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Based on the observation that the heavy quark–antiquark potential value at infinity corresponds to twice
theDmeson mass, we constrain the asymptotic value of the heavy quark potential in a hot medium through
a QCD sum rule calculation of the D meson at finite temperature. We find that to correctly reproduce the
QCD sum rule results as well as a recent model calculation for the D meson mass near the critical
temperature, the heavy quark potential should be composed mostly of the free energy with an addition of a
small but nontrivial fraction of the internal energy. Combined with a previous study comparing potential
model results for the J=ψ to a QCD sum rule calculation, we conclude that the composition of the effective
heavy quark potential should depend on the interquark distance. Namely, the potential is dominated by the
free energy at short distance, while at larger separation, it has a fraction of about 20% of internal energy.
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I. INTRODUCTION

Quarkonium is a colorless and flavorless bound state of a
heavy quark and its antiquark. Since Matsui and Satz
proposed the suppression of quarkonium in relativistic
heavy-ion collisions as a signature of the quark-gluon
plasma formation due to color screening [1], this phe-
nomenon has been investigated in numerous theoretical and
experimental studies (see, for instance, the recent review in
Ref. [2]). One of the most critical quantities affecting
quarkonium suppression is the potential between a heavy
quark and antiquark. In lattice quantum chromodynamics
(QCD), the free energy of the static quark–antiquark pair
can be obtained through the rectangular Polyakov loop
along the space-time direction. As one increases the
temperature, the long distance part of the free energy
exhibits a sudden saturation near the critical temperature,
which can be interpreted as the onset of deconfinement. If
the free energy is adopted for the potential of the heavy
quark system [3], this behavior leads to a weakening of the
quarkonium binding with increasing temperature so that the
J=ψ , 1S bound state of a charm and anticharm quark,
dissolves around 1.1Tc [4]. On the other hand, at finite

temperature the heavy quark and antiquark can themselves
be polarized acquiring additional energy. This leads to the
internal energy of the system as another candidate for the
heavy quark potential, which has an additional contribution
from the entropy density [5],

U ¼ F þ TS; ð1Þ

where F, T and S are the free energy, temperature and
the entropy density S ¼ −∂F=∂T, respectively. While
the free energy at large separation drops rapidly near the
critical temperature, the entropy density becomes large,
thus acting as a high potential wall, which prevents the
quarkonium from dissolving. As a result, if the internal
energy is adopted for the heavy quark potential, J=ψ
binding persists beyond 1.6Tc [6]. The free energy is a
thermodynamical potential of the system which is sur-
rounded by a thermal heat reservoir, such that the tem-
perature is kept fixed by exchanging energy with that
reservoir. It measures the amount of available energy of
the separated heavy quark–antiquark pair compared to
that at different separation distance. On the other hand,
the internal energy is a thermodynamical potential of an
isolated system so that the energy needed to polarize the
heavy quark states should be added. The question, which
thermodynamical potential is appropriate as a heavy quark
potential at finite temperature, has been controversially
discussed in the literature [7,8].
Several years ago, two of the present authors have

calculated the strength of the J=ψ wave function at the
origin as a function of temperature by using a QCD sum
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rule approach with gluon condensates reliably determined
from lattice QCD calculations. The result was then com-
pared with the J=ψ wave function obtained by solving the
Schrödinger equation either with the free energy or the
internal energy as a heavy quark potential [4]. It was thus
found that the strength of the J=ψ wave function as well
as the J=ψ mass as a function of temperature obtained
from the QCD sum rule calculation follow those obtained
from using the free energy as a potential. Meanwhile, the
solutions from the internal energy potential significantly
overestimate both quantities. This comparison led to the
conclusion that the free energy is the appropriate choice for
the heavy quark potential at finite temperature rather than
the internal energy, which is consistent with recent lattice
results extracted from the spectral functions of Wilson line
correlators [9].
In the potential model, not only the mass of the J=ψ , but

also that of theDmeson is closely related to the heavy quark
potential. This can be understood by considering the eige-
nenergy of an infinitely separated static charm quark pair,
which corresponds to twice the D meson mass, as the
charmonium will be separated into D and D̄ mesons at a
large distancewith vanishing interaction. TheDmesonmass
at finite temperature hence depends on the behavior of the
heavy quark potential at large distance, which is quite
different for the free energy and internal energy cases nearTc.
In the past, several theoretical studies on the D meson

