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Light hadron masses from a matrix model for QCD
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The SU(3) Yang-Mills matrix model coupled to fundamental fermions is an approximation of quantum
chromodynamics (QCD) on a 3-sphere of radius R. The spectrum of this matrix model Hamiltonian is
estimated using standard variational methods, and is analyzed in the strong coupling limit. By employing a
matching prescription to determine the dependence of the Yang-Mills coupling constant g on R, we relate the
asymptotic values of the energy eigenvalues in the R — oo (flat space) limit to the masses of light hadrons. We
find that the matrix model estimates the light hadron spectrum fairly accurately, with the light baryon masses
falling within 10%, and most light meson masses falling within about 30% of their observed values.
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I. INTRODUCTION

Hadrons constitute almost all of ordinary matter, and the
study of their properties is of fundamental importance to
test the predictions of low-energy quantum chromodynam-
ics (QCD). However, the fact that hadrons lie deep in the
nonperturbative regime of the theory poses a considerable
challenge for theoretical physicists to predict their proper-
ties reliably. Much of our knowledge in this regime comes
from numerical simulations in lattice QCD, latest results
including [1-16] for light hadron spectrum and [17-25] for
charmed hadrons.

A simple and elegant matrix model of Yang-Mills theory,
capable of capturing important topological features of the
full quantum field theory, was obtained in [26,27]. The
matrix model corresponds to a dimensional reduction of
Yang-Mills theory on S* x R, and is a quantum-mechanical
model based on 3 x (N? — 1)-dimensional real matrices as
degrees of freedom. This model proves to be quite good in
describing the mass spectrum of glueballs [28] in the low
energy regime of pure Yang-Mills theory.

In this paper, we push the SU(3) matrix model further by
coupling fundamental quarks and provide variational esti-
mates for the masses of light hadrons. Specifically, we give
estimates for the masses of the light pseudoscalar and
vector mesons and spin—% and spin—% baryons, which turn
out to be surprisingly successful, as can be seen from Fig. 5
and Tables IV and V.
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We consider this model as a new proposal for describing
the extreme low energy sector of QCD, i.e., the sector
describing light hadrons. Just as in QCD, it has exactly four
bare parameters, namely, the masses m,,, m; and m, of the
up, down and strange quark, the Yang-Mills coupling g.
The radius R of the 3-sphere simply sets the overall scale in
the model. To relate the energy spectrum of the matrix
model to physical masses of particles, we need to employ a
suitable matching scheme, detailed later in the paper, which
involves using the observed masses of four hadrons as
inputs. Once the matching scheme has been used to fix the
unknown parameters and to set the overall scale, the masses
of the other particles can be unambiguously determined
from the matrix model.

Although this use of the matrix model in hadron
spectroscopy is new, the model itself has appeared earlier
in other contexts. For instance, Myers has studied this
model to examine the dynamics of N DO-branes in a
specific external Ramond-Ramond field [29]. The energy
spectrum of this model, however, has not been investigated
thoroughly. We do so here using traditional and well-
established variational methods. We find it striking that
such a simple model, analyzed using such modest human
and computational resources, is able to provide estimates of
light hadrons masses with such accuracy.

The paper is organized as follows. In Sec. II, we briefly
review the pure gauge matrix model of [26,27] and describe
the inclusion of quarks. In Sec. III, we review the variational
method for energy eigenvalue determination. In Sec. IV, we
set up the mass-matching scheme. Our results are given in
Sec. V, and a discussion of the results in Sec. VI.

II. THE MATRIX MODEL WITH QUARKS

The matrix model [26,27] for pure Yang-Mills theory is
constructed by isomorphically mapping the spatial S° to an
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SU(2) subgroup of the gauge group SU(N), and the
pulling back of the general left-invariant one-form on
SU(N) under this map. The general left-invariant one-form
on SU(N) can be expressed as Q = Tr(T,g"'dg)M T,
where g € SU(N), T, are the generators in fundamental
representation, and M is a (N? — 1)-dimensional real
matrix. Under the isomorphic mapping, the spatial vector
fields are identified with iX;, where X; are the left-invariant
vector fields in the Lie algebra of SU(2). The pullback
of Q under this map gives the gauge fields as Ay =0,
A; = M;,T,. The matrices M,, are 3 x (N> — 1) rectan-
gular matrices, and represent our gauge variables.

The curvature F;; corresponding to A; is obtained by
the pullback of the curvature associated with Q to the
spatial S

Fij = (dQ+Q A Q)(X,, X))
1
= <—E€ijkMka +fabcMikac> Ty (2.1)

Then the chromoelectric and chromomagnetic fields read

Ei,=Foiu = Mim (2.2)
1 1 1
B, = Eeiijjka = _EMia +§€ijkfabchthc- (2.3)

We ignore the numerical factor in the volume of $° and
take it to be R®. The matrix model Lagrangian is

3 R3
Lyw = =3z FiuF ™ =3 5 (E{E{ — BIBY).
In the temporal gauge A, =0, the Lagrangian is
expanded to obtain quadratic, cubic and quartic interactions
in the potential:

(2.4)

R (. . 1 1
Lyy = 207 <MiaMia —PMmMm +E€ijkfabcMianthc

1
- EfabcfadeMiijcMidee> . (25)

To the matrix model Lagrangian (2.5), we add minimally
coupled massive 3-flavor quarks Q in the Dirac represen-
tation, transforming in the fundamental representation of
color SU(3), and flavor SU(3). The spinor Q = (Qua)
carries indices f, @ and A denoting flavor, spin and
color indices respectively. Under gauge transformations
u € SU(3), spatial rotations R € SO(3) and flavor rota-
tions v € SU(3), Qqa transforms as

Ofar = UapQjap; A,B=1,23, (2.6)
QfaA - D%(R)aﬂQfﬁfh avﬂ = 1727 (27)
thxA - vnggaA7 f’g — 17 2a 3 (28)

where D%(R)aﬁ is the spin-} representation of R.

A Dirac fermion Q is made up of a left Weyl fermion b
and a right Weyl fermion c¢':

0 < Dfan ) < Dan >
faA — . = .
-1 (GZ)aic}ﬁA dj"aA

This implies that b transforms in the fundamental and d in
the antifundamental representations of color and flavor,
and both have the same transformation property under
rotations:

(2.9)

bras = Upgbrap, A B=1,2,3,  (2.10)

braa = DX(R)gpbipa.  a.p=12, (2.11)

bras = Vighgaa, fr9=1.2,3 (2.12)
and

digs = Wygdap,  AB=1,2,3,  (2.13)

digr = DI(R)gydspa.  a.fp=1.2, (2.14)

drs = Vigdgar.  f.g=12.3. (2.15)

The Lagrangian for minimally coupled massive quarks
on a sphere is given by [30]

3
L=-X popon
4g2 uv

) ) 3
+ R (iQfV” (DuQr) =msQsQs =55 Qﬂ’SYOQf>
(2.16)

where QO = Qfy°. The last term in Eq. (2.16) comes from
the nonzero curvature of the spatial S°.

Both the gauge fields M;, and the quarks b and d depend
only on time. M has dimensions of inverse length. To
express the Hamiltonian in terms of dimensionless quan-
tities and for computational ease, it is convenient to rescale
M - %. Also, to make the fermionic variables dimension-
less, we rescale b — R‘%b, d— R‘%d, and express the
quark masses in units of R™!, my = ’%. The Hamiltonian
then works out to be

1

H:E(HYM+Hm+Hc+Hint) (217)

where
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1 1 g
Hyy = zniania + EMiaMia - EeijkfabcMiqukac
2

g
+ qubcfadeMiijcMideev (218)
Hy =Y #r(0farbsar = dpardin): (2.19)
7
3 + T
He =3 (blundjun + dpunbyan). (2.20)

g . .
Hy = _EM ia(b-jr'aAo-fzﬁﬂfXBd;ﬁB + dfaA"fxﬁ'ﬂBbfﬂB)'
(2.21)
Here A% are the Gell-Mann matrices.
The Gauss’s law constraint is
1 .
Gu = fathibMic - 5 (b;‘/labf - df/lad;)? (222)

where the suppressed indices are understood as being
summed over.

