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Through data analysis, we present new sets of nonperturbative fragmentation functions (FFs) for Λþ
c

baryon both at leading and next-to-leading order and, for the first time, at next-to-next-to-leading order in
the minimal subtraction factorization scheme with five massless quarks. The FFs are determined by fitting
all available data of inclusive single Λþ

c baryon production in eþe− annihilation taken by the OPAL
Collaboration at CERN LEP1 and Belle Collaboration at KEKB. We also estimate the uncertainties in the
Λþ
c FFs as well as in the corresponding observables. In a completely different approach based on the Suzuki

model, we will theoretically calculate the Λþ
c FF from charm quark and present our results at leading order

perturbative QCD framework. A comparison confirms a good consistency between both approaches. We
will also apply the Λþ

c FFs to make theoretical predictions for the energy distribution of Λþ
c produced

through the top quark decay, to be measured at the CERN LHC.

DOI: 10.1103/PhysRevD.101.114022

I. INTRODUCTION

Study of heavy hadron properties provides a possibility
for better understanding the quark-gluon interaction
dynamics in the QCD framework. In this regard and due
to ongoing experiments there are particular interests in
hadron productions at the CERN LHC and the BNL
Relativistic Heavy Ion Collider (RHIC). In this work,
we study the production mechanism of heavy baryons
through the fragmentation process. In a general expression,
the fragmentation mechanism describes the hadronization
process where a parton carrying large transverse momen-
tum decays to form a jet containing the expected hadron
[1]. The hadronization processes are described by the
fragmentation functions (FFs), which refer to the proba-
bility densities of hadron productions from initial partons
and make the nonperturbative aspects of hadroproduction
processes. These functions along with the parton distribu-
tion functions (PDFs) [2] construct nonperturbative inputs
for the calculation of hadroproduction cross sections. In
this work, we focus on the FFs of Λþ

c baryon through two
different approaches. In the first approach, which is usually

called the phenomenological approach, a specific form
including some free parameters is proposed for the desired
FF so that all these free parameters are extracted through
experimental data analysis; see, for example, Refs. [3–15].
In an alternative scheme based on the theoretical models,
the heavy hadron FFs might be computed by the virtue of
perturbative QCD with limited phenomenological param-
eters, see, for example, Refs. [16–23] where the heavy
hadron FFs are computed by use of the Suzuki model [24].
This elaborate model is related to the perturbative QCD
framework where all convenient Feynman diagrams at each
order of perturbative QCD are considered for the parton
level of the hadronization process. In this approach, the
nonperturbative aspect of hadronization emerges in the
bound state wave function. A detailed description is
presented in Sec. III.
Independent of approach used to extract the FFs,

when these functions are computed at the initial scale of
fragmentation they can evolve to higher scales using
the timelike Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evaluation equations [25].
In this paper, we first use the phenomenological

approach to obtain a set of gluon, charm-, and bottom-
quark FFs into the Λþ

c baryon through a global QCD fit to
all available eþe− single inclusive annihilation (SIA) data
measured by OPAL Collaboration [26,27] at the CERN
LEP1 and very recent data from the Belle Collaboration
[28]. In Ref. [29], the Λþ

c FFs were determined both at
leading and next-to-leading order in the minimal subtrac-
tion factorization scheme (MS) by fitting the fractional
energy spectra of Λþ

c baryon measured by the OPAL in the
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eþe− annihilation on the Z-boson resonance. In their work,
authors have applied the zero-mass variable-flavor-number
scheme (ZM-VFNS) or, in a short expression, the massless
scheme, where heavy quarks are treated as massless partons
as well. Recently, the KKSS20 Collaboration has updated
their previous analysis [29] combining the data for eþe−
annihilation from OPAL and the recent one from Belle, see
Ref. [30]. Their strategy for constructing the Λþ

c -FFs is the
same as their previous work for the D meson [31]. Their
work is restricted to the next-to-leading order (NLO)
accuracy and they have not also evaluated the uncertainties
for FFs and corresponding observables.
In the present work, we focus on the hadronization of

gluon, charm, and bottom quarks into the Λþ
c using the

massless scheme and provide the first QCD analysis of
ðg; c; bÞ → Λþ

c FFs at next-to-next-to-leading order
(NNLO). Meanwhile, we go beyond Refs. [29,30] and
perform a full-fledged error estimation for the parton FFs as
well as the resulting differential cross sections. In order to
evaluate the error estimations we apply the well-known
Hessian approach [32]. Note that our analysis is restricted
to only three datasets from a single inclusive annihilation
process due to two reasons: first, we are not aware of any
other such data from electron-positron annihilation, and
second, due to the lack of other theoretical partonic cross
sections for the production of partons at NNLO accuracy.
Although, among all processes producing baryons, the
eþe− annihilation process provides the cleanest environ-
ment to calculate the FFs, being devoid of nonperturbative
effects beyond fragmentation itself.
In the following and in a theoretical approach indepen-

dent of data analysis, we compute the initial scale frag-
mentation function of charm quark to split into the S-wave
Λþ
c baryon at lowest order of perturbative QCD. For this

approach, we employ the elaborate Suzuki model which
contains most of kinematical and dynamical aspects of
hadroproduction process. Finally, we shall compare the
initial scale FF of c → Λþ

c determined in both approaches.
Our comparison shows a good consistency between both
results.
In the Standard Model (SM) of particle physics, the top

quark has a very short lifetime so does not have enough time
to form a bound state; then, before it decays, hadronization
takes place. At the lowest order of perturbative QCD and at
the parton level, the decay mode t → bWþ followed by
b → X þ Jets is governed. Here, X refers to the detected
hadrons in the final state. Thus, at the CERN LHC a
proposed channel to indirectly search for the top quark
properties is to study the energy spectrum of produced
hadrons through top decays. In this work, as an example of
possible applications of extracted FFs, we make the theo-
retical predictions for the energy distributions ofΛþ

