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While the partition function for QCD in a magnetic field H has been calculated before within chiral
perturbation theory up to two-loop order, our investigation relies on an alternative representation for the
Bose functions which allows for a clear-cut expansion of thermodynamic quantities in the chiral limit.
We first focus on the pion-pion interaction in the pressure and show that—depending on magnetic field
strength, temperature, and pion mass—it may be attractive or repulsive. We then analyze the
thermodynamic properties in the chiral limit and provide explicit two-loop representations for the pressure
in the weak magnetic field limit jqHj ≪ T2.
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I. INTRODUCTION

The low-energy properties of quantum chromodynamics
(QCD) can be understood on the basis of its relevant low-
energy degrees of freedom: the Goldstone bosons. This is
the path pursued by chiral perturbation theory (CHPT), and
indeed, the low-temperature properties of QCD in a
magnetic field have been explored within CHPT in many
studies up to two-loop order [1–12]. Other approaches to
finite-temperature QCD in magnetic fields include lattice
QCD [13–25], Nambu–Jona-Lasinio model-based studies
[26–33], and other techniques [34–60]. Yet more references
can be found in the review of Ref. [61].
Recently, the present author has pointed out that the

chiral expansion of the quark condensate in a weak
magnetic field and in the chiral limit has not been properly
derived, and has provided the correct series in Ref. [62].1

The analysis was based on an alternative representation for
the Bose functions, which was the key to deriving the
proper series in a transparent manner. Relying on this
coordinate space representation, here we take the analysis
up to the two-loop level. This does not merely correspond
to rederiving or rephrasing known results for QCD in

magnetic fields in an alternative framework. Rather, our
analysis goes beyond the literature by (i) analyzing how the
nature of the pion-pion interaction in the pressure—
repulsive or attractive—is affected by the magnetic field,
as well as the temperature and pion mass, and (ii) providing
the chiral expansion for the pressure in weak magnetic
fields (jqHj ≪ T2) in the chiral limit.
As different expansions and limits are considered in the

present work, it is useful to briefly make some pertinent
comments. First of all, the chiral expansion on which
CHPT relies is an expansion valid at low momentum,
energy, or temperature. The chiral expansion is organized
according to the number of loops, and in three spatial
dimensions each loop is suppressed by two momentum
(temperature) powers. In this sense, we are dealing with a
low-temperature expansion, because temperature—as
well as the pion masses and magnetic field—has to be
small compared to the chiral-symmetry-breaking scale Λχ ,
which is approximately 1 GeV. While T, Mπ , and H
must be small, the ratios between them can take any values.
In the present work, we are interested in the chiral limit that
is achieved by taking the limit Mπ → 0 at fixed tem-
perature: the ratio Mπ=T tends to zero, which corresponds
to addressing the regime Mπ ≪ T. Therefore, although
temperature is still low compared toΛχ , we are dealing here
with a high-temperature expansion or high-temperature
limit. Once the chiral limit at fixed temperature has
been taken, we then consider another limit, namely
jqHj ≪ T2. Again, taking the limit jqHj → 0 at fixed
temperature corresponds to a high-temperature expansion.
Throughout the paper, we will refer to the limit jqHj ≪ T2

as the weak magnetic field limit.
In terms of the dressed pions at zero temperature, the

chiral expansion of the pressure in a magnetic field takes a
remarkably simple form. Noninteracting pions yield the
well-known T4 contribution, while interaction effects enter
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1The error in Refs. [2–4,8] appears to be related to an incorrect
expansion of the function φ in the limit of weak magnetic fields.
The mistake in Refs. [9,10] can be traced back to the Euler-
McLaurin expansion of thermodynamic functions, where not all
relevant terms have been taken into account. A more detailed
analysis of the series given in Refs. [9,10], as well as a discussion
of the discrepancy with respect to my series in Ref. [62], is
forthcoming [63].
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at order T6. In the chiral limit (M → 0)—irrespective of
whether or not the magnetic field is present—the two-loop
interaction contribution vanishes. In the case M ≠ 0, the
pion-pion interaction in the pressure is mostly attractive,
but it may become repulsive at low temperatures as the
magnetic field strength grows. In general, the sign and
magnitude of the interaction depend on the actual values of
temperature, magnetic field, and pion masses in a nontrivial
way, as we illustrate in various figures.
In the chiral limit, the expansion of the pressure in a

weak magnetic field H is dominated by terms involving
ϵ3=2, ϵ2 log ϵ, and ϵ2, where ϵ ¼ jqHj=T2 is the relevant
expansion parameter and q is the electric charge of
the pion.
The article is organized as follows: The evaluation of

the QCD partition function in a magnetic field up to two-
loop order within chiral perturbation theory is presented
in Sec. II. The nature of the pion-pion interaction in the
pressure—attractive or repulsive—is analyzed in Sec. III.
We then focus in Sec. IV on the thermodynamic pro-
perties in the chiral limit and provide the weak magnetic
field expansion of the pressure to arbitrary order in
ϵ ¼ jqHj=T2. Finally, in Sec. V we conclude. While details
on the two-loop CHPT evaluation are discussed in
Appendix A, the rather technical analysis of the pressure
in weak magnetic fields in the chiral limit is presented in
Appendix B.