To quantize the system, we impose the canonical
commutation (and anticommutation) relations

[Mia’]:[jb] = iéijéab»
{bfaA’ b;ﬂB} = 611/36A35.f!/’

{daa- d;/iB} = 8ap0aBOrg (2.23)

and demand that all physical states |¥);,, be annihilated

by the Gauss law:

phys

G,|¥). s = O. (2.24)

phys

Total spin, given by

1
Ji = eijijaHka + _(b}gibf - dfﬁid;),

. (2.25)

commutes with H and so its eigenstates can be assigned a
spin unambiguously.

In the fundamental representation, the generators of
flavor symmetry are given by 7 p E%AF,F: 1,...,8,
Ar being the Gell-Mann matrices. In terms of these
generators, we can define the isospin operator /53 and the
hypercharge Y as

Iy = 0'"T,0 = b T3b + dTod', (2.26)
Y—iQTTQ—i(bTTbHJTd*) (2.27)
- \/§ 8 — \/§ 8 8 . .

These operators also commute with H and so the eigen-
states can be assigned isospin and hypercharge.

We will also need the fermion number operator

No=>b'b+d'd. (2.28)
Eigenstates of N, have a definite number of quarks +
antiquarks.

To estimate light hadron masses, we choose a set of
variational states {|¥,)} and organize them according to
their spin and flavor quantum numbers. Then, we compute
H,, = (¥,|H¥,) and the Gram matrix S,,, = (¥,,|¥,),
defined in Sec. 111, and evaluate the generalized eigenvalues
and eigenvectors of H with respect to S. The eigenvalues
have functional dependence on the bare parameters of the
theory, namely, the quark masses u; and the coupling
constant g, as well as the infrared cutoff R. To obtain well-
defined values for light hadron masses, we need to
prescribe a suitable renormalization scheme to determine
the flow of the bare parameters with the scale R. A brief
description of this renormalization procedure is given
in Sec. IV.

III. VARIATIONAL CALCULATION

To estimate the eigenvalue spectrum of the matrix model
Hamiltonian, we use the Rayleigh-Ritz variational method.
We briefly summarize the steps for the variational calcu-
lation in the following paragraphs.

We first construct a trial set of variational states {|y;)}.
Then we consider the following variational ansatz:

) :Zci|ll/i>’ c;eC (3.1)
To estimate the spectrum, consider the functional
K= lH) = A(Gelbe) — 1) (3.2)

where 4 is a Lagrange multiplier for the constraint that the
state |y) is normalized to 1.

Minimizing this functional with respect to ¢; leads to the
generalized eigenvalue equation,

J J
where I:Iij = (yilHly;) and S;; = (wilw;).
Minimizing with respect to 4 yields
> ¢iSic; =0. (3.4)
ij
Equations (3.3) and (3.4) together give
CCiH s H
1= ZJk K kjCj _ O(‘ b(> ) (35)

B ijC’,:Skjc.,- B el
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Thus, the lowest eigenvalue of the matrix A with respect to
S gives the ground state energy and the higher eigenvalues
give the energies of the excited states. Furthermore, the
variational states can be organized via their quantum
numbers under observables that commute with H, for
example total spin, isospin and hypercharge. H then
assumes a block-diagonal form, and each block can be
treated separately.

A typical variational state in our ansatz is a combination
of a fermionic and a bosonic wave function. The fermionic
part of the wave function can be created by successive
operation of the fermion and antifermion creation operators
b" and d' respectively on the fermion Fock vacuum,
denoted by |0f). As the bosonic part of the wave function,
we take eigenfunctions of the 24-dimensional bosonic
oscillator, given by

Hosc = (Hiania + MiaMia)' (36)

NSH

To construct our variational ansatz, we take combina-
tions of different bosonic and fermionic wave functions
such that the combination as a whole transforms as a color
singlet. In this article, we consider fermionic states with up
to five fermions, and bosonic states with up to four bosonic
oscillators. They are combined in different ways to give 449
variational states in the ansatz for scalar mesons, 1017
states for vector mesons, 449 states for the baryon octet and
604 states for the baryon decuplet.

The procedure for constructing the variational states is
outlined briefly in the Appendix, where we also list all
linearly independent fermionic and bosonic wave functions
in our ansatz.

IV. LIGHT HADRONS FROM THE
SPECTRUM OF H

The energy eigenvalues of H in general have functional
dependence on four parameters in our theory, namely, the
quark masses us, f = 1,...,3 and the coupling constant g.
As an approximation, we take the bare masses of the up and
down quarks to be the same. Thus, we have two mass
parameters, 4 = y,/4 and u, and the coupling constant g.
We also have a length scale in our theory, which is the
infrared cutoff R. The bare parameters y, 4, and g have no
physical meaning. To obtain meaningful results in the flat
space, or R — oo limit, the bare parameters are chosen to
depend on R in such a way that the energy eigenvalues
asymptote to fixed numbers at large R.

The model takes into account only the zero mode sector
of the full quantum field theory. The (renormalized) zero-
point energy of the higher momentum modes of the full
quantum field theory can at most change the spectrum of
our Hamiltonian by an overall additive constant C(R).
Energy differences, of course, will not depend on C(R).

Energy eigenvalues of (2.17), taking into account the
shift C(R), have the functional form

Ir(u. pis. g)

L4 CR)

En(, g 9, R) = (4.1)

where k denotes the quantum numbers (spin, isospin etc.)
assigned to the corresponding eigenstates, and n labels all
the eigenstates with the same quantum numbers.

Let us look at the eigenvalues corresponding to four
particles labeled by (k;, n;),i = 1, ..., 4. We can define two
ratios of the energy differences, which has functional
dependence only on y, yg, g:

= fr

Rios(p: pyr 9) = ;(:71;’ (4.2)
n _f"3
ky _ cky

R423(/‘ﬂ/"s’ g) = ﬁ (43)

We now demand that the two ratios be fixed to their

observed values for all g. In other words, we look for
solutions to the set of equations,
R ps 9) = R?g%, R (us ps 9) = Rﬁgév (4.4)
where R°™ denotes the observed values of the two ratios.
Solving (4.4) gives us two functions u(g) and u,(g). With
this choice of u(g) and p,(g), the ratio of the energy
differences between any two pairs of particles can be
computed. In particular, let us define

ke ko
R.(g)=Li—tr (4.5)
n f"z

where x # 1, 2, 3, 4. We observe that for each x, R.(g)
approaches a well-defined asymptotic value for large g.
These ratios are predictions of our model and listed in
Table III.

Let us now see how to determine the mass differences
themselves. To this end, let us look at a particular energy
difference, say between particles 1 and 2, and substitute the
functions u(g) and p,(g) in its expression:

A512(97 R) = 52 - 515%

_ S (9.1(9)-1(9)) = f12 (9. #(9): 1,(9))
- .

(4.6)

We again demand that for all R, A&, be fixed to AM‘fgs,
the observed value of the mass difference of particles 1 and
2. AM$% is given in terms of a physical unit / (like MeV™").

Then, in terms of x = §, the energy difference is
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n(g) = fii(g)> 1 @)

A& (g.x) = < & X I

The equation

A€p(g.x) = AME (4.8)
implicitly determines the function g¢(x), which in turn
determines u(x) = u(g(x)) and p,(x) = pg(g(x)). We will
refer to (4.4) and (4.8) as mass-matching conditions.

In practice, it is easier to determine x as a function of g:
inverting (4.8), we obtain

#la) = ( m(9) - fé(g)>1. (49)

AESS I

This enables us to express the mass difference of a particle
x and particle 2 in terms of the corresponding mass
difference ratio R :

AEo(9) = Ei(g) — E12(g) = Ru(9)AESS.  (4.10)

Finally, to determine the actual masses of our particles,
we set the asymptotic value of 8?2 to the observed mass of
that particle from experimental data. This amounts to fixing
the value of the additive constant C, which is the only
parameter left in the theory to adjust.

Thus, by choosing the observed masses of four particles
as inputs, we have determined the four functions, namely,
u(x), pg(x), g(x) and C(x). This enables us to predict the
absolute masses of the other particles unambiguously.

V. RESULTS
A. Identification of the particles

Once we have determined the variational Hamiltonian A
of (3.3), we proceed to compute its generalized eigenvalues
and eigenvectors, and identify the quantum numbers
associated with them. Parity is not a good symmetry of
the Hamiltonian due to the cubic term in Hy); and the
fermion curvature term H .. We do note that the expectation
value of the parity operator in any eigenstate does asymp-
tote to £1 in the large g limit, but this value is sensitive to
the variational ansatz. Thus we cannot assign parity
unambiguously in the current level of approximation.