c baryons
in top quark decays at LO,NLO, andNNLO.This prediction
will be compared with the one obtained through using the fit
parameters reported in Ref. [30]. This comparison does also

shows a good consistency between our analysis and the one
performed in Ref. [30].
The outline of this paper is as follows: In Sec. II, we

explain the theoretical framework of hadron production in
eþe− annihilation in the massless scheme and introduce our
parametrization of the c=b → Λþ

c FF at the initial scale. We
will also describe the minimization method in our analysis
and the approach used for determination of error estima-
tion. All applied experimental data will be describe in this
section and our LO, NLO, and NNLO results will be
presented and compared with the data fitted to. In Sec. III,
through the perturbative QCD approach we provide a
general discussion of the fragmentation process for the
S-wave heavy baryon and determine the fragmentation
distribution of the c quark to fragment into Λþ

c baryon at
lowest order of perturbative QCD. In Sec. IV, predictions
for the normalized-energy distributions of Λþ

c baryon
produced from top decay are presented. Our conclusions
are listed in Sec. V.

II. PHENOMENOLOGICAL APPROACH FOR
DETERMINATION OF Λ+

c FFs AND THEIR
UNCERTAINTIES

As was mentioned, one of the most common approaches
to calculate the unpolarized nonperturbative FFs is the
phenomenological approach based on the data analysis. In
order to present the theoretical predictions for the observ-
ables involving cross section of identified hadrons in the
final state, considering different hierarchical features is
vital, which is mentioned in this section. In this regard, we
first review the QCD framework including the standard
factorization theorem for differential cross section in a
hadronization process of single inclusive electron-positron
annihilation. We shall also introduce the OPAL and Belle
experimental data as the only datasets for Λþ

c production in
the SIA process. Finally, we indicate our theoretical
formalisms for determination of Λþ

c FFs and describe
our strategy to determine the uncertainties of FFs as well
as corresponding theoretical cross sections.

A. QCD framework for Λ +
c baryon FFs

Our analysis depends on the normalized differential
cross section 1=σtot × dσ=dxΛ of the annihilation process

eþe− → ðγ�; ZÞ → Λþ
c þ X; ð1Þ

where, X refers to the unobserved hadrons in the final state
and Λþ

c is the identified hadron. As usual, the scaling
variable xΛ is defined as xΛ ¼ 2pΛ · q=q2 where, pΛ and q
refer to the four-momentum of detected baryon and
intermediate gauge boson, respectively, so that s ¼ q2 is
the collision energy. In the center of mass (c.m.) frame, the
scaling variable is simplified as xΛ ¼ 2EΛ=

ffiffiffi
s

p
, where EΛ

shows the energy of the detected baryon.
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The key implement to divide the perturbative and non-
perturbative parts of the eþe− annihilation process (1) is the
factorization theorem in the QCD-improved parton model
[33].According to this theorem, the differential cross section
of process (1) is written as the convolution of differential
partonic cross sections dσiðeþe− → iþ XÞ=dxi, with the

Λþ
c -FFs, which is denoted byD

Λþ
c

i . Here, i ¼ g; u; ū;…; b; b̄
runs over the active partons so that the number of active
flavors is dependent on the energy scale. In the ZM-VFNS
(or zero-mass scheme) where all light and heavy quarks are
considered asmassless partons, the differential cross section
normalized to the total one is written as [33]

1

σtot

dσ
dxΛ

ðeþe− → Λþ
c þ XÞ

¼
X
i

Z
1

xΛ

dxi
xi

1

σtot

dσi
dxi

ðxi; μR; μFÞDΛþ
c

i

�
xΛ
xi

; μF

�
: ð2Þ

In the c.m. frame, the scaling variable xi is also defined as
xi ¼ 2Ei=

ffiffiffi
s

p
, which refers to the energy of the produced

parton i in units of the beamenergy. In the relation above, the
scales μF and μR are the factorization and renormalization
scales, respectively. Normally, they are arbitrary quantities
that appear in each order of perturbation but in order to omit
the ambiguous logarithmic terms lnðs=μ2FÞ in the partonic
cross sections, they are chosen to be μF ¼ μR ¼ ffiffiffi

s
p

.
The experimental data included in our analysis are

normalized to the total hadronic cross section for the
eþe− annihilation. This cross section reads

σtot ¼
4πα2ðsÞ

s

�Xnf
i

ẽ2i ðsÞ
�

× ð1þ αsK
ð1Þ
QCD þ α2sK

ð2Þ
QCD þ � � �Þ: ð3Þ

Here, αs and α are the strong-coupling and fine-structure
constants, respectively, and ẽi is the effective electroweak

chargeof quark i. TheQCDperturbative coefficientsKðiÞ
QCD are

currently known up to NNLO accuracy [34], so that Kð1Þ
QCD ¼

3CF=ð4πÞ, where CF ¼ 4=3, and Kð2Þ
QCD ≈ 1.411 [35].

In Eq. (2), the nonperturbative part of the process (1)
related to the transition i → Λþ

c is described by the

DΛþ
c

i ðz; μFÞ-FF, where the fragmentation parameter z ¼
xΛ=xi indicates the energy fraction passed on from parton
i to the Λþ

c baryon, i.e., z ¼ EΛ=Ei. Since the FFs depend
on the factorization scale μF, they are evaluated to the
various scales of energies by the DGLAP evolution
equations, i.e.,

μ2
dDΛ

i

dμ2
ðxΛ; μÞ ¼

X
j

Z
1

xΛ

dxi
xi

Pij

�
xΛ
xi

; αsðμÞ
�
DΛ

j ðxi; μÞ;

ð4Þ

where, Pij are the splitting functions which have been
computed up to NNLO accuracy [36–38].

