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In the paper, we study the properties of the top-quarkMS runningmass computed from its on-shell mass by
using both the four-loop MS-on-shell relation and the principle of maximum conformality (PMC) scale-
setting approach. The PMC adopts the renormalization group equation to set the correct magnitude of the
strong running coupling of the perturbative series, its prediction avoids the conventional renormalization scale
ambiguity, and thus amore precise pQCDprediction canbe achieved.After applying thePMC to the four-loop
MS-on-shell relation and taking the top-quark on-shell massMt ¼ 172.9� 0.4 GeV as an input, we obtain
the renormalization scale-invariant MS running mass at the scale mt, e.g., mtðmtÞ ≃ 162.6� 0.4 GeV, in
which the error is the squared average of those from ΔαsðMZÞ, ΔMt, and the approximate error from the
uncalculated five-loop terms predicted by using the Padé approximation approach.
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I. INTRODUCTION

In quantum chromodynamics (QCD), the quark masses
are elementary input parameters of the QCD Lagrangian.
There are three light quarks (up, down, and strange) and three
heavy ones (charm, bottom, and top). Comparing with other
quarks, the top quark is special. It decays before hadroniza-
tion, which can be almost considered as a free quark.
Therefore, the top-quark on-shell (OS) mass, or equivalently
the pole mass, can be determined experimentally. The direct
measurements are based on analysis techniques which use
top-pair events provided by Monte Carlo (MC) simulation
for different assumed values of the top-quarkmass.Applying
those techniques to data yields a mass quantity correspond-
ing to the top-quark mass scheme implemented in the MC;
thus, it is usually referred to as the “MCmass.” Since the top-
quarkMCmass iswithin∼1 GeVof itsOSmass [1], one can
treat the MCmass as the OS one [2–6]. Detailed discussions
on the top-quark OS mass can be found in Refs. [7–9]. As
shown by the Particle Data Group [10], an average of various

measurements at the Tevatron and the LHC gives the OS
mass Mt ¼ 172.9� 0.4 GeV.
Practically, one usually adopts the modified minimal

subtraction scheme (the MS scheme) to do the pQCD
calculation, and the MS running quark mass is introduced.
As for the top-quarkMS runningmass, it can be related to the
OSmass perturbativelywhich has been computed up to four-
loop level [11–19]. Using this relation and the measured OS
mass,we are facing the chance of determining a precisevalue
for the top-quark MS running mass. In using the relation, an
important thing is to determine the exact value of the strong
coupling constant (αs). The scale running behavior of αs is
controlled by the renormalization group equation (RGE) or
the β function [20–23], which is now known up to five-loop
level [24]. Using the Particle Data Group reference point
αsðMZÞ ¼ 0.1181� 0.0011 [10], we can fix its value at any
scale. And thus the remaining task for achieving the precise
value of the perturbative series of the MS running mass over
the OSmass is to determine the correct momentum flow and
hence the correct αs value of the perturbative series.
Conventionally, people uses the guessed renormalization

scale as the momentum flow of the process and varies it
within an arbitrary range to estimate its uncertainty for the
pQCD predictions. This naive treatment leads to the mis-
matching of the strong coupling constant with its coeffi-
cients, well breaking the renormalization group invariance
[25–27] and leading to renormalization scale and scheme
ambiguities. And the effectiveness of this treatment depends
heavily on the perturbative convergence of the pQCD series.
Sometimes, the scale is chosen so as to eliminate the large
logarithmic terms or to minimize the contributions from
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high-order terms. And sometimes, the scale is so chosen to
directly achieve the prediction in agreement with the data.
This kind of guessing work depresses the predicative power
of thepQCDtheory, and sometimes ismisleading, since there
may be new physics beyond the standard model.
To eliminate the artificially introduced renormalization

scale and scheme ambiguities, the principle of maximum
conformality (PMC) scale-setting approach has been sug-
gested [28–32]. The purpose of the PMC is to determine the
effective αs of a pQCD series by using the known β-terms
of the pQCD series. The argument of the effective αs is
called the PMC scale, which corresponds to the effective
momentum flow of the process. It has been found that the
magnitude of the determined effective αs is independent of
any choice of renormalization scale; thus, the conventional
renormalization scale ambiguity is eliminated by applying
the PMC. The PMC shifts all nonconformal β-terms into
the strong coupling constant at all orders, and it reduces to
the Gell-Mann and Low scale-setting approach [33] in the
QED Abelian limit [34]. Furthermore, after adopting the
PMC to fix the αs running behavior, the remaining
perturbative coefficients of the resultant series match the
series of conformal theory, leading to a renormalization
scheme independent prediction. Using the PMC single-
scale approach [35], it has recently been demonstrated that
the PMC prediction is scheme independent up to any fixed
order [36]. The residual scale dependence due to the
uncalculated higher-order terms is highly suppressed by
the combined αs suppression and exponential suppression
[37]. Because of the elimination of the divergent renorma-
lon terms like n!βn0α

n
s [38–40], the convergence of the

pQCD series is naturally improved, which leads to a more
accurate prediction. Moreover, the renormalization scale-
and-scheme independent series is also helpful for estimat-
ing the contribution of the unknown higher orders, some
examples can be found in Refs. [41–43].