We can, however, make two important qualitative
predictions from our model:

(1) The Hamiltonian is symmetric under charge con-

jugation, which takes M, T, — —-M,,T; and
Q — iy>Q*. Therefore particles and their antipar-
ticles have the same energy. Similarly, the expect-
ation values of various other quantum numbers,
namely, spin, isospin and hypercharge are well
defined for all g, because the corresponding gen-
erators commute with H. This enables us to assign

these quantum numbers to the states in our multip-
lets. As a first qualitative test of our model, we find
that the quantum numbers assigned to the lowest
flavor multiplets, in both the baryonic and mesonic
sector, follow the same mass hierarchy, and exactly
match with the corresponding particles observed in
nature.

(2) Any variational eigenstate is a linear combination of
states with different number of quarks and antiquarks.
Nevertheless, the expectation value of the fermion
number operator N, in such an eigenstate is well
defined. We find that in the large ¢ limit, the
lowest flavor multiplet in the mesonic sector has
(Np) =2.00042 and in the baryonic sector has
(Np) =3.00040. We thus identify them with the
lightest mesons and baryons respectively. We illus-
trate this for the pseudoscalar and vector meson octets
in Fig. 1, and baryon octet and decuplet in Fig. 2.

B. Mass-matching, predictions and error analysis

Following the argument outlined in Sec. IV, we choose
the observed masses of the pion, the p-meson, the A baryon
and the A baryon as inputs and solve (4.4) and (4.8). We
take their experimental masses from the particle data
booklet [31]: m, = 138.04 MeV, m, =775.16 MeV,
my = 1115.16 MeV and m, = 1232.00 MeV. Because
we have taken the masses of the u and d quarks to be
the same, isospin symmetry is exact, and particles in the
same isospin multiplet have equal masses. Thus the
experimental numbers quoted are the average value of
the masses of all particles in the same isospin multiplet.

We first determine the functions u(g) and p,(g) by fixing
two mass-difference ratios to their experimental values:

Ropun (b s> 9) E’;A: jf = 1.534, (5.1)
Y4 T

Ryesliopng) = 2021717, (5
P T

Since (5.1) and (5.2) are nonlinear equations involving
eigenvalues of very large matrices, it is not easy to obtain
analytic solutions. However it is fairly easy to solve them
numerically for a discrete set of values of g. As shown in
Fig. 3, the functions u(g) and p,(g) asymptote to definite
values for large g.

These asymptotic values give the constituent quark
masses in our model, in units of inverse R. The ratio of
the constituent quark masses is independent of the unit
chosen, and is found to be

Ks — 1.26.

; (5.3)

With this choice of scaling functions u(g) and y,(g), the
other mass-difference ratios also asymptote to constant

114020-5



MAHUL PANDEY and SACHINDEO VAIDYA

PHYS. REV. D 101, 114020 (2020)

Na)

+/0

—— KHO/KO
+/0

—— K0 R0

1
S g 3

20 25 30 35

FIG. 1. A plot of (Ny) vs g for the mesons.
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EOI—
N*HH+01-
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E*O/ -

o

20 25 30 35

FIG. 2. A plot of (Ny) vs g for the baryons.

values. We demonstrate this graphically for a few of the
particles in Fig. 4 below.

To determine the actual masses, we use m, =
138.04 MeV and m, =775.16 MeV, and predict the
masses of the other hadrons.

Before we report our predictions, we would like to say a
few words about the choice of input masses and error
analysis. Different sets of input particles lead to slightly
different predictions for the masses of the other particles.

For each input set, we can compute the chi-squared (y?)
value of our predictions, with y* defined as

2 — (A“nm — 1 4ii)bs)2
= v . 5.4
X § M (5.4)

i obs

Here, M},,, and M’ are the predicted and observed masses

of the ith particle respectively. In Table I below, we provide
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FIG. 3. A plot of u and u, vs g.
Ry
1, ——
20} o/
1.8
Z+l—
1.6
14+
— Nucleon (p/N)
0 10 20 30 40 g

FIG. 4. Plot of R, vs g for some particles x. We show the
asymptotic behavior of R, for three of the baryons, namely, the
nucleon, the A° and the = baryon.

a list of typical y? values for various choices of inputs. This
justifies our choice of z, p, A, A as inputs because it
minimizes y?.

In the above discussion, we have set the values of our
input masses to their exact quoted observed values.
However, in principle, there are two important sources
of mismatch of our model with nature. One source of
mismatch is of course the truncation of our variational

TABLE L. A list of input sets giving lowest few values of y2.
o p, A\, A 95.38
Inputs 7> MeV)
T,p, 25 A 104.31
o p, B, A 107.29
T,p, 25 A 109.49
7, p, Q, A 126.09
T, p, A, B 132.17
p. K" A A 191.13

ansatz at the level of four-boson and five-fermion states.
The other source of mismatch lies in the fact that the matrix
model is an approximation of the full QCD. These two
sources of mismatch effectively induce error bars in the
input masses, which in turn propagate and give error bars
for our predictions.

Although quantitative error analysis of variational esti-
mates is notoriously difficult, we can make a rough
estimate of the input errors by varying our input set. We
do this in the following way: we choose a larger set of input
particles, namely, 7, p, A, A, Z* and E. Out of this set, we
can make 15 independent choices of 4 inputs, each of
which leads to a slightly different prediction for the mass of
the rest of the particles in this set. This enables us to put
error bars in the masses of our original choice of input
particles, which we summarize in Table II.

With these error bars, the ratio of constituent quark
masses is obtained as

Hs

s — 1260 £ 0.047. (5.5)
u

C. Results

Our results are given in Tables III-V. In Table III, we
report the asymptotic values of the mass difference ratios
R, for all the light mesons and baryons (except the ones
used as inputs) from the matrix model, as well as their
observed values. In Tables IV and V, we present the matrix

TABLE II. A list of input masses with error bars.

Input particle Mass with error bar (MeV)

/0 138.04 +37.88
p*/0 775.16 £ 51.53
A~ 1115.16 £ 21.52
AHH/+/0/- 1232.00 £ 28.18

TABLE III. Mass-difference ratios with error bars for different
mesons and baryons, and their observed values.

Particle (x) R, = % Observed value of R, = Z/:ZZ
K*/K°/K° 0.303 £0.035 0.560

K+ /K9/K*  1.303 £0.035 1.185

n 0.001 £0 0.643

7 0.606 £+ 0.070 1.267

w 1.001 £0 1.011

¢ 1.606 £ 0.070 1.385

p/N 1.318 £0.184 1.256

=0/ 1.924 £ 0.200 1.846

>0 1.621 £0.188 1.655

#(£/0) 2.087 £0.188 2.190

=40/~ 2.390 £0.199 1.958

Q- 2.693 £0.215 2.408

114020-7



MAHUL PANDEY and SACHINDEO VAIDYA

PHYS. REV. D 101, 114020 (2020)

TABLE IV. Comparison of the meson masses in the matrix model with data.

Particle Spin Isospin Matrix model mass (MeV) Observed mass (MeV) % Difference
K*/K°/K° 0 1/2 331.09 4+ 48.06 495.65 —33.2%

n 0 0 138.03 £ 37.88 547.86 —74.8%

7 0 0 524.14 +70.23 957.78 —45.3%
K+ /K0 /K0 1 1/2 968.21 +94.22 893.65 +8.3%

0] 1 0 775.19 +74.33 782.65 —0.9%

¢ 1 0 1161.24 +118.23 1019.46 +13.9%

TABLE V. Comparison of the baryon masses in the matrix model with data.

Particle Spin Isospin Matrix model mass (MeV) Observed mass (MeV) % Difference
p/N 1/2 1/2 977.74 £+ 149.24 938.91 +4.1%
=0/- 1/2 1/2 1363.85 £ 180.69 1314.86 +3.7%
>(+/0) 1/2 0 1170.79 £ 163.05 1193.15 —-1.9%
>x(£/0) 3/2 1 1467.84 £+ 183.46 1384.6 +6.0%
=x0/~ 3/2 1/2 1660.89 £ 202.18 1533.4 +8.3%
Q- 3/2 0 1853.94 £ 223.25 1672.45 +10.8%

model predictions for the light meson and baryon masses
from our model and compare these with the observed
values taken from the particle data booklet [31]. We also
give the percentage error by which our results (central
values) differ from the observed values. Figure 5 gives a
summary of our results.