B. Theoretical formalism

According to the phenomenological approach, in order
to extract the nonperturbative FFs, the z distributions of
i → Λþ

c FFs at the starting scale μ0 are parametrized from
the beginning and the free parameters are constrained from
the SIA experimental data. Note that, the selection criterion
for the best parametrization form is to score a minimum
χ2global value as small as possible with a set of fit
parameters as minimal as possible. The χ2global function
is defined in our previous works in more detail [8,9].
Following Ref. [30], we parametrize the z dependence of
c → Λþ

c and b → Λþ
c FFs at the starting scale as suggested

by Bowler [39] while the FFs of light flavors are assumed to
be zero at the starting scale. Moreover, since the dataset
included in our analysis is limited to the SIA process we
cannot constrain the gluon FF at the initial scale, thus its
corresponding FF is also set equal to zero at the initial
scale, i.e.,

DΛþ
c

i ðz; μ20Þ ¼ 0; for i ¼ u; ū; d; d̄; s; s̄; g: ð5Þ

The FFs of gluon and light flavors will be generated to
higher energy scales via the DGLAP evaluation equations.
As was mentioned, for the c → Λþ

c and b → Λþ
c fragmen-

tation the following Bowler parametrization [39] is
considered:

DΛþ
c

c ðz; μ20Þ ¼ Ncð1 − zÞacz−ð1þb2cÞe−b2c=z;

DΛþ
c

b ðz; μ20Þ ¼ Nbð1 − zÞabz−ð1þb2bÞe−b
2
b=z; ð6Þ

which includes six free parameters: Nc, ac, bc, Nb, aa, and
bb. It is found that the Bowler parametrization enables one
to do excellent fits at each order of perturbation, i.e.,
LO, NLO, and NNLO. Here, the initial scale is set as
μ0 ¼ 4.301 GeV, which is a little grater than the bottom
mass threshold mb ¼ 4.3 GeV.
Consequently, we have six free parameters, which

should be extracted from the best QCD fit on the exper-
imental data. The optimal values of fit parameters for the
charm and bottom FFs are reported in Table I at each order
of perturbation.
Technically, it should be mentioned that for the evolu-

tion of DΛþ
c

i ðz; μ2Þ-FFs as well as for the calculation of
SIA cross sections up to NNLO accuracy, we employed
the publicly available APFEL package [40] and the free
parameters of FFs are determined by minimizing the
χ2global function using the CERN program MINUIT [41].

Furthermore, to estimate the uncertainties of DΛþ
c

i ðz; μ2Þ-
FFs the data uncertainties are propagated to the extracted
QCD fit parameters using the asymmetric Hessian method
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(or Hessian methodology), as is outlined in Refs. [42,43].
More details can be found in our previous analysis [9].

C. Experimental data and fit results

In our analysis, we applied two datasets measured by
OPAL Collaboration at the CERN LEP1 Collider [26]. In
fact, for the SIA process (1) two different mechanisms
contribute with similar rates; direct production through
Z → cc̄ decay followed by the fragmentation c=c̄ → Λþ

c

and the decay Z → bb̄ (b-tagged events) followed by the
fragmentation of b (or b̄) into the bottom-flavored hadron
Hb, i.e., b=b̄ → Hb, where finally the weak decay of Hb
into the Λþ

c -baryon occurs; Hb → Λþ
c þ X. Consequently,

the energy spectrum of Λþ
c -baryon originating from the

decay of Hb hadron is much softer than that due to primary
charm production, as is expected. In order to separate
charmed hadron production through the decay process Z →
cc̄ from the decay Z → bb̄, the OPAL Collaboration
investigated the apparent decay length distributions as well
as the energy spectra of charmed hadrons. As is expected,
the decay lengths ofHb hadrons into Λþ

c baryon are always
longer than those from prompt production. Note that the
OPAL Collaboration has presented xΛ distributions for
their Λþ

c sample and for the b-tagged (Z → bb̄) subsam-
ples. In addition to the OPAL data, which includes only 4
points with rather large uncertainties, we have also included
a very recent dataset measured by the Belle Collaboration
[28] at

ffiffiffi
s

p ¼ 10.52 GeV. This new dataset is much more
precise and contains more points. The Belle data dose not

have contributions from B-meson decays so that the
contribution of b → Λc is not needed to be taken in the
calculation of cross sections. However, the FFs from charm
and bottom quarks are coupled through the DGLAP
evolution equation. Following Ref. [30], we fix the b →
Λc FF using the values of Nb, ab, and bb extracted from the
OPAL fit. Therefore, the values of Nc, ac, and bc are
yielded from the fit to the Belle data. Here, we describe a
technical point over the reconstruction of old OPAL
experimental data. OPAL datasets have been displayed
in the form ð1=NhadÞdN=dxΛ, where N refers to the
number of charmed-flavor hadron candidates which are
reconstructed through appropriate decay chains. Therefore,
in order to convert these data into the convenient cross
section ð1=σtotÞdσ=dxΛ, it is needed to divide them by the
corresponding branching fractions of decays for the recon-
struction of charmed-flavored baryons. In Refs. [26,27], for
the required branching fraction the following value is
applied:

BrðΛþ
c → pK−πþÞ ¼ ð4.4� 0.6Þ%: ð7Þ

Since, in our analysis we are including both the old OPAL
data and more recent Belle data which are based on the
observation of decay Λþ

c → pK−πþ, then we have to use
the same branching ratio to reconstruct both datasets. Since,
the Belle analysis has applied the newest branching ratio as
BrðΛþ

c → pK−πþÞ ¼ ð6.635Þ% [44], we therefore rescale
the old OPAL data by the factor 0.044=0.0635 ¼ 0.6929.
Another point about the Belle data is that we have to

exclude data at small values of the scaling variable z ≤ 0.5,
since the theory is not reliable in this range without taking
resummation of soft-gluon logarithms into account. Note
that, no kinematical cut is taken over the OPAL data. In
Table II, the characteristics of available experimental data
including the number of data points Ndata

n are presented. We
have also listed the individual values of χ2 for inclusive and
b-tagged datasets at LO, NLO, and NNLO accuracies.
Considering the number of degrees of freedom (d.o.f), i.e.,
43 − 6 ¼ 37, we have also presented the total χ2 divided by
the number of d.o.f at LO (χ2=d:o:f ¼ 1.296), NLO
(χ2=d:o:f ¼ 1.292), and NNLO (χ2=d:o:f ¼ 1.628). As
is seen, these values are around 1 for individual datasets
so this confirms a well-satisfying fit in all three accuracies.