II. CALCULATION TECHNOLOGY

The renormalized mass under the MS scheme or the OS
scheme can be related to the bare mass (m0) by

m0 ¼ ZR
mmR; ð1Þ

where R ¼ MS or OS. Under the MS scheme, one can

derive the expression of ZMS
m by requiring the renormalized

propagator to be finite, which has been calculated up to
five-loop level [44–47]. Under the OS scheme, the expres-
sion of ZOS

m can be obtained by requiring the quark two-
point correlation function to vanish at the position of the OS
mass, whose one-, two-, and three-loop QCD corrections
have been given in Refs. [11–15,48], and the electroweak
effects have also been considered in Refs. [49–58].
Generally, the relation between the MS quark mass and
OS quark mass can be written as

zmðμrÞ ¼
mðμrÞ
M

¼ ZOS
m

ZMS
m

¼
X

n≥0
zðnÞm ðμrÞans ðμrÞ; ð2Þ

where asðμrÞ ¼ αsðμrÞ=4π, mðμrÞ is the MS running mass
with μr being the renormalization scale, and M is the OS

quark mass. The perturbative coefficients zðnÞm have been
known up to four-loop level [16,17], and the MS running
mass at the scale M takes the following perturbative form:

mðMÞ ¼ Mf1þ zð1Þm ðMÞasðMÞ þ zð2Þm ðMÞa2sðMÞ
þ zð3Þm ðMÞa3sðMÞ þ zð4Þm ðMÞa4sðMÞ þ � � �g; ð3Þ

where the coefficients zðiÞm ðMÞ (i ¼ 1;…; 4) can be read
from Ref. [17]. Using the displacement relation which
relates the αs value at the scale μ1 with its value at any other
scale μ2,

asðμ1Þ¼ asðμ2Þþ
X∞

n¼1

1

n!
∂nasðμrÞ
ð∂ lnμ21Þn

����
μr¼μ2

ð−δÞn; ð4Þ

where δ ¼ ln μ22=μ
2
1, and one can obtain the relation at any

renormalization scale μr, i.e.,

mðMÞ ¼ M

�
1þ zð1Þm ðMÞasðμrÞ þ

�
zð2Þm ðMÞ þ β0z

ð1Þ
m ðMÞ ln μ2r

M2

�
a2sðμrÞ þ

�
zð3Þm ðMÞ þ ðβ1zð1Þm ðMÞ þ 2β0z

ð2Þ
m ðMÞÞ

× ln
μ2r
M2

þ β20z
ð1Þ
m ðMÞln2 μ2r

M2

�
a3sðμrÞ þ

�
zð4Þm ðMÞ þ ðβ2zð1Þm ðMÞ þ 2β1z

ð2Þ
m ðMÞ þ 3β0z

ð3Þ
m ðMÞÞ ln μ2r

M2

þ
�
5

2
β1β0z

ð1Þ
m ðMÞ þ 3β20z

ð2Þ
m ðMÞ

�
ln2

μ2r
M2

þ β30z
ð1Þ
m ðMÞln3 μ2r

M2

�
a4sðμrÞ þ � � �

�
: ð5Þ

For the case of top-quark masses, schematically, we can rewrite the perturbative coefficients of the above equation as the
fnfg-power series,

mtðMtÞ ¼ Mtf1þ c1;0asðμrÞ þ ðc2;0 þ c2;1nfÞa2sðμrÞ þ ðc3;0 þ c3;1nf þ c3;2n2fÞa3sðμrÞ þ ðc4;0
þ c4;1nf þ c4;2n2f þ c4;3n3fÞa4sðμrÞ þ � � �g; ð6Þ

where mt is the top-quark MS mass and Mt is the top-quark OS mass.
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To apply the PMC to fix the αs value with the help of
RGE, we first transform the nf series as the fβig series by
using the degeneracy relations which are the general
properties of a non-Abelian gauge theory [59],

mtðMtÞ¼Mt

�
1þ r1;0asðμrÞþðr2;0þβ0r2;1Þa2sðμrÞ

þðr3;0þβ1r2;1þ2β0r3;1þβ20r3;2Þa3sðμrÞ

þ
�
r4;0þβ2r2;1þ2β1r3;1þ

5

2
β1β0r3;2

þ3β0r4;1þ3β20r4;2þβ30r4;3

�
a4sðμrÞþ �� �

�
: ð7Þ

The coefficients ri;j can be obtained from the known
coefficients ci;j ði > j ≥ 0Þ by applying the basic PMC
formulas listed in Refs. [31,32]. The conformal coefficients
ri;0 are independent of μr, and the nonconformal coef-
ficients ri;j (j ≠ 0) are functions of μr, i.e.,

ri;j ¼
Xj

k¼0

Ck
j r̂i−k;j−k ln

kðμ2r=M2
t Þ; ð8Þ

where the reduced coefficients r̂i;j ¼ ri;jjμr¼Mt
, the combi-

nation coefficients Ck
j ¼ j!=½k!ðj − kÞ!�, and i, j, k are the

polynomial coefficients. For convenience, we put the
reduced coefficients r̂i;j in the Appendix.
Applying the standard PMC single-scale approach [35],

the effective coupling αsðQ�Þ can be obtained by using all
the nonconformal terms and the perturbative series (7)
changes to the following conformal series:

mtðMtÞjPMC ¼ Mtf1þ r̂1;0asðQ�Þ þ r̂2;0a2sðQ�Þ
þ r̂3;0a3sðQ�Þ þ r̂4;0a4sðQ�Þ þ � � �g; ð9Þ

where Q� is the PMC scale, which corresponds to the
effective momentum flow of the process and is determined
by requiring all the nonconformal terms vanish. The PMC
scale Q�, or lnQ2�=M2

t , can be expanded as a perturbative
series, and up to next-to-next-to-leading log (NNLL)
accuracy, we have

ln
Q2�
M2

t
¼ T0 þ T1asðMtÞ þ T2a2sðMtÞ þOða3sÞ; ð10Þ

where the coefficients are

T0 ¼ −
r̂2;1
r̂1;0

; ð11Þ

T1 ¼
β0ðr̂22;1 − r̂1;0r̂3;2Þ

r̂21;0
þ 2ðr̂2;0r̂2;1 − r̂1;0r̂3;1Þ

r̂21;0
ð12Þ

and

T2 ¼
3β1ðr̂22;1− r̂1;0r̂3;2Þ

2r̂21;0

þ4ðr̂1;0r̂2;0r̂3;1− r̂22;0r̂2;1Þþ3ðr̂1;0r̂2;1r̂3;0− r̂21;0r̂4;1Þ
r̂31;0

þβ0ð4r̂2;1r̂3;1r̂1;0−3r̂4;2r̂21;0þ2r̂2;0r̂3;2r̂1;0−3r̂2;0r̂22;1Þ
r̂31;0

þβ20ð2r̂1;0r̂3;2r̂2;1− r̂32;1− r̂21;0r̂4;3Þ
r̂31;0

: ð13Þ

Using the present known four-loop relations, we can fix the
PMC scale up to NNLL accuracy. It can be found thatQ� is
independent of the choice of the renormalization scale μr at
any fixed order, and the conventional renormalization scale
ambiguity is eliminated. This indicates that one can finish
the fixed-order perturbative calculation by choosing any
renormalization scale as a starting point, and the PMC scale
Q� and hence the PMC prediction shall be independent of
such choice.

