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In quantum chromodynamics (QCD), the role which topologically nontrivial configurations play in
splitting the singlet pseudo-Goldstone meson, the η0, from the octet is familiar. In addition, such
configurations contribute to other processes which violate the axial Uð1ÞA symmetry. While the nature of
topological fluctuations in the vacuum is still unsettled, at temperatures above that for the chiral phase
transition, they can be described by a dilute gas of instantons. We show that instantons of arbitrary
topological charge Q generate anomalous interactions between 2NfjQj quarks, which for Q ¼ 1 make the
η0 heavy. For two flavors we compute an anomalous quartic meson coupling and discuss its implications for
the phenomenology of the chiral phase transition. A dilute instanton gas suggests that for cold, dense
quarks, instantons do not evaporate until very high densities, when the baryon chemical potential is
≳2 GeV.

DOI: 10.1103/PhysRevD.101.114019

I. INTRODUCTIONS

In quantum chromodynamics (QCD), the up, down and
strange quarks are relatively light, and there is an approxi-
mate global flavor symmetry of SUð3ÞL × SUð3ÞR×
Uð1ÞA. When the hadronic vacuum spontaneously breaks
chiral symmetry, a flavor octet of light pseudo-Goldstone
bosons is generated, which are the π, K, and η mesons of
broken SUð3ÞL × SUð3ÞR. When QCD first emerged, it
was a puzzle why there is not an associated ninth pseudo-
Goldstone boson in the flavor singlet channel, the η0, from
the breaking of the axial Uð1ÞA symmetry.
This occurs because while classically there is an axial

Uð1ÞA symmetry, it is not valid quantum mechanically
because of an anomaly [1]. There are topologically non-
trivial fluctuations which violate the Uð1ÞA symmetry [2]
and make the η0 heavy [3]. Classically these configurations
are instantons: these have a topological winding number
equal to an integer Q, and an (Euclidean) action equal
to 8π2jQj=g2, where g is the coupling constant of QCD
[4–39]. Instantons split the singlet η0 from the octet of
pseudo-Goldstone bosons and also generate the θ param-
eter of QCD [5].
There are several open questions regarding the nature of

topological fluctuations in the QCD vacuum. In absence of

a large energy scale to cut off the size of the instantons,
their fluctuations on any length scale become relevant, and
the integration over their contribution blows up. This is
cured nonperturbatively through confinement, where dense
topologically nontrivial fluctuations may form an instanton
liquid [16–18]. Furthermore, it is expected that QCD
behaves smoothly as the number of colors, Nc, goes to
infinity [40,41]. In this limit, the contribution of a single
instanton vanishes exponentially, while current algebra can
be used to show that the η0 is still split from the octet of
pseudo-Goldstone bosons [40]. This could occur if there
are topologically nontrivial fluctuations whose topological
charge is not an integer, but an integer times 1=Nc; in
certain limits, such as for adjoint QCD on a femto-torus,
this can be shown semiclassically [30,31].
However, if the effective coupling is small, e.g., at high

temperature or quark density, then a semiclassical analysis
is valid, and topologically nontrivial fluctuations can be
approximated as a dilute instanton gas [12,13]. Numerical
simulations of lattice QCD provide insight into how the
topological structure changes with temperature [32–39].
Remarkably, these demonstrate that the overall power of
the topological susceptibility with respect to the temper-
ature T is given by a dilute instanton gas above temper-
atures as low as a few hundred MeV [34–37].
In this paper we address a modest problem and consider

quantities which are nonzero only because of topologically
nontrivial configurations, using a dilute instanton gas as an
illustrative example. Studies of the phenomenological
implications of the axial anomaly, including the effects
mentioned above, have been based on effective quark
interactions that are generated in a dilute gas of instantons
of unit topological charge [4]. Here we generalize this by
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demonstrating that effective 2NfjQj-quark interactions are
generated in a dilute gas of instantons of arbitrary topo-
logical charge Q [7–10]. Even though semiclassically such
topological field configurations are suppressed exponen-
tially, these interactions can give rise to novel anomalous
effects related uniquely to fluctuations of higher topologi-
cal charge. We develop a general formalism for including
the effects of higher topological charge and use this to
explicitly work out the local effective interaction for
Q ¼ �2, for the case where the constituent-instantons,
which we define before Eq. (1), are small. At low energies
and for two quark flavors this is a quartic meson interaction.
In the third section we present a phenomenological
analysis, analyzing the effects of anomalous meson inter-
actions in mean field theory and use a dilute instanton gas
to roughly estimate their magnitude. Technical details of
the computation are given in the Appendix.

II. MULTI-INSTANTON-INDUCED
INTERACTIONS

We start with an analysis for arbitrary topological charge,
generalizing that of ’t Hooft [4]. We consider the generating
functional of QCD for Gaussian fluctuations around a
background of instantons with topological chargeQ, which
we term Q-instantons. For a Q-(anti-) instanton back-
ground, massless quarks have NfjQj (right-) left-handed
zero modes [6]. We show that the functional zero mode
determinant of quarks has the structure of a 2NfjQj-quark
correlation function and compute its coupling constant in a
dilute gas of Q-instantons.
The zero modes of gauge fields arise from symmetries,

such as translations, that yield inequivalent instanton
solutions. This defines a moduli space which is para-
metrized by the collective coordinates of the instantons.
The general Q-instanton has been constructed by Atiyah
et al. (ADHM) [8–10]. It can be viewed as a superposition
of Q individual instantons with unit charge, where each
constituent is described by a location zi, a size ρi and an
orientation in the gauge group Ui. There are then 4Nc
collective coordinates for each constituent-instanton, so the
moduli space of the Q-instanton has dimension 4NcjQj.
Schematically, the generating functional is

ZðQÞ½J� ¼
Z

Dχ exp

�
−S½χ þ χðQÞ� þ

Z
x
ψ̄Jψ

�

≈
Z

dCQnQðCQÞdet0ðJÞ; ð1Þ

where χ ¼ ðAμ; c; c̄;ψ ; ψ̄Þ contains the fluctuating gluon,

ghost and quark fields, and χðQÞ ¼ ðAðQÞ
μ ; 0; 0; 0; 0Þ con-

tains the Q-instanton background field AðQÞ
μ ; to avoid

notational clutter, the superscript Q in AðQÞ
μ denotes the

topological charge. S½χ� is the gauge-fixed action of QCD

in Euclidean spacetime. In the second line we integrate the
path integral over the nonzero modes to leading order in the
saddle point approximation, leaving only the integration
over the collective coordinates CQ. The instanton density
nQ contains the functional determinants of the zero and
nonzero modes of gluons and ghosts, the nonzero mode
determinant of the quarks and the Jacobian from changing
the integration over zero modes to collective coordi-
nates [42].
Our main ingredient is the zero modes of massless

quarks [11]. Due to the axial anomaly, the Dirac operator

in the presence of the Q-instanton, DðQÞ ¼ γμð∂μ þ AðQÞ
μ Þ,

has NfjQj zero modes,DðQÞψ ðQÞ
fi ¼ 0, where f ¼ 1;…; Nf

is an index for flavor and i ¼ 1;…; jQj is a topological
charge index. Because of the zero modes, the generating
functional is only nonzero in the presence of a source J,
which generates the quark zero mode determinant, det0ðJÞ,
in Eq. (1).
The generating functional in Eq. (1) has first been

computed for Q ¼ 1 and Nc ¼ 2 [4] and arbitrary Nc
[43]. For jQj > 1, the generating functional to one loop
order is only known in certain limits [20].
One limit where one can compute is when the distance

between the locations of the constituent-instantons are
much larger than their sizes; i.e., jRijj≡ jzi − zjj ≫ ρi
for all i ≠ j. In this case, at leading order, the Q-instanton
can be viewed as jQj instantons of unit charge which
are well separated. Expanding the general ADHM-solution
in this small limit, up to order ∼ðρ=jRjÞ4 the path integral
factorizes into a product of constituent-instanton contribu-
tions [10],

ZðQÞ½J� →
Z ½dC1n1ðC1Þ�ðQÞ

Q!
det0ðJÞ: ð2Þ

For ease of notation, we assume Q > 0 as anti-instantons
with Q < 0 can be treated similarly. The factor of Q! arises
because the constituent-instantons can be treated as iden-
tical particles. The collective coordinate measure for the ith
constituent-instanton is dCi ¼ dρid4zidUi. dUi is the
Haar measure of the coset space SUðNcÞ=INc

, where
the stability group of the instanton INc

is given by
all SUðNcÞ-transformations that leave the instanton
unchanged. We emphasize that in the small limit the
instanton density only depends upon the sizes ρi.
Using the methods of Ref. [11], for small constituent-

instantons, to∼ðρ=jRjÞ3, the zeromodes of aQ-instanton are
simply given by the corresponding zero modes for Q ¼ 1,
and so the quark zero mode determinant factorizes,
ZðQÞ½J� ¼ ðZð1Þ½J�ÞQ=Q!. Thus, for a dilute gas ofQ-instan-
tons, the effective Lagrangian which results is theQth power
of the ’t Hooft determinant, where each determinant is
integrated over space-time, ∼½R d4x detðψ̄LðxÞψRðxÞÞ�Q.
Due to the complete factorization of the generating functional
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into single-instanton contributions to order ðρ=jRjÞ3 in the
limit of small constituent-instantons, this is fully described by
a dilute gas of single-instantons.
In addition, there are genuine multi-instanton contribu-

tions which cannot be described by single-instantons. They
give rise to a local interaction which is given by a single
integral over space-time for the Qth power of the ’t Hooft
determinant, ∼

R
d4x½detðψ̄LðxÞψRðxÞÞ�Q. To find this, one

needs to account for the overlap between the constituent-
instantons. The result of a novel and lengthy analysis, given
in the Appendix, shows that to order ∼ðρ=jRjÞ4 the only
change we need to account for is the difference in the quark
zero modes. The zero mode for the Q ¼ 1 instanton is

ψfiðx; ziÞ ¼
ffiffiffi
2

p

π

Uiρi
½ðx − ziÞ2 þ ρ2i �3=2

γμðx − ziÞμ
jx − zij

φR; ð3Þ

where φR is a right-handed spinor so that the zero mode is
left-handed. It will be useful later to note that far from the
instanton the quark zero mode is proportional to the free
quark propagator ΔðxÞ ¼ γμxμ=2π2ðx2Þ2.
For simplicity we consider instantons with charge two.