TABLE I. The optimal values for the input parameters of the
c → Λþ

c and b → Λþ
c FFs at the initial scale μ20 ¼ 18.5 GeV2

determined by QCD analysis of the experimental data listed in
Table II.

Best values

Parameter LO NLO NNLO

Nc 1928924455.183 15210639.353 2720317.971
ac 2.343 2.373 2.458
bc 4.343 3.814 3.597
Nb 578.441 323.094 318.980
ab 9.302 9.138 9.321
bb 1.554 1.477 1.464

TABLE II. The individual χ2 values for inclusive and b-tagged cross sections obtained at LO, NLO, and NNLO. The total χ2 and
χ2=d:o:f fit for Λþ

c are also shown.

Dataset Observable
ffiffiffi
s

p
[GeV] Ndata

n χ2 (LO) χ2 (NLO) χ2 (NNLO)

Belle Inclusive 10.52 35 41.419 42.843 55.413
OPAL Inclusive 91.2 4 1.971 0.444 0.299

b tagged 91.2 4 4.520 4.524 4.539

TOTAL: 43 47.948 47.812 60.251
(χ2=d:o:f) 1.296 1.292 1.628
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From Table. II, it is seen that a reduction in χ2=d:o:f occurs
when passing from LO to NLO accuracy. This behavior is
not valid when NNLO corrections are considered. This is
due to the fact that the Belle cross sections have been
measured at small scale of energy (

ffiffiffi
s

p ¼ 10.52 GeV)
where the corrections for the finite mass of hadron and
partons are more effective than the higher-order correc-
tions. Remember that we have used the ZM-VFN scheme
where the hadron and parton masses are set to zero from the
beginning. Nevertheless, the NNLO corrections lead to a
reduction in the uncertainties bands of FFs and correspond-
ing observables. See Figs. 1–4.
In order to show the consistency and goodness between

the theoretical prediction and the experimental data used in
the fits, in Fig. 1 we have plotted the inclusive differential
cross section, as reported by Belle, and in Fig. 2 we have
plotted the b-tagged and total differential cross sections
normalized to the total one evaluated with our respective
Λþ
c FFs. Both are compared with the Belle and OPAL

datasets fitted to. In these figures, the uncertainty bands are
also plotted using the Hessian approach. Through this
approach, we just considered the uncertainties due to the
experimental datasets so that we ignored additional sources
of uncertainties. As is seen, the quality of fit is improved
when passing to higher order corrections. From Fig. 2, it is
seen that our theoretical descriptions at LO, NLO, and
NNLO for both the b-tagged and total differential cross
sections are in good mutual agreement. The consistency
seems to be better for the normalized total differential cross
section (shown in lower panel) in comparison with the
b-tagged one because our theoretical predictions do not go
across one of the b-tagged data points located at xΛ ¼ 0.8.
This is why higher values of individual χ2 occur for b
tagged, see Table II.
In Fig. 2, it is also seen that the behavior of theoretical

predictions in small values of xΛ for the lowest order
accuracy is completely different with the ones at NLO and
NNLO. Obviously, on one hand, the theoretical cross
section at LO goes to infinity when xΛ → 0 and, on the
other hand, the LO uncertainty band is anomalously wider
than the NLO and NNLO ones in all ranges of xΛ.
Therefore, the LO results are not reliable so that higher-
order radiative corrections need to be considered.
In order to show the fragmentation contribution of gluon,

charm, and bottom quark to the production of Λþ
c , in Fig. 3

we have plotted these contributions at the scale
ffiffiffi
s

p ¼ MZ.
The total differential cross section at NLO is also shown,
which is obtained by the sum of all contributions. As is
expected, the contribution of gluon fragmentation is very
tiny and it increases at small range of xΛ. At large xΛ, the
contribution of charm quark (red dashed line) is governed
while at small region the contribution of bottom quark
(green dot-dashed line) is governed.
In Fig. 4, the z distributions of Λþ

c -FFs are plotted at
μF ¼ MZ; the energy scale of OPAL datasets fitted to. For
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FIG. 1. Using our extracted Λþ
c -FFs, the theoretical predictions

for inclusive differential cross sections at LO (red solid line),
NLO (green dashed line), and NNLO (blue dot-dashed line) inffiffiffi
s

p ¼ 10.52 GeV are compared with the Belle experimental data
points fitted to. Corresponding uncertainty bands that stem from
Λþ
c -FFs are shown as well.
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p ¼ MZ.
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this purpose, we plotted the ðc; b; gÞ → DΛþ
c
FFs at LO