III. NUMERICAL RESULTS

To do the numerical calculation, we adopt [10]
αsðMZÞ ¼ 0.1181� 0.0011 and Mt ¼ 172.9� 0.4 GeV.

A. Properties of the top-quark MS running mass

By setting all input parameters to be their central values
into Eqs. (5) and (9), we present the top-quark MS running
mass at the scale Mt under conventional and PMC scale-
setting approaches in Fig. 1. It shows that the conventional
renormalization scale dependence becomes small when we
have known more loop terms. Numerically, we obtain

100 150 200 250 300
161

161.5

162

162.5

163

FIG. 1. The top-quark MS running mass, mtðMtÞ, up to
four-loop QCD corrections under the conventional (Conv.)
and PMC scale-setting approaches. The renormalization scale
μr ∈ ½1

2
Mt; 2Mt�.
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mtðMtÞjConv ¼ ½162.170; 162.462� GeV for μr ∈ ½1
2
Mt;

2Mt� GeV, and mtðMtÞjConv ¼ ½162.052; 162.522� GeV
for μr ∈ ½1

3
Mt; 3Mt�; e.g., the net scale errors are only

∼0.2% and ∼0.3%, respectively. We should point out that
such small net scale dependence for the four-loop pre-
diction is due to the well convergent behavior of the
perturbative series, e.g., the relative magnitudes of LO:
NLO: N2LO: N3LO: N4LO ¼ 1: 4.6%: 1%: 0.3%: 0.1% for
the case of μr ¼ Mt, and also due to the cancellation of the
scale dependence among different orders. The scale errors
for each loop term are unchanged and large. For example,
themtðMtÞ has the following perturbative series up to four-
loop level:

mtðMtÞjConv¼ 172.9−7.903−0.834þ0.624−1.854þ0.391
−0.276

−0.560þ0.175
−0.178 −0.208þ0.063

−0.083 ðGeVÞ
¼ 162.375−0.205þ0.087 ðGeVÞ; ð14Þ

where the central values are for μr ¼ Mt, and the upper and
lower errors are for μr ¼ Mt=2 and μr ¼ 2Mt, respectively.
It shows that the absolute scale errors are 18%, 36%, 63%,
and 70% for the NLO-terms, N2LO-terms, N3LO-terms,
and N4LO-terms, respectively.
On the other hand, Fig. 1 shows that after applying the

PMC, the relative magnitudes of LO: NLO: N2LO: N3LO:
N4LO of the pQCD series changes to 1: 7.2%: 0.5%: 0.3%:
< 0.1%. And there is no renormalization scale dependence
for mtðMtÞ at any fixed order,

mtðMtÞjPMC

¼ 172.9 − 12.497þ 0.919þ 0.551 − 0.095 ðGeVÞ
¼ 161.778 ðGeVÞ; ð15Þ

which is unchanged for any choice of renormalization
scale. The PMC scale or, equivalently, the effective
momentum flow of the process is Q� ¼ 12.30 GeV, which
is fixed up to NNLL accuracy,

ln
Q2�
M2

t
¼ −4.686 − 51.890asðMtÞ − 2126.558a2sðMtÞ

¼ −4.686 − 0.445 − 0.156: ð16Þ

The relative magnitudes of each loop terms are 1∶9%∶3%,
which shows a good convergence. As a conservative
estimation, if using the last known term as the magnitude
of its unknown NNNLL term, the change of momentum
flow is small, ΔQ� ≃ ðþ1.00

−0.92Þ GeV.
One usually wants to know the magnitude of the

“unknown” high-order pQCD corrections. We adopt the
Padé approximation approach (PAA) [60–62], which pro-
vides a practical way for promoting a finite series to an
analytic function, to do such a prediction. It has been found

that the conventional pQCD series which has a weaker
convergence due to renormalon divergence, the diagonal-
type PAA series is preferable [63,64]; for the present case,
the ½1=1�-type and the ½1=2�-type or ½2=1�-type are the
preferable PAA types to predict the magnitudes of the
N4LO- and the N5LO-terms, respectively. And for the more
convergent PMC conformal series, the preferred PAA type
is consistent with that of the Gell-Mann and Low method
[41] and that of the generalized Crewther relation [65]; e.g.,
for the present case, the ½0=2�-type and the ½0=3�-type are
the preferable PAA types to predict the magnitudes of the
N4LO- and the N5LO-terms, respectively. More explicitly,
following the procedures described in detail in
Refs. [37,41], we give the PAA predictions of the uncalcu-
lated higher-order pQCD contributions in Table I and
Table II for conventional and PMC scale-setting
approaches, respectively. In those two tables, “EC” stands
for the exact results from the known perturbative series, and
“PAA” stands for the PAA prediction by using the known
perturbative series; e.g., the N4LO PAA prediction is
obtained by using the known N3LO series, etc.
The effectiveness of the PAA approach depends heavily

on how well we know the perturbative series and the
accuracy of the known perturbative series. Generally,
because of large scale dependence for each order terms,
the PAA predictions based on the conventional series is not
reliable. For the present case, the PAA prediction is
acceptable due to the fact that (1) the perturbative series
has a good convergence, (2) the large cancellation of the
scale dependence among different orders, and (3) the scale
dependence of the first several dominant terms are small.
More explicitly, Table I shows that by using the conven-
tional pQCD series under the choices of μr ∈ ½Mt=2; 2Mt�,
the PAA predicted N4LO-term is about 70%–88% of the

TABLE I. The PAA predictions of the magnitudes of the four-
loop and five-loop terms (in unit: GeV) using the conventional
series. The central value is for renormalization scale μr ¼ Mt, and
the errors are for μr ∈ ½Mt=2; 2Mt�.