Using the methods of Ref. [11] to derive the quark zero
modes from the ADHM-solution in the limit of small
constituent-instantons, the 2Nf zero modes for Q ¼ 2 can
be expressed in terms of the Q ¼ 1 zero modes as

ψ ð2Þ
f1 ¼ ψf1 −X1ψ̂f2; ψ ð2Þ

f2 ¼ ψf2 −X2ψ̂f1; ð4Þ

where ψ̂fi ¼ UjU
†
iψfi and

Xiðx; ziÞ ¼
ρ1ρ2jx − zij

½ðx − ziÞ2 þ ρ2i �3=2
: ð5Þ

So for small constituent-instantons the Q ¼ 2 zero modes
decompose into separate Q ¼ 1 zero modes, connected by
the overlap term Xi.
In general, the determinant depends on the locations of

the constituent-instantons, z1 and z2, which can be rewritten
as an average position z ¼ ðz1 þ z2Þ=2 and their separa-
tion, R12. Integrating over R12 the zero mode determinant
becomes

det0ðJÞ ∝ INf

Y2
i¼1

Z
Ui

YNf

f¼1

Z
xfi

ψ†
fiðxfi; zÞJðxfiÞψfiðxfi; zÞ;

ð6Þ
where INf

measures the overlap of the zero modes,

INf
¼

Z
d4R12

Y
f

X2
i ðxfi; R12Þ: ð7Þ

For one flavor the overlap integral is infrared-divergent,
requiring a cutoff for large distances jx − zij. Presumably,
this cutoff is set by the average separation between an

instanton and an anti-instanton. For two or more flavors, a
local interaction is generated when all quark zero modes are
close to the same constituent-instanton [44], and we find

INf≥2 ¼ π2
ðNf þ 1Þ!ð2Nf − 3Þ!

ð3Nf − 1Þ! ρ
2Nf

1 ρ
4−2Nf

2 : ð8Þ

Because zero modes approach free quark propagators at
large distances, Eq. (3), the zero mode determinant in
Eq. (6) has the form of a 2NfQ-quark correlation function.
Hence, in direct generalization of [4], the generating
functional in the presence of small constituent-instantons
gives rise to an effective interaction between 4Nf quarks.
Assuming that the topological fluctuations are described by
a dilute gas of instantons, the contribution from dilute
Q ¼ 2 instantons and anti-instantons generates an anoma-
lous contribution to the local effective Lagrangian, as a
product of operators which are color singlet [45],

ΔLð2Þ
eff ¼

−κ2
K2;Nf

ð½detfgðψ̄fPRψgÞ�2 þ ½detfgðψ̄fPLψgÞ�2Þ;

ð9Þ

where PR=L ¼ ð1� γ5Þ=2 are the right-/left-handed pro-
jection operators and KQ;Nf

¼ ðQ!ÞNf=ðQNfÞ! is a com-
binatorial factor. The effective coupling in this
semiclassical analysis is

κ2 ¼ ð8π2Þ2Nf

Z
ρ1

n1ðρ1Þρ5Nf

1

Z
ρ2

n1ðρ2ÞρNf

2 INf
: ð10Þ

This result generalizes the instanton-induced local inter-
action to topological charge Q ¼ 2. We note that, while the
effective action induced by a single instanton breaks Uð1ÞA
down to the cyclic group ZNf

, theQ ¼ 2 contribution has a
larger residual Z2Nf

-symmetry. The computation outlined
here can be generalized to arbitrary topological charge.

III. A LOW ENERGY MODEL

Our analysis above applies only in the limit of a dilute
instanton gas, as is applicable at high temperature [34–37]
or density. We do expect that the anomalous quark
interactions generated by higher topological charge are
present at low temperature, where a dilute instanton gas is
certainly not applicable. In this section, we first analyze the
general effect of anomalous quark interactions, and then
estimate their values in a dilute instanton gas. Thus these
values should only be taken as an illustrative estimate of
their overall magnitude and not as a definitive computation.
To illustrate the physical effect of interactions induced by

higher topological charge, we consider a linear sigma
model for Nf ¼ 2 that includes all anomalous interactions
up to quartic order. These are generated in a dilute gas of
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instantons and anti-instantons with Q ¼ 1 and 2.
Classically, the global chiral symmetry of Gcl ¼ SUð2ÞL ×
SUð2ÞR ×Uð1ÞA is reduced to GA ¼ SUð2ÞL × SUð2ÞR ×
ZNf

by topological fluctuations. Effective mesons are given
by Φ ¼ ðσ þ iηÞ þ ða⃗0 þ iπ⃗Þτ⃗, with the Pauli-matrices τ⃗.
The resulting Lagrangian is a sum of two terms [24],

LGcl
¼ trð∂μΦ†Þð∂μΦÞ þm2TrΦ†Φ

þ λ1TrðΦ†ΦÞ2 þ λ2ðTrΦ†ΦÞ2;
LGA

¼ −χ1ðdetΦþ detΦ†Þ
− χ2½ðdetΦÞ2 þ ðdetΦ†Þ2�: ð11Þ

We emphasize that taking into account the contributions
from instantons and anti-instantons is necessary to ensure
CP-invariance. The term ∼χ1 arises from bosonizing the
usual ’t Hooft determinant from instantons with Q ¼ �1,
while the term ∼χ2 is generated by bosonizing interactions
with Q ¼ �2 in Eq. (9) [46].
We focus on the mass spectrum of mesons in the mean-

field approximation.We use the σ-, η-,a0-mesonmasses and
fπ to fix four of the five parameters of L in the vacuum.
Chiral symmetry breaking is controlled by the mass param-
eterm2. By varyingm2 relative to its vacuumvaluewe define
a reduced temperature t ¼ tðm2Þ, where t ¼ 0 corresponds
to the vacuum and t ¼ 1 to the chiral phase transition. By
choosing χ2 as a free parameter, we can study the impact of
the topological charge-two term on the masses in the phases
with broken and restored chiral symmetry. The resulting
mass spectrum is shown in Fig. 1. The details of the
computation can be found in Appendix H.

The splitting between the pion and eta mass is due
exclusively to the axial anomaly in the chiral limit. Since χ2
is a quartic coupling, its contribution to the masses is
proportional to the chiral condensate. As the condensate
melts, this contribution vanishes so that χ1 is the only
anomalous contribution to the masses in the symmetric
phase. The larger we choose χ2, the smaller χ1 has to be to
reproduce the correct vacuum masses. In the chirally
symmetric phase mσ ¼ mπ and mη ¼ ma0 , but mσ ≠ mη

when χ1 ≠ 0. Even when χ1 is small, however, we stress
that there are still anomalous effects in the chirally
symmetric phase from nonzero χ2. These manifest them-
selves in correlation functions of quartic and higher order.
Needless to say, the effects generated by anomalous

coupling from instanton with Q ¼ �2 depend upon how
large it is in vacuum and how rapidly it decreases with
temperature T and quark chemical potential μ. In vacuum,
the nature of the dominant fluctuations in topological
charge is certainly a formidable problem in nonperturbative
physics. While this could be done on the lattice [32–39] or
with functional methods [47], to estimate these effects we
use a simple gas of dilute instantons. To this end, we adopt
a crude bosonization scheme,

2M2Φ ¼ ðψ̄ψ þ ψ̄γ5ψÞ þ ðψ̄ τ⃗ ψ þ ψ̄γ5τ⃗ψÞτ⃗; ð12Þ

which yields simple relations between the anomalous
meson couplings in Eq. (11), and the corresponding quark
couplings in the dilute instanton gas,

χ1 ¼
κ1M4

2K1;2
; χ2 ¼

κ2M8

4K2;2
; ð13Þ

with κ1 ¼
R
ρ n1ðρÞð8π2ÞNfρ3Nf [4] and κ2 is given in

Eq. (10). The mass scale M is a fundamental parameter
of our effective theory. Motivated by the complete compu-
tation at one loop order [4], and the partial computation at
two loop order [19], for three colors and two massless
flavors we take the density of a single instanton in the
vacuum to be

n1ðρÞ ¼
dMS

ρ5

�
8π2

g2

�
6

exp

�
−
8π2

g2

�
; ð14Þ

where g2 ¼ g2ðρΛMSÞ is the running coupling constant at
two loop order and dMS is a renormalization-scheme
dependent constant, ≈0.00422 for Nc ¼ 3 and Nf ¼ 2

[48]. The apparent simplicity of our form for the instanton
density belies a major assumption that everywhere the
coupling g2 appears that we can replace it with g2ðρΛMSÞ.
This assumption, while admittedly extreme, is both

simple and useful. Owing to the interplay between the
running coupling from the classical action in the exponen-
tial and the factor ∼g−12 from the collective coordinate