(solid lines), NLO (dashed lines), and NNLO (dot-dashed
lines). From this plot, it is seen that the fragmentation of
the charm quark is peaked at large-z whereas the bottom

fragmentation has its maximum at small z. This behavior
is due to the fact that the fragmentation process b → Λþ

c
contains a two-step mechanism. In Fig. 4, the uncertainty
bands of Λþ

c FFs are also presented, which are needed to
visually quantify the remaining error of analysis. Since, the
Belle date does not include the contributions from the
b → Λc fragmentation in the calculation of cross sections,
then the uncertainties of the b-quark FF are considerably
much wider than the charm and gluon ones in each order of
perturbation. Moreover, the error bands of all flavors
decrease by increasing the order of perturbation. In
Fig. 4, the NLO KKSS20 results [30] (dashed-dashed-
dot curves) are also plotted. As is seen, our result for gluon
fragmentation is in good agreement with the one presented
by KKSS20. In comparison to the KKSS20’s results,
there is a considerable difference between the KKSS20
charm FF and ours in the range z < 0.5. However, the
behavior of our bottom-FF is the same as the KKSS20 one
in the whole range of z. Unlike our procedure in which we
set the same scale for the c- and b-quark FFs, the KKSS20
Collaboration has selected different initial scales so that in
their work the starting scales for the charm and bottom FFs
were taken to be μ0 ¼ mc ¼ 1.5 and μ0 ¼ mb ¼ 5 GeV,
respectively.
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FIG. 3. The NLO contribution of c → Λþ
c (red dashed line),
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III. THEORETICAL APPROACH
FOR Λ+

c BARYON FF

As was mentioned in Sec. I, apart from the phenom-
enological approaches to determine the nonperturbative
FFs there are also some theoretical models to compute
them. In fact, it was fortunately understood that for heavy
hadron productions these functions can be analytically
calculated by virtue of perturbative QCD (pQCD) including
limited phenomenological parameters [45,46]. The first
theoretical effort to illustrate the procedure of heavy hadron
production was established by Bjorken [47], so that in the
following, Suzuki [24], Ji, and Amiri [48] have applied the
pQCD approach considering elaborate models to describe
the hadronization process. Since the Suzuki model includes
most of the kinematical and dynamical aspects of hadro-
production process it gives us a detailed insight on the
hadronization process. Especially, this model is very
suitable to consider the spin effects of a produced hadron
or a fragmenting parton that is absent in the phenomeno-
logical approach; see, for example, Ref. [49]. It does also
enable us to describe the gluon hadronization process that is
not well determined in the phenomenological approach; see
Refs. [50–52].
In this section, using the Suzuki model we focus on the

fragmentation of Λþ
c baryon from charm quark for which

the respective Feynman diagrams at leading order in αs are
shown in Fig. 5. According to this model, the FF for the
production of an S-wave heavy bound state M in hadro-
nization of an initial heavy quark Q might be put in the
following general relation [24]:

DM
Q ðz;μ0Þ ¼

1

1þ 2sQ

X
spin
color

Z
jTMj2δ3

�X
f

pf − pQ

�
Πfd3pf;

ð8Þ

where, pQ and pf are the momenta of the fragmenting quark
and the final particles, respectively. The fragmentation
parameter z is as the one introduced in the phenomeno-
logical approach (Sec. II.A), i.e., z ¼ EM=EQ which takes
the values as 0 ≤ z ≤ 1. Furthermore, μ0 stands for the

initial fragmentation scale which is in order of the frag-
menting heavy quark mass and sQ refers to the fragmenting
quark spin. In the above relation, the quantity TM is the
probability amplitude for the hadron production. In the
Suzuki model, this amplitude at large momentum transfer is
expressed in terms of the hard scattering amplitude TH
and the process-independent distribution amplitude ΦM
describing the nonperturbative dynamics of the bound state.
In fact, the long-distance amplitude ΦM is, in essence, the
probability amplitude for constituent quarks to be evolved
into the final bound state. Therefore, the amplitude TM is
expressed as [48,53]

TM ¼
Z

Πjdxjδ

�
1 −

X
j

xj

�
THΦMðxj; Q2Þ; ð9Þ

where, xj ¼ Ej=EM is the energy fraction carried by the
constituent quark j of heavy bound state M.
Considering the general definition (8) and the Feynman

diagrams shown in Fig. 5, for the production of an S-wave
Λþ
c baryon from the initial charm quark, the FF of c → Λþ

c
is written as

DΛþ
c

c ðz; μ0Þ ¼
1

2

X
s;c

Z
jTΛj2

× δ3ðP̄þ s0 þ t0 − pÞd3P̄d3s0d3t0; ð10Þ

where, four-momenta are as labeled in Fig. 5, and

TΛðp; P̄; s0; t0Þ

¼
Z

1

0

dx1dx2dx3δð1 − x1 − x2 − x3Þ

× THðp; P̄; s0; t0; xiÞΦBðxi;Q2Þ: ð11Þ

The advantage of the above scheme is to absorb the soft
behavior of the produced bound state into the hard
scattering amplitude TH [53]. Ignoring the details, the
distribution amplitude ΦB is related to the valence wave
function Ψ [53]. Following Ref. [24], we adopt the infinite
momentum frame where the distribution amplitude ΦB,
with neglecting the Fermi motion of constituents, reads
[54,55]

ΦB ¼ fBδ

�
xi −

mi

M

�
; ð12Þ

where, the baryon decay constant fB is related to the
nonrelativistic S-wave function Ψð0Þ at the origin
as fB ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

12=M
p jΨð0Þj.

In Eq. (11), the short-distance amplitude TH can be
calculated perturbatively considering the Feynman dia-
grams shown in Fig. 5, where a charm-quark creates a
heavy baryon Λþ

c along with two light antiquarks ū and d̄.

(a) (b)

FIG. 5. The lowest-order Feynman diagrams contributing to the
fragmentation of the charm quark into the Λþ

c ðucdÞ baryon.
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In the old-fashioned noncovariant perturbation theory, the
hard scattering amplitudeTH may be expressed as follows to
keep the initial heavy quark on mass shell all the time [56]

TH ¼ g4smΛmcmdmuCF

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p0P̄0s00t

0
0

p ×

P
2
i¼1 Γi

D0

; ð13Þ

where, D0 ¼ P̄0 þ s00 þ t00 − p0 is the energy denominator,
CF is the usual color factor and Γi represents an appropriate
combination of the propagators and the spinorial parts of the
amplitude. In the above equation, the amplitudesΓi stand for
each Feynman diagrams in Fig. 5.