N4LO N5LO

EC −0.208þ0.063
−0.083 � � �

PAA ½1=1�; −0.169þ0.067
−0.086 ½1=2�; −0.087þ0.024

−0.038

� � � ½2=1�; −0.077þ0.022
−0.038

TABLE II. The PAA predictions of the magnitudes of the four-
loop and five-loop terms (in unit: GeV) using the PMC conformal
series, which is independent of any choice of renormalization
scale.

N4LO N5LO

EC −0.095 � � �
PAA ½0=2�; −0.086 ½0=3�; −0.020
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exact N4LO-term, and the PAA predicted N5LO is about
42%–43% of the exact N4LO-term. On the other hand, the
PAA predictions with the help of the renormalization
scheme and scale-invariant PMC conformal series is much
more reliable. Table II shows that by using the PMC
conformal series, the PAA predicted N4LO-term is about
91% of the exact N4LO-term, and the PAA predicted N5LO
is about 21% of the exact N4LO-term (showing better
convergence). Thus, the approximate top-quark MS mass
up to N5LO level becomes

mtðMtÞjConv ¼ 162.288−0.181þ0.049 ðGeVÞ ½1=2�-type ð17Þ

¼ 162.298−0.183þ0.049 ðGeVÞ ½2=1�-type ð18Þ

mtðMtÞjPMC ¼ 161.758 ðGeVÞ: ð19Þ

As a final remark, the top-quark MS running mass at two
scales μ1 and μ2 can be related via the following equation
[45]:

mtðμ1Þ ¼ mtðμ2Þ
ctð4asðμ1ÞÞ
ctð4asðμ2ÞÞ

; ð20Þ

where the function ctðxÞ ¼ x
4
7ð1þ 1.3980xþ 1.7935x2−

0.6834x3 − 3.5356x4Þ. Using Eqs. (14), (15), and (20), we
obtain the top-quark MS running mass at the scale mt:

mtðmtÞjConv ¼ 163.182þ0.081
−0.190 ðGeVÞ; ð21Þ

mtðmtÞjPMC ¼ 162.629 ðGeVÞ: ð22Þ

B. Theoretical uncertainties

After eliminating the renormalization scale uncertainty via
using the PMC approach, there are still several error sources,
such as the αs fixed-point error ΔαsðMZÞ, the error of top-
quark OS mass ΔMt, the unknown contributions from six-
loop and higher-order terms, etc. The uncertainty of the four-

loop coefficient zð4Þm ðMÞ has been discussed in Ref. [17],
whose magnitude ∼0.0004 GeV is negligibly small. For
convenience, when discussing one uncertainty, the other
input parameters shall be set as their central values.
As for the αs fixed-point error, by using ΔαsðMZÞ ¼

0.0011 together with the four-loop αs-running behavior,
we obtain ΛQCD;nf¼5 ¼ 209.5þ13.2

−12.6 MeV and ΛQCD;nf¼6 ¼
88.3þ6.2

−5.9 MeV. Then we obtain the top-quark MS running
mass at the scale mt

mtðmtÞjConv ¼ 163.182þ0.103
−0.103 ðGeVÞ; ð23Þ

mtðmtÞjPMC ¼ 162.629þ0.118
−0.119 ðGeVÞ: ð24Þ

Eqs. (23), (24) show that the PMC prediction is more
sensitive to the value of ΔαsðMZÞ. This is reasonable since
the purpose of PMC is to achieve an accurate αs value of the
process, and inversely, a slight change of its running
behavior derived from RGE may lead to sizable alterations.
Numerically, the determined effective momentum flow
Q� ≃ 12 GeV is much smaller than the guessed momentum
flow OðMtÞ, and the strong coupling constant is more
sensitive to the variation of ΛQCD.
As for the error from the choice of the top-quark OS

mass ΔMt ¼ �0.4 GeV, we obtain

mtðmtÞjConv ¼ 163.182þ0.380
−0.381 ðGeVÞ; ð25Þ

mtðmtÞjPMC ¼ 162.629þ0.379
−0.381 ðGeVÞ: ð26Þ

Figure 2 shows that the top-quark MS running massmtðmtÞ
depends almost linearly on its OS mass, whose error is at
the same order of OðΔMtÞ.1
In the above subsection, we have predicted the magni-

tude of the uncalculated N5LO-terms. If treating the
absolute value of the PAA predicted N5LO magnitude as
a conservative estimation of the error of present N4LO
prediction, we shall have an extra error from the unknown
perturbative terms, e.g.,

FIG. 2. The value of the top-quark MS running mass mtðmtÞ
versus its OS mass Mt ¼ 172.9� 0.4 GeV under conventional
(Conv.) and PMC scale-setting approaches. The solid line is
the PMC prediction, which is independent of the choice of μr.
The dashed line is the prediction of the conventional scale-
setting approach, and the error band shows its errors for
μr ∈ ½Mt=2; 2Mt�, whose lower edge is for μr ¼ Mt=2 and upper
edge is for μr ¼ 2Mt.