VI. DISCUSSION

We observe that the matrix model predicts light hadron
masses with fair accuracy, with most masses lying within
20% of their observed values. The predictions for baryon
masses are especially good, with surprisingly small errors.

We do not make a correct prediction for the masses of the
n and 1’ mesons: their values are underestimated by about
300 MeV. The root of this issue lies in the fact that the
matrix model predicts a different quark content for the 5

« Matrix Model Prediction

2000 * Observed Value

1800
__ 1600
>
3 1400
)
% 1200 { *
?
Z 1000 i . *
=

800 ¢

600

. ° t
400
¢
200 s
Kaon n  w K o ¢ Np = 30 70 =00 q
Hadrons

FIG. 5. Matrix model estimates of the light hadron masses

compared with observed values.

and #' mesons from the Standard Model. To elaborate, the
quark model predicts the particles

1 _
= —(uit + dd — 2ss 6.1
s \/6( ) (6.1)
and
I -
m = —=(uit + dd + s5). (6.2)

V3

The 5 and #' mesons are expressed as the linear combi-

nation
(n) (cosep —sinep)<;78>
)  \sinfp cos6p m
where 6p ~ 13.3° is the mixing angle [32]. The mass

eigenstates corresponding to 7,7 in our matrix model,
however, have a different quark content, which is roughly

(6.3)

1 -
mm = —=(utt + dd),
n ﬁ( )

This discrepancy occurs because the matrix model seems
to be insensitive to the effect of the U(1), axial anomaly
[33-35] at the current level of approximation. As stated
in [36,37], if the axial anomaly-induced effective gluon
mass term is too small, the eigenstates of the mass matrix
correspond to hypothetical particles , and 7, which have
the same quark content as 7,,, and 7, respectively
in (6.4), their masses being

(6.4)

’ -
Hym — SS.
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TABLE VI. Comparison of the 7 and #' masses in the matrix
model with the 7, and », masses.

Matrix model  Observed
Particle Spin Isospin mass (MeV) mass (MeV) % Difference

g 0 0 138.03+£37.88 138.04 0.0%

Ny 0 0 524.14£70.23  687.23 -23.7%
M, = m,, (6.5)
Mg = \/2m% —m2, (6.6)

where m, and mg are the masses of the pion and kaon
respectively. Therefore, the masses of the # and #' meson
predicted from the matrix model should really be compared
with the masses of the hypothetical 7, and 7, mesons from
(6.6). This comparison is given in Table VI below.

This is an issue that requires further investigation and for
this reason, we have excluded the # and #' meson in the
calculation of y? in Table I.

At this level of approximation, we have considered
variational states with up to only 4 bosonic oscillators
and 4 fermions. Our use of resources, both computational
and human, has been modest.

Our estimates are expected to improve if we increase the
size of our variational trial set by including states with up to
6 bosonic oscillators and 7 fermions. This larger trial set has
several thousand states and involves computations with
very large matrices. This requires more efficient numerical
codes to be developed for the matrix element computation
as well as enumeration of states, and is the focus of our
future research.

(Na)

50r

45

4.0 |

The next lowest flavor multiplet in the mesonic sector
has (Np) =3.9999, and in the baryonic sector has
(Ng) = 4.9999, as seen from Fig. 6. These are candidates
for light exotic hadrons, i.e., hadrons with more than three
quarks [38]. These are tetraquark and pentaquark states,
with quark content ¢gqgq and gqqqq respectively. Light
tetraquarks were first discussed by Jaffe [39] in the
context of the bag model [40,41], where he suggested
the existence of a tetraquark nonet with mass below 1 GeV,
and proposed this as a model for the light scalar mesons.
The matrix model prediction for the masses of these
particles are about 2.5 GeV. This estimate is expected to
improve considerably when we include more states in the
trial set.

APPENDIX: VARIATIONAL STATES
FOR THE LIGHT HADRONS

1. Fermionic states

We denote the fermion vacuum by |0). Fermionic states
can be created by acting on |0) successively by the
fermion or the antifermion creation operator b' and d'
(with the indices suppressed for convenience). A fermionic
state can be assigned the quantum numbers (f,s,c),
denoting its representation under flavor SU(3), spin and
representation under color SU(3) respectively. A quark
state, b'|0z), is denoted by the quantum numbers (3,1, 3)
and an antiquark, d'|07) by (3,1.3).

A “mesonic” state is created by acting on |0) by a pair
of quark and antiquark creation operator. Taking a tensor
product of the representations gives us all possible ways
such a state can transform;

Next lowest baryon octet

Next lowest meson octet

351

30r

25

5 10 15

20 25 30 35

FIG. 6. A plot of (Ny) vs g for the next lowest meson and baryon octet.
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1 =1

phe)o st

This gives the eight possible mesonic states in the ansatz,
transforming as (1,0,1), (1,1,1), (1,0,8), (1,1,8),
(8,0,1), (8,1,1), (8,0,8) and (8,1, 8) respectively.

The interaction term of the Hamiltonian connects a
mesonic state to a state with a pair of mesons. Such states
can be created by applying on the vacuum two successive

meson creation operators. A tensor product decomposition
of two mesonic representations gives

1 S 1 2\]2
(#32) 0 (323)
—801,100801)0801,100,81)

=27010010048021,20316020,27
®10D10D48D21).

3) =801.190801). (Al

(A2)

Since the interaction term is a flavor singlet, only those
states contribute to a given meson mass whose flavor
quantum number is the same as the corresponding meson
state. So, we are only interested in the states with f =1
or 8.

The above counting actually gives more states in a
particular representation than are actually in the ansatz. For
example, looking at (A2), there seem to be 16 possible
states transforming as (8,0, 1). However, only 4 of them
are linearly independent.

A “baryonic” state is created by acting on |0) by three
quark creation operators. Taking a tensor product of three
quark representations, we find

1 1 1
@@9®@?9®@@9
<10@28®1 ®2= 10@28@1). (A3)

These states are also organized according to their flavor
quantum number. In particular, we organize the states into a
baryon decuplet and a baryon octet.

The interaction term H;, in (2.21) connects a baryonic
state to a state created by applying on |0x) a baryon and a
meson creation operator successively. Again, a naive
counting by taking the tensor product of representations
gives many more states than are linearly independent. |

A list of all the linearly independent fermionic states
used to create the variational ansatz for light hadrons is
given below. Fermionic states are organized according to
their quantum numbers (f, s, ¢). According to the quark
content, the states are referred to as mesonic, di-mesonic,
baryonic and meson-baryon states. Generators of rotation

are denoted by 7; = %6[ and generators of color by

T,= %Aa. Also, generators of the flavor symmetry are
denoted by T = .

For notational convenience, spin-2 states are written
with two free adjoint indices 7, j. A spin-2 state can be
constructed from a state [y,;) with two free adjoint spin
indices as

2 1 !
i) =3 (i) + i) = 38ulwe). - (A4)

Similarly, a state transforming in the representation 27, 10

or 10 under color is also written with two free adjoint
tensors. The states with definite color can be constructed as
follows:

1 3 1
|WE¢2177)> :§(|Wab> + |l//ba>) _g(dcde|l//de>)dabc _géab|y/cc>9
(A5)
1 1
W) =5 (Var) = b)) =3 Feaclviae) fave- - (AG)

Note that since the 10 and 10 representations are conjugate
to each other and orthogonal, they can be combined into
a20=10® 10.