Substituting all expressions in Eq. (10) and carrying out
the necessary integrations, we find

DΛþ
c

c ðz; μ0Þ ¼ N
Z

d3s0d3t0

t00s
0
0

Z 1
2

P
2
i;j¼1 ΓiΓ̄j

P̄0p0D2
0

× δ3ðP̄þ s0 þ t0 − pÞd3P̄; ð14Þ

where, N ∝ ðfBmΛmcmdmug4sCFÞ2.
In the above relation, using thewell-known completeness

relations
P

spinuðpÞūðpÞ¼ð=pþmÞ and
P

spin vðqÞv̄ðqÞ ¼
ð=q −mÞ in the unpolarized Dirac string, one has

X2
i;j¼1

ΓiΓ̄j ¼ G2
1Tr½ð=s0 −mdÞγμð=sþmdÞγνTμσρνð=t0 −muÞγσð=tþmuÞγρ�

þ G2
2Tr½ð=t0 −muÞγσð=tþmuÞγρTσμνρð=s0 −mdÞγμð=sþmdÞγν� þ 2G1G2

× Tr½ð=s0 −mdÞγμð=sþmdÞγνTμσνρð=t0 −muÞγσð=tþmuÞγρ�; ð15Þ

where,

Tμσρν ¼ ð=pþmcÞγμð=qþmcÞγσð=rþmcÞγρð=qþmcÞγν;
Tσμνρ ¼ ð=pþmcÞγσð=q0 þmcÞγμð=rþmcÞγνð=q0 þmcÞγρ;
Tμσνρ ¼ ð=pþmcÞγμð=q0 þmcÞγσð=rþmcÞγνð=qþmcÞγρ:

ð16Þ

In the above expressions, after using the Dirac algebra and
the traditional trace technique the dot products of four-
momenta will appear. To proceed we need to specify our
kinematics to determine the relevant dot products. Con-
sidering the Feynman diagrams shown in Fig. 5, where by
ignoring the Fermi motion of quark constituents the Λþ

c
baryon is replaced by its collinear constituents, the relevant
four-momenta are set as

pμ ¼ ½p0; pT; pL�; t0μ ¼ ½t00; t0T; t0L�;
s0μ ¼ ½s00; s0T; s0L�; rμ ¼ ½r0; 0; rL�;
tμ ¼ ½t0; 0; tL�; sμ ¼ ½s0; 0; sL�;
P̄μ ¼ ½P̄0; 0; P̄L�; ð17Þ

where, P̄L ¼ rL þ tL þ sL and we also assumed that the
produced baryon moves along the ẑ axes (fragmentation
axes). According to the definition of fragmentation param-
eter, i.e., z ¼ P̄0=p0, the baryon takes a fraction z of the
energy of the initial heavy quark (each constituent a
fraction of x1, x2, and x3) and two antiquarks take the
remaining 1 − z (each one with a fraction of x4 and x5).
Thus, the parton energies can be expressed in terms of the
initial heavy quark energy p0, as

P̄0 ¼ zp0; s0 ¼ x1zp0; r0 ¼ x2zp0; t0 ¼ x3zp0;

s00 ¼ x4ð1− zÞp0; t00 ¼ x5ð1− zÞp0; ð18Þ

where, the condition x1 þ x2 þ x3 ¼ 1 holds as well as
x4 þ x5 ¼ 1. Moreover, according to our assumption that
baryon moves along the ẑ axes, the transverse momentum
of the initial quark is carrying by two antiquarks so that in
the infinite momentum frame we have s0T ¼ x4pT and
t0T ¼ x5pT . With the approximation (12), we are postulat-
ing that the contribution of each constituent from the
baryon energy is proportional to its mass, namely, xi ¼
mi=M where M ¼ mu þmd þmc. We also assume that
x4 ¼ md=m0 and x5 ¼ mu=m0, where m0 ¼ md þmu.
Regarding the kinematics introduced, the dot products of

relevant four-momenta read

s0 · t0 ¼ s · t ¼ mumd;

s · r ¼ mcmd; t · r ¼ mcmu;

p · s0 ¼ md

2
β; p · t0 ¼ mu

2
β;

p · s ¼ md

2
η; p · r ¼ mc

2
η;

p · t ¼ mu

2
η; s · s0 ¼ m2

d

2
α;

t · t0 ¼ m2
u

2
α; r · t0 ¼ mumc

2
α;

r · s0 ¼ mdmc

2
α; s · t0 ¼ mdmu

2
α; ð19Þ

where
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η ¼ M
z
þ zm2

c

M

�
1þ p2

T

m2
c

�
;

α ¼ zm0

Mð1 − zÞ
�
1þ p2

T

m02

�
þ ð1 − zÞM

zm0 ;

β ¼ m2
cð1 − zÞ
m0

�
1þ p2

T

m2
c

�
þ m0

1 − z

�
1þ p2

T

m02

�
− 2

p2
T

m0 :

ð20Þ

In Eq. (15), G1 and G2 are related to the denominator of
propagators as

G1 ¼
1

m3
dm

2
uð2þ αÞ2ðmdð2þ αÞ − η − βÞ ;

G2 ¼
1

m2
dm

3
uð2þ αÞ2ðmuð2þ αÞ − η − βÞ : ð21Þ

For the phase space integrations in the relation (14), one has
Z

d3P̄δ3ðP̄þ t0 þ s0 − pÞ
P̄0p0D2

0

¼ z
G2ðzÞ ; ð22Þ

where,GðzÞ¼M2−m2
c−m2

u−m2
d−2t0 ·s0þ2p ·t0þ2p ·s0 ¼

m0ð2mcþβÞ, so that for the remaining integrals, according
to the Suzuki model and for simplicity, we replace
the transverse momentum integrations by their average
values, e.g.,

Z
d3t0

fðz; t02T Þ
t00

≈m2
ufðz; ht02T iÞ; ð23Þ

where, according our assumption one has t0T ¼ x5pT ¼
ðmu=m0ÞpT .
Substituting all in Eq. (14), the hadronization process

c → Λþ
c is described by the following function

DΛþ
c

c ðz; μ0Þ ¼ N
z ×

P
2
i;j¼1 ΓiΓ̄j

½2mc þ βðzÞ�2
����
p2
T→hp2

T i
; ð24Þ

where,N ∝ ðfBmΛmcm2
dm

2
ug4sCFÞ2=m02 but it is determined

via
R
1
0 DΛþ

c
c ðz; μ0Þdz ¼ 1 (normalization condition) [48].