spectrum in a hot or dense medium and its application to
heavy-ion collisions have been carried out (see, for exam-
ple, Refs. [10–15]). In QCD sum rules, the real part of the
current correlator in the D meson channel is related to its
imaginary part through a dispersion relation. The former is
in the deep Euclidean region computed using the operator
product expansion, which leads to an analytic expression
with QCD condensates and corresponding Wilson coef-
ficients. The latter imaginary part is expressed as a spectral
function composed of physical states with the same
quantum number as the D meson. To analyze the sum
rules, one then assumes the spectral function to have the
simple form of a single ground state and a smooth
continuum. The mass of the ground state is then extracted
by matching the spectral function to the OPE result. It is
thus possible to relate the temperature dependence of the D
meson mass to that of the QCD condensates.
The main goal of this paper is to determine what kind of

heavy quark potential can model the D meson mass
temperature dependence extracted from the QCD sum rule
approach. We find that the heavy quark potential at large
separation should be composed mostly of the free energy
with an addition of a small but nontrivial fraction of the
internal energy. Combined with our previous results for the
heavy quark potential obtained by comparing the potential
model result for the J=ψ to the QCD sum rule calculation,
we conclude that the effective heavy quark potential is
dominated by the free energy at short distance, while at

larger separation, it has a non-negligible fraction of the
internal energy.
This paper is organized as follows. In Sec. II we

introduce the heavy quark potentials from lattice QCD
calculations and show the obtained D meson mass as a
function of temperature for each of the various potentials.
The sameDmeson mass is calculated from QCD sum rules
in Sec. III and compared to the potential model results in
Sec. IV. The conclusion is given in Sec. V.

II. D MESON MASS FROM HEAVY
QUARK POTENTIAL

The strong interaction between the heavy quark and
antiquark is in our approach modeled as a combination of a
Coulomb and linear potential. The former is dominant at
short, the latter at long distances. The linear potential is
furthermore generally responsible for the confinement of
hadrons.
The free energy obtained from lattice QCD calculations

can be decomposed as

Fðr; TÞ ¼ Fcðr; TÞ þ Fsðr; TÞ; ð2Þ

where Fc and Fs, respectively, denote Coulomb-like and
the string terms and are expressed as

Fcðr; TÞ ¼ −
α

r
½e−μr þ μr�;

Fsðr; TÞ ¼
σ

μ

�
Γð1=4Þ

23=2Γð3=4Þ −
ffiffiffiffiffi
μr

p
23=4Γð3=4ÞK1=4½ðμrÞ2�

�
; ð3Þ

with α ¼ π=12, σ ¼ 0.445 GeV2, and μ being the screen-
ing mass [6]. In Fig. 1 we show μ extracted from lattice

FIG. 1. The screening mass μ scaled by
ffiffiffi
σ

p
, extracted from

lattice QCD calculations [6,16,17] (red points) and fitted to
Eq. (4) (blue solid line).
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calculations [6,16,17] as a function of temperature. We
parametrize it separately below and above Tc as follows:

μffiffiffi
σ

p ¼ 0.35þ 0.0034 exp½ðT=TcÞ2=0.22�

for T < Tc;

μffiffiffi
σ

p ¼ 0.45þ 0.5

�
T
Tc

�
tanh½ðT=Tc − 0.93Þ=0.15�

for T > Tc: ð4Þ

The two separate parametrizations are smoothly matched
at Tc, that is, with (almost) the same derivative. Figure 1
shows that the screening mass rapidly increases near Tc. If
the free energy is interpreted as the heavy quark potential,
this sudden increase brings about the lowering of the heavy
quark potential, which causes the quarkonia to melt at
relatively low temperatures.
The internal energy is derived from thermodynamic

relations as

Uðr; TÞ ¼ Fðr; TÞ þ TSðr; TÞ

¼ Fðr; TÞ − T
∂Fðr; TÞ

∂T : ð5Þ

As mentioned above, the free energy drops sharply near
Tc and hence the entropy density defined as −∂F=∂T
rapidly increases. As a result, if the internal energy is
interpreted as the heavy quark potential, a large potential
wall is generated near Tc, causing the quarkonia to be
strongly bound and to dissolve only at higher temperatures.
The heavy quark potential is used in the Schrödinger

equation of a charm and anticharm pair as

�
2mc −

1

mc
∇2 þ Vðr; TÞ

�
ψðr; TÞ ¼ Mψðr; TÞ; ð6Þ

where mc ¼ 1.25 GeV is the bare charm quark mass and
ψðr; TÞ the charmonium wave function at temperature T.
Introducing the potential energy at infinity as Vðr ¼ ∞; TÞ,
Eq. (6) is modified as [6,18]