Meson and di-meson states are organized under flavor
SU(3) as an octet or a singlet.

a. Meson states

(1) (1,0.1): b}, (ec)},4[0F)

2 (1.1,1): b}aA( )a/}(ec);ﬂA‘OF>

3) (1,0.8): b}aA( )AB(EC);aB|OF>

@) (1,1,8): b}y (7:)ap(Ta) as () f5510F)

(6)
(M
®)

( F)fg faA< l)aﬂ(ec>;ﬁA|0F>
8,0,8): (7%) faA( )AB(ec)gaB|0F>
(Zr)

(
(
(
(
() (8,0,1): (ﬂ)fqb}aA(ec);aAmF)
(
( p
( fb}aA(Tl)( (T )AB(ec)gﬂB|0F>

b. Di-meson states

() (1,0, 1) .
(@) b fla, (€c)f1alA1 fzazAz( );2{12A2|0F>
(b) b fla] 4, (T)ayp, (ec)flﬂlAlbfza,Az( )(zz/}z(ec)}2ﬁ2A2|OF>
(c) lea] (T, )A B, (ec); ]alBlb;zazAz(T )Asz(ec) 2(17,42|()F>
(d) bfla, (z )(11/}1( ) \B (ec)fl/)’,B,bfzazAz( )a2ﬁ2(Ta)Asz(ec);z/}sz|0F>
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2) (1, 1, 1):
b tg i

@ b flalAl (Ti>a1ﬂ1 (ec)flﬂlAl bfzazAz (EC)fzazAz |OF>

Eb) bfl‘;] 1 (Tl)alﬂl (Ta)AlBl (ec);lﬁ]Bl b}zazf\z (Ta)Asz (ec);zazf“z |OF>
3 (1,2,1

tg ;

(@) b S A, ( >0‘1/31 (ec)flﬂlAl bfz?zAz (TJ')Tazﬁz <€C)fzﬁ2A2 |OF> ;

(b) bf|(11 A (Ti)alﬂl <T“)A131 (ec)fl/f]B] bfz(lez <Tj)azﬂz <Ta)Asz (ec)fzﬂzAz |0F>
4) (1,0,8
( ) ga) b}m)n 1 (66)}1051141 b;zazAz (Ta)Asz (66);205232 ‘OF>

(b) dabef|a] A (Tb)A]B] (ec);]alBl b;zazAz (TC)A232 (ec);zasz |OF>

© bflal 1 ( l)‘llﬁ| (ec)}lﬂlAl b}zazf\z (Ti)(lz/32 (Ta)Asz (60)}2ﬂ232 |0F>
) g) ldaé;;bflal . (z i)alﬂ] (Tb)AlBl (€C>;lﬂ131 b}zazAz (Ti)azﬁz <TC)AZBZ (50);2;3232 0F)

(a) bj;lal . (7)) ayp, (Ta) a5, <€C)f1ﬁ]Blbf2a2A2(ec)fzazAz 0F)

(b) bf|(11 1( )a1ﬂ1< 2 >

(c) fahc Flo0A, (7i)q B (Tb)A B, (ec)flﬂlBlb}zazAz(T )Asz(ec) fra2A, 0F)

(d) dﬂbcbfla] A (z )alﬂ] (Tb)A B, (€C>flﬂ131 bfzazAz(T )AZBZ (ec)fzazAz 0F)

() eijkb.flalf\] (% /)alﬂl (Ta)A131 (ec)flﬁlBl bfzfleg (Tk)azﬂz (ec)fzﬁzf\z 10F)

Eﬂ ei.jk{abcb}la]Al (Tj)a,/j, (Th)AlBI (60)}1/;131 b}zazAz (Tk)az/}z (TC)AZBZ (€C),Tf2/3232 10F)
6) (1,2,8): ,

(@) b;lalAl (Ti)alﬂl (Ta)AlBl (ec);lﬁ]Bl b;zazf\z (Tj)%ﬂz (ec)}zﬁzf\z |OF>

(b) dabcb;la]Al (Ti)alﬁ] (Th)AlBl (GC);I/JIBI bjfzale2 (Tj)azﬁz (Tc)Asz (60)}2/32,42 0F)
() (1.0.27 & 20) |

(@) bfl(ll I(Ta)AlBl (ec)]'(lalBl b;z(lez (Tb)Asz (ec)j”z(lsz 0F) .

(b) bfla,Al (z i)a,ﬁ, (Ta)AlBl (60);1/)',/4, b;ZaZAZ (Ti)az/}2<Tb)A,Bz (60)}2/3232 10F)
(8) (1, 1,27 @ 20)2

(a) bjﬂa] 1( ')alﬂl <T )AlBl (ec);l/j]Bl b}zazAz <Tb)Asz (ec).;zflsz |OF>

?i) ;llzkb lalg(l)g )a‘/} (T“)A|B| (ec)}lﬂlm b}zazAz (Tk)(lzﬂz (Tb)Ale (ec)}zﬂsz |0F>
©) 7@

(a) b;;lalAl (Ti)alﬂl <T“)A131 (ec).;lﬂ]A] b.;z(lez (Tj)azﬂz (Tb)Ale (ec);zﬂsz |0F>

(10) (8,0,1):

ec)flﬁlAl famAs (T )AZBZ( )fz(lsz‘ F

(a) ;lalAl(TF)flg, (ec);a]mb}zaqu (ec )}2a2A7| 0r)

(b) bflal l(ﬂ)flgl (Tl)alﬂl (ec)glﬁ AlbfzazAz( )azﬂz(ec);'zﬁzA2’0F>

(© bflal 1(7})f|g] (Tu)AlB (€c)_(L1alB|bfzazAz(Ta)Asz(ec)}2a2A2|OF>

(d) b}lalAl (TF)flg1 (Tt)alﬁl (Ta>AlBl (50);]/3131 b;'zazAz (Ti)azﬂz (Ta)Asz (50);2/3232 0F)
(11 (8,1,1):

(a) b;la,Al (Tr) f,9,(Ti) ey, (€C );/JIAI bjfzale2 (ec);2a2A2|OF>

(b) b}la]Al (TF)flg1 (Tt)alﬁl (Ta>AlBl (€C);ﬁ131 b}zazAz (Ta)A232 <€C);za2A2 0F)

(©) bj‘lalAl (Tr) s, (ec);alAl b_;r”zazAz (%) arp (ec);z/izAz 10F)

(d) bfla, A, (%)flg] (Ta)AlBl (60);,(1131 bjfzale2 (Ti)azﬁz(Ta)Asz(ec)j‘zﬂzAz 0F)
(12) (8,2, 1)

(a) b |(11 l(ﬂ)flgl (T">111/31 (ec).jhmAlb}z(lez( )azﬁz(ec)fzﬂzAz|OF>

(b) flalAl (ﬂ)flq] (Ti)a]ﬂl (Ta)A|B| ( )g,[ilBl bfzazAz( ])az/}z (Ta)Asz (€c);2/32A2 |0F>
(13) (8,0,8):

(a) ;:Mll l(g})flg (T )A 1By (60);10!131 b;zazAz (ec);zazA2|OF>
(b) bflal 1( ) ( )a]/} (T, )A B, (60);15131 b}zazAz(Ti)az/}z(ec)}zﬂzAz|0F>

Tr
(© bflal 1(TF) (ec )ql(z]A|b}2a2A2( )A282(€C>}2a282|0F>

114020-11



MAHUL PANDEY and SACHINDEO VAIDYA

PHYS. REV. D 101, 114020 (2020)

n
(d) bflal 1( ) Sio (T’)alﬁl <€C>91ﬂ1A1bfzazAz( )02ﬁ2<T‘1)A232(€C)f2ﬂ232|0F>

(e) fabc /1!11 (ﬂ)flg (Th)a \B, (ec);la]Blb;'zazAz(Tc)Azsz(GC);'zazBJOﬁ

() dabL fla] (ﬂ)flql(Tb)A B (ec);alBlb;zazAz(T )Asz(ec);zasz|0F>

(@) faveh] f]al (ﬂ)flgl( Dayp, (o), (€C)g1ﬂ]B]bf2a2A2( )azﬂz(Tc)Asz(ec)}zﬂsz‘OF>

(0) dpeb) franA (’Z;:)flgl (), (Tb) a3, (ec)glﬁlBlbfzazAz( )a2ﬂz(Tc)AZBZ(€C)}ZﬁZBZ|0F>
(14) (8,1,8):

(a) lea] (7F) .0, (%), (Ta) a, B, (ec)g]ﬂlBl zazAz(GC) L, |OF)

(b) bf,a] (Zf)flgl( Ti)a af, (GC)(,,/;lAI fzazAz( )Asz(ec)fzaszl F)

(c) b flal (Zf)m,( a)AlBl(ec);LIaIBlbfza,Az( )(zz/}z(ec)f2ﬂ2A2|0F>

(d) b;la, (TF) fia: (ec):rha]A,bj"zaqu( )az/}2< )Asz(ec)fzﬂszl F)

(e) fabc FraA (%)flgl( )alﬂl(Tb)AB (€C>q]/} B, f2a2A2< )Asz(ec)f2a2A2| F)