FIG. 1. The masses of mesons as a function of the reduced
temperature for two massless quarks in the mean-field approxi-
mation. The top left plot shows the spectrum for a Uð1ÞA-
symmetric theory. The top right plot is the conventional case
where the axial anomaly is induced by instantons of topological
charge one. The two figures on the bottom show the effect of
additional anomalous symmetry breaking due to instantons of
topological charge two for two different values of the corre-
sponding coupling χ2. Unless χ2 is very large, this is negligible.
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Jacobian, n1ðρÞ develops a pronounced maximum at
ρΛMS ≈ 1=2. For typical values of ΛMS ≈ 300 MeV [49],
this implies typical instanton sizes of ρ ≈ 1=3 fm, which is
consistent with the value in an instanton liquid [16–18]. Of
course we cannot compute reliably at large ρ, since
inevitably the instanton size is comparable to the confine-
ment scale, and semiclassical approximations break down.
Since the two anomalous couplings χ1 and χ2 only

depend on a single free parameter M, we can redo the
mean-field analysis of the meson masses and find a unique
value for M in the vacuum. From the dilute instanton gas,
Eq. (14), with ΛMS ¼ 0.3 GeV,

κ1 ¼ 3886 GeV−2; κ2 ¼ 1.819 × 108 GeV−8: ð15Þ

In vacuum, this gives M ¼ 0.0953 GeV, so from Eq. (13),

χ1 ¼ 0.320 GeV2; χ2 ¼ 1.852: ð16Þ

Of course, χ1, χ2 and all other anomalous effects are very
sensitive to the value chosen for ΛMS. More to the point, in
the confined phase a semiclassical analysis is invalid, and
other configurations may contribute [30,31,40,41].
Nevertheless, we expect that our naive computations should
give some guide to their overall magnitude.
We conclude by discussing how the dilute instanton gas

evaporates as T and μ increase. For a single instanton we
approximate the change to the instanton density for three
colors and two flavors as

n1ðρ; T; μÞ ¼ exp

�
−
2π2

g2
ρ2m2

D − 14AðπρTÞ
�
n1ðρÞ; ð17Þ

where m2
DðT; μÞ is the Debye mass at leading order and

AðxÞ has been computed in [12,13]. Owing to the screening
of the colorelectric field in the medium, the instanton
density decreases both with increasing T and μ. We find
that instanton effects are decreased to 10% of their strength
in vacuum at about T ≈ 0.7ΛMS at μ ¼ 0 and μ ≈ 2.4ΛMS at
T ¼ 0. Using realistic values for the critical temperature Tc
[50] and ΛMS [49], we find that instanton effects are
significantly suppressed at temperatures T ≳ 1.5Tc for
μ ¼ 0, consistent with lattice results [32–39]. As discussed
in Appendix I, at zero temperature in a dilute instanton gas,
instantons evaporate only at extremely high densities of
μ≳ 1.5πTc. Using Tc ¼ 156 MeV, this corresponds to
baryon chemical potentials of μB ≳ 2 GeV.

IV. SUMMARY AND OUTLOOK

We demonstrated that novel effective interactions are
generated by instantons of higher topological charge. In
general, instantons of topological charge Q give rise to
anomalous 2NfjQj-quark interactions. This opens up the
possibility to study the effects of the axial anomaly directly

for higher correlation function of quarks or hadrons. This
includes diquark operators which contribute to color super-
conductivity [21], and anomalous couplings for tetraquark
mesons [28] and heterochiral mesons with spin J ≥ 1 [29].
The presence of higher topological charge also modifies the
θ-dependence and so axion dynamics [51].
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APPENDIX A: CONVENTIONS

We use a chiral representation for the Euclidean gamma
matrices: with the Pauli matrices σi,

σμ ¼ ð−i12; σ⃗Þμ; σ̄μ ¼ ði12; σ⃗Þμ; ðA1Þ
then

γμ ¼
�

0 iσμ

−iσ̄μ 0

�
ðA2Þ

and

γ5 ¼ γ0γ1γ2γ3 ¼
�−12 0

0 12

�
: ðA3Þ

Left- (right-) handed fields have eigenvalue −1 (þ1) with
respect to γ5. The projection operators on left- and right-
handed fields are given by

PL=R ¼ 14 ∓ γ5

2
: ðA4Þ

The matrices in Eq. (A1) can be used to define the basis
quaternions,

ᾱμ ¼ iσμ; αμ ¼ −iσ̄μ: ðA5Þ
We also define

σμν ¼ 1

2
ðσμσ̄ν − σνσ̄μÞ; σ̄μν ¼ 1

2
ðσ̄μσν − σ̄νσμÞ; ðA6Þ

which are selfdual and anti-selfdual respectively,

σμν ¼ þ 1

2
ϵμνρσσρσ; σ̄μν ¼ −

1

2
ϵμνρσσ̄ρσ: ðA7Þ

They are related to the ’t Hooft symbols ηaμν through the
SUð2Þ color generators Ta,
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σμν ¼ −2ηaμνTa; σ̄μν ¼ −2η̄aμνTa: ðA8Þ

We distinguish between Pauli matrices σi for the Dirac
matrices, and the τa in color space, with Ta ¼ −iτa=2. For
Nc > 2 these generators are given by embedding SUð2Þ
into SUðNcÞ. The ’t Hooft symbols are

ηaμν ¼ δaμδν4 − δaνδμ4 þ ϵaμν;

η̄aμν ¼ δaνδμ4 − δaμδν4 þ ϵaμν; ðA9Þ

and are also (anti-) selfdual.

APPENDIX B: SMALL INSTANTONS FROM THE
ADHM-CONSTRUCTION

The most general form of an instanton with charge�Q is
obtained by means of the ADHM construction [8,10]. The
Q-instanton solution is described by a superposition of
instantons with unit charge, where each of the constituent-
instantons is characterized by a position zi, a size ρi, and its
orientation in the gauge group, parametrized by a matrix
Ui. We consider the limit in which the distance between the
constituent-instantons is large relative to their scale sizes,
jzi − zjj ≫ ρi for all i ≠ j, which we term small. For a
systematic expansion of the ADHM solution for small
constituent-instantons see Ref. [10]. Since this is relevant
for the construction of the quark zero modes, we outline the
construction here.
Without loss of generality, we assume Q > 0. Anti-

instantons can always be obtained trivially be replacing the
selfdual matrices σμν, ηaμν by the corresponding antiselfd-
ual matrices σ̄μν, η̄aμν; see Appendix A. The most general
self-dual gluon field with topological charge Q can be
constructed algebraically from a ðQþ 1Þ ×Q matrixMðxÞ
whose entries are quaternionic. Each matrix element Mab
can therefore be viewed as a 2 × 2 matrix,

Mab ¼ αμM
μ
ab; ðB1Þ

where the basis quaternions α are defined in Eq. (A5).MðxÞ
is chosen to be linear in spacetime x,

MðxÞ ¼ B − Cx; ðB2Þ

with the constant quaternionic ðQþ 1Þ ×Q matrices B, C
and the quaternionic spacetime coordinate x ¼ αμxμ. M is
required to obey the reality condition,

M†ðxÞMðxÞ ¼ RðxÞ; ðB3Þ

where R is a real Q ×Q quaternionic matrix. Hence, each
entry is proportional to α0 ¼ 12. The quaternionic con-
jugate † is given by

ðM†Þ0ab ¼ M0
ba; ðM†Þiab ¼ −Mi

ba: ðB4Þ

When expressed in terms of Eq. (B1),M can be viewed as a
complex 2ðQþ 1Þ × 2Q matrix. We choose the quater-
nionic representation for convenience. Aside from M, the
other crucial ingredient is the quaternionic (Qþ 1) column
vector NðxÞ, which obeys

N†ðxÞMðxÞ ¼ 0; N†ðxÞNðxÞ ¼ 12: ðB5Þ

The first equation yieldsQ equations for the (Qþ 1) entries
of N, soQ entries of N can always be expressed in terms of
one other entry. The choice of this entry corresponds to a
gauge choice for the Q-instanton. The second equation is a
normalization condition. By solving Eqs. (B3) and (B5)
with the ansatz (B2), the SUð2Þ Q-instanton is given by

AðQÞ
μ ðxÞ ¼ N†ðxÞ∂μNðxÞ; ðB6Þ

where N is determined up to 8Q − 3 free parameters,
corresponding to the complete set of collective coordinates
of the instanton for Nc ¼ 2. Only the relative orientation of
the constituent-instantons in the gauge group is counted,
leaving three parameters for the overall gauge rotation of
the solution, so 8Q parameters in all. We follow the explicit
construction of M and N in Ref. [10]. The first column of
M is given by a vector of Q constant quaternions
q ¼ ðq1;…; qQÞ,

M1j ¼ qj; j ∈ ½1;…; Q�; ðB7Þ
and the remaining Q ×Q elements of M are given by

M̂ijðxÞ ¼ δijðzi − xÞ þ bijðxÞ: ðB8Þ
bij is a quaternionic matrix. The diagonal elements of M̂ are
parametrized by zi, so bii ¼ 0. We show below that zi can
be interpreted as instanton locations. The reality constraint
in Eq. (B3) is fulfilled if bij is symmetric, bij ¼ bji, and
obeys

1

2
ðq�i qj − q�jqiÞ þ ðzi − zjÞ�bij

þ 1

2

XQ
k¼1

ðb�kibkj − b�kjbkiÞ ¼ Rij: ðB9Þ

The column vector N is

NðxÞ ¼ 1ffiffiffi
ξ

p

0
BBBBB@

u

−½ðM̂†Þ−1q†�1 · u
..
.