�
−
∇2

mc
þ Ṽðr; TÞ

�
ψðr; TÞ ¼ −εψðr; TÞ; ð7Þ

where Ṽðr; TÞ≡ Vðr; TÞ − Vðr ¼ ∞; TÞ, which vanishes
at infinity, while ε is the J=ψ binding energy at tempera-
ture T,

ε ¼ 2mc þ Vðr ¼ ∞; TÞ −M: ð8Þ

The heavy quark potential in principle also has an
imaginary part. Since it however does neither much change

the eigenenergy nor the eigenfunction of the Schrödinger
equation, we ignore it in the present study [8,19,20]. At
vanishing binding energy, the eigenvalue M of Eq. (6) can
be interpreted as the sum of the masses of two open heavy
flavors, D and D̄ mesons in a hadron gas or dressed charm
and anticharm quarks in the QGP,

mDðTÞ≡M
2
¼ mc þ

1

2
Vðr ¼ ∞; TÞ: ð9Þ

In other words, if the charm and anticharm quarks that
form a quarkonium state are separated from each other by
an infinite distance, the energy of the charm pair becomes
the energy of two open heavy flavors.
From the above discussion, it is understood that the D

meson mass at finite temperature is closely related to the
heavy quark potential at infinity. The asymptotic values of
the free and internal energies are given by

(a)

(b)

FIG. 2. (a) The free energy and internal energy potentials at
infinity and (b) the D meson or dressed charm quark mass for
several heavy quark potentials as functions of temperature.
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lim
r→∞

Fðr; TÞ ¼ Γð1=4Þ
23=2Γð3=4Þ

σ

μ
− αμ;

lim
r→∞

Uðr; TÞ ¼ Γð1=4Þ
23=2Γð3=4Þ

σ

μ
− αμ

þ T
dμ
dT

�
Γð1=4Þ

23=2Γð3=4Þ
σ

μ2
þ α

�
: ð10Þ

The upper panel of Fig. 2 shows the free energy and
internal energy potential values at infinity as functions of
temperature, obtained from Eqs. (4) and (10). We note that
the asymptotic values of the internal energy are very close
to those of Refs. [6,17].
The D meson or dressed charm quark mass is shown in

the lower panel of Fig. 2 as a function of temperature for
the free energy potential, the internal energy potential,
and the averaged potential. One can see in this figure that
the behavior of the D meson mass is completely different,
depending on the employed potential. If the free energy is
used as the potential, the D meson mass decreases with
increasing temperature, while the mass sharply increases up
to 3.2 GeV near Tc for the internal energy potential. Even if
one takes as the heavy quark potential the average of the
free and internal energy, the D meson mass increases up to
2.4 GeV around Tc.

III. D MESON MASS FROM QCD SUM RULES

In this section, we discuss the QCD sum rule approach
used to compute the D meson mass at finite temperature.
As it is costumary in a QCD sum rule analysis [21,22], we
start with the correlator of an operator jðxÞ ¼ q̄ðxÞiγ5cðxÞ,
which couples to the D meson state of interest,

Πðq20; q2; TÞ ¼ i
Z

d4xeiqxhT½jðxÞj†ð0Þ�iT: ð11Þ

In this paper, we will assume that theD is at rest, will hence
set q ¼ 0 and omit this variable for the rest of the
discussion for simplicity of notation. The spectral function
ρðq20;TÞ¼1=π tanhðq0=2TÞImΠðq20;TÞ¼1=πImΠRðq20;TÞ,
where the subscript R denotes the retarded correlation
function, encodes the behavior of the D meson at finite
density. With the help of the analyticity of ΠRðq20; TÞ, the
correlator in the deep Euclidean region (q20 → −∞), calcu-
lated through the time ordered correlator, can be related to
an integral over ρðq20; TÞ via a dispersion relation. Applying
furthermore the Borel transform, one obtains the most
commonly used version of QCD sum rules, which reads