In the above relation,
P

2
i;j¼1 ΓiΓ̄j is given in Eq. (15)

which is simplified in terms of dot products of four-
momenta after using the Dirac algebra. Because of the
lengthy and cumbersome expression for this term we do not
present an analytical result and just show our numerical
analysis. Note that, in the Suzuki model the fragmentation
function depends on both the fragmentation parameter z
and the phenomenological parameter hp2

Ti. Although, the z
dependence of FFs is not yet calculable at each desired
scale, but once they are computed at the initial fragmenta-
tion scale μ0, their μ evolution is determined through the
DGLAP equations [25]. In the Suzuki model, the initial
scale is the minimum value of the invariant mass of the

fragmenting parton. Therefore, the FF presented in Eq. (24)
should be regarded as a model for the c → Λþ

c transition at
the initial scale μ0 ¼ mΛ þmu þmd.
For our numerical analysis, we adopt the input

parameters as mc ¼ 1.43 GeV; md ¼ 4.67 MeV; mu ¼
2.16 MeV; fB ¼ 0.25 GeV, and αsðmcÞ ¼ 0.38 [57]. The
color factor CF is calculated using the simple color line
counting rule so we applied CF ¼ 7=6 for our purpose.
In Fig. 6, taking hp2

Ti ¼ 1 GeV2 our theoretical pre-

diction for the DΛþ
c

c -FF at the starting scale μ0 is shown
(dotted line). In Refs. [16,22], it is shown that the choice of
hp2

Ti ¼ 1 GeV2 is an optimum value for this quantity so
that any higher value of this parameter will produce the
peak position even at lower-z regions. To check the validity
of the Suzuki model, using the parameters presented in

Table. I we have also plotted the DΛþ
c

c ðz; μ0Þ-FF at LO
(dashed line), NLO (solid line), and NNLO (dot-dashed
line). As is seen, there is a considerable consistency
between both approaches. This allows one to rely on the
Suzuki model to determine the heavy quark FFs. As was
mentioned previously, the Suzuki model is much more
suitable to consider the spin effects of produced hadrons or
fragmenting partons that is absent in the phenomenological
approach. It also enables us to describe the gluon hadro-
nization process that is not well determined in the phe-
nomenological approach. It also gives one a detailed insight
on the hadronization process because it includes most of the
kinematical and dynamical aspects of the hadroproduction
process.

IV. Λ +
c BARYON PRODUCTION

BY TOP QUARK DECAY

In this section, as a topical application of our baryon FFs,
we study the inclusive single production of Λþ

c at the

FIG. 6. The DΛþ
c

c ðz; μ0Þ-FF at lowest-order in the Suzuki model
(black dotted line) taking hp2

Ti ¼ 1 GeV2. This is compared with
the ones extracted through the phenomenological approach at LO
(blue dashed line), NLO (red solid line), and NNLO (green dot-
dashed line). Here, we set μ0 ¼ mΛ þmu þmd.
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CERN LHC. Generally, the Λþ
c baryon may be produced

directly or via the decay process of heavier particles,
including the Higgs boson, the Z boson, and the top quark.
At the LHC, the study of energy distributions of observed
hadrons through top quark decays might be considered as
an indirect channel to search for the properties of top
quarks. Since the top quark discovery by the D0 and CDF
experiments at Fermilab Tevatron [58], the full determi-
nation of its properties has not yet been performed so it has
been one of the main aims in top physics theories.
In the standard model of particle physics, the top has a

very short lifetime (τt ≈ 0.5 × 10−24 s [59]) which is much
shorter than the typical time to form the QCD bound states,
i.e., τQCD ≈ 1=ΛQCD ≈ 3 × 10−24 s, then the top quark
decays rapidly before hadronization takes place. Related
to the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix
element for which Vtb ≈ 1 [60], top quarks almost exclu-
sively decay to bottom quarks via t → bWþ so, in the
following, produced bottom quarks hadronize by producing
final jets. Therefore, a suggestion for a new channel to look
for top properties at the LHC is to study the inclusive single
Λþ
c -baryon production through the following process

t → bWþðþgÞ → Λþ
c Wþ þ X; ð25Þ

where, X collectively represents any other final-state par-
ticles. At the parton level, both the bottom quark and the
gluon may hadronize into the Λþ

c -baryon so that the gluon
fragmentation contributes to the real radiations at NLO.
According to the factorization theorem of the QCD-

improved parton model [61], the partial width of the decay
process (25) differential in the scaled Λþ

c -baryon energy,
xΛ, is expressed as

dΓ
dxΛ

¼
X
i¼b;g

Z
xmax
i

xmin
i

dxi
xi

dΓi

dxi
ðμR; μFÞDΛþ

c
i

�
xΛ
xi

; μF

�
; ð26Þ

where the factorization and the renormalization scales, i.e.,
μF and μR, are arbitrary but to avoid large logarithms
appearing in the parton differential decay rates dΓi=dxi, we
set μR ¼ μF ¼ mt, as usual. For simplicity, we shall work
in the top-rest frame in which the scaling variables are
defined as xΛ ¼ EΛ=Emax

b and xi ¼ Ei=Emax
b , where EΛ and

Ei stand for the energies of the Λþ
c baryon and parton i,

respectively. Here, Emax
b ¼ mtð1 − ωÞ=2 is the maximum

energy of the bottom quark in the process (25), where
ω ¼ ðmW=mtÞ2. At present, analytic expressions for the
Wilson coefficient functions dΓi=dxi are only available at
NLO accuracy which are computed in Refs. [62,63]. Using
our extracted ðb; gÞ → Λþ

c FFs at LO and NLO, we make
our predictions for the energy spectrum of Λþ

c baryon
produced through the unpolarized top quark decay.
However, a consistent analysis is presently restricted to
NLO approximation, but we also employ the NNLO set of

DΛþ
c

c -FF to probe the possible size of NNLO corrections.