() duhcb}la] (%)flql (Tl)al/i| (Th)A,B, (ec)glﬂlBl 2ale( )AZBQ(GC) 2a2A2| 0F)

(&) fabe j’]al (T¢) 4,4, (Th) a, 5, (€C );a]B] fzazAz( Daypy (Te)ayn 2(60) oty |OF)

(h) dabc f A, (Zf)flg1 Tb)AlB (GC);]aIBI fzazA (t )azﬂz( )A2 2(50)/2ﬁ2A2| F)

(1) eijkbflalA] (Z?)flg] (Tj)a|ﬁ| (T, )A B, (ec)gl/} Blb ZazAz( )azﬁz(ec);r‘z/;’7A2| F)

g) €l]kb}lal 1(TF) fig ](Tj)al/il (€C>g]ﬂ1A1 f2a2A2<Tk)a2/}2( )Asz(ec)f2ﬂ282| OF)

(k) €kaabc FraA l(ﬂ)flgl (T])al (Tb)AB (ec)ql/} B, 2(12A2( k)a (T )Az 2(€C)f2/1232|0F>

Eg Zezgc)dabcbf,alm(']})f,gl (T e, (Tv)a,B, (€C)q1/; B fzazAz( Ty (T )Asz(ec)fzp’sz| F)
(15) (8,2,8):

(a) jﬂa]Al (ﬂ)flg] (Ti)a]ﬂl (Ta)AlBl (GC)Z,/JIBI b}2(12A7( )a2ﬂ2 (ec)fz/szz 0F)

() bflal 1(7;')f|g] (Ti)a]ﬂl (ec);ﬂlAlb}ZazAz( )az/}z(T )AZBZ (ec)f2ﬂ232|OF>

(©) fabc f]al l<ﬂ)flgl( t)alﬂ](Tb)AB (ec)g]ﬂ]B]bfzazAz( j)azﬂz( ) 2(60)}2ﬂ2A2|0F>
06 E;l) (;Za;;bflazlol)(lz})flgl (Tl)alﬂ (Tb)A B, (ec)qlﬁlBl bf2a2A2( )azﬁ'z( )AZBZ(EC);'2ﬁ2A2|OF>

©®

(a) bf1a1 1( Tr) 0/ (Ta) a5, (€C>;1a131b;'zazAz(Tb)Asz<€C)j’zasz‘OF>
. ?;)lle? 1(’271(;;,‘15;1 (Ti)alﬂl(Ta)AlBl(GC);lﬁlAlb;'zazAz(Ti)azﬁz(Tb)AlBQ(ec);zﬁz&|OF>
(17) (8,1,27 &

(a) b}lal (Tp)f,g (2 i)alﬁl(Ta>AlBl(GC);ﬁlBlb}zazAz(Tb)Asz<€C);2a282|0F>

Eb) €Ukb;,al () F)flg] (Tj)al[il(Ta)AlB] (ec);/}’,Alb;zazAz(Tk)azﬁz(Tb)Ale(ec);zﬂsz|0F>
(18) (8,2,27 & 20

T T T
@) bfla] 1(7})f191 (Ti)01/51<T“>A131(ec)mﬁlA]bfzazAz<Tj)0'2/32(Tb)Ale(ec)fzﬂsz|0F>
Baryon and baryon-meson states are organized into an octet and a decuplet under flavor SU(3). We define

(Tr) tgn = (Tr) 7, €190 o9 h=1,....,3 and F =1

,...8. We also define the tensor A?’g_h, f,g.h=1,..,

3 and p =

., 10 such that A is totally symmetric in f, g, & and generates the flavor decuplet. States that carry both adjoint spin

indices i, J, ...

and a fundamental spin index y can be separated into different spin components using suitable projectors;

however, it is convenient to express them like this before combining them with gluon wave functions. It is also convenient to

define (£4)pc = €apc for fundamental indices A, B, C =1 to 3.

c. Baryon states

ey (8,%’1) (TF)fgh(gA)Bce ﬁbfaAbq/}BbhyC|OF>

2 (&1@%’1) (TF)fqh(gA)BC(T e)af)’bfaAb;/;’B hyC|OF>
3) (87%78) (TF)fgh(gA a)BCeaﬂbfaAbgﬂBbhyC|0F>

4) (8,1®%’8) (TF)fgh(gA o) (7 €)aﬁbfaAbqﬁBbhyC|OF>
6 10,1® % 1): fgh(gA)BC(T e)aﬁbfaAbgﬁBbhyC|0F>

(6) (10,%,8) fgh(gA ) BCEa ﬂbjaAbgﬁBbhyC|0F>
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(7 (10, 1® 8): fgh(gA )BC(Tie)aﬂb}aAbgﬂBbhyC|0F>
Note: (10,1.1) does not exist due to symmetry.

d. Baryon-meson states

(1) (8,3.1):

@ (T )fgh(gA)Bce(lﬁbfaAbqﬂBbhbef2{12A2 (ec)fzazAz 10F)
) (TF) tgn(En)pe(z; €)aibfaAbgﬂBb;be}za,Az( )az/}z(ec)fzﬁ,A2|OF>

©) (Tr)pn(Ea a)BCeaﬂbfaAbgﬁBbhbejzazAa( )A232(€C)f2a2A2|OF>

d (T )fg (Ea a)BC(Tie)aﬁbfaAbZﬂBbeCb;ﬂzzAz( )az/jz(Ta)Asz(ec);z/isz|0F>
@ (8.1®1.1): .

(a) (TF)fgh(gA)BC(T €>aﬂbjaAb;ﬁBb;lbe}2a2Ao( );’2a2A2|OF>
() (Tr) pgn(Ea )Bcea/}bfaAbq/}BbebezazAz( ), (T )Asz(ec)j‘zﬂsz|0F>
©) (TF) tgn(EaT o) pe(Tie )/)’bfaAbgﬂBbhbefzazAz( ) a5, (€ C)} w,8,|0F)
(d) ¢ k(TF)fgh(gA)Bc(T e)aﬂbfaAb;ﬂBbebezazAz( )azﬂz( );2ﬁ2A2|OF>
(e) el]k(TF)fgh(gA )Bc(f €)aﬁbfaAbg/)’BbhbefzazAz (Tk)azﬁz(Ta)Asz(ec);zp’sz|OF>

) (Tr) g (gA)Bceaﬂb}aAbgﬂBb;befzazAz(Tl)az/iz(ec)fzﬂsz|0F>
3 8.2®;3.1):
(@) (T )fgh(gA)BC(T €) ﬂbfaAbZ/)’Bb;zbe;zazAz( )azﬂz(ec);z/}ZA2|OF>
@ Eg) (TsF))fqh(gA )Bc(fze)aﬁbfaAbgﬂBbhycbfzazAz( )az/}z(Ta)Asz(ec);zﬂ2A2|OF>
(@) Z(TF)fqh (gA)Bcea/ibfaAbgﬂBb;ycb;zazA, (Ta)a,m, (€C>;2a232 10F)
() (Tr)pgn(EaT )Bceaﬂb/aAb;ﬁBbeCb;zazAz( C);2a2A2|OF>
© ( F)fgh(gA)BC(Tie)aﬂbfaAbZﬂBb;be;zazAz( )azﬁz(Tu)Asz(ec)}zﬂsz|0F>
(d) (TF)f a( ATa)Bc(fie)aﬁbfaAbgﬂBbhycb zazAz( )(12[)’2 (ec)}2ﬂ2A2|0F>
©) fapel( F)fgh(SATb>BC€aﬂbjaAbgﬁBb;rzbe;onAz( )A232(€C>;'2a282|OF>
() dupe(TE) pn(Ea )
(@ fave(TE)pgn(Ea
() dupe(TE) pgn(Ea
5) 8,1®1.8):
@) (Tr) gn(EaTa)pe(Tie )aﬂb}aAb;ﬂBbebezazAz(ec)}zazAz|0F>
(b) (TF)fgh(gA)Bc(T e)aﬂbfaAb;ﬂBb;zbe}zazAz( )AZBZ(GC);zasz‘OF>
(©) (T F)fgh( )BceafbfaAbq/}BbebezazAz( )azﬁQ(ec);z/}2A2|OF>
)

Th)Bc€a/1bfaAbgﬂBbhycbf2a2A2 (Te)a »B, (60);2(1232 0F
Ty)pc(zi )/J’bfaAb;ﬂBb:zyC fzazAz( )a2ﬂ7( )A232(€C>;2/3232|0F>
Ty) (z