II. CHIRAL PERTURBATION
THEORY EVALUATION

A. Preliminaries

Surveys of chiral perturbation theory have been provided
on many occasions (see, e.g., Refs. [64,65])—in what
follows, we only touch upon the very basic elements to set
the notation. Throughout the study, we refer to the isospin
limit mu ¼ md.
The effective pion fields πiðxÞ appear in the SU(2) matrix

UðxÞ,

UðxÞ ¼ expðiτiπiðxÞ=FÞ; i ¼ 1; 2; 3; ð2:1Þ

where τi are Pauli matrices and F represents the pion
decay constant at tree level. The leading piece in the
effective Lagrangian is of momentum order p2 and takes
the form

L2
eff ¼

1

4
F2Tr½ðDμUÞ†ðDμUÞ −M2ðU þU†Þ�: ð2:2Þ

HereM is the pion mass at tree level. The magnetic field H
enters via the covariant derivative

DμU ¼ ∂μU þ i½Q;U�AEM
μ ; ð2:3Þ

where Q is the charge matrix of the quarks, Q ¼ diagð2=3;
−1=3Þe. The gauge field AEM

μ ¼ ð0; 0;−Hx1; 0Þ contains
the (constant) magnetic field [61].
In the present analysis, we also need higher-order pieces

of the effective Lagrangian, namely L4
eff and L6

eff . The
explicit structure is given, e.g., in Refs. [66,67]. The
relevant Feynman diagrams for the partition function
up to two-loop order p6 are shown in Fig. 1. The lines
represent thermal propagators which correspond either to
the charged pions or to the neutral pion. In fact, the
dimensionally regularized zero-temperature propagator
Δ0ðxÞ for the neutral pion in Euclidean space takes the
familiar form

Δ0ðxÞ ¼ ð2πÞ−d
Z

ddpeipxðM2 þ p2Þ−1

¼
Z

∞

0

dρð4πρÞ−d=2e−ρM2−x2=4ρ: ð2:4Þ

On the other hand, the dimensionally regularized zero-
temperature propagator Δ�ðxÞ for the charged pions does
involve the magnetic field. In Euclidean space, as derived in
Ref. [62], it amounts to

Δ�ðxÞ ¼ jqHj
ð4πÞd2 e

−s⊥jqHjx1x2=2
Z

∞

0

dρ
ρ−

d
2
þ1e−ρM

2

sinhðjqHjρÞ

× exp

�
−
x24 þ x23
4ρ

−
jqHjðx21 þ x22Þ
4 tanhðjqHjρÞ

�
; ð2:5Þ

where

s⊥ ¼ signðqHÞ: ð2:6Þ

In either case—for neutral and charged pions—the
thermal propagators are obtained by summing over zero-
temperature propagators as

GðxÞ ¼
X∞
n¼−∞

Δðx⃗; x4 þ nβÞ; β ¼ 1

T
: ð2:7Þ

In the evaluation of the partition function diagrams dis-
played in Fig. 1, as we will see, thermal propagators only
have to be considered at the origin x ¼ 0. It is furthermore
advantageous to isolate the zero-temperature piecesΔ� and
Δ0 in the thermal propagators via

G�ð0Þ≡G�
1 ¼ Δ�ð0Þ þ g�1 ðM;T;HÞ;

G0ð0Þ≡G0
1 ¼ Δ0ð0Þ þ g1ðM;T; 0Þ: ð2:8Þ

The quantities g�1 ðM;T;HÞ and g1ðM;T; 0Þ are kinemati-
cal functions that describe the purely finite-temperature
part. They are embedded in the more general class of Bose
functions defined by
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g�r ðM;T;HÞ ¼ Td−2r−2

ð4πÞrþ1
jqHj

Z
∞

0

dρ
ρr−

d
2

sinhðjqHjρ=4πT2Þ exp
�
−

M2

4πT2
ρ

��
S

�
1

ρ

�
− 1

�
;

grðM;T; 0Þ ¼ Td−2r

ð4πÞr
Z

∞

0

dρρr−
d
2
−1 exp

�
−

M2

4πT2
ρ

��
S

�
1

ρ

�
− 1

�
;

SðzÞ ¼
X∞
n¼−∞

expð−πn2zÞ; ð2:9Þ

where SðzÞ is the Jacobi theta function. Note that grðM;T; 0Þ does not involve the magnetic field. In order to facilitate the
subsequent analysis, in the Bose functions g�r ðM;T;HÞ for the charged pions, we extract the H ¼ 0 part as

g�r ðM;T;HÞ ¼ g̃rðM;T;HÞ þ grðM;T; 0Þ; ð2:10Þ

where solely

g̃rðM;T;HÞ ¼ Td−2r−2

ð4πÞrþ1
jqHj

Z
∞

0

dρρr−
d
2

�
1

sinhðjqHjρ=4πT2Þ −
4πT2

jqHjρ
�
× exp

�
−

M2

4πT2
ρ

��
S

�
1

ρ

�
− 1

�
ð2:11Þ

contains the magnetic field. These two types of kinematical
functions—g̃rðM;T;HÞ and grðM;T; 0Þ—constitute the
basic building blocks in our analysis. The decomposition
of the thermal propagators into T ¼ 0 and finite-T pieces
then results in

G�
1 ¼ Δ�ð0Þ þ g̃1ðM;T;HÞ þ g1ðM;T; 0Þ;

G0
1 ¼ Δ0ð0Þ þ g1ðM;T; 0Þ: ð2:12Þ

As a low-energy effective field theory, chiral perturba-
tion theory describes QCD in the regime where quark
masses as small, magnetic fields are weak, and temper-
atures are low: the quantities M, H, and T ought to be
small compared to the chiral-symmetry-breaking scale
Λχ ≈ 1 GeV. While ratios between these parameters in
principle can have any value, in the present analysis, the
limits M=T → 0 (chiral limit at fixed temperature) and
jqHj ≪ T2 (weak magnetic field limit) are of particular
interest.