−½ðM̂†Þ−1q†�Q · u

1
CCCCCA
; ðB10Þ

where u is an arbitrary, possibly x-dependent, unit qua-
ternion. Different u correspond to gauge-equivalent solu-
tions, where u ¼ α0 corresponds to singular gauge. ξ is
determined from the normalization condition in Eq. (B5),
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ξ ¼ 1þ qM̂−1ðM̂†Þ−1q†: ðB11Þ
It is left to specify the bij, i.e., to solve Eq. (B9). For this,
we restrict ourselves to the limit of small constituent-
instantons as this is all we need for our purposes. We first
note that every quaternion qi can be represented by a
modulus and a phase,

qi ¼ jqijUi ¼
ffiffiffiffiffiffiffiffiffi
q�i qi

p
Ui ¼ ρiUi; ðB12Þ

where Ui is an SUð2Þ matrix, and there is no summation
over i here. The magnitude of qi can be interpreted as the
scale of the instanton, ρi ¼ jqij. Ui parametrizes the
orientation in the gauge group. In the limit of small
constituent-instantons, we introduce a small parameter ζ
and replace

qi → ζqi; ðB13Þ
where qi is kept fixed. We then consider the instanton scale
to be small relative to the instanton separations,
ζjqij ≪ jzi − zjj, and expand Eq. (B9) to leading order
in ζ. The solution is unchanged if M̂ → TM̂, where T is an
orthogonal quaternionic matrix. Choosing

Tij ¼ δij þ
Rij

ðzi − zjÞ2
þOðζ4Þ; ðB14Þ

cancels the right-hand side of Eq. (B9). To this order, then,
one finds

bij ¼
1

2

zi − zj
ðzi − zjÞ2

ðq�i qj − q�jqiÞ: ðB15Þ

Thus, for small constituent-instantons we can neglect bij
and M becomes

MðxÞ ¼

0
BBBBB@

q1 � � � qQ
ðz1 − xÞ � � � 0

..

. . .
. ..

.

0 � � � ðzQ − xÞ

1
CCCCCA

þOðζ2Þ: ðB16Þ

The dominant contribution to the determinant of zero
modes for the Q-instanton comes from distances large
relative to the size of each constituent-instanton jx − zij ≫
ρi. The constant quaternionic matrices B and C in Eq. (B2)
are then

B¼

0
BBBBB@

q1 � � � qQ
z1 � � � 0

..

. . .
. ..

.

0 � � � zQ

1
CCCCCA
; C¼

0
BBBBB@

0 � � � 0

12 � � � 0

..

. . .
. ..

.

0 � � � 12

1
CCCCCA
: ðB17Þ

With this, ξ ¼ ξ0 þOðξ2Þ in Eq. (B11), where

ξ0ðxÞ ¼ 1þ
XQ
i¼1

ρ2i
ðx − ziÞ2

; ðB18Þ

and NðxÞ becomes

NðxÞ ¼ 1ffiffiffiffiffi
ξ0

p

0
BBBBBB@

u
x−z1

ðx−z1Þ2 q
�
1 · u

..

.

x−zQ
ðx−zQÞ2 q

�
Q · u

1
CCCCCCA

þOðζ2Þ: ðB19Þ

Choosing u ¼ α0 and plugging this into Eq. (B6) then
yields the small Q-instanton,

AðQÞ
μ ðxÞ ¼ 1

ξ0ðxÞ
XQ
i¼1

Uiσ̄
μνU†

i ρ
2
i
ðx − ziÞν
jx − zij4

; ðB20Þ

with σ̄μν defined in Eq. (A6). If all constituent-instantons
are aligned in color space, Ui ¼ Uj for all i; j ¼ 1;…; Q,
this reduces to ’t Hooft’s solution [7].
A key feature of the limit of small constituent-instantons

is that the field of the Q-instanton, Eq. (B20), is only
significant when x close to the location of one of the
constituent-instantons, at zi. In the vicinity of each zi,
Eq. (B20) looks like a Q ¼ 1 instanton in singular gauge,

AðQÞ
μ ðxÞjjx−zij≈OðρiÞ ¼ Uiσ̄

μνU†
i

ρ2i
ðx − ziÞ2

ðx − ziÞν
ðx − ziÞ2 þ ρ2i

:

ðB21Þ
To leading order in powers of ρ2i =ðzi − zjÞ2, in the saddle
point approximation the generating functional for a small
Q-instanton factorizes into a product of generating func-
tionals in the backgrounds of single instantons, Eq. (2). See
Refs. [11,20] for a more detailed discussion of this
factorization.

APPENDIX C: QUARK ZERO MODES
FOR A SMALL Q-INSTANTON

In the presence of aQ-instanton quarks have zero modes,

DðQÞψ ðQÞ
fi ¼ 0; ðC1Þ

where DðQÞ ¼ γμð∂μ þ AðQÞ
μ Þ is the Dirac operator in the

fundamental representation; remember that f is an index
for flavor. The Atiyah-Singer index theorem demonstrates
that gauge field configurations with topological charge Q
produceNfjQj left-handed (forQ > 0) or right-handed (for
Q < 0) quark zero modes [6,52]. With the ADHM con-
struction the zero modes are [11]

ψ ðQÞ
fi ¼ νðN†CR−1Þi · φ; ðC2Þ

this is a left-handed Weyl spinor, φ ¼ ϵ=
ffiffiffi
2

p
, and ν is a

normalization constant. For small constituent-instantons
with Q ¼ 2 we use Eqs. (B16), (B17) and (B19) to find
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C ¼

0
B@

0 0

12 0

0 12

1
CA;

R ¼
� ðx − z1Þ2 þ ρ21 q�1q2

q�2q1 ðx − z2Þ2 þ ρ22

�
: ðC3Þ

Note that to leading order R is diagonal, diag½ðx − z1Þ2;
ðx − z2Þ2�; the other terms are Oðζ2Þ. Since R is real,
we use

R−1 ¼ 1

det R

�
R22 −R12

−R21 R11

�
; ðC4Þ

with

detR ¼ ðx − z1Þ2ðx − z2Þ2 þ ρ22ðx − z1Þ2 þ ρ21ðx − z2Þ2:
ðC5Þ

This yields

ψ ð2Þ
f1 ðxÞ ¼ ν

U1ρ1
jx − z1j

γμ

�
ðx − z1Þμððx − z2Þ2 þ ρ22Þ − ρ22ðx − z2Þμ

ðx − z1Þ2
ðx − z2Þ2

�

×
jx − z2j

½ðx − z1Þ2ðx − z2Þ2 þ ρ22ðx − z1Þ2 þ ρ21ðx − z2Þ2�3=2
φR;

ψ ð2Þ
f2 ðxÞ ¼ ψ ð2Þ

f1 ðxÞj1↔2; ðC6Þ

with the right-handed spinor,

φαc
R ¼ 1ffiffiffi

2
p

�
0

ϵ

�
αc

; ðC7Þ

where α is a spinor index, c is a SUð2Þ color index and ϵ is
the antisymmetric tensor. Because of the factor of γμ in
Eq. (C6), the zero mode ψ ðQÞ

fi ðxÞ is left-handed when
Q > 0, as required by the index theorem. For an anti-
instanton, Q < 0, one simply has to replace φR by

φαc
L ¼ 1ffiffiffi

2
p

�
ϵ

0

�
αc

: ðC8Þ

To turn the Weyl into Dirac spinors we use γμφR ¼ ᾱμφ,
and Eq. (B12) to express the quaternions qi in terms of the
sizes and gauge group orientations of the constituent-
instantons. As a results, the ith quark zero mode carries
the gauge group orientation of the corresponding constitu-
ent-instanton. If they had the same orientation, U1 ¼ U2,
they would be identical to the zero modes that follow from
’t Hooft’s solution for the aligned instanton [11].
For small constituent-instantons,

jR12j≡ jz1 − z2j ≫ ρ1; ρ2: ðC9Þ

We consider the behavior of the zero modes far from the
constituent-instantons,

jx − z1j; jx − z2j ≫ ρ1; ρ2: ðC10Þ

Since the Q-instanton is an extended object, in general
it generates a quark interaction which is nonlocal. We wish
to extract the local term, in which the sizes of the

constituent-instantons can be neglected. In this limit,
Eq. (C6) is approximately,

ψ ð2Þ
f1 ðxÞ ≈ ν

U1ρ1
½ðx − z1Þ2 þ ρ21�3=2

γμðx − z1Þμ
jx − z1j

φR

− ν
U1ρ2

½ðx − z2Þ2 þ ρ22�3=2
γμðx − z2Þμ
jx − z2j

×
ρ1ρ2jx − z1j

½ðx − z1Þ2 þ ρ21�3=2
φR

¼ ψf1ðx; z1Þ −X1ðx; z1Þψ̂f2ðx; z2Þ; ðC11Þ

and analogously for the second zero mode ψ ð2Þ
f2 ðxÞ. In this

approximation, we drop a term ρ21ρ
2
2 in the denominator as

subleading and then used Eq. (C10) to reduce the expres-
sion. We define the Q ¼ 1 zero modes as

ψfiðx; ziÞ ¼ ν
Uiρi

½ðx − ziÞ2 þ ρ2i �3=2
γμðx − ziÞμ
jx − zij

φR;

ψ̂fiðx; ziÞ ¼ UjU
†
iψfiðx; ziÞ; ðC12Þ

and

Xiðx; ziÞ ¼
ρ1ρ2jx − zij

½ðx − ziÞ2 þ ρ2i �3=2
: ðC13Þ

The first zero mode for Q ¼ 2 is a sum of a zero mode
concentrated at z1 plus an overlap term, which is Xi times
the zero mode concentrated at z2; that for the second zero
mode is similar, with the exchange of 1 ↔ 2. The overlap
term isOðζ3Þ. To leading order, i.e.,Oðζ1Þ, the zero modes

reduce to the Q ¼ 1 zero modes, ψ ð2Þ
f1 ¼ ψf1 þOðζ3Þ.
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In Fig. 2 we compare the exact quark zero mode in the
limit of small constituent-instantons, Eq. (C6), to the
approximate form in Eq. (C11). For this figure, we project

onto the scalar part of the zero mode ψ ð2Þ
f1 via

φ†
R

γμðx − z1Þμ
jx − z1j

ψ ð2Þ
f1 ðxÞ; ðC14Þ

for the configuration ðx − z1Þ · ðx − z2Þ ¼ jx − z1jjx − z2j,
so that the function depends only upon the relative
distances. Our approximate form is very good even close
to z1 and z2 for ρ=jRj≲ 0.3. At leading order the normali-
zation constant ν is determined via

Z
d4xψ ð2Þ†

fi ðxÞψ ð2Þ
fi ðxÞ ≈

Z
d4xψ†

fiðx; ziÞψfiðx; ziÞ≡ 1;

ðC15Þ

which gives ν ¼ ffiffiffi
2

p
=π.