T;€
BC (Tie)aﬂb;aAbgﬂBbhbe franAy )azﬂz(T )Asz(ec)f2ﬂ232|OF>

) (Tr fg W(Ea)p CeaﬂbfaAbgﬂBb;yC fzazAz(T )azﬂz( )Asz (ec)fzﬂsz‘OF>

©) fapel( F)fgh(gATb)BC(Tle)aﬂbfaAbg/ijhbefzazAz( )AZBZ(EC);'2a2A2|OF>

() dabc(TF)fgh(gATh)BC(Tie)a/}b;aAbgﬁBbhbef2a2A2( ) 32(60);2a2A2|0F>

e f abC(TF)fgh (EATb)BCGGﬂb;aAbgﬂBbhbe fzazAz( )(12[)’2(TC>A232(€C )}zﬂzAz 0F)

(h) dabc(TF)fgh(EATb)BceaﬂbjaAbgﬁBb;lbe}QazAz( )azﬂz(Tc)Asz(ec)}zﬂzAz|OF>

(@) €ii(Tr) pgn(Ea )BC(Tje)aﬁbfaAb;/iBb:zbefzazAz(Tk)azﬁz(ec);zp’zAz|OF>

G €ijk<TF)fqh(SA)BC(Tje)a/}b}aAbgﬂBbhbefzazAz( )azﬂz(Ta)Asz(ec)}zﬂsz|OF>

(k) eijkfabc(TF)fgh(gATb)BC(Tje)aﬂbfaAb;ﬂBb;rzbefzazAz (T, (Te) a,, (50);2/;232 0r)

@ eijkduhc(TF)fgh(SATh)BC(Tje)aﬂb;aAbq/)’BbhbefzmAz(Tk)azﬂz(Tc)Asz(ec);zﬂsz|OF>
©) (82®3.8):

(a) (TF)fqh(gA a)pc(zi€ )rx/)’bfaAbgﬂBbhbefzazAz(T]>az/}2 (ec) f2ﬂ2A2|0F>

(b) (TF)fgh(gA)BC(T €>aﬂbjaAb;ﬁBb}'lbe.r'2a2A2( /)a2ﬁ2<Ta>A232( )f'2ﬂ232|0F>

114020-13



MAHUL PANDEY and SACHINDEO VAIDYA PHYS. REV. D 101, 114020 (2020)

(©) fave(TF) rgn(EaTy) pe(Tie )aﬂb}aA bgﬂBbhbe fzazAz (1) ayp, (Te) i, (€C )}zﬁzAz 0F)

(@) dape(TrE) pn(EaTs) e (Tie)aﬂb;(m bgﬁBbhbefzazAz (T ey (Te) a8, (ec);zﬁm 10F)
(7) (8.3.27 @ 20):

(a) (TF)fgh(gA a)Bceaﬂb;aAbg/}BbhbefzazAz( b)Asz(ec);zasz|0F>

(0) (TF) rgn(EaT )BC(Tie)aﬂbfaAb;ﬂBbhbefzazAz(Ti)az/iz(Tb)Ale(ec);zﬂsz|0F>
®) (8,1®1,27@20): |

(a) (TF)fgh(gA )pc(Ti e)aﬂbfaAbg/}BbhbefzazAz(Tb)A282(ec);"zasz|OF>

() (Tr) pgn(Ea a)Bce(lﬁbfaAbj}[}’BbhbefzazAz( )az/jz(Th)Asz(ec)}z/)‘sz|0F>

() €z]k<TF)fgh<5A o)B C(Tj )aﬂbfaAb;ﬁBbhbefzazAz( )azﬂz(Tb)Ale(€C>;2ﬂsz|0F>
© 8.2®1.27®20):

(a) (TF)fgh(gA a)pc(Ti€) ﬂbfaAbq/}BbhbefzazAz( )a2ﬂ2(Tb)Ale(ec);z[isz|0F>
(10) (1 0,%,1)

(a) Afgh(gA)BC(T €>a3bfaAb;ﬂBbzycb}2a2A2( ) arp (ec)}2ﬂ2A2|0F>

(b) A%, (Ex a)BCeaﬁbfaAbqﬂBbhbef2a2A2(Ta)Az&(ec);‘zazAz|OF>

(©) A?gh(gA a)BC(Tig)a/ib;aAbgﬂBbhbefzazAz( )azﬂz(Ta)Asz(ec);zﬂsz|OF>
(11) (10, 1®; 1):

(a) Afgh(5 )c(Ti e)aﬂbfaAbgﬁBb;rlbe;zazAz(EC);ZaQAZ‘0F>

(b) Afgh( )BCeaf)’bfaAbgﬁBbhbefmzAz( )(xzﬁz(T )AZBZ(EC);Z/izBZ|0F>

(©) Afgh( Ty)pc(zi €)aﬁbfaAb;ﬂBbzyc f2a2A2< >A232(€C>}2azBZ|OF>

(d) elequh(gA)BC(Tje)aﬂbfaAbqﬁBbhbef2{12A2 (Tk)aZﬁz(ec)fz/izAz 10F)

(e) eukAfgh(gATa)BC(Tje)a/fbfaAbgﬁBbhbefzazAz(T )az/jz( )AZBZ<€C);2ﬁZBZ|OF>
(12) (10,2®1.1):

4
(a) Afgh( A)pc(Ti €>aﬂbfaAb;ﬂBb;1bef2a,A2( j)azﬂz (ec)f2ﬂ2A2|OF>

a3) Eb) A )(5 )BC(Tle)aﬁbfaAbg/}BbhbefzazAz(Tj)azﬂz(Ta)AzBZ(ec);zﬁzAZ‘0F>
(a) A h(gAT )Bceaﬁb;aAbT/}Bb:LbeTzazAz(ec)TzazAz|0F>
(b) A (5A) (Tie)a[)’b}aA gﬁBbIIzbefzazAz( )az/}z(Ta)Asz(ec)}zﬂsz|0F>
(© Afgh( T4)pe(ti €)aﬁbfaAbgﬂBbhbef2a2Az< )azﬂz(ec);zﬁ2A2|0F>

() fapcAf rgn(EaT) pce ﬁbfaAbgﬁBbhbefzmAz( )AZBZ(GC)fZ%BJOH
(©) dabLAfg (€ )Bce(lﬁbfaAbg/;’Bb;zbekzazAz( ¢)a,B, (ec), 20:232|0F>
() FabeDfgn(EaTp)pc (T €>aﬂbfaAbgﬂBbIlyC f,azAz(T )azﬁ,(TC)AZBZ<€C>f2ﬁzBZ|0F>
(€9) dabcAfgh(gA Th)pc (Tle)a/ibqub;;/}Bb;rzbefzazAz( %) aypy (Te)ay5, (60),;2/;232|0F>
(14) (10,1®1.8):
(a) Afgh( To)pc(zi €)(1/ib}aAb;ﬂBbLbe}zazA, (GC)}Z%AJIOH
(b) Afgh(gA)BC(T €) ﬂbfaAbgﬂBbhbefzazAz( )A232 (SC)}2a232|0F>
(c) Afgh( )BCeaﬁbfaAbgﬁBbhbef2a2A2( )azﬂz(ec);z/jzA2|0F>
@) fapeBfg(EaTs) (i G)aﬁb;aAbgﬂBbeCb i, (Te )AZBZ(GC)}2a2A2|OF>
(©) dupeNsyy (EaT
) FapeAgn(EaTy
(&) dupeN;y, (E4T
(h) ez]kAfgh<gA)BC 7j )aﬂbfaAbgﬁBb;be}qazAz (Tk)azﬂz(ec)}2ﬂ2A2|OF>
(1) ekaAfgh(gA)BC(Tje)aﬂb;(mbqﬂBbhbef2(12A2( )a2ﬂ2<Ta)A232(€C);2ﬁ232 0F)
() €ijif abe Ay (gATh)BC(Tje)a}bfaAb;ﬂBbhbef,azAz (%) ap,(Tc)a,, (ec)j;zﬂsz 0F)
(k) €;jxdape Ay, (EaTh)pe(T5€ )aﬂb}aA bgﬁBbhbe }zaon (%) arp, (Te) a3, (ec);zﬂQBQ 0F)