B. Free energy density up to order p6

The one-loop free energy density (order p4)—in coor-
dinate space representation—has been derived in Ref. [62].
The final renormalized expression reads

z2þ4Aþ4B ¼ z½4�0 −
3

2
g0ðM;T; 0Þ − g̃0ðM;T;HÞ: ð2:13Þ

The zero-temperature part z½4�0 is2

z½4�0 ¼ −F2M2 þ M4

64π2

�
l̄3 − 4h̄1 −

3

2

�
þ jqHj2

96π2
ðh̄2 − 1Þ

−
jqHj2
16π2

Z
∞

0

dρρ−2
�

1

sinhðρÞ −
1

ρ
þ ρ

6

�

× exp

�
−

M2

jqHj ρ
�
: ð2:14Þ

Modulo factors of γ3=32π2, δ1=32π2, and δ2=32π2, the
quantities l̄3, h̄1, and h̄2 represent the running effective
coupling constants evaluated at the renormalization scale
μ ¼ Mπ (Mπ ≈ 140 MeV)—details can be found, e.g.,
in Ref. [68].
At the two-loop level (order p6), the three partition

function diagrams 6A–6C have to be evaluated—this is
done in Appendix A. In terms of the tree-level pion mass
M, the outcome is

FIG. 1. QCD partition function diagrams up to order p6 ∝ T6. The filled circle stands for L2
eff ; the numbers 4 and 6 in the boxes

represent L4
eff and L6

eff .

2The third term in the first parenthesis should read − 3
2
.

In Ref. [62], Eq. (A7), it was inadvertently cited as −1.
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z6Aþ6Bþ6C ¼ z½6�0 þ 3M2

8F2
ðg1Þ2 þ

M2

2F2
g1g̃1

þ g1

�
−

3l̄3
64π2

M4

F2
þ M2

2F2
K1 þ

l̄6 − l̄5
48π2

jqHj2
F2

�

þ g̃1

�
−

l̄3
32π2

M4

F2
þ l̄6 − l̄5

48π2
jqHj2
F2

�
; ð2:15Þ

where the integral K1 is defined in Eq. (A5). Since we are
interested in the behavior of the system at finite temper-

ature, the explicit structure of the T ¼ 0 contribution z½6�0 is
not needed here.
Let us have a closer look at the terms linear in g1 and g̃1.

First, notice that the kinematical functions g1 and g̃1 are
related to g0 and g̃0 through

g1 ¼ −
∂g0
∂M2

; g̃1 ¼ −
∂g̃0
∂M2

: ð2:16Þ

In the presence of a magnetic field, the mass of a charged
pion (M�

π ) is different from the mass of a neutral pion
(M0

π). In order to determine these masses, we express
the kinematical functions g0 and g̃0 in terms of M�

π and
M0

π instead of M. Since only the charged pions are tied
to g̃r,

3 we can write

g̃0ðM�
π ; T;HÞ ¼ g̃0ðM;T;HÞ − g̃1ðM;T;HÞϵ̃1; ð2:17Þ

where ϵ̃1 measures the mass-squared difference

ϵ̃1 ¼ ðM�
π Þ2 −M2: ð2:18Þ

Comparing with the third line of Eq. (2.15), we identify
ϵ̃1 as

ϵ̃1 ¼
l̄6 − l̄5
48π2

jqHj2
F2

−
l̄3

32π2
M4

F2
: ð2:19Þ

As for gr—where all three pions are involved, according to
Eq. (2.12)—we must distinguish between the respective
pieces: for the charged pions we write

g0ðM�
π ; T; 0Þ ¼ g0ðM;T; 0Þ − g1ðM;T; 0Þϵ̃1; ð2:20Þ

while for the neutral pion we have

g0ðM0
π; T; 0Þ ¼ g0ðM;T; 0Þ − g1ðM;T; 0Þϵ1: ð2:21Þ

The quantity ϵ1 measures the mass-squared difference

ϵ1 ¼ ðM0
πÞ2 −M2 ð2:22Þ

and can be identified as

ϵ1 ¼ −
l̄3

32π2
M4

F2
þM2

F2
K1: ð2:23Þ

As a result, we can read off how the pion masses are
affected by the magnetic field:

ðM�
π Þ2 ¼ M2

π þ
l̄6 − l̄5
48π2

jqHj2
F2

;

ðM0
πÞ2 ¼ M2

π þ
M2

F2
K1: ð2:24Þ

Note that Mπ is the pion mass in zero magnetic field,
given by

M2
π ¼ M2 −

l̄3
32π2

M4

F2
þOðM6Þ: ð2:25Þ

The mass relations in Eq. (2.24) indeed coincide with
those obtained by Andersen in Ref. [10]—see Eqs. (3.8)–
(3.10)—in the zero-temperature limit. It should be
pointed out that we consider the pion masses at zero
temperature, while in Ref. [10] finite-temperature effects
are included as well. As it turns out, to have a clear
definition of interaction effects in the thermodynamic
quantities, we must consider the pion masses at T ¼ 0—
i.e., dress the pions at zero temperature according
to Eq. (2.24).
The result for the total two-loop free energy density

simplifies considerably if we now express the kinema-
tical functions g0 and g̃0 in the one-loop contribution—
Eq. (2.13)—by the masses M�

π and M0
π rather than by M.

Using Eqs. (2.17), (2.20), and (2.21), we obtain

ztot ¼ z0 − g0ðM�
π ; T; 0Þ −

1

2
g0ðM0

π; T; 0Þ − g̃0ðM�
π ; T;HÞ

þ M2
π

2F2
g1ðM�

π ; T; 0Þg1ðM0
π; T; 0Þ

−
M2

π

8F2
fg1ðM0

π; T; 0Þg2

þ M2
π

2F2
g1ðM0

π; T; 0Þg̃1ðM�
π ; T;HÞ þOðp8Þ; ð2:26Þ

where z0 is the zero-temperature piece. The crucial point
is that all terms linear in g1ðM;T; 0Þ and g̃1ðM;T;HÞ
have been absorbed into mass renormalization: M2 →
ðM�

π Þ2; ðM0
πÞ2. In particular, the effect of the pion-pion

interaction at finite temperature is solely contained in the
terms quadratic in the kinematical functions. It should be
noted that the differences between M2

π , Eq. (2.25), and the
tree-level mass M2 at the order we are considering are
irrelevant in the coefficients accompanying the terms
quadratic in the kinematical functions, such that it is
legitimate to write M2

π .
3See Eq. (2.12).
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While the evaluation of the two-loop free energy
density in Refs. [9,10] is based on a momentum-space
representation for the kinematical functions, here we have
used an alternative representation based on coordinate
space. The advantage is that the latter approach allows
for a clear-cut expansion of thermodynamic quantities in
the chiral limit, as we demonstrate below.