Π̂ðM2; TÞ ¼
Z

∞

0

dse−s=M
2

ρðs; TÞ; ð12Þ

where Π̂ðM2; TÞ stands for the Borel transformed correlator
and M is the so-called Borel mass. For our purposes, we

can identify the imaginary part of the time ordered
correlator with the spectral density as the thermal factor
tanh½ ffiffiffi

s
p

=ð2TÞ� in the integrand on the right-hand side for
the temperature and energy values considered here
(

ffiffiffi
s

p ≳mD and T ≲ Tc) is close to 1 and can be safely
neglected (see also the discussion in Ref. [23]).
As mentioned above, the left-hand side of Eq. (12) is

computed in the deep Euclidean region. This means that
one can rely on the operator product expansion (OPE),
which is valid in this regime. We will here not go into the
details of this calculation, which have been discussed
extensively in the literature (see especially Ref. [24] for
details), but only give the final result to be used in our
analysis. The leading order perturbative part of the OPE is
given as

Π̂pertðM2; TÞ ¼ 1

π

Z
∞

m2
c

dse−s=M
2

ImΠpertðs; TÞ ð13Þ

with

ImΠpertðs;TÞ¼ 3

8π
s

�
1−

m2
c

s

�
2
�
1þ4

3

αs
π
Rðm2

c=sÞ
�

ð14Þ

and

RðxÞ ¼ 9

4
þ Li2ðxÞ þ lnðxÞ lnð1 − xÞ

−
3

2
ln

�
1 − x
x

�
− lnð1 − xÞ þ x ln

�
1 − x
x

�

−
x

1 − x
lnðxÞ: ð15Þ

This term does not depend on the temperature T. Next,
the nonperturbative scalar condensate terms up to dimen-
sion 5 are

Π̂hq̄qiðM2; TÞ ¼ −mchq̄qiTe−m2
c=M2

; ð16Þ

Π̂hαsπ G2iðM2; TÞ ¼ 1

12

�
αs
π
G2

�
T
e−m

2
c=M2

; ð17Þ

Π̂hq̄gσGqiðM2; TÞ ¼ 1

2

�
m3

c

2M4
−
mc

M2

�

× hq̄gσGqiTe−m2
c=M2

; ð18Þ

while the nonperturbative nonscalar condensate terms are

Π̂G2ðM2; TÞ ¼ 1

4

��
7

6
ln
μ2m2

c

M4
þ 2γE

��
m2

c

M2
− 1

�

− 2
m2

c

M2

�
G2ðTÞe−m2

c=M2

; ð19Þ
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Π̂FðM2; TÞ ¼ 3

2

�
m2

c

M2
− 1

�
FðTÞe−m2

c=M2

; ð20Þ

Π̂HðM2; TÞ ¼ −3
�

m3
c

2M4
−
mc

M2

�
HðTÞe−m2

c=M2

: ð21Þ

The sign in front of the γE (the Euler-Mascheroni constant)
term is different from the expression given in Ref. [23],
which can be traced back to a mistake/typo in Eq. (65)
of Ref. [24] and which is corrected here. G2ðTÞ, FðTÞ
and HðTÞ are related to nonscalar gluon and quark
condensates as�

ST
αs
π
Gaμ

α Gaαν

�
T
¼ G2ðTÞST ðuμuνÞ;

¼ G2ðTÞ
�
uμuν −

1

4
gμν

�
; ð22Þ

hST q̄γμiDνqiT ¼ FðTÞST ðuμuνÞ; ð23Þ

hST q̄iDμiDνqiT ¼ HðTÞST ðuμuνÞ; ð24Þ

where ST stands for the operation of making the following
noncontracted Lorentz indices symmetric and traceless. uμ
is the four-velocity of the heat bath, which we assume to be
at rest, hence uμ ¼ ð1; 0; 0; 0Þ. Higher order terms con-
taining dimension 6 four quark condensates were computed
in Ref. [25], but turned out to be small. We therefore omit
them in this work for simplicity. In the QCD sum rule
approach considered here, the temperature dependence is
assumed to appear only in the QCD condensates and not in
their Wilson coefficients. Remembering that the OPE is
realized through a division of scales, with low-energy
components entering the operators and high-energy con-
tributions expressed as Wilson coefficients (with the
boundary roughly at ΛQCD), it becomes clear that the
above assumption is only valid as long as the temperature
is low enough. Usually, one hence regards this OPE to be
applicable for temperatures up to and around Tc.
For the OPE input parameters at T ¼ 0, we employ the