To make the computations more transparent we use a
graphical representation of the zero modes in Eq. (C11),

ðC16Þ

where the left peak is located at z1 and the right peak at z2.
When the constituent-instantons are small, Eq. (C10),

the zero mode in Eq. (C12) becomes

ψfiðx; ziÞ ≈ ν
Uiρiγμðx − ziÞμ

jx − zij4
φR ¼ 2π2νUiρiΔðx − ziÞφR;

ðC17Þ

where Δðx − zÞ is the free propagator of a massless quark,

Δðx − zÞ ¼ γμðx − zÞμ
2π2jx − zj4 : ðC18Þ

Hence, for Q ¼ 2 the quark zero modes reduce to a sum of
free quark propagators and the overlap term,

ψ ð2Þ
f1 ðxÞ ∝ U1½ρ1Δðx − z1Þ − ρ2X1ðx; z1ÞΔðx − z2Þ�φR:

ðC19Þ

This expression is essential in extracting the effective
Lagrangian of quarks from the product of zero modes
below.
Our results can be generalized to higher topological

charge. It is less obvious how to move away from the limit
of small constituent-instantons, since then the terms gen-
erated in an effective Lagrangian involve derivatives of the
quark fields, and so are of higher order in a derivative
expansion.

APPENDIX D: GENERATING FUNCTIONAL FOR
A SMALL Q-INSTANTON TO LEADING ORDER

We begin with the generating functional in aQ-instanton
background, focusing on the determinant of quark zero
modes to leading order in the limit of small constituent-
instantons. We evaluate the generating functional in the
saddle point approximation to leading order, where the
stationary point is given by an instanton of topological
charge Q. This is natural, as (anti)self-dual, topological
gauge field configurations are minima of the classical
Yang-Mills action, assuming only that the action is finite
[2]. The generating functional is

ZðQÞ½J� ¼
Z

Dχ expf−S½χþχðQÞ�þ
Z

d4xψ̄ðxÞJðxÞψðxÞg;

ðD1Þ

where χ ¼ ðAμ; c; c̄;ψ ; ψ̄Þ is the fluctuating field of gluons,
ghosts and quarks, S½χ� is the gauge-fixed action in

Euclidean spacetime, χðQÞ ¼ ðAðQÞ
μ ; 0; 0; 0; 0Þ is the Q-

instanton background field, and J a source for quarks.
To leading order in the saddle point approximation, the
action S½χ þ χðQÞ� is expanded in the χðQÞ. The linear
terms vanish by the equations of motion, and the χ are
integrated to quadratic order. In the presence of the Q-
instanton, all fields have zero modes related to the
invariance of the action under translations, dilatations
and global gauge rotations. There are 4NcjQj collective

FIG. 2. Comparison between the exact form of theQ ¼ 2 quark

zero mode ψ ð2Þ
f1 ðxÞ for small constituent-instantons and our

approximation in Eq. (C11). We used the parameters z1 ¼ 3, z2 ¼
6 and ρ1 ¼ ρ2 ¼ 0.21 for this plot. An offset of þ0.07 was added
so that a logarithmic scale could be used along the y-axis, since
the baseline of the zero mode vanishes. The scalar function
plotted is defined in Eq. (C14).
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coordinates describing their position (zi), size (ρi), and
orientation in the gauge group (Ui). The set of these
coordinates is denoted by CQ. Fluctuations in the directions
of zero modes are large, so while the nonzero modes can be
computed in the Gaussian approximation, the zero modes
have to be treated exactly. To this end, one changes the
integration over zero modes to an integration over collec-
tive coordinates, giving rise to a JacobianJ . This yields the
Q-instanton density,

nQðCQÞ≡ e−8π
2jQj=g2ðdet0MAÞ−1=2

× ðdet0McÞðdet0DÞðdetJ Þ; ðD2Þ

MA,Mc, andMψ ¼ DðQÞ þ J are the inverse propagators
of the gluons, ghosts, and quarks, respectively. det0 denotes
the determinant over nonzero modes. To renormalize the
contributions of large eigenvalues, it is understood that all
nonzero-mode determinants are normalized with the deter-
minant at vanishing gluon background field. In this semi-
classical approximation, the generating functional becomes

ZðQÞ½J� ¼
Z

dCQnQðCQÞdet0ðJÞ: ðD3Þ

det0ðJÞ is the determinant of the source J in the space of
quark zero modes. This was first computed by ’t Hooft in
Ref. [4] for Q ¼ 1 and Nc ¼ 2. The generalization to
Nc ≥ 3 is given in Ref. [43]; for jQj > 1, solutions are only
known in certain limits, see e.g., Refs. [11,20].
For topological charge Q at leading order in the limit of

small constituent-instantons, the gauge field is that of
Eq. (B20). The off diagonal term in the quaternionic matrix
R in Eq. (C3) can be neglected, and one can set ξ0 ¼ 1 in
Eq. (B18). The quark zero modes in Eq. (C6) then reduce to
the Q ¼ 1 ones in Eq. (C12), and the zero mode determi-
nant becomes

det0ðJÞ¼det
Z

d4xfiψ
ðQÞ†
fi ðxfiÞJfgij ðxfiÞψ ðQÞ

gj ðxfiÞ

≈det
Z

d4xfiψ
†
fiðxfi;ziÞJfgij ðxfiÞψgjðxfi;ziÞ; ðD4Þ

where we do not sum over the indices. The quark source J
is a ðNfQ × NfQÞ-matrix in the space of zero modes, but it

suffices to consider a diagonal J, Jffii ≡ Jfi. We will match
the zero mode determinant to an effective multiquark
interaction, so the different contributions to the determinant
can be obtained by permutation of the quark fields
[cf. Eq. (G2)]. Using the explicit form of the quark zero
modes in Eq. (C12), the diagonal elements yield

det0ðJÞjdiagonal ¼
YQ
i¼1

ρ
3Nf

i

YNf

f¼1

Z
d4xfiF iðxfi; zi; ρi; UiÞ;

ðD5Þ

with the zero mode correlation function,

F iðx; z; ρ; UÞ ¼ 2

π2
U†φ†

Rγμðx − zÞμJ̄iðxÞγνðx − zÞνφRU

ðx − zÞ2½ðx − zÞ2 þ ρ2�3 :

ðD6Þ

The quark zero modes have mass dimension two, while that
of the source J is zero. We then introduce a source with
canonical mass dimension,

J̄fi ¼ ρ−1i Jfi: ðD7Þ

When jxfi − zij ≫ ρi, we can relate the zero modes to free
quark propagators, Eq. (C17), and the quark zero mode
correlations are related to those of free quarks,

F iðx; z; ρ; UÞ ≈ 8π2U†φ†
RΔðx − zÞJ̄iðxÞΔðx − zÞφRU:

ðD8Þ

Note that this is independent of the instanton scale ρ. Since
the generating functional involves an integral over the
collective coordinates, we can express Eq. (D5) as

det0ðJÞjdiagonal ¼ ½ρ3Nf

1

Z
d4xf1F iðxf1; z1; ρ1; U1Þ�Q

¼ ½det0ðJÞjQ¼1�Q: ðD9Þ

Thus to leading order for small constituent-instantons, the
determinant over quark zero modes factorizes into a
product of contributions from terms with Q ¼ 1.
As discussed in Refs. [10,11,20], the functional deter-

minants of the gluons and ghosts factorize to order
∼ρ4=jRj4 for small constituent-instantons. Hence, the
generating functional factorizes,

ZðQÞ½J�small!
1

Q!

�Z
dC1n1ðρ1Þdet0ðJÞjQ¼1

�
Q

¼ 1

Q!
ðZð1Þ½J�ÞQ; ðD10Þ

where Zð1Þ½J� is the result for Q ¼ 1. If V is the volume of
space-time, this is ∼V jQj, this is evidently the expansion of
the exponential of the term with jQj ¼ 1. Instead, what we
need is a subleading term, proportional to a single power of
V. We compute this term explicitly for Q ¼ 2 in the next
sections.
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APPENDIX E: GENERATING FUNCTIONAL
FOR Q= 2 AND ONE FLAVOR

Here we compute the generating functional beyond leading order in the limit of small constituent-instantons for Q ¼ 2.
The determinant over the quark zero modes follow from Eq. (C11). We begin with the case of a single flavor and so drop the
flavor index to obtain

ðE1Þ

We adopt a shorthand notation where
R
x1
¼ R

d4x1, etc. For small constituent-instantons, Eqs. (C11) and (C16) show that
this contains various contributions. The integrations over the locations of the sources at x1 and x2 is always present, and so
we suppress it. Instead we concentrate on the integrals over the locations of the instantons, at z1 and z2. Taking the dominant
piece from each zero mode,

ðE2Þ

This term has no overlap between the contributions at z1 and z2, and so completely decomposes into two contributions from
independent instantons with jQj ¼ 1. These are ∼V2, as discussed in the previous section.
We need to extract local terms ∼V, which are given by

ðE3Þ

and

ðE4Þ

These terms are given by four Q ¼ 1 zero modes centered around a single zi. The integral