1As an addendum, if taking the small difference of the OS
mass and the Monte-Carlo mass into consideration [66],
Mt ¼ MMC

t − ½0.29 GeV; 0.85 GeV�, then the above central
values of mtðmtÞ shall be altered by about ½0.11;−1.19� GeV
for both conventional and PMC scale-setting approaches.
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ΔmtðmtÞjConv ¼ �0.080 ðGeVÞ; ½1=2�-type ð27Þ

¼ �0.072 ðGeVÞ; ½2=1�-type ð28Þ

ΔmtðmtÞjPMC ¼ �0.018 ðGeVÞ: ½0=3�-type: ð29Þ

IV. SUMMARY

In the present paper, we have presented a more accurate
prediction of the top-quark MS running mass from the
experimentally measured top-quark OS mass by applying
the PMC to eliminate the conventional renormalization
scale ambiguity. As a combination, we obtain

mtðmtÞjConv ¼ 163.182þ0.410
−0.445 ðGeVÞ; ½1=2�-type ð30Þ

¼ 163.182þ0.408
−0.444 ðGeVÞ; ½2=1�-type ð31Þ

mtðmtÞjPMC ¼ 162.629þ0.397
−0.400 ðGeVÞ; ½0=3�-type ð32Þ

where the errors are squared averages of those from
ΔαsðMZÞ, ΔMt, and the uncalculated N5LO-terms pre-
dicted by using the PAA. Among the errors, the one caused
by ΔMt is dominant, and we need more accurate data to
suppress this uncertainty. The conventional predictions
have also the renormalization scale uncertainty by varying
μr ∈ ½1

2
Mt; 2Mt�, even though its magnitude is small due to

the cancellation of scale errors among different orders. Up
to the present known N4LO level, the predictions under the
PMC and conventional scale-setting approaches are con-
sistent with each order. However, it has been found that
after applying the PMC, a scale-invariant and more con-
vergent pQCD series, and a more reliable prediction of
contribution from unknown higher-order terms can be

achieved. Thus, we think the PMC is an important approach
for achieving precise pQCD predictions, since its predic-
tion is independent of the choice of renormalization scale. It
should be extremely important for lower fixed-order pQCD
predictions, when there are not enough terms to suppress
the large scale uncertainty of each loop term.
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APPENDIX: THE PMC REDUCED
PERTURBATIVE COEFFICIENTS r̂i; j

In this Appendix, we give the required PMC reduced
coefficients r̂i;j for the perturbative series of the top-quark
MS runningmass over its OSmass up to four-loop level, i.e.,

r̂1;0 ¼ −4CF; ðA1Þ

r̂2;0 ¼ CACF

�
6ζ3 þ 5π2 −

55

4
− 4π2 ln 2

�

þ C2
F

�
7

8
− 12ζ3 − 5π2 þ 8π2 ln 2

�

þ ð12 − 4π2ÞCFTF; ðA2Þ

r̂2;1 ¼
�
−
71

8
− π2

�
CF; ðA3Þ

r̂3;0 ¼ C2
ACF

�
51π2ζ3 þ 219ζ3 − 130ζ5 −

181π2

6
−
53π4

30
−
19027

216
þ 16

3
π2 ln 2

�
þ CAC2

F

�
384Li4

�
1

2

�
− 76π2ζ3

− 112ζ3 þ 180ζ5 þ
518π2

3
þ 5731

12
−
π4

15
þ 16ln42 − 16π2ln22 −

728

3
π2 ln 2

�
þ TF

�
CACF

�
8π2ζ3

þ 88ζ3 − 40ζ5 −
28π4

9
−
4372π2

27
þ 144þ 32

3
π2ln22þ 1696

9
π2 ln 2

�
þ C2

F

�
56π4

9
− 288ζ3 −

2608π2

27

− 24 −
64

3
π2ln22þ 1216

9
π2 ln 2

��
þ C3

F

�
40ζ5 − 768Li4

�
1

2

�
− 4π2ζ3 − 324ζ3 −

4π4

3
−
613π2

3
−
2969

12

− 32ln42þ 32π2ln22þ 464π2 ln 2

�
−
608

45
π2CFT2

F; ðA4Þ

r̂3;1 ¼ CACF

�
32Li4

�
1

2

�
þ 73ζ3

2
þ 26π2

3
−
19π4

90
−
20335

432
þ 4

3
ln42þ 8

3
π2ln22 −

44

3
π2 ln 2

�
þ C2

F

�
119π4

90

− 64Li4

�
1

2

�
− 55ζ3 −

95π2

6
−
1927

48
−
8

3
ln42 −

16

3
π2ln22þ 88

3
π2 ln 2

�
þ CFTF

�
22 − 24ζ3 −

26π2

3

�
; ðA5Þ
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r̂3;2 ¼ CF

�
−14ζ3 −

13π2

3
−
2353

216

�
; ðA6Þ

r̂4;0 ¼ −947.046C3
ACF − 1269.84C2

AC
2
F þ TFð3216.18C2

ACF þ 568.364CAC2
F − 335.759C3

FÞ þ 3671.8CAC3
F

þ T2
Fð587.571C2

F − 2497.16CACFÞ −
219.883CAdabcdF dabcdF

TF
− 1787.65C4

F − 1050.64CFT3
F þ 33.28dabcdF dabcdA

− 254.891dabcdF dabcdF ; ðA7Þ

r̂4;1 ¼ 932.846C2
ACFþTFð81.3012C2

F−834.037CACFÞ−473.22CAC2
F−21.945C3

F−780.54CFT2
Fþ

19.9893dabcdF dabcdF

TF
;

ðA8Þ

r̂4;2 ¼−112.694CACFþ85.1974C2
F−590.868CFTF; ðA9Þ

r̂4;3 ¼ −439.436CF; ðA10Þ
where

NC ¼ 3; TF ¼ 1

2
; CA ¼ NC; CF ¼ N2

C − 1

2NC
;

dabcdF dabcdF ¼ ðN2
C − 1ÞðN4

C − 6N2
C þ 18Þ

96N2
C

; dabcdF dabcdA ¼ NCðN2
C − 1ÞðN2

C þ 6Þ
48

: ðA11Þ

[1] A. Buckley et al., General-purpose event generators for
LHC physics, Phys. Rep. 504, 145 (2011).

[2] S. Fleming, A. H. Hoang, S. Mantry, and I. W. Stewart, Jets
from massive unstable particles: Top-mass determination,
Phys. Rev. D 77, 074010 (2008).

[3] V. Khachatryan et al. (CMS Collaboration), Measurement
of the t-tbar production cross section in the e-mu channel in
proton-proton collisions at sqrt(s) ¼ 7 and 8 TeV, J. High
Energy Phys. 08 (2016) 029.

[4] P. Z. Skands and D. Wicke, Non-perturbative QCD effects
and the top mass at the Tevatron, Eur. Phys. J. C 52, 133
(2007).