T T i T
pe(Ti €)aﬂbfaA bgﬂBbhbef2a2A2 (T )A232 (ec)f2a2A2 0F)
T T T
BCeaﬁbfaA bq[)’Bbhbe fzazAz (z )az/jz (TC)AZBZ (ec )fZ/)’ZAZ 0F)
+ +
BC aﬂbfaA bgﬂBbhbef2a2A2 (z l>a2ﬁ2 (TC)AZBZ (ec)fz/}zAz |0F)

A~ — — ~—
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(15) (10,2 ® %,8):
(a) A gh(gA o) (7 €)ag faAb;ﬂ§b;;y%'bf2a2Az
(b) Afgh(gA)BC(Tz )a/ibfaAbgﬂBbhbe FranAs j s

H

(%) €0 01
a)Asz (€C fa$2By 0F>

3
(©) fapcA fgh(gATb)BC(T e)aﬂbfaAbqﬁBbhyC FacrA, (Tj)azﬁz(Tc)Asz(ec)fzﬁzAz|0F>

(d) dape D}y, (EaT ) pel(Ti e)aibfaAbgﬂBbelbe}zazAz
(16) (10.3,27920):
(a) Afgh( To)p Ceaﬂb}aAb;ﬁBbhbe}zazAz
(b) quh(
(10,1 ®2,27®20)
(@) Afgh(gA
(b) A fgh( )BCeaﬂb faAbgﬂBbh}/Cb fzazAz
(c) eljkAfgh(gA
(10, 2®;,27ea20)
(a) A/;gh(

(17)
a)pc(Ti €)aﬁbfaA bgﬂBbf}zbe}zaon

(18)
T,)pc(ti €)aﬁbfaAbJﬂBbhbef2a2A2

(T./)(lzﬁz (T, )Asz (ec)}zﬂzAz 10F)

(Tb)Asz (60);2(1232 0F)
T.)pc(Tie )aﬁbfaA b g/}BbZzbefzazAz (Ti)azﬁz (Ty )AIBZ (ec )_}2/1232 0F)

( b)Asz(ec)}zasz|0F>
(z )azﬂz(Tb)Ao&(ec);zﬂzB,|0F>
)BC(T e)aﬂbf'aAbqﬁBbhbef7a2A2 (Tk)azﬂz(Tb)A 32(60)/2p232|0F>

(z )mﬁz(Th)A Bz(ec)fz/}sz|OF>

2. GLUON STATES

As gluon trial wave functions, we choose eigenstates of a
24-dimensional harmonic oscillator, defined in (3.6).
Introducing oscillator creation and annihilation operators,

1
(iniu + Mia)7

A=
V2

(A7)

1 .
—= (=ill;, + M),

V2

we create oscillator eigenstates by successive operations of
A" on the oscillator vacuum |0g). These states can be
organized into real representations of Ad SU(3), formed by
decomposing tensor products of the adjoint representation.

To write gluon states, we define a matrix B whose
elements are oscillator creation operators.

(A8)

Bia = A:‘ra' (A9)
A gluon state with a given number of oscillators can be
expressed as a function of B acting on the oscillator vacuum
|OB> We define (Da)bc = dabc and (Fa)bc Efabc- The
gluon states are organized according to their spin and color.
To make variational estimates of spin-1 mesons and spin—%
baryons, we need the gluon states to have spin up to 3.
Again, for notational convenience, a spin-3 state is written
with three free adjoint indices i, j, k, and the spin-3 state is
obtained from a state ¢, ;) as

2
950 =D =5 D0l bun) ) +1due)) - (A10)
l

where the brackets around the indices (ijk) denote sym-
metrization in i, j, k.
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2

3

“

&)

a. Gluon states

0,1):

(a) |0p)

(b) (Tr BB)[0,)

(C) €zjkfabLBlaB]kac |OB>

(d) (Tr BB”)?|0p)

(e) (TrBBTBBT)|04)

(f) (TrBD,B")(Tr BD,B")|0p)
(1,1):

() B,y(T BD,BT)0,)

(b) € (BDB");;(BF .B"),;,|03)
(2,1):

(a) (BBT)ij|OB>

(b) (TrBBT)(BBT)[j|OB>

(c) (BBTBBT),;|05)

(@) (Tr BD,BT)(BD,B7);05)
(0,8): '

(a) (TrBD,B")|0p)

(b) €;jx(BF B");,(BD.);,|05)

(c) (TrBBT)(Tr BD,B")|0z)

(d) (Tr B"BD,B"B)|05)

(e) (TrBD,B")(B"B),|05)

(f) (TrBD,D,B") (Tr BD,B")|0p)
(1,8):

(a) Bza|OB>

(b) ezjkfabc ijkc|OB>

(C) Bla(TrBBT)|OB>

(d) (BB"B),,|05)

() Tr (BDBT)(BD.),,|05)
(f) Tr(BD.B")(BF.),,|0p)
(2 ejklfhch;kacBldea|OB>
(h) €j1;(BB" )ij (BF B )k1|OB>

(i) €(BD, D,B D) (BF,,B )i2|08)
() €u(BF.DyB )J(BFb ")1a|08)
(k) €ju(BF(BT) ;(Tr (BB")|0p)
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@ €ijk<TrBDbBT)Bjcha|OB>

(m) ey (Tr BD,BT)(BF,D,B" ) ;|0p)

(n) €, (Tr BD,B")(BF,F B )]k|OB>
©) (2.8):

(@) (BD,B");;|0p)

(b) ezlm(BB )]lea|OB>

(C) ellm(BF BT) ( )ma|03>

(d) ellm(BF B )I(BF )mu|03>

(e) (TrBD,, )B B]h|OB>

(f) (BB");(Tr BD,B")|05)

(g) (TrBB )(BDaBT)ij|OB>

(h) (BB"BD,B");;|0p)

(i) (BB'BF,B"); 1108)

() (TrBF,F,B )(BD,,BT) 105)

(k) (Tr BD,D,B")(BF,B");;|05)

() (TrBD,F, BT)(BFhBT) 1108)

(m) (Tr BD,B")(BD,D,B ),,|03>

(n) (Tr BD,B")(BD,F ,B7),/|0)
(©) (TrBD,BT)(BF,D,B7),0y)
(p) (Tr BD,B")(BF,F,B")]05)

(7 (0,27 & 20):

(a) (B"B),|0p)

(b) €;jx(BF,B");iB;|05)

(c) (TrBTB)(BTB)ab|OB>

(d) (B"BB"B),,|05)

(C) (TrBTBDC)(BTBDc)ab|OB>

(f) (TrB"BD.)(B"BF,),|0p)
®) (1,27 @ 20):

(@) €ijxBjaBis|0s)

(b) (Tr BD,B")B;,|05)

() (BF,B"B);,|0p)

(d) (BD,B"B),;;|05)

(e) 611/1k1(BF BT)tljl(BD )kla 1b|OB>
f) etjk(TrBB )BjaBkb|OB>
(®) €;jiBjo(BB" B);,|0p)
(h) e, (Tr BD.B")(BD, )jaBis|0p)
(i) €;x(BD,);,(BD, BTB)kb|OB>
G €ljk(TrBD BT)(BF) «Biv|0B)
(k) €ljk(BF BT)]k(BTBD )ab|OB>
©) (2,27 @ 20):
(a) BzaB]b|OB>
(b) €tlm(BF B )lm jblOB>
(C) €,1m(BD B )lm jblOB>
(d) (TI'BB )BtaB]b|OB>
(e) (BB);:(B"B) ,|0p)
D (BBTB),B,0,)
(g) (Tr BDB")(BD.,),,B 5 |05)
( ) <BD BT) %(BTBD )ab|OB>
(1) (Tr BD B")(BF.);,B,|0p)
) (BD.B"B),,(BF,);|05)
) (8r.87), (8D, s

(10) (3,1):
(@) dupeBiaBjpBic|Op)

(11) (3,8)2
(@) (BB");;B4|0p)
(b) ezlm(BB )] (BD B )km|OB>
(C) €tlm(BB> (BFB) |OB>
(d) €llm(BDbBT

)/k(BDhDaBT)lm|OB>
(e) ellm(BDbB )]k(BDhFaBT)jm|OB>
(12) (3 27 & 20)
(@) (BD, BT) Bc|0g)
(b) ellm(BB )lBka mb|OB>
(©) €zzm(BDbB )i1(BDy) ko B |05)
(d) € (BD,B" )] (BFp)aBmy|0)
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