values given in Table I. Note that the pole mass used for
the charm quark in the sum rule analysis is different from
the value used in the quark model calculation of the
previous section, which can be understood by considering
the different renormalization point for the two cases. The
charm quark mass in the quark model is renormalized
roughly at a typical momentum scale of the charm quark in
the studied system. For QCD sum rules, one estimates the
relevant two-point function in the deep-Euclidean region
with nonperturbative effects taken into account through
power corrections. As was already noted a long time ago,
for the Borel sum rules involving the heavy quarks such as
the charmonium sum rules [26], the pole mass value of
mc ¼ 1.67 GeV is more suitable for this purpose as such a

prescription tends to reduce the power corrections relative
to the perturbative series, which is also true for the D
meson. This is why we employ it here as well. Our basic
strategy in this paper is to fix the input charm quark masses
such that a reasonably good description of the D meson
mass in vacuum is realized for both approaches and after
that to obtain its temperature dependence for fixed respec-
tive quark mass values.
To compute the strong coupling constant αs, the expres-

sion provided in the PDG [27] with Nf ¼ 4 and Λð4Þ
MS

¼
292 MeV is used. For hq̄gσGqi0=hq̄qi0, we use the
standard value of 0.8 GeV2, renormalized at 1 GeV and
run it to 2 GeV making use of its anomalous dimension
[30]. The temperature dependence of the condensates is
obtained from different sources. Whenever possible, we
have implemented state-of-the-art lattice QCD results.
Especially for the most important chiral condensate
hq̄qiT (as well as the less important hαsπ G2iT), full QCD,
continuum extrapolated results with 2þ 1 flavors are
available at the physical pion mass. Specifically, we make
use of the lattice data given in Ref. [31] for hq̄qiT and those
of Ref. [32] for hαsπ G2iT, according to the prescription
discussed in Ref. [33]. For hq̄gσGqiT, which so far has not
been studied extensively on the lattice, we assume
hq̄gσGqiT=hq̄qiT to be constant and can therefore extract
the hq̄gσGqiT=hq̄qiT temperature dependence directly
from hq̄qiT . The above assumption is supported by the
lattice QCD calculation of Ref. [34]. The nonscalar quark
condensates encoded in G2ðTÞ, FðTÞ and HðTÞ are the
least well known input parameters for the sum rules. To
estimate them, we apply the hadron resonance gas model,
which assumes that the effect of finite temperature can be
described by a gas of noninteracting pions (and other light
hadrons). This assumption should be approximately valid
below Tc, where hadronic degrees of freedom dominate,
but becomes questionable around or above Tc, where
quarks and gluons start to appear. For concrete formulas
and other details, we refer the interested reader to Ref. [33],
and just mention here that we have included all small-mass
pesudoscalar particles, namely pions, kaons and the eta in
the actual calculation. To obtain G2ðTÞ, one furthermore
needs the value of the strong coupling constant at finite
temperature, αsðTÞ. To extract it, we use the two-loop

TABLE I. Vacuum input parameters, given at a renormalization
scale of 2 GeV. Note that the mc used here is the pole mass.

Input parameter Value Reference

mc 1.67 GeV [27]
αs 0.30 [27]
hq̄qi0 ð−0.272 GeVÞ3 [28]
hαsπ G2i0 0.012 GeV4 [21,22]
hq̄gσGqi0=hq̄qi0 0.62 GeV2 [29]
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perturbative running coupling, as given in Ref. [35] (see
also Ref. [36]).
With all the OPE input determined, we next discuss how

to analyze the sum rules of Eq. (12). As it is standard, we
assume the spectral function to have the so-called
“poleþ continuum” form (see, however, Ref. [37] for an
alternative approach),

ρðs; TÞ ¼ λDδðs −m2
DÞ þ θðs − sthÞ

1

π
ImΠpertðs; TÞ; ð25Þ

which can be expected to be justified when the D meson
ground state peak dominates the spectral function at low
energy and the perturbative expressionΠpertðs; TÞ describes
the spectral function above the threshold parameter sth
reasonably well. Some care is however needed when
assessing the validity of the above assumption. While it
may be sufficiently accurate in vacuum (T ¼ 0), it will
eventually break down once the peak starts to dissolve into
the continuum at some temperature above Tc. Hence,
analyses based on Eq. (25) can only be trusted for temper-
atures up to and around Tc.
Substituting Eq. (25) into Eq. (12), we have

Π̂ðM2; TÞ ¼ λDe−m
2
D=M

2

þ 1

π

Z
∞

sth

dse−s=M
2

ImΠpertðs; TÞ: ð26Þ

Therefore, we define

Π̃ðM2; T; sthÞ

≡ Π̂ðM2; TÞ − 1

π

Z
∞

sth

dse−s=M
2

ImΠpertðs; TÞ; ð27Þ

and can compute the D meson mass as

mDðM2; T; sthÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
∂Π̃ðM2; T; sthÞ=∂ð1=M2Þ