[5] S. Kawabata, Y. Shimizu, Y. Sumino, and H. Yokoya,
Weight function method for precise determination of top
quark mass at Large Hadron Collider, Phys. Lett. B 741, 232
(2015).

[6] J. Kieseler, K. Lipka, and S. O. Moch, Calibration of the
Top-Quark Monte Carlo Mass, Phys. Rev. Lett. 116, 162001
(2016).

[7] P. Nason, Theory summary, Proc. Sci., TOP2015 (2016)
056.

[8] M. Beneke, P. Marquard, P. Nason, and M. Steinhauser, On
the ultimate uncertainty of the top quark pole mass, Phys.
Lett. B 775, 63 (2017).

[9] S. Q. Wang, X. G. Wu, Z. G. Si, and S. J. Brodsky, A precise
determination of the top-quark pole mass, Eur. Phys. J. C 78,
237 (2018).

[10] M. Tanabashi et al. (Particle Data Group), Review of
particle physics, Phys. Rev. D 98, 030001 (2018).

[11] R. Tarrach, The pole mass in perturbative QCD, Nucl. Phys.
B183, 384 (1981).

[12] N. Gray, D. J. Broadhurst, W. Grafe, and K. Schilcher, Three
loop relation of quark (Modified) Ms and pole masses, Z.
Phys. C 48, 673 (1990).

[13] K. G. Chetyrkin and M. Steinhauser, The Relation between
the MS-bar and the on-shell quark mass at order α3s, Nucl.
Phys. B573, 617 (2000).

[14] K. Melnikov and T. V. Ritbergen, The Three loop relation
between the MS-bar and the pole quark masses, Phys. Lett.
B 482, 99 (2000).

[15] P. Marquard, L. Mihaila, J. H. Piclum, and M. Steinhauser,
Relation between the pole and the minimally subtracted
mass in dimensional regularization and dimensional reduc-
tion to three-loop order, Nucl. Phys. B773, 1 (2007).

[16] P. Marquard, A. V. Smirnov, V. A. Smirnov, and M.
Steinhauser, Quark Mass Relations to Four-Loop Order
in Perturbative QCD, Phys. Rev. Lett. 114, 142002
(2015).

[17] P. Marquard, A. V. Smirnov, V. A. Smirnov, M. Steinhauser,
and D. Wellmann, MS-on-shell quark mass relation up to
four loops in QCD and a general SUðNÞ gauge group, Phys.
Rev. D 94, 074025 (2016).

[18] A. L. Kataev and V. S. Molokoedov, Dependence of Five-
and Six-loop estimated QCD corrections to the relation

DETERMINATION OF THE TOP-QUARK MS RUNNING … PHYS. REV. D 101, 114024 (2020)

114024-7

https://doi.org/10.1016/j.physrep.2011.03.005
https://doi.org/10.1103/PhysRevD.77.074010
https://doi.org/10.1007/JHEP08(2016)029
https://doi.org/10.1007/JHEP08(2016)029
https://doi.org/10.1140/epjc/s10052-007-0352-1
https://doi.org/10.1140/epjc/s10052-007-0352-1
https://doi.org/10.1016/j.physletb.2014.12.044
https://doi.org/10.1016/j.physletb.2014.12.044
https://doi.org/10.1103/PhysRevLett.116.162001
https://doi.org/10.1103/PhysRevLett.116.162001
https://doi.org/10.22323/1.257.0056
https://doi.org/10.22323/1.257.0056
https://doi.org/10.1016/j.physletb.2017.10.054
https://doi.org/10.1016/j.physletb.2017.10.054
https://doi.org/10.1140/epjc/s10052-018-5688-1
https://doi.org/10.1140/epjc/s10052-018-5688-1
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1016/0550-3213(81)90140-1
https://doi.org/10.1016/0550-3213(81)90140-1
https://doi.org/10.1007/BF01614703
https://doi.org/10.1007/BF01614703
https://doi.org/10.1016/S0550-3213(99)00784-1
https://doi.org/10.1016/S0550-3213(99)00784-1
https://doi.org/10.1016/S0370-2693(00)00507-4
https://doi.org/10.1016/S0370-2693(00)00507-4
https://doi.org/10.1016/j.nuclphysb.2007.03.010
https://doi.org/10.1103/PhysRevLett.114.142002
https://doi.org/10.1103/PhysRevLett.114.142002
https://doi.org/10.1103/PhysRevD.94.074025
https://doi.org/10.1103/PhysRevD.94.074025


between pole and running masses of heavy quarks on the
number of light flavors, JETP Lett. 108, 777 (2018).

[19] A. L. Kataev and V. S. Molokoedov, Least squares method:
Application to analysis of the flavor dependence of the QCD
relation between pole and scheme running heavy quark
masses, Theor. Math. Phys. 200, 1374 (2019).

[20] H. D. Politzer, Reliable Perturbative Results for Strong
Interactions?, Phys. Rev. Lett. 30, 1346 (1973).

[21] D. J. Gross and F. Wilczek, Ultraviolet Behavior of Non-
abelian Gauge Theories, Phys. Rev. Lett. 30, 1343 (1973).

[22] H. D. Politzer, Asymptotic freedom: An approach to strong
interactions, Phys. Rep. 14, 129 (1974).

[23] D. J. Gross and F. Wilczek, Asymptotically free gauge
theories. 1, Phys. Rev. D 8, 3633 (1973).

[24] P. A. Baikov, K. G. Chetyrkin, and J. H. Kuhn, Five-Loop
Running of the QCD Coupling Constant, Phys. Rev. Lett.
118, 082002 (2017).

[25] S. J. Brodsky and X. G. Wu, Self-consistency requirements
of the renormalization group for setting the renormalization
scale, Phys. Rev. D 86, 054018 (2012).

[26] X. G. Wu, S. J. Brodsky, and M. Mojaza, The renormaliza-
tion scale-setting problem in QCD, Prog. Part. Nucl. Phys.
72, 44 (2013).