I1;i ¼
Z
zi

Xiðxi; ziÞ2; ðE5Þ

represents the “leakage” from the constituent-instanton at z2 to z1, or vice versa. This integral can be done analytically,

I1;iðρ1; ρ2Þ ¼ ρ21ρ
2
2

Z
d4zi

ðxi − ziÞ2
½ðxi − ziÞ2 þ ρ2i �3

¼ π2ρ21ρ
2
2

�
ln

�
R2
0

R2
0 þ ρ2i

�
−
R2
0ð3R2

0 þ 2ρ2i Þ
2ðR2

0 þ ρ2i Þ2
�
: ðE6Þ

For a single flavor this overlap integral is dominated by large distances, jx − zij. There is a logarithmic divergence in the
infrared, which we cut off at a scale R0 ≫ ρi. Presumably R0 is related to the average separation between instantons and
anti-instantons in the vacuum [16–18].
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With this, Eq. (E3) becomes

ðE7Þ

where we used Eqs. (C11), (D6) and (D7). For Eq. (E4) we
find the same result, but with the charge indices 1 and 2

interchanged. The peculiar powers of the instanton sizes in
Eq. (E7), as compared to the leading-order result in
Eq. (D9), arise from the overlap of the zero modes. The

contributions of the first zero mode, ψ ð2Þ
11 , and the second

zero mode, ψ ð2Þ
12 , centered around the same point z1, each

have the scale ρ1 so that they each contribute ρ21 to the
determinant. Rescaling the two quark sources J1 and J2
according to Eq. (D7) yields additional factors ρ1 and ρ2
respectively. For a single quark flavor, the local quark zero

mode determinant therefore goes like ρ51ρ2, instead of ρ31ρ
3
2

for the nonlocal contribution at leading order.
We have shown that the overlap between the different

quark zero modes arises only beyond leading order in the
limit of small constituent instantons. This is essential for
deriving a local effective action ∼V. Remarkably, even to
order ζ3, the gauge contribution to the path integral
factorizes and we can still use Eq. (B20) for the 2-instanton
[10]. So only corrections of Oðζ3Þ for the quark zero mode
determinant need to be included. With the results above, the
local part of the Q ¼ 2 partition function Zð2Þ½J�, Eq. (2),
for Nf ¼ 1 reduces to

Zð2Þ½J�jlocal ¼
1

2

Z
dρ1n1ðρ1Þρ51

Z
dρ2n1ðρ2Þρ2I1;2

Z
d4z1

Y2
i¼1

�Z
dUi

Z
d4xiF iðxi; z1; UiÞ

�
þ ð1 ↔ 2Þ: ðE8Þ

Since this expression is symmetric under the exchange of the topological charge indices 1 and 2, we finally arrive at

Zð2Þ½J�jlocal ¼
Z

dρ1n1ðρ1Þρ51
Z

dρ2n1ðρ2Þρ2I1;2

Z
d4z1

Y2
i¼1

�Z
dUi

Z
d4xiF iðxi; z1; UiÞ

�
; ðE9Þ

where the Q ¼ 1 instanton density n1 is given by Eq. (14).

APPENDIX F: GENERATING FUNCTIONAL FOR Q= 2 AND Nf ≥ 2

The discussion for two or more flavors is a straightforward generalization of that for a single flavor. Taking the quark
source to be diagonal, the determinant is

ðF1Þ

There are numerous contributions ∼V2. Assuming that the instantons are uncorrelated, the leading term is

ðF2Þ

as discussed in Appendix D.
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The terms of interest, ∼V, are given by

ðF3Þ

and

ðF4Þ

Using Eqs. (C11), (D6) and (D7), the integral over z1 in Eq. (F3) equals

ðF5Þ

and similarly for Eq. (F4). The overlap integral for any Nf is given by

INf;iðρ1; ρ2; fxfigÞ ¼
Z
zi

YNf

f¼1

Xiðxfi; ziÞ2 ¼ ðρ1ρ2Þ2Nf

Z
d4zi

YNf

f¼1

ðxfi − ziÞ2
½ðxfi − ziÞ2 þ ρ2i �3

: ðF6Þ

In general this integral depends on the locations of the two sources. For an instanton withQ ¼ 2, though, if the constituent-

instantons are small, then the zero modes ψ ð2Þ
f2 ðxÞ generate the overlap term in Eq. (F3). This overlap stems from

configurations where ψ ð2Þ
f2 ðxf2Þ is closer the first constituent-instanton, i.e., jxf2 − z1j ≪ jxf2 − z2j ≈ jz1 − z2j ¼ jR12j.

Then,

ψ ð2Þ
f2 ðxf2Þjjxf2−z1j≪jxf2−z2j ≈ −ψ̂f1ðxf2; z1Þ

ρ1ρ2jR12j
ðR2

12 þ ρ22Þ3=2
: ðF7Þ

This limit is consistent with Eqs. (C9) and (C10) as long as jxf2 − z1j ≫ ρ1; ρ2. Other terms ∼V2 are dominated by

configurations, where at least one of the zero modes ψ ð2Þ
f2 ðxf2Þ is close to z2, and are suppressed for jxf2 − z1j ≪ jxf2 − z2j.

The analogous statement is true for the overlap from ψ ð2Þ
f1 ðxf1Þ in Eq. (F4). Hence, in this case the overlap term only depends

on the instanton size and the distance between the instantons,

Xi ¼
ρ1ρ2jR12j

ðR2
12 þ ρ2i Þ3=2

; ðF8Þ

and the quark zero mode determinant is dominated by a term ∼V. The overlap integral for Nf ≥ 2 becomes
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INf;iðρ1; ρ2Þ ¼ ðρ1ρ2Þ2Nf

Z
d4R12

YNf

f¼1

R2
12

ðR2
12 þ ρ2i Þ3

¼ ðρ1ρ2Þ2Nf

Z
d4R12

R
2Nf

12

ðR2
12 þ ρ2i Þ3Nf

¼ π2ðNf þ 1Þ!ð2Nf − 3Þ!
ð3Nf − 1Þ!

�
ρ1ρ2
ρ2i

�
2Nf

ρ4i : ðF9Þ

For any Nf, the partition function for Q ¼ 2 is

Zð2Þ½J�jlocal ¼
Z

dρ1n1ðρ1Þρ5Nf

1

Z
dρ2n1ðρ2ÞρNf

2 INf;2

Z
d4z1

Y2
i¼1

�Z
dUi

YNf

f¼1

Z
d4xfiF iðxfi; z1; UiÞ

�
; ðF10Þ

with F i defined in Eq. (D6). We emphasize that since at
large distances F i contains two free quark propagators
(D8), the generating functional is that of a correlation
function between 2NfQ quarks.

APPENDIX G: THE EFFECTIVE INTERACTION

We now derive the effective action from the quark zero
mode determinant computed in the previous sections. The
main trick is to exploit the fact that far away from the
instanton, the determinant can be expressed in terms of free
quark propagators, cf. Eq. (D8), so that it mimics an
operator without a background field, located at the position
of the instanton.

1. Any topological charge at leading order

Before we discuss the local interaction for Q ¼ 2, we
consider the result to leading order for a small Q-instanton,
under the ansatz,

ZðQÞþ
eff;LO½J̄� ¼

Z
DψDψ̄ expf−S½χ� þ

Z
d4xψ̄ J̄ ψgVðQÞþ

eff;LO;

VðQÞþ
eff;LO ¼ κQ;LO

KQ;Nf

YQ
i¼1

×
�Z

d4zi

Z
dUi

YNf

f¼1

½ψ̄fðziÞωi�½ω̄iψfðziÞ�
�
;

ðG1Þ

where again without loss of generality we assume Q is
positive. This ansatz applies only to leading order (LO) for
small constituent-instantons. ωi are constant tensors carry-
ing spin and color which are determined below, and KQ;Nf

is defined in Eq. (G4). The preexponential factor VðQÞþ
eff;LO

generates a nonlocal 2NfQ-correlation function with
coupling strength κQ. The superscript þ indicates that this
is contribution from instantons; − denotes that from anti-
instantons. Because of Fermi statistics, this term can be
rewritten as a determinant,

YNf

f¼1

ðψ̄fωiÞðω̄iψfÞ ¼
1

Nf!
detfg½ðψ̄fωiÞðω̄iψgÞ�: ðG2Þ

This explains why we could take the quark source J to be
diagonal in color and flavor, as all other contributions are
given by permutations of the quark fields. The correlation

function generated by VðQÞþ
eff;LO can be computed by express-

ing the exponential as a power series in J̄,

e−Sþ
R
x
ψ̄ J̄ ψ ¼ e−S

�
1þ

Z
x11

ψ̄ðx11ÞJ̄ðx11Þψðx11Þ

þ 1

2

Z
x11

ψ̄ðx11ÞJ̄ðx11Þψðx1Þ

×
Z
x12

ψ̄ðx12ÞJ̄ðx12Þψðx12Þ

þ � � � þ 1

ðNfQÞ!
YQ
i¼1

YNf

f¼1

×
Z
xfi

ψ̄ðxfiÞJ̄ðxfiÞψðxfiÞ þ…

�
: ðG3Þ

Wick’s theorem is then used to contract the quarks from the

sources with those in VðQÞþ
eff;LO. Note our suggestive notation

for the vertex locations in Eq. (G1) and the locations of the
sources in Eq. (G3). For small constituent-instantons, the zi
in Eq. (G1) are by definition widely separated. As a result,
contractions of quark fields are suppressed except for those
where all quarks sourced at xfi are contracted at zj in