III. PRESSURE: NATURE OF
PION-PION INTERACTION

We now explore the manifestation of the pion-pion
interaction in the pressure, which we derive from the
two-loop free energy density as

P ¼ z0 − ztot: ð3:1Þ

To make temperature powers in the pressure manifest, we
replace the Bose functions gr and g̃r with the dimensionless
kinematical functions hr and h̃r according to

h0 ¼
g0
T4

; h̃0 ¼
g̃0
T4

; h1 ¼
g1
T2

; h̃1 ¼
g̃1
T2

ð3:2Þ

and obtain the low-temperature expansion of the
pressure as

P ¼ p1ðt; m;mHÞT4 þ p2ðt; m;mHÞT6 þOðT8Þ; ð3:3Þ

with the coefficients

P
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0.001

0.000
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0.000
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0.1

0.2

0.3

0.4

m
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mH

0.010

0.005

0.000

FIG. 2. Magnitude and sign of the pion-pion interaction in the pressure measured by ξPðt; m;mHÞ—Eq. (3.6)—for the temperatures
T ¼ 53.8 MeV and 108 MeV (upper panels), and T ¼ 161 MeV and 215 MeV (lower panels).
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p1ðt; m;mHÞ ¼ h0ðM�
π ; T; 0Þ þ

1

2
h0ðM0

π; T; 0Þ
þ h̃0ðM�

π ; T;HÞ;

p2ðt; m;mHÞ ¼ −
m2

2t2F2
h1ðM�

π ; T; 0Þh1ðM0
π; T; 0Þ

þ m2

8t2F2
fh1ðM0

π; T; 0Þg2

−
m2

2t2F2
h1ðM0

π; T; 0Þh̃1ðM�
π ; T;HÞ: ð3:4Þ

The dimensionless parameters t, m, and mH,

t ¼ T
4πF

; m ¼ Mπ

4πF
; mH ¼

ffiffiffiffiffiffiffiffiffiffijqHjp
4πF

; ð3:5Þ

measure the temperature, pion mass Mπ [Eq. (2.25)],
and magnetic field strength with respect to the scale
4πF ≈ Λχ—i.e., with respect to the chiral-symmetry-
breaking scale Λχ ≈ 1 GeV. In the domain where chiral
perturbation theory operates, these parameters are small:
more concretely, in the plots below, we will restrict
ourselves to the parameter region t; m;mH ⪅ 0.3. For
the pion masses we use Mπ ¼ 140 MeV and, fol-
lowing Ref. [69], for the pion decay constant we get
F ¼ 85.6 MeV. Finally, according to Ref. [66], for the
combination of NLO low-energy constants as it appears in
the charged pion masses, we take l̄6 − l̄5 ¼ 2.64.
The T4 contribution in the low-temperature series for the

pressure corresponds to the noninteracting pion gas, while
the pion-pion interaction emerges at order T6. Recall that the
Bose functions h0 and h1 do not explicitly involve the
magnetic field: the effect of the magnetic field is embedded
in the Bose functions h̃0 and h̃1. In the chiral limit (M → 0),
the coefficient p2ðt; m;mHÞ tends to zero: the pion-pion
interaction only starts manifesting itself at the three-loop
level, as is well known for the case H ¼ 0 (see, e.g.,
Ref. [68]). However, for M ≠ 0, the interaction term is
present, and—depending on the actual values of the param-
eters t,m, andmH—the resulting pion-pion interaction in the
pressure may be attractive or repulsive, as we now illustrate.
To get a more quantitative picture, let us consider the

dimensionless ratio

ξPðt; m;mHÞ ¼
p2ðt; m;mHÞT2

p1ðt; m;mHÞ
ð3:6Þ

that measures the magnitude and sign of the pion-
pion interaction relative to the noninteracting pion gas
contribution. In Fig. 2, we depict this ratio for the four
temperatures t ¼ f0.05; 0.1; 0.15; 0.2g, or equivalently,
T ¼ f53.8; 108; 161; 215g MeV.
In the limit M → 0, irrespective of absence or presence

of the magnetic field, the two-loop interaction contribution
vanishes. In the other limit, H → 0, the interaction in the

pressure always is attractive, irrespective of the actual
values of the (nonzero) pion masses and temperature.
When the magnetic field is switched on, the attractive
pion-pion interaction becomes weaker, but only at low
temperatures and stronger magnetic fields does the pion-
pion interaction become repulsive. Overall, the interaction
in the pressure is quite small, at most around 1% compared
to the leading free Bose gas contribution. It remains to be
seen whether these subtle effects in the interaction can be
observed in numerical lattice QCD simulations—in par-
ticular, the repulsive effect at lower temperatures and
smaller pion masses.
The case of interest4 corresponding to the physical value

of the pion masses—Mπ ¼ 140 MeV, i.e., m ¼ 0.130—is
depicted in Fig. 3, where we plot the dimensionless
two-loop contribution p2ðt; m;mHÞT2 as a function of tem-
perature and magnetic field strength. As the figure sug-
gests, the interaction is purely attractive in the parameter
domain t; mH ≤ 0.25. As the strength of the magnetic field
grows, the attractive interaction gradually becomes weaker.
Note that the maximal values for the parameters t and
mH correspond to T ≈ 269 MeV and

ffiffiffiffiffiffiffiffiffiffijqHjp
≈ 269 MeV,

respectively. In other words, we are already in a region
where temperature and magnetic field strength are no
longer small compared to the underlying scale Λχ and
the low-temperature expansion starts to break down.