Π̃ðM2; T; sthÞ

s
; ð28Þ

and subsequently the residue λD as

λDðM2; T; sthÞ ¼ Π̃ðM2; T; sthÞem2
DðM2;T;sthÞ=M2

: ð29Þ

We, however, still need to fixM and sth, which are artificial
parameters of the sum rule approach. Starting with M, we
define a so-called Borel window, for which the approx-
imations used in the sum rule analysis can be expected to be
valid. The lower boundary of the Borel window, Mmin, is
determined from the condition of sufficient convergence of
the OPE, namely

Π̂OPE
dim 5 termsðM2; TÞ
Π̂OPE

all termsðM2; TÞ < 0.1: ð30Þ

Here, Π̂OPE
dim 5 termsðM2; TÞ is the sum of the terms of

condensates with the highest dimension considered in this
work, which are Π̂hq̄gσGqiðM2; TÞ and Π̂e2ðM2; TÞ. For the
upper boundary, Mmax, we employ the condition that the
pole contribution in the integral of Eq. (12) should
dominate the sum rule. Specifically, we have

R sth
0 dse−s=M

2

ρðs; TÞR
∞
0 dse−s=M

2

ρðs; TÞ ¼
Π̃ðM2; T; sthÞ
Π̂ðM2; TÞ > 0.5: ð31Þ

With the range of M determined as Mmin < M < Mmax,
one can compute averages of mDðM2; T; sthÞ and
λDðM2; T; sthÞ. We have

m̄DðT; sthÞ ¼
1

Mmax −Mmin

×
Z

Mmax

Mmin

dMmDðM2; T; sthÞ; ð32Þ

λ̄DðT; sthÞ ¼
1

Mmax −Mmin

×
Z

Mmax

Mmin

dMλDðM2; T; sthÞ: ð33Þ

Finally, sth is determined as s0th, which minimizes the
function

dðT; sthÞ ¼
1

Mmax −Mmin

×
Z

Mmax

Mmin

dM½mDðM2; T; sthÞ − m̄DðT; sthÞ�2:

ð34Þ

This ensures that, within the Borel window, the dependence
of mDðM2; T; sthÞ on M is as small as possible. For
illustration, we show in Fig. 3 mDðM2; T; s0thÞ for T ¼ 0

and T ¼ 150 MeV as a function of M. The respective
positions ofMmin andMmax are indicated as vertical arrows.
We have carried out two different analyses, one in which

we let the Borel window depend on T (shown in Fig. 3) and
another one in which we keep it fixed at its vacuum
location. The two versions are shown in Fig. 4, where it is
seen in the top plot that the D meson mass increases or
remains roughly constant below and around Tc ≃ 155 MeV
[31] and starts to drop for higher temperatures. In the
middle plot of Fig. 4, we show the temperature dependence

of the threshold parameter
ffiffiffiffiffiffi
s0th

q
, which lies about 0.4 GeV

above the mass value and behaves roughly in parallel with
it as the temperature increases. The residue λD, shown in
the bottom plot of Fig. 4, decreases monotonically with
increasing temperature and approaches zero towards
T ¼ 180 MeV. Comparing the two analyses, it is observed
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that only the T dependent Borel window case leads to an
increase of theDmeson mass. It also gives a slightly slower
decrease of the residue λD.
It is worth thinking about a physically intuitive picture

for the above results. First, let us consider the potential
increase of the D meson mass below and around Tc, which
seems to be consistent with the reconstructed spectral
functions given in the recent lattice QCD study of
Ref. [38], the lattice data quality however not being good
enough to draw any definite conclusions. The most natural
explanation for this behavior can be given by the quark
model picture proposed in Ref. [39], where the increase of
theDmeson mass was related to the decreasing constituent
quark mass caused by the partial restoration of chiral
symmetry. Due to the decreasing quark mass, its wave
function spreads out to larger distances and therefore feels
the linear confining potential, leading to an overall increase
of the D meson mass. As in the present study the chiral
symmetry gets partially restored due to the decrease of the
chiral condensate, the same quark model picture provides a
natural explanation for an increasing D meson mass
behavior around Tc. Next, we examine the decreasing D
meson mass at temperatures around and above Tc. To
consider this behavior, one should take into account the
decreasing residue value λD, shown in the lower plot of
Fig. 4. This decrease means that the contribution of the
ground state peak to the spectral function is reduced, which
can be interpreted as the gradual melting of the D meson
into the continuum, which is expected to happen at some
(unknown) temperature above Tc. Therefore, if the spectral
function at T > Tc is gradually changed from a narrow
peak to a continuum, the poleþ continuum assumption of
Eq. (25) breaks down and the notion of a D meson mass
loses any meaning. It should however be kept in mind that
both the division of scales of the OPE and the estimation of