Adopting the input parameters as mt ¼ 173 and
mW ¼ 80.379 GeV, in Fig. 7 we studied the energy
distribution of the Λþ

c baryon in unpolarized top decays
at LO (dotted line), NLO (dashed line), and NNLO (solid
line). As is seen, switching from the LO Λþ

c -baryon FF set
to the NLO one slightly smoothens the theoretical pre-
diction, decreasing it in the peak region and the tail region
thereunder. In Fig. 7, the results for dΓ=dxΛ are also
compared to the evaluation with the KKSS20 Λþ

c -baryon
FF set [30]. As is seen, there is a good consistency between
both results. In comparison with the KKSS20 spectrum, the
peak position of our results is shifted towards larger values
of xΛ.
At the LHC, the study of energy distribution of the Λþ

c
baryon may be also considered as a new window
towards searches on new physics. Practically, for the energy
distribution of produced hadrons, any considerable
deviation from the SM predictions can be assigned to the
new physics. For example, it would be a signal for the
existence of charged Higgs bosons produced from
t → Λþ

c Hþ in the theories beyond the SM [64–68]. Mean-
while, the study of xΛ distribution in the decay mode (25)
will enable us to deepen our understanding of the non-
perturbative aspects of baryon formation by hadronization.
Moreover, through studying these distributions the b=g →
Λþ
c FFs can be also constrained even further.

V. SUMMARY AND CONCLUSIONS

Through this work, we determined the nonperturbative
unpolarized FFs for the charmed baryon Λþ

c in two various
approaches; phenomenological analysis and theoretical
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FIG. 7. The LO (green dotted line), NLO (red dashed line), and
NNLO (black solid line) predictions of dΓðt → Λþ

c þ JetsÞ=dxΛ
evaluated with our Λþ

c -baryon FF sets. For comparison, the
evaluation with the NLO KKSS20 Λþ

c -FF set [29] is also
included (blue dot-dashed line). Here, we set the scale as μ ¼ mt.
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approach based on the Suzuki model. Employing the
theoretical model we computed the Λþ

c -FF at the lowest
order of perturbative QCD whereas using the phenomeno-
logical approach we determined the Λþ

c -FFs both at LO,
NLO and, for the first time, at NNLO accuracy in the ZM-
VFN scheme by fitting to all available data of inclusive
single Λþ

c -baryon production in eþe− annihilation from the
OPAL and Belle Collaborations [27,28]. A comparison
between both approaches showed a good consistency
between results. Note that the theoretical framework
provided by the ZM-VFN scheme is quite appropriate
for our data analysis because the characteristic energy
scales of annihilation process, i.e., MZ, greatly exceeds the
c- and b-quark masses, which could thus be neglected. For
our data analysis, we adopted the same functional form for
the parameterization of charm and bottom FFs with three
free parameters, see Eqs. (6). FromFig. 2, it is seen that in the
lowest-order approximation the behavior of the theoretical
cross section is not acceptable at the low-xΛ region but it is
reasonably improved when higher order radiative correc-
tions are considered. Through the following aspects, our
analysis on the Λþ

c -baryon FFs improves a similar analysis
in previous works [29,30]. First, we increased the precision
of calculation to NNLO, however, due to few numbers of
experimental data for Λþ

c -baryon production our results
showed that the effect of this correction is not considerable.
Second, we did an accurate estimation of the experimental
uncertainties in theΛþ

c -FFs using theHessian approach. The
uncertainties bands of FFs as well as corresponding observ-
ables show that the NNLO radiative corrections affect the
error band and decrease them considerably. Meanwhile, we
have compared, for the first time, the analytical result

obtained for the DΛþ
c

c ðz; μ0Þ-FF through the Suzuki model
with the one extracted via the phenomenological analysis. A

good consistency between both approaches ensures the
Suzuki model, see Fig. 6. This model is suitable to consider
the spin effect of the produced hadron or/and the initial
parton on the corresponding FFs, a subject absent in a data
analysis approach. On the other hand, as is well known, the
gluon FFs play a significant role in hadroproduction but they
are only feebly constrained by eþe− data. But, through the
Suzuki model it would be possible to determine them
analytically, see Refs. [18,23,49].
As a topical application of our obtained FFs, we used the

LO, NLO, and NNLO FFs to make our theoretical pre-
dictions for the scaled-energy distributions of theΛþ

c baryon
inclusively produced in unpolarized top decays. This chan-
nel is proposed for independent determination ofΛþ

c -baryon
FFswhich provides a unique chance to test their universality
andDGLAP scaling violations—two important pillars of the
QCD-improved parton model. Furthermore, this study
provides a new window towards searches on new physics.
For the theoretical approach, one can think of other

possible improvements including the Fermi motion of
constituents. This is done by considering the real aspects
of the valence wave function of a baryon [53,69], etc.
Related to the phenomenological approaches, improve-
ments due to the inclusion of finite quark masses and the
resummation of soft-gluon logarithms would be effective.
These effects extend the validity of analysis towards small
and large values of xΛ, respectively. In this regard, the
general-mass variable-flavor-number scheme (ZM-VFNS)
[70,71], where the charm- and bottom-quark masses are
preserved from the beginning provides a consistent and
natural finite mass generalization of the ZM-VFNS on the
basis of the MS factorization scheme [33]. The implemen-
tation of these improvements reaches beyond the scope of
our present analysis and is left for future research.
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