IV. PRESSURE IN WEAK MAGNETIC FIELDS
IN THE CHIRAL LIMIT

The objective of Ref. [62] was to provide the correct
series for the one-loop quark condensate in weak magnetic

0.0

0.1

0.2
t

0.0

0.1

0.2

mH

0.002

0.001

0.000

FIG. 3. Magnitude and sign of the pion-pion interaction in the
QCD pressure as a function of temperature (t) and magnetic field
strength (mH)—measured by p2ðt; m;mHÞT2—at the physical
value Mπ ¼ 140 MeV of the pion masses.

4Note that we refer to the isospin limit where all three pions
have the same mass (in the absence of the magnetic field).
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fields in the chiral limit. The corresponding analysis
involved the kinematical function g̃1. Regarding the pres-
sure, the one-loop contribution involves the kinematical
function g̃0. In Appendix B, we derive the expansion of this
function in weak magnetic fields in the chiral limit,
following analogous strategies as for g̃1. Based on these
results, we now discuss the structure of the weak magnetic
field expansion of the pressure in the chiral limit up to two-
loop order, which is new to the best of our knowledge.
In the chiral limit, as stated previously, the pion-pion

interaction in the pressure starts showing up only at three-
loop order, which is beyond the scope of our investigation.
The series for the pressure in the chiral limit is hence fixed
by the Bose contribution of order T4 that contains the
kinematical function g̃0. With the weak magnetic field
expansion for g̃0, Eq. (B27), the series for the pressure in
weak magnetic fields and in the chiral limit takes the form

P¼ π2

30
T4þ

�
−

jI3
2
j

8π3=2
ϵ
3
2 −

1

96π2
ϵ2 logϵþb1ϵ2þOðϵ4Þ

�
T4

− ðl̄6 − l̄5Þ
�
t2

36
ϵ2−

t2jI1
2
j

24π3=2
ϵ
5
2 þ t2 log2

48π2
ϵ3þOðϵ72Þ

�
T4

þOðT8 logTÞ; ð4:1Þ

where the relevant expansion parameter ϵ ≪ 1 is

ϵ ¼ jqHj
T2

: ð4:2Þ

The quantities

I3
2
≈ −0.610499; b1 ≈ 0.00581159; I1

2
≈ −1.516256

ð4:3Þ

are defined in Eqs. (B23), (B24), and (B8), respectively.

The series is dominated by a term involving the
half-integer power ðjqHj=T2Þ3=2, a logarithmic term
jqHj2=T4 log jqHj=T2, and two terms quadratic in the
magnetic field. If no magnetic field is present, the series
reduces to the well-known pion gas contribution

PðH ¼ 0Þ ¼ π2

30
T4 þOðT8 logTÞ: ð4:4Þ

As we illustrate by Fig. 4 in Appendix B, the repre-
sentation (4.1) of the pressure—that includes the first three
terms in the expansion of g̃0 and g̃1—provides a very
accurate approximation not only for small values of ϵ (see
Table II in Appendix B), but also for larger values of ϵ: 1%
precision up to ϵ ≈ 10 is guaranteed, while 10% precision is
still achieved up to ϵ ≈ 20.

V. CONCLUSIONS

Within chiral perturbation theory—based on a coordinate
space representation for the thermal propagators—we have
analyzed the impact of the magnetic field on the partition
function up to the two-loop level. Using the dressed pion
masses at zero temperature, we have shown that the pion-
pion interaction in the pressure may be attractive, repulsive,
or zero. The respective sign of the two-loop interaction
contribution is controlled by the strength of the magnetic
field, as well as temperature and pion mass. In the weak
magnetic field limit, the interaction is purely attractive at
two-loop order, and gradually becomes weaker as the
strength of the magnetic field increases.
We then have provided the expansion of the pressure in

weak magnetic fields in the chiral limit. The dominant
terms in the series are proportional to ðjqHj=T2Þ3=2,
jqHj2=T4 log jqHj=T2, and jqHj2=T4.
The question arises whether three-loop corrections in the

thermodynamic quantities—i.e., order-p8 effects—are large
compared to the two-loop results discussed here. While the
corresponding three-loop analysis referring to zero mag-
netic field has been provided in Refs. [68,70], a three-loop
analysis for QCD in the presence of a magnetic field, based
on chiral perturbation theory, has never been attempted to
the best of our knowledge.Work in this direction, relying on
the coordinate space representation, is currently in progress.
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APPENDIX A: FREE ENERGY DENSITY AT
TWO LOOPS

In this Appendix, we derive the order-p6 contribution to
the free energy density, originating from diagrams 6A–6C
of Fig. 1. The two-loop diagram yields

5 10 15 20

1.00
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1.04

1.06

1.08

1.10

r

FIG. 4. Comparison of the first three terms in the series for the
functions g̃0 (red curve) and g̃1 (blue curve) with respect to the
full functions.
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z6A ¼ M2

2F2
G�

1 G
0
1 −

M2

8F2
G0

1G
0
1; ðA1Þ

where the thermal propagators G�
1 for the charged pions

and G0
1 for the neutral pion are defined in Eq. (2.8). The

result for the one-loop graph 6B,

z6B ¼ ð4l5 − 2l6Þ
jqHj2
F2

G�
1 þ 2l3

M4

F2
G�

1 þ l3
M4

F2
G0

1;

ðA2Þ

involves various NLO effective constants li that require
renormalization (see below). The explicit structure of the
tree-level contribution z6C is not required here, because we

are interested in the properties of the system at finite
temperature.
In the decomposition of thermal propagators,