some of the nonscalar QCD condensates become ques-
tionable above Tc. The physical interpretation of the drop
shown in the upper plot of Fig. 4 for T > Tc hence is not
completely clear because of the limitations of the QCD sum
rule method at such temperatures, but is likely related to the
melting of the D meson state into the continuum. In the

m
D

(M
2 ,T

,s
0 th

) 
 [G

eV
]

M [GeV]

T = 0

T = 150 MeV

 1.85

 1.9

 1.95

 2

 2.05

 2.1

 0.8  0.9  1  1.1  1.2  1.3  1.4  1.5  1.6

FIG. 3. The D meson masses computed from Eq. (28) at s0th,
which gives the maximum flatness, in the vacuum and at
T ¼ 150 MeV. The vertical arrows indicate the locations of
the Borel window boundaries, Mmin and Mmax.
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)1/
2  [G
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λ D
(T
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FIG. 4. The values of m̄DðT; s0thÞ,
ffiffiffiffiffiffi
s0th

q
, and λ̄DðT; s0thÞ as a

function of temperature T. The red curve (horizontal crosses)
shows the analysis results when the Borel window is determined
at T ¼ 0 and kept fixed with increasing temperature. The blue
curve (diagonal crosses) gives the results for a temperature
dependent Borel window.
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next section, wewill discuss further physical interpretations
of the QCD sum rule results in terms of the quark model
approach considered in the previous section.

IV. MATCHING THE HEAVY QUARK
POTENTIAL TO QCD SUM RULES

Let us now study the consequences of requiring that the
temperature dependence of the D meson mass obtained
from the potential model given in Eq. (9) is consistent with
that from QCD sum rules. As can be seen in Fig. 5,
assuming a constant or temperature dependent Borel
window requires that the heavy quark potential should
have a nontrivial contribution from the internal energy in
addition to the dominant free energy part. The discrepancy
above Tc should not be taken too seriously as the D meson
mass calculations are not reliable at these temperatures, as
mentioned in the previous section. Also shown in the figure
are the recent results from Ref. [40] where the D meson
mass was calculated at finite temperature in the imaginary-
time formalism by using a hadronic effective field theory
with chiral and heavy-quark spin symmetries. Although the
central value for theDmeson mass slightly decreases as the
temperature approaches the critical temperature, the differ-
ence compared with the QCD sum rule result does not
qualitatively change our discussion of the heavy quark
potential of this section. We find that fitting the results in
the potential model to the D meson mass obtained from
QCD sum rules with either a constant or temperature
dependent Borel window requires the heavy quark potential
to be composed of 18% and 21% of internal energy
potentials, respectively, with the remaining contribution

coming from the free energy potential. The results from the
hadronic effective model are fitted with 15% of the internal
energy, if one fits the potential to the central pole mass.
On the other hand, a previous determination of the heavy

quark potential obtained by comparing the potential model
result for the J=ψ to a QCD sum rule calculation, led to the
conclusion that the heavy quark potential should be
dominated by the free energy [4]. The two findings are,
however, not necessarily inconsistent, as combining them,
one can naturally conclude that the effective heavy quark
potential is dominated by the free energy at short distance,
while at larger separation, it will have a nontrivial fraction
of internal energy. This is in line with the interpretation
given in Ref. [3]. For short distances, the interquark
potential should be affected by the gluon dynamics
exchanged between the two heavy quarks, which is
encoded in the free energy. On the other hand, as the
separation between the heavy quarks becomes large, the
polarization of the heavy quark itself becomes important,
which is related to the D meson, but at the same time
introduces additional entropy contribution included in the
internal energy. The same effect can be simulated with
using just the free energy potential but a larger effective
heavy quark mass at larger distance. The introduction of
additional internal energy contribution to the potential
energy will become important when one calculates the
binding energy and wave function of the excited states
which are of larger size compared to the ground state.
As an illustration we introduce a heavy quark potential,