VðQÞþ
eff;LO. Any other contraction involves at least one propa-

gator Δðzi; zjÞ, with i ≠ j, which is suppressed for small
constituent-instantons. Hence, only the term of order NfQ
in J̄ in Eq. (G3) contributes. For fixed f, there are Q!
equivalent ways to contract the quarks at xfi with the ones
at zj. Since this can be done for each f, there are ðQ!ÞNf

equivalent contributions. All other contractions are
suppressed, since they contain at least one Δðzi; zjÞ. We
combine this into the combinatorial factor,
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KQ;Nf
¼ ðQ!ÞNf

ðNfQÞ! : ðG4Þ

Expanding the exponential in powers of the sources and
using Wick’s theorem for small constituent-instantons,

ZðQÞþ
eff;LO½J̄� is dominated by a 2NfQ-quark correlation

function multiplied by KQ;Nf
. To compensate for this

factor, we introduced a factor of 1=KQ;Nf
for the effective

coupling in Eq. (G1). In all we find

	
1

ðNfQÞ!
YQ
i¼1

YNf

f¼1

�Z
xfi

ψ̄ðxfiÞJ̄ðxfiÞψðxfiÞ
�
VðQÞþ
eff;LO




¼ κQ;LO

YQ
i¼1

Z
zi

Z
dUi

YNf

f¼1

×
Z
xfi

ω̄iΔðxfi − ziÞJ̄ðxfiÞΔðxfi − ziÞωi: ðG5Þ

Comparing this with Eq. (D10), using Eq. (D8), we find

κQ;LO

YQ
i¼1

Z
d4zi

Z
dUi

YNf

f¼1

×
Z

d4xfiω̄iΔðxfi − ziÞJ̄ðxfiÞΔðxfi − ziÞωi

¼ ð8π2ÞNfQ

Q!

�Z
dρin1ðρiÞρ3Nf

i

�
Q YQ

i¼1

Z
d4zi

Z
dUi

YNf

f¼1

×
Z

d4xfiU
†
iφ

†
RΔðxfi − ziÞJ̄ðxfiÞΔðxfi − ziÞφRUi:

ðG6Þ

From this, the effective coupling is

κQ;LO ¼ 1

Q!

�
ð8π2ÞNf

Z
dρin1ðρiÞρ3Nf

i

�
Q
: ðG7Þ

Aside from the combinatoric factor, this is precisely the
effective coupling derived in [4] for the single instanton to
the Qth power. From the integrands on both sides of
Eq. (G6) we infer that the tensor ω obeys the identity,

ðωiÞaαðω̄iÞaβ ¼ φαb
R Uba

i ðU†
i Þacðφ†

RÞcβ; ðG8Þ

where the color indices (a, b, c) and spinor indices (α, β)
are explicit here. The color structure of ωi is fixed by
requiring that it carries the global color orientation Ui,

ðUiÞabωb
α ¼ ðωiÞaα: ðG9Þ

Further, from the explicit form of the spinor φR in Eq. (C7),

φαa
R ðφ†

RÞaβ ¼ Pαβ
R ; ðG10Þ

where PR is the right-handed projection operator defined in
Eq. (A4). This implies

ωa
αω̄

a
β ¼ Pαβ

R : ðG11Þ

The integration over the orientation in the gauge group in
Eq. (G1) can now be carried out. Since we have the same
integral for different topological charge indices i, the
integral for fixed i is done following Refs. [4]. The final
result is this result to the Qth power,

Z
dUi

YNf

f¼1

½ψ̄fðziÞωi�½ω̄iψfðziÞ�

¼
Z

dUi

YNf

f¼1

½ψ̄fðziÞUiω�½ω̄U†
iψfðziÞ�: ðG12Þ

For a SUðNcÞ gauge group,

Z
dUi

YNf

f¼1

U
afbf
i ðU†

i Þcfdf ; ðG13Þ

where Ui is an element of SUðNcÞ=INc
, with INc

the
stability group of the instanton, the set of SUðNcÞ-
transformations that leave the instanton unchanged. For
Nc ¼ 2 this is the identity, and dUi is the corresponding
Haar measure. For arbitrary Nf and Nc the integration is
more involved. In general, the group integration in
Eq. (G12) yields products of terms which are color singlet,
∼ψ̄LψR, and nonsinglet, ∼ψLψL. In vacuum only the color
singlet terms, ∼ψ̄LψR, are important, but at nonzero
density, the nonsinglet terms ∼ψLψL affect color super-
conductivity. For two flavors, product of color singlet terms
is extracted from

Z
dUiU

a1b1
i ðU†

i Þc1d1Ua2b2
i ðU†

i Þc2d2 ¼ cNc
ðδa1d1δa2d2δb1c1δb2c2 þ δa1d2δa2d1δb1c2δb2c1Þ þ ðnonsingletÞ; ðG14Þ

cNc
is a Nc-dependent constant. We find
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Z
dUi

YNf

f¼1

½ψ̄fðziÞUiω�½ω̄U†
iψfðziÞ�jsinglet

¼ cNc
ðδa1d1δa2d2δb1c1δb2c2 þ δa1d2δa2d1δb1c2δb2c1Þ½ψ̄αa1

1 ðziÞωb1
α ω̄c1

β ψ
βd1
1 ðziÞψ̄αa2

2 ðziÞωb2
α ω̄c2

β ψ
βd2
1 ðziÞ�

¼ cNc
½ψ̄αa1

1 ðziÞωb1
α ω̄b1

β ψβa1
1 ðziÞψ̄αa2

2 ðziÞωb2
α ω̄b2

β ψβa2
2 ðziÞ þ ψ̄αa1

1 ðziÞωb1
α ω̄b2

β ψβa2
1 ðziÞψ̄αa2

2 ðziÞωb2
α ω̄b1

β ψβa1
2 ðziÞ�

¼ cNc
½ψ̄αa1

1 ðziÞωb1
α ω̄b1

β ψβa1
1 ðziÞψ̄αa2

2 ðziÞωb2
α ω̄b2

β ψβa2
2 ðziÞ − ψ̄αa1

1 ðziÞωb1
α ω̄b1

β ψβa1
2 ðziÞψ̄αa2

2 ðziÞωb2
α ω̄b2

β ψβa2
1 ðziÞ�: ðG15Þ

Now we can apply the identity for ω in Eq. (G11) to arrive
at,

Z
dUi

YNf

f¼1

½ψ̄fðziÞUiω�½ω̄U†
iψfðziÞ�jsinglet

¼ cNc
½ψ̄1ðziÞPRψ1ðziÞψ̄2ðziÞPRψ2ðziÞ

− ψ̄1ðziÞPRψ2ðziÞψ̄2ðziÞPRψ1ðziÞ�
¼ cNc

detfg½ψ̄fðziÞPRψgðziÞ�: ðG16Þ

Plugging this into Eq. (G1), we find

VðQÞþ
eff;LOjsinglet ¼

κQ;LO

KQ;Nf

YQ
i¼1

Z
d4zi detfg½ψ̄fðziÞPRψgðziÞ�;

ðG17Þ

with the coupling κQ;LO given in Eq. (G7). For any number
of flavors, the color singlet channel is a determinant in
flavor, since the structure of the gauge group integration in
Eq. (G14) is

Z
dU

Y
i

UaibiðU†Þcidi

¼ cNcNf

X
σ

Y
i

δaidσðiÞδbicσðiÞ þ ðnonsingletÞ; ðG18Þ

where σðiÞ are permutations of i ¼ 1;…; Nf; see e.g., [53].
To obtain the effective action we need to exponentiate

VðQÞþ
eff;LO. So far we considered the generating functional in

the background of a singleQ-instanton in the limit of small
constituent instantons. For a single Q–anti-instanton we
replace the right-handed with the left-handed projector

operator, PR → PL, in Eq. (G17) to obtain V
ðQÞ−
eff;LO. We now

assume that the field configurations of topological charge
Q are described by a dilute gas of Q-instantons and anti-
instantons. This generalizes the dilute instanton gas in [4] to
arbitrary topological charge.
In general, the complete contribution of Q-instantons to

the functional integral of a dilute instanton gas is a simple
statistical ensemble,

X∞
νþ¼1

X∞
ν−¼1

ðκQ=KQ;Nf
Þνþþν−

νþ!ν−!
ðVðQÞþ

eff ÞνþðVðQÞ−
eff Þν−

¼ exp

�
κQ

KQ;Nf

ðVðQÞþ
eff þ VðQÞ−

eff Þ
�
; ðG19Þ

νþ and ν− are the numbers of instantons and anti-instan-
tons. The anomalous contribution to the effective action is

ΔSðQÞ
eff;LO ¼ −

κQ
KQ;Nf

ðVðQÞþ
eff þ VðQÞ−

eff Þ: ðG20Þ

However, since the leading-oder contribution of a Q-
instanton factorizes into single-instanton contributions, a
dilute gas of single-instantons already fully captures this
contribution. Only genuine multi-instanton configurations,
where the constituent-instantons overlap to some extent,
contribute to multi-instanton corrections to the conven-
tional dilute instanton gas. Such contributions have been
computed in Appendixes E and F, and the effective action
which results discussed in the next section. A detailed
discussion of the dilute multi-instanton gas can be found
in [51].
In principle, instantons of any topological charge con-

tribute to the functional integral. Of course, in the semi-
classical regime the contributions with higher topological
charge are exponentially suppressed due to the factor
expð−8π2Q=g2Þ in the instanton density. This picture is
therefore not in conflict with lattice results on the topo-
logical charge at large temperature [34–36]. Still, these
contributions can be present and the resulting anomalous
contribution to the effective action of a dilute gas of
instantons and anti-instantons of all topological charges is

ΔSeff ¼
X
Q

ΔSðQÞ
eff : ðG21Þ

While the effective interactions are certainly small in the
dilute instanton gas, they might have relevant phenomeno-
logical implications as they manifest in anomalous corre-
lation functions of higher order.
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2. The local interaction for Q= 2