G�
1 ¼ Δ�ð0Þ þ g̃1ðM;T;HÞ þ g1ðM;T; 0Þ;

G0
1 ¼ Δ0ð0Þ þ g1ðM;T; 0Þ; ðA3Þ

the kinematical functions are finite in the limit d → 4. The
zero-temperature propagators Δ�ð0Þ and Δ0ð0Þ, however,
become singular and take the form

Δ�ð0Þ ¼ 2M2λþ K1; Δ0ð0Þ ¼ 2M2λ: ðA4Þ

The integral K1 and the parameter λ are

K1ðM;HÞ ¼ jqHjd2−1
ð4πÞd2

Z
∞

0

dρρ−
d
2
þ1 exp

�
−

M2

jqHj ρ
��

1

sinhðρÞ −
1

ρ

�
;

λ ¼ 1

2
ð4πÞ−d

2Γ
�
1 −

1

2
d

�
Md−4

¼ Md−4

16π2

�
1

d − 4
−
1

2
fln 4π þ Γ0ð1Þ þ 1g þOðd − 4Þ

�
: ðA5Þ

Gathering results, the unrenormalized free energy density at order p6 amounts to

z½6� ¼ z6A þ z6B þ z6C

¼ 3M2

8F2
ðg1Þ2 þ

M2

2F2
g1g̃1 þ g1

�
3M4

2F2
λþ M2

2F2
K1 þ ð4l5 − 2l6Þ

jqHj2
F2

þ 3l3
M4

F2

�

þ g̃1

�
M4

F2
λþ ð4l5 − 2l6Þ

jqHj2
F2

þ 2l3
M4

F2

�
þ 3M6

2F2
λ2 þM4

F2
K1λþ ð8l5 − 4l6Þ

jqHj2M2

F2
λþ ð4l5 − 2l6Þ

jqHj2
F2

K1

þ 6l3
M6

F2
λþ 2l3

M4

F2
K1 þ z6C: ðA6Þ

The first two terms are quadratic in the kinematical functions and are finite as d approaches the physical dimension d ¼ 4.
Considering the terms linear in g1 and g̃1,

g1

�
3M4

2F2
λþ M2

2F2
K1 þ ð4l5 − 2l6Þ

jqHj2
F2

þ 3l3
M4

F2

�
;

g̃1

�
M4

F2
λþ ð4l5 − 2l6Þ

jqHj2
F2

þ 2l3
M4

F2

�
; ðA7Þ

using the standard convention for the renormalized NLO effective constants l̄i,

li ¼ γi

�
λþ l̄i

32π2

�
; γ3 ¼ −

1

2
; γ5 ¼ −

1

6
; γ6 ¼ −

1

3
; ðA8Þ

we arrive at

þg1

�
−

3l̄3
64π2

M4

F2
þ M2

2F2
K1 þ

l̄6 − l̄5
48π2

jqHj2
F2

�
þ g̃1

�
−

l̄3
32π2

M4

F2
þ l̄6 − l̄5

48π2
jqHj2
F2

�
: ðA9Þ
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Notice that the above expressions are perfectly finite: all
divergences in Eq. (A7) have been canceled. Finally, the
zero-temperature divergences contained in z6A þ z6B—
displayed in the last two lines of Eq. (A6)—will be
canceled by counterterms from the next-to-next-to-
leading-order Lagrangian L6

eff contained in the zero-
temperature contribution z6C.

APPENDIX B: KINEMATICAL FUNCTIONS IN
WEAK MAGNETIC FIELDS

In this Appendix, we provide the representations for the
kinematical functions in weak magnetic fields. From the
very beginning, we operate in the chiral limit. The relevant
functions in the free energy density are

g0ð0; T; 0Þ; g1ð0; T; 0Þ ðB1Þ

that do not involve the magnetic field, and

g̃0ð0; T;HÞ; g̃1ð0; T;HÞ ðB2Þ

that do depend on the magnetic field. The analysis for the
former functions in the chiral limit has been given a long
time ago in Ref. [68]:

g0ð0; T; 0Þ ¼
π2

45
T4; g1ð0; T; 0Þ ¼

1

12
T2: ðB3Þ

The latter two functions are defined as

g̃rð0; T;HÞ ¼ jqHjd2−r
ð4πÞd2

Z
∞

0

dρρr−
d
2

�
1

sinhðρÞ −
1

ρ

��
S

� jqHj
4πT2ρ

�
− 1

�
; ðB4Þ

with

SðzÞ ¼
X∞
n¼−∞

expð−πn2zÞ: ðB5Þ

The evaluation of g̃1ð0; T;HÞ in weak magnetic fields has been established in Ref. [62] with the result

g̃1ð0; T;HÞ ¼ −
� jI1

2
j

8π3=2
ffiffiffi
ϵ

p
−
log 2
16π2

ϵþ ζð3Þ
384π4

ϵ2 −
7ζð7Þ

98304π8
ϵ4 þOðϵ6Þ

�
T2: ðB6Þ

The expansion parameter ϵ measures the ratio between magnetic field strength and temperature,

ϵ ¼ jqHj
T2

: ðB7Þ

By definition, in the weak magnetic field limit jqHj ≪ T2, this parameter is small. The integral I1
2
is

I1
2
¼

Z
∞

0

dρρ−1=2
�

1

sinhðρÞ −
1

ρ

�
≈ −1.516256: ðB8Þ

What remains to be done is the analogous expansion for g̃0ð0; T;HÞ. According to Ref. [62], the representation (B4) can
be cast into the form

g̃rð0; T;HÞ ¼ ϵ

ð4πÞrþ1
Td−2r

Z
1

0

dρρ−
d
2
þr

�
1

sinhðϵρ=4πÞ −
4π

ϵρ

��
S

�
1

ρ

�
− 1

�
þ ϵ

ð4πÞrþ1
Td−2rfIA þ IB þ ICg; ðB9Þ

where the respective integrals are defined as

IA ¼
Z

1

0

dρρ
d
2
−r−5

2

�
1

sinhðϵ=4πρÞ −
4πρ

ϵ

��
S

�
1

ρ

�
− 1

�
;