which starts with the free energy at short distance and then
smoothly transits to a combinational potential energy
composed of 80% of the free energy and 20% of the
internal energy with increasing interquark distance, as
shown in Fig. 6(a). In Fig. 6(b) and 6(c), we show the
result for the wave function at the origin and the J=ψ mass
obtained by solving the Schrödinger equation of Eq. (7) by
using three different potentials: the free energy potential,
the combinational potential, and the transitional potential.
Also shown in the figures are the results obtained from
QCD sum rules [4]. The results for the free energy are
slightly different from those reported in Ref. [4] because of
the parametrization of Eq. (4). First, one notes that results
obtained by using the combinational potential energy with
20% of the internal energy deviates from the temperature
dependence obtained from the QCD sum rule approach.
However, comparing the results between the free energy
and the transitional potential shows that the residue and
mass of the J=ψ from the latter better reproduces the QCD
sum rule results at least up to the critical temperature where
the D meson mass is investigated in this study.
Furthermore, the quoted QCD sum rule result is obtained

within the zero width approximation. The mass shift
required by the changes in the OPE can in general be
accommodated by an increase in the width without any
change in the mass as was first pointed out in Ref. [41].

FIG. 5. The D meson or dressed charm quark mass for several
heavy quark potentials as functions of temperature in comparison
with the QCD sum rule results. Tc is taken to be 155 MeV. For the
results from Ref. [40], effects from spectral widths are shown as
error bars. All results are shifted to have the common physical D
meson mass in vacuum (T ¼ 0).
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This is so because the effects of a negative mass shift in the
spectral density in the Borel transformed dispersion relation
can be approximated by an increase in the width as such a
change also increases the contribution in the spectral

density at the lower energy region. Results of detailed
past sum rule analyses show that the mass shift and width
increase can be approximated by ΔΓ ¼ Constantþ aΔm,
where the proportionality coefficient a is about 1.5 for the
J=ψ sum rule [35] and 2.5 for the light vector meson sum
rules [41]. The “Constant” here depends on the sum rule
considered and the temperature. That means that if we
allow for an additional width increase in the sum rule, an
additional positive mass change should be added. As the D
meson lies roughly in the middle of the J=ψ and the light
vector mesons, we can in the current study take the
proportionality coefficient a to be around 2. Then, the
width increase of 30–70 MeVat T ¼ 150 MeV [42,43] for
the D meson will inevitably lead an additional mass
increase of 15–35 MeV. Such an additional mass increase
is certainly non-negligible but within the uncertainty in the
sum rule analysis estimated by the difference in the results
for the mass change obtained with a temperature indepen-
dent and dependent Borel window shown respectively as
blue stars and red circles in Fig. 5.
In conclusion, our comparison suggests the heavy quark

potential to be composed purely of the free energy at short
distance while at larger separation it has a nontrivial
contribution from the internal energy. This configuration
can reproduce both the J=ψ and the D meson masses at
finite temperature obtained from QCD sum rules up to and
around the critical temperature.

V. SUMMARY AND CONCLUSIONS

We have in this paper studied the heavy quark–anti-
quark potential at finite temperature, which is crucial for
understanding the quarkonium production in relativistic
heavy-ion collisions, through the behavior of the D meson
mass obtained by using QCD sum rules. Based on the
observation that the total energy of a heavy quark bound
state pair at infinity can be interpreted as twice the D
meson mass at finite temperature, it becomes possible to
compute the heavy quark potential at a large distance from
the thermal behavior of D mesons. Our QCD sum rule
results for the D meson at finite temperature suggest
that the heavy quark potential at large distance should
be composed dominantly of the free energy but with a
contribution of the internal energy of about 20%.
Combined with a similar comparison for the J=ψ channel
at finite temperature, we conclude that the heavy quark
potential should have a different fraction of internal energy
as a function of the interquark distance. Summarizing the
result, we find that to reproduce the behavior of both the
J=ψ and D meson from QCD sum rules without contra-
diction at least up to and around Tc, the heavy quark
potential should be composed of the free energy at short
distance, while attaining a nontrivial fraction of the
internal energy at larger distances so that at infinity the
fraction becomes about 20%.

(a)

(b)

(c)

FIG. 6. (a) Three different heavy quark potential energies,
(b) the residue and (c) the mass of J=ψ as a function of
temperature for each heavy quark potential energy, compared
with the results from QCD sum rules [4].
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