We now repeat the analysis forQ ¼ 2, taking into account the results of Appendixes E and F. Instead of ∼V2 in the space-
time volume V, these are ∼V. We take

Zð2Þþ
eff ½J̄�¼

Z
DψDψ̄ exp

�
−S½χ�þ

Z
x
ψ̄ J̄ψ

�
Vð2Þþ
eff ;

Vð2Þþ
eff ¼ κ2

K2;Nf

Z
d4z

Y2
i¼1

�Z
dUi

YNf

f¼1

½ψ̄fðzÞωi�½ω̄iψfðzÞ�
�
: ðG22Þ

Following the previous analysis, averaging over Vð2Þþ
eff gives

	
1

ð2NfÞ!
Y2
i¼1

YNf

f¼1

�Z
xfi

ψ̄ðxfiÞJ̄ðxfiÞψðxfiÞ
�
Vð2Þþ
eff



¼ κ2

Z
d4z

Y2
i¼1

Z
dUi

YNf

f¼1

Z
d4xfiω̄iΔðxfi − zÞ

× J̄ðxfiÞΔðxfi − zÞωi: ðG23Þ

Choosing κ2 and the tensors ω so that this correlation function is identical to the generating functional for Q ¼ 2 in
Eq. (F10),

κ2

Z
d4z

Y2
i¼1

Z
dUi

YNf

f¼1

Z
d4xfiω̄iΔðxfi − zÞJ̄ðxfiÞΔðxfi − zÞωi

¼ ð8π2Þ2Nf

Z
dρ2n1ðρ2ÞρNf

2

Z
dρ1n1ðρ1Þρ5Nf

1 INf;2

×
Z

d4z
Y2
i¼1

�Z
dUi

YNf

f¼1

Z
d4xfiU

†
iφ

†
RΔðxfi − zÞJ̄ðxfiÞΔðxfi − zÞφRUi

�
; ðG24Þ

which is valid for any Nf. The overlap integral I1 is given by Eq. (E6) and INf
for Nf ≥ 2 by Eq. (F9). From this we infer

κ2 ¼ ð8π2Þ2Nf

Z
dρ2n1ðρ2ÞρNf

2

Z
dρ1n1ðρ1Þρ5Nf

1 INf;2: ðG25Þ

The determination of ω and the integration over the gauge group are as before. The main difference here is that all
propagators connect to the same point z. For the channel which is a product of color singlet operators,

Vð2Þþ
eff jsinglet ¼

Z
z

κ2
K2;Nf

½detfgðψ̄fðzÞPRψgðzÞÞ�2: ðG26Þ

This is a genuine 2-instanton contribution. As discussed in the previous section, a dilute gas of 2-instantons then leads to

ΔSð2Þeff ¼ −
Z

d4x
κ2

K2;Nf

f½detfgðψ̄fðxÞPRψgðxÞÞ�2 þ ½detfgðψ̄fðxÞPLψgðxÞÞ�2g; ðG27Þ

with κ2 in Eq. (G25) and K2;Nf
¼ 2Nf=ð2NfÞ!.

APPENDIX H: A LOW-ENERGY MODEL

We use our results to construct a linear sigma model (LSM) for two flavors. For the sake of generality we include one
more anomalous quartic term which is generated by instantons withQ ¼ 1; we set it to zero in the main text. The anomalous
part of the effective Lagrangian is
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LGA
¼ −χ1ðdetΦþ detΦ†Þ − χ2½ðdetΦÞ2
þ ðdetΦ†Þ2� þ λ̄3ðTrΦ†ΦÞðdetΦþ detΦ†Þ: ðH1Þ

We set λ̄3 ¼ 0 in the main text. The meson field is given by

Φ ¼ ðσ þ iηÞ þ ða⃗0 þ iπ⃗Þτ⃗: ðH2Þ

The equations of motion are

δΓ
δϕ

����
ϕ¼ϕ̄

¼ 0; ðH3Þ

ϕ ¼ ðσ; a⃗0; η; π⃗Þ, with the vacuum expectation value
ϕ̄ ¼ ðσ̄; 0⃗; 0; 0⃗Þ,

σ̄2 ¼ −2ðm2 − χ1Þ
λ1 þ 2λ2 þ 2λ̄3 − χ2

: ðH4Þ

When m2 > χ1 the expectation value of ϕ vanishes. When
m2 < χ1 Gqu spontaneously breaks to SUVð2Þ × ZA

2 . If
there were no anomalous terms, LGqu

¼ 0, UAð1Þ would
also break, resulting in four Goldstone bosons π⃗ and η. In
the presence of the anomalous terms UAð1Þ is broken
explicitly, and only pions are massless. Due to isospin
symmetry, there are four distinct masses,

m2
σ ¼ m2 þ χ1 −

3

2
ðλ1 þ 2λ2 þ 2λ̄3 − χ2Þσ̄2;

m2
π ¼ m2 þ χ1 −

1

2
ðλ1 þ 2λ2 þ 2λ̄3 − χ2Þσ̄2;

m2
η ¼ m2 − χ1 −

1

2
ðλ1 þ 2λ2 þ 3χ2Þσ̄2;

m2
a0 ¼ m2 − χ1 −

1

2
ð3λ1 þ 2λ2 þ χ2Þσ̄2: ðH5Þ

In the symmetric phase, σ̄ ¼ 0, only the quadratic terms
contribute to the masses directly and the Q ¼ 1 term χ1
induces a splitting of the chiral pairs ðσ; π⃗Þ and ðη; a⃗0Þ. In
the symmetric phases higher order couplings only influence
these masses via loop corrections. Inserting the expectation
values from Eq. (H4),

m2
π ¼ 0;

m2
σ ¼ −2ðm2 − χ1Þ;

m2
η ¼

−2m2ð2χ2 − λ̄3Þ þ 2χ1ðλ1 þ 2λ2 þ λ̄3 þ χ2Þ
λ1 þ 2λ2 þ 2λ̄3 − χ2

;

m2
a0 ¼

−2m2ðλ1 þ χ2 − λ̄3Þ þ 2χ1ð2λ1 þ 2λ2 þ λ̄3Þ
λ1 þ 2λ2 þ 2λ̄3 − χ2

: ðH6Þ

The pion is always a Goldstone boson. To explore the
influence of the anomalous terms, we fix the masses in
vacuum using the following observables:

fπ ¼ σ̄0 ¼ 93 MeV; mσ;0 ¼ 400 MeV;

mη;0 ¼ 820 MeV; ma0;0 ¼ 980 MeV: ðH7Þ

The η mass is taken from Ref. [32]. For the other masses,
we chose values compatible with Ref. [49]. Note that we
identify the σ meson with the f0ð500Þ. Within the mean-
field approximation, and in absence of effects from
topological charge Q > 1, taking λ̄3 ¼ 0 all parameters,
including χ1, are fixed by the vacuum masses. This then
also fixes the amount of axial symmetry breaking above the
chiral phase transition, as the only anomalous contribution
to the masses in the symmetric phase stems from χ1. When
χ2 ≠ 0 the vacuum mass spectrum can be fixed for different
values for χ2, and we can explore the influence of
interactions induced by higher topological charge on the
mass spectrum.
For a given value of χ1, the value of m2 determines

whether the symmetry is broken or not. Thus in mean field
theory varying temperature is equivalent to changing m2.
We fix the masses in the vacuum according to Eq. (H7) and
study the mass spectrum as a function of m2 for different
values of χ2. We then find the following relations:

m2 ¼ 1

2
ðm2

η −m2
σÞ −

σ̄2

2
ð2χ2 − λ̄3Þ;

λ1 ¼
m2

a0 −m2
η

σ̄2
þ χ2;

λ2 ¼
m2

σ þm2
η −m2

a0

2σ̄2
− λ̄3;

χ1 ¼
1

2
m2

η −
σ̄2

2
ð2χ2 − λ̄3Þ: ðH8Þ

Since we have six model parameters, but use only four
parameters to fix them, we can choose χ2 and λ̄3 as free
parameters. Equation (H8) implies that the anomalous
quadratic coupling χ1 is determined by the anomalous
quartic couplings χ2 and λ̄3 via

χ1 ¼
1

2
m2

η;0 −
f2π
2
ð2χ2 − λ̄3Þ: ðH9Þ

Setting χ2 ¼ λ̄3 ¼ 0, the coupling χ1 ¼ m2
η;0=2.

Conversely, if we set χ1 ¼ λ̄3 ¼ 0, then the coupling
χ2 ¼ m2

η;0=ð2f2πÞ. If we use χ1 in the following, we mean

χ1ðχ2; λ̄3Þ as defined by Eq. (H9).
The system has two characteristic scales in m2. The

vacuum scale m2
vac is where the masses in the broken phase

in Eq. (H6) assume their vacuum values (H7). It can be read
off from Eq. (H8),

m2
vac ¼ χ1 −

1

2
m2

σ;0: ðH10Þ
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There is also the critical scale m2
crit for chiral symmetry

breaking. It is defined as the value of m2 where the
expectation value σ̄ (H4) vanishes,

m2
crit ¼ χ1 ¼ m2

vac þ
1

2
m2

σ;0: ðH11Þ

Hence, the characteristic scales of the system change as χ2
and λ̄3 vary. To meaningfully compare masses for different
values of χ2 and λ̄3, we define the reduced temperature,

t ¼ m2 −m2
vac

m2
crit −m2

vac
; ðH12Þ

and rewrite the masses in terms of t,

m2ðtÞ ¼ m2
vac þ tðm2

crit −m2
vacÞ: ðH13Þ

t ¼ 0 is the vacuum and t ¼ 1 is where the phase transition
occurs. As a function of t