IB ¼
Z

1

0

dρρ
d
2
−r−5

2

�
1

sinhðϵ=4πρÞ −
4πρ

ϵ

�
;

IC ¼ −
Z

1

0

dρρ
d
2
−r−2

�
1

sinhðϵ=4πρÞ −
4πρ

ϵ

�
: ðB10Þ
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For r ¼ 0 and d → 4, the first integral in Eq. (B9), much
like the integral IA, is well-defined. Following Ref. [62], the
integral IB is split up into two terms:

IB ¼ IB1 þ IB2;

IB1 ¼
ϵ
d
2
−r−3

2

ð4πÞd2−r−3
2

Z
∞

0

dρρ−
d
2
þrþ1

2

�
1

sinhðρÞ −
1

ρ

�
;

IB2 ¼ −
Z

1

0

dρρ−
d
2
þrþ1

2

�
1

sinhðϵρ=4πÞ −
4π

ϵρ

�
: ðB11Þ

For r ¼ 0 and d → 4, we obtain

IB1 ¼
ffiffiffi
ϵ

p
ffiffiffiffiffiffi
4π

p
Z

∞

0

dρρ−
3
2

�
1

sinhðρÞ −
1

ρ

�
;

IB2 ¼ −
Z

1

0

dρρ−
3
2

�
1

sinhðϵρ=4πÞ −
4π

ϵρ

�
: ðB12Þ

Note that the power
ffiffiffi
ϵ

p
in IB1 is explicit, whereas ϵ appears

in the integrand of IB2, as well as in the first integrand in
Eq. (B9) and in IA of Eq. (B10), as an argument of the
hyperbolic sine function. We thus Taylor-expand these
pieces into

1

sinhðϵρ=4πÞ −
4π

ϵρ
¼ c1ρϵþ c2ρ3ϵ3 þ c3ρ5ϵ5 þOðϵ7Þ;

1

sinhðϵ=4πρÞ −
4πρ

ϵ
¼ c1ρ−1ϵþ c2ρ−3ϵ3 þ c3ρ−5ϵ5

þOðϵ7Þ; ðB13Þ

such that ϵ-powers in all these integrals become explicit.
The first few coefficients cp in the above series are

c1 ¼ −
1

24π
≈ −1.33 × 10−2;

c2 ¼
7

23040π3
≈ 9.80 × 10−6;

c3 ¼ −
31

15482880π5
≈ −6.54 × 10−9;

c4 ¼
127

9909043200π7
≈ 4.24 × 10−12;

c5 ¼ −
73

896909967360π9
≈ −2.73 × 10−15: ðB14Þ

The last piece in the analysis of g̃0ð0; T;HÞ in weak
magnetic fields is IC, defined in Eq. (B10). This integral for
r ¼ 0, however, cannot be processed in the manner out-
lined in Ref. [62], which indeed worked for the case5 r ¼ 1.
Instead, we decompose the integral IC

IC ¼ −
Z

1

0

dρ

�
1

sinhðϵ=4πρÞ −
4πρ

ϵ

�
ðB15Þ

in an alternative way as

ICðNÞ ¼ IC1ðNÞ þ IC2ðNÞ

¼ −
Z

N

0

dρ
�

1

sinhðϵ=4πρÞ −
4πρ

ϵ

�

þ
Z

N

1

dρ

�
1

sinhðϵ=4πρÞ −
4πρ

ϵ

�
; ðB16Þ

where N ≫ 1. Redefining integration variables, we obtain

IC1ðNÞ ¼ −
ϵ

4π

Z
1

ϵ=4πN
dρρ−2

�
1

sinhðρÞ −
1

ρ

�

−
ϵ

4π

Z
∞

1

dρρ−2
�

1

sinhðρÞ −
1

ρ

�
;

IC2ðNÞ ¼ ϵ

4π

Z
ϵ=4π

ϵ=4πN
dρρ−2

�
1

sinhðρÞ −
1

ρ

�
: ðB17Þ

The N dependence cancels in the sum IC1ðNÞ þ IC2ðNÞ,
and we are left with

IC ¼ ϵ

4π

Z
ϵ=4π

1

dρρ−2
�

1

sinhðρÞ −
1

ρ

�

−
ϵ

4π

Z
∞

1

dρρ−2
�

1

sinhðρÞ −
1

ρ

�
: ðB18Þ

In the second contribution, the power ϵ is explicit. In the
first contribution, where ϵ appears in the upper integration
limit, we Taylor-expand the integrand, and then integrate
term by term. The final result for IC can be cast into the
form

IC ¼ −
ϵ

24π
log

�
ϵ

4π

�
þ Ĵ − Î

4π
ϵ

−
X∞
n¼2

22n−1 − 1

ðn − 1Þð2nÞ!
B2n

ð4πÞ2n−1 ϵ
2n−1; ðB19Þ

where the B2n’s are Bernoulli numbers and the quantities
Ĵ and Î are defined as

Ĵ ¼
X∞
n¼2

22n−1 − 1

ðn − 1Þð2nÞ!B2n ≈ −0.00924219;

Î ¼
Z

∞

1

dρρ−2
�

1

sinhðρÞ −
1

ρ

�
≈ −0.179499: ðB20Þ

Note that the structure of the ϵ-expansion of IC is now
manifest.
Collecting individual contributions, after some algebra,

and with the help of the identity
5In the decomposition IC ¼ IC1 þ IC2, Eq. (A15) of Ref. [62],

both expressions IC1 and IC2 are singular if r ¼ 0 and d → 4.
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2