[27] X. G. Wu, Y. Ma, S. Q. Wang, H. B. Fu, H. H. Ma, S. J.
Brodsky, and M. Mojaza, Renormalization group invariance
and optimal QCD renormalization scale-setting, Rep. Prog.
Phys. 78, 126201 (2015).

[28] S. J. Brodsky and X. G. Wu, Scale setting using the
extended renormalization group and the principle of maxi-
mum conformality: The QCD coupling constant at four
loops, Phys. Rev. D 85, 034038 (2012).

[29] S. J. Brodsky and L. Di Giustino, Setting the renormaliza-
tion scale in QCD: The principle of maximum conformality,
Phys. Rev. D 86, 085026 (2012).

[30] S. J. Brodsky and X. G. Wu, Eliminating the Renormaliza-
tion Scale Ambiguity for Top-Pair Production Using the
Principle of Maximum Conformality, Phys. Rev. Lett. 109,
042002 (2012).

[31] M. Mojaza, S. J. Brodsky, and X. G. Wu, Systematic All-
Orders Method to Eliminate Renormalization-Scale and
Scheme Ambiguities in Perturbative QCD, Phys. Rev. Lett.
110, 192001 (2013).

[32] S. J. Brodsky, M. Mojaza, and X. G. Wu, Systematic scale-
setting to all orders: The principle of maximum conformal-
ity and commensurate scale relations, Phys. Rev. D 89,
014027 (2014).

[33] M. Gell-Mann and F. E. Low, Quantum electrodynamics at
small distances, Phys. Rev. 95, 1300 (1954).

[34] S. J. Brodsky and P. Huet, Aspects of SU(N(c)) gauge
theories in the limit of small number of colors, Phys. Lett. B
417, 145 (1998).

[35] J. M. Shen, X. G. Wu, B. L. Du, and S. J. Brodsky, Novel
all-orders single-scale approach to QCD renormalization
scale-setting, Phys. Rev. D 95, 094006 (2017).

[36] X. G. Wu, J. M. Shen, B. L. Du, and S. J. Brodsky, Novel
demonstration of the renormalization group invariance of
the fixed-order predictions using the principle of maximum
conformality and the C-scheme coupling, Phys. Rev. D 97,
094030 (2018).

[37] X. G. Wu, J. M. Shen, B. L. Du, X. D. Huang, S. Q. Wang,
and S. J. Brodsky, The QCD renormalization group equation
and the elimination of fixed-order scheme-and-scale ambi-
guities using the principle of maximum conformality, Prog.
Part. Nucl. Phys. 108, 103706 (2019).

[38] M. Beneke and V. M. Braun, Naive nonAbelianization and
resummation of fermion bubble chains, Phys. Lett. B 348,
513 (1995).

[39] M. Neubert, Scale setting in QCD and the momentum flow
in Feynman diagrams, Phys. Rev. D 51, 5924 (1995).

[40] M. Beneke and Renormalons, Renormalons, Phys. Rep.
317, 1 (1999).

[41] B. L. Du, X. G. Wu, J. M. Shen, and S. J. Brodsky, Extend-
ing the predictive power of perturbative QCD, Eur. Phys. J.
C 79, 182 (2019).

[42] Q. Yu, X. G. Wu, J. Zeng, X. D. Huang, and H. M. Yu, The
heavy quarkonium inclusive decays using the principle of
maximum conformality, Eur. Phys. J. C 80, 362 (2020).

[43] Q. Yu, X. G. Wu, S. Q. Wang, X. D. Huang, J. M. Shen, and
J. Zeng, Properties of the decay H → γγ using the approxi-
mate α4s corrections and the principle of maximum con-
formality, Chin. Phys. C 43, 093102 (2019).

[44] J. A. M. Vermaseren, S. A. Larin, and T. van Ritbergen, The
four loop quark mass anomalous dimension and the invari-
ant quark mass, Phys. Lett. B 405, 327 (1997).

[45] P. A. Baikov, K. G. Chetyrkin, and J. H. Khn, Quark mass
and field anomalous dimensions to Oðα5sÞ, J. High Energy
Phys. 10 (2014) 076.

[46] K. G. Chetyrkin, Four-loop renormalization of QCD: Full
set of renormalization constants and anomalous dimensions,
Nucl. Phys. B710, 499 (2005).

[47] K. G. Chetyrkin, Quark mass anomalous dimension to O
(α4s), Phys. Lett. B 404, 161 (1997).

[48] K. G.Chetyrkin andM. Steinhauser, Short DistanceMass of a
Heavy Quark at Order α3s, Phys. Rev. Lett. 83, 4001 (1999).

[49] R. Hempfling and B. A. Kniehl, On the relation between the
fermion pole mass and MS Yukawa coupling in the standard
model, Phys. Rev. D 51, 1386 (1995).

[50] F. Jegerlehner, M. Y. Kalmykov, and O. Veretin, MS-bar
versus pole masses of gauge bosons. 2. Two loop electro-
weak fermion corrections, Nucl. Phys. B658, 49 (2003).

[51] F. Jegerlehner and M. Y. Kalmykov, Oðααs) correction to
the pole mass of the t quark within the standard model,
Nucl. Phys. B676, 365 (2004).

[52] F. Jegerlehner and M. Y. Kalmykov, Oðααs) relation be-
tween pole- and MS-bar mass of the t quark, Acta Phys. Pol.
B 34, 5335 (2003).

[53] M. Faisst, J. H. Kuhn, and O. Veretin, Pole versus MS mass
definitions in the electroweak theory, Phys. Lett. B 589, 35
(2004).

[54] S. P. Martin, Fermion self-energies and pole masses at two-
loop order in a general renormalizable theory with massless
gauge bosons, Phys. Rev. D 72, 096008 (2005).

[55] D. Eiras and M. Steinhauser, Two-loop OðααsÞ corrections
to the on-shell fermion propagator in the standard model, J.
High Energy Phys. 02 (2006) 010.

[56] F. Jegerlehner, M. Y. Kalmykov, and B. A. Kniehl, On the
difference between the pole and the MS masses of the top
quark at the electroweak scale, Phys. Lett. B 722, 123 (2013).

