants are taken
from Set II.

Parameters Set II

Λ (GeV) 0.20 0.30 0.40 0.50

Λ0Ξ0 mode 329–593 546–993 741–1360 842–1550
Σ0Ξ0 mode 10.3–17.7 16.1–27.9 20.4–36.0 22.5–40.0
ΣþΞ− mode 20.6–35.4 32.2–55.8 40.8–72.0 45.0–80.0
Total 360–646 594–1080 802–1470 910–1670

TABLE VI. Decay widths of the processes dNΩ → Ξ0Λ0 and
dNΩ → Ξ0Σ0 in units of keV. The binding energy of the dNΩ is
fixed at 2.46 MeV. The parameter Λ is chosen to be 0.2 GeV
and α is 0.9.

Parameters Set I Set II

Individual contribution K K�
V K�

T K K�
S K�

T

ΓðdNΩ → Ξ0Λ0Þ 125 0.713 0.291 125 5.42 24.8
ΓðdNΩ → Ξ0Σ0Þ 4.33 0.146 0.0444 4.33 1.11 3.78
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the total decay width of the dNΩ was also obtained in the
meson exchange model [42]. With a binding energy of
0.1 MeV the decay width of ΛΞ and ΣΞ is 1.5 MeV.
Here, we want to emphasize that in the present work the

dNΩ was assigned as a pure NΩmolecular state, while such
a pure bound state was supported by the lattice calculation
[43]. The current results are the decay properties of such a
NΩmolecular state. On the other hand, one can not exclude
other components, e.g., ΛΞ� in the dNΩ. And the additional
components may have an effect on the decays of the dNΩ.
This issue will be studied elsewhere.
From our results in Table III, we find that the Λ0Ξ0

decay mode completely dominates the total decay width.
This phenomenon occurs because of the large coupling
constant gΛpK . The final stateΛ0Ξ0 is not easily observed in
experiment since the final hadrons dominantly decay
through weak decay processes. For example, the Λ0 can
decay to pπ− and nπ0, where the pπ− mode is preferred to
reconstruct the Λ0. Moreover, Ξ0 can be reconstructed by
the three-body final state of pπ−π0 because of the decay
chain Ξ0 → Λ0π0 → pπ−π0.
The dNΩ can also decay to NΛK via the weak ΩΛK

vertex, where the final state particles can be easily
observed. However, this weak decay proportional to GF
is strongly suppressed. The dominant strong decay process
dNΩ → ΛΞ is clearly the signal of a possible dNΩ to be
searched for. If the accumulated experimental data sample
for hyperons is large enough, one may see the signal of the
dNΩ in the ΛΞ invariant mass spectrum. We also know that
the RHIC experiment has already presented a positive result
for dNΩ via indirect measurements. Future experiments are
expected to provide more direct and precise evidence for
the existence of the dNΩ.

IV. SUMMARY

The dNΩ stands for a bound, minimal, six-quark con-
figuration with baryon number B ¼ 2 and strangeness
S ¼ −3. Because of its weak binding it is analogous to
the deuteron, which is an experimentally confirmed
baryon-baryon bound state. The dNΩ was predicted in
many theoretical works and, in particular, by lattice

calculations. There are also some hints for the existence
of the dNΩ from recent experimental approaches. In the
present work, we give an analysis of the strong decays of
the dNΩ based on the use of phenomenological Lagrangian
approach, in which the dNΩ is assumed to be a loosely
bound state. Here, we simply use the lattice prediction for
the binding energy.
All possible strong two-body decay modes of the dNΩ are

calculated. In the calculation two sets of coupling param-
eters are employed. We find that the total decay width of the
dNΩ is in the range of a few hundred keV up to just above
1 MeV although the transitions to the two modes proceed
through the D-wave. Independent of the particular choice
of parameters the dNΩ → ΛΞ process dominates com-
pletely and almost captures the total branching fraction.
A search for the dNΩ in the ΛΞ invariant mass spectrum can
provide direct evidence for its existence. Finally, we would
like to point out that more theoretical efforts are needed to
understand the structure of the dNΩ exotic state as well as to
search for other possible candidates in the baryon-baryon
molecular state family.
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TABLE VII. Two-body decay width of dNΩ → ΛΞ in depend-
ence on Λ, while α is set to 1.0. The mass of dNΩ is set to
mdNΩ

¼ 2566 MeV, which is the same as in Ref. [39] with a
corresponding binding energy of 44.5 MeV.

Λ (GeV) 0.20 0.30 0.40 0.5

Coupling gdNΩ
13.0 8.90 7.16 6.21

ΓðdNΩ → ΞΛÞ 300 442 487 485
Ref. [39] 33.9
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