π
z
2

Γ
�
z
2

�
ζðzÞ ¼

Z
∞

0

dρρ
z
2
−1½SðρÞ − 1�; ðB21Þ

the expansion of the kinematical function g̃0ð0; T;HÞ in
weak magnetic fields and in the chiral limit takes the form

g̃0ð0; T;HÞ ¼
�
−

jI3
2
j

8π3=2
ϵ
3
2 −

1

96π2
ϵ2 log ϵþ b1ϵ2

þ b2ϵ4 þ b3ϵ6 þ b4ϵ8 þOðϵ10Þ
�
T4;

ðB22Þ

where

I3
2
¼

Z
∞

0

dρρ−
3
2

�
1

sinhðρÞ −
1

ρ

�
≈ −0.610499: ðB23Þ

The coefficient b1 is

b1 ¼
6ðĴ − ÎÞ − Ĩ þ log 4π

96π2
≈ 0.00581159; ðB24Þ

with

Ĩ ¼
Z

1

0

dρ

�
ρ−1 þ ρ−

3
2

��
S

�
1

ρ

�
− 1

�
−
Z

1

0

dρρ−
1
2; ðB25Þ

while the coefficients bpðp ≥ 2Þ are

bp ¼ −
2ð22p−1 − 1Þ
ð4πÞ2pð2pÞ!

�
2Γð2p− 3

2
Þζð4p− 3Þ

π2p−
3
2

þ 1

1− p

�
B2p;

p ≥ 2: ðB26Þ

The numerical values of the first five coefficients bpðp≥2Þ
are given in Table I.
More explicitly, the series can be written as

g̃0ð0; T;HÞ ¼
�
−

jI3
2
j

8π3=2
ϵ
3
2 −

1

96π2
ϵ2 log ϵ

þ 6ðĴ − ÎÞ− Ĩþ log4π
96π2

ϵ2

−
7ð2π2 − 3ζð5ÞÞ

184320π6
ϵ4 þ 31ð4π4 − 105ζð9ÞÞ

495452160π10
ϵ6

−
127ð32π6 − 31185ζð13ÞÞ

3805072588800π14
ϵ8 þOðϵ10Þ

�
T4:

ðB27Þ

To check convergence properties of the above series for
g̃0ð0; T;HÞ in the weak magnetic field limit jqHj ≪ T2, let
us compare the first few terms in the ϵ-expansion with the
exact result Eq. (B4). The first column in Table II displays

the exact result, while the second column just takes into
account the leading term in the series (B27) proportional to
ϵ3=2. The third column, furthermore, incorporates the
ϵ2 log ϵ contribution, and the fourth column finally extends
up to the ϵ2 term. One observes that a very good
approximation is achieved by just including the first three
terms: the series (B27) converges quite rapidly.
Finally, it should be noted that the order-T4 contribution

in the pressure—i.e., the coefficient p1 in Eq. (3.4),

p1ðt; m;mHÞ ¼ h0ðM�
π ; T; 0Þ þ

1

2
h0ðM0

π; T; 0Þ
þ h̃0ðM�

π ; T;HÞ; ðB28Þ

contains the kinematical functions h0ðM�
π ; T; 0Þ and

h̃0ðM�
π ; T;HÞ, which, in the chiral limit, reduce to

h0ðMH; T; 0Þ; h̃0ðMH; T;HÞ; ðB29Þ
with

ðMHÞ2 ¼
l̄6 − l̄5
48π2

jqHj2
F2

: ðB30Þ

In the weak magnetic field limit, the kinematical function
h0ðMH; T; 0Þ hence takes the form

h0ðMH; T; 0Þ ¼ h0ð0; T; 0Þ − αϵ2h1ð0; T; 0Þ

þ α2ϵ4

2
h2ð0; T; 0Þ þOðϵ6Þ; ðB31Þ

where

α ¼ l̄6 − l̄5
12π

t2; ϵ ¼ jqHj
T2

; t ¼ T
4πF

: ðB32Þ

Analogously, in the weak magnetic field limit, the kin-
ematical function h̃0ðMH; T;HÞ amounts to

h̃0ðMH; T;HÞ ¼ h̃0ð0; T;HÞ − αϵ2h̃1ð0; T;HÞ

þ α2ϵ4

2
h̃2ð0; T;HÞ þOðϵ6Þ: ðB33Þ

We hence have additional terms in the weak magnetic field
expansion of the pressure in the chiral limit, which contains
the NLO low-energy constants l̄5 and l̄6.

TABLE I. The first five coefficients bp defined by Eq. (B26).

p bp

2 −6.56867042287 × 10−7

3 1.90033315207 × 10−10

4 1.55270844266 × 10−15

5 −3.08314759762 × 10−16

6 1.87712447343 × 10−18
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As Table II demonstrates, the first three terms in the
series (B27) give a very good approximation for the
function g̃0 when the expansion parameter ϵ is small. In
order to assess the quality of our expansion for larger values
of ϵ, we consider the quantity ξ0, defined as the ratio
between the sum of the first three terms in the expansion
(B27) with respect to the full (unexpanded) function g̃0.
This ratio corresponds to the red curve shown in Fig. 4.

In the same figure, we also plot (in blue) the quantity ξ1,
which corresponds to the analogous ratio for the function
g̃1—i.e., the ratio between the sum of the first three terms in
the expansion (B6) with respect to the full (unexpanded)
function g̃1. One observes that in either case, the first three
terms in the series provide a very good approximation even
for larger values of ϵ. Precision of 1% is guaranteed up to
ϵ ≈ 10; 10% precision is still achieved up to ϵ ≈ 20.
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