HUANG, WU, ZENG, YU, ZHENG, and XU PHYS. REV. D 101, 114024 (2020)

114024-8

https://doi.org/10.1134/S0021364018240050
https://doi.org/10.1134/S0040577919090101
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1016/0370-1573(74)90014-3
https://doi.org/10.1103/PhysRevD.8.3633
https://doi.org/10.1103/PhysRevLett.118.082002
https://doi.org/10.1103/PhysRevLett.118.082002
https://doi.org/10.1103/PhysRevD.86.054018
https://doi.org/10.1016/j.ppnp.2013.06.001
https://doi.org/10.1016/j.ppnp.2013.06.001
https://doi.org/10.1088/0034-4885/78/12/126201
https://doi.org/10.1088/0034-4885/78/12/126201
https://doi.org/10.1103/PhysRevD.85.034038
https://doi.org/10.1103/PhysRevD.86.085026
https://doi.org/10.1103/PhysRevLett.109.042002
https://doi.org/10.1103/PhysRevLett.109.042002
https://doi.org/10.1103/PhysRevLett.110.192001
https://doi.org/10.1103/PhysRevLett.110.192001
https://doi.org/10.1103/PhysRevD.89.014027
https://doi.org/10.1103/PhysRevD.89.014027
https://doi.org/10.1103/PhysRev.95.1300
https://doi.org/10.1016/S0370-2693(97)01209-4
https://doi.org/10.1016/S0370-2693(97)01209-4
https://doi.org/10.1103/PhysRevD.95.094006
https://doi.org/10.1103/PhysRevD.97.094030
https://doi.org/10.1103/PhysRevD.97.094030
https://doi.org/10.1016/j.ppnp.2019.05.003
https://doi.org/10.1016/j.ppnp.2019.05.003
https://doi.org/10.1016/0370-2693(95)00184-M
https://doi.org/10.1016/0370-2693(95)00184-M
https://doi.org/10.1103/PhysRevD.51.5924
https://doi.org/10.1016/S0370-1573(98)00130-6
https://doi.org/10.1016/S0370-1573(98)00130-6
https://doi.org/10.1140/epjc/s10052-019-6704-9
https://doi.org/10.1140/epjc/s10052-019-6704-9
https://doi.org/10.1140/epjc/s10052-020-7967-x
https://doi.org/10.1088/1674-1137/43/9/093102
https://doi.org/10.1016/S0370-2693(97)00660-6
https://doi.org/10.1007/JHEP10(2014)076
https://doi.org/10.1007/JHEP10(2014)076
https://doi.org/10.1016/j.nuclphysb.2005.01.011
https://doi.org/10.1016/S0370-2693(97)00535-2
https://doi.org/10.1103/PhysRevLett.83.4001
https://doi.org/10.1103/PhysRevD.51.1386
https://doi.org/10.1016/S0550-3213(03)00177-9
https://doi.org/10.1016/j.nuclphysb.2003.10.012
https://doi.org/10.1016/j.physletb.2004.03.045
https://doi.org/10.1016/j.physletb.2004.03.045
https://doi.org/10.1103/PhysRevD.72.096008
https://doi.org/10.1088/1126-6708/2006/02/010
https://doi.org/10.1088/1126-6708/2006/02/010
https://doi.org/10.1016/j.physletb.2013.04.012


[57] B. A. Kniehl, A. F. Pikelner, and O. L. Veretin, Two-loop
electroweak threshold corrections in the Standard Model,
Nucl. Phys. B896, 19 (2015).

[58] S. P. Martin, Top-quark pole mass in the tadpole-free MS
scheme, Phys. Rev. D 93, 094017 (2016).

[59] H. Y. Bi, X. G. Wu, Y. Ma, H. H. Ma, S. J. Brodsky, and M.
Mojaza, Degeneracy relations in QCD and the equivalence
of two systematic all-orders methods for setting the re-
normalization scale, Phys. Lett. B 748, 13 (2015).

[60] J. L. Basdevant, The Pade approximation and its physical
applications, Fortschr. Phys. 20, 283 (1972).

[61] M. A. Samuel, G. Li, and E. Steinfelds, Estimating pertur-
bative coefficients in quantum field theory using Pade
approximants. 2., Phys. Lett. B 323, 188 (1994).

[62] M. A. Samuel, J. R. Ellis, and M. Karliner, Comparison of
the Pade Approximation Method to Perturbative QCD
Calculations, Phys. Rev. Lett. 74, 4380 (1995).

[63] E. Gardi, Why Pade approximants reduce the renormaliza-
tion scale dependence in QFT?, Phys. Rev. D 56, 68 (1997).

[64] G. Cvetic, Improvement of the method of diagonal Pade
approximants for perturbative series in gauge theories, Phys.
Rev. D 57, R3209 (1998).

[65] J. M. Shen, X. G. Wu, Y. Ma, and S. J. Brodsky, The
generalized scheme-independent crewther relation in
QCD, Phys. Lett. B 770, 494 (2017).

[66] B. Dehnadi, A. H. Hoang, V. Mateu, M. Preisser, and I. W.
Stewart, Monte Carlo top quark mass calibration, Proc. Sci.,
RADCOR2017 (2018) 062.

DETERMINATION OF THE TOP-QUARK MS RUNNING … PHYS. REV. D 101, 114024 (2020)

114024-9

https://doi.org/10.1016/j.nuclphysb.2015.04.010
https://doi.org/10.1103/PhysRevD.93.094017
https://doi.org/10.1016/j.physletb.2015.06.056
https://doi.org/10.1002/prop.19720200502
https://doi.org/10.1016/0370-2693(94)90290-9
https://doi.org/10.1103/PhysRevLett.74.4380
https://doi.org/10.1103/PhysRevD.56.68
https://doi.org/10.1103/PhysRevD.57.R3209
https://doi.org/10.1103/PhysRevD.57.R3209
https://doi.org/10.1016/j.physletb.2017.05.022
https://doi.org/10.22323/1.290.0062
https://doi.org/10.22323/1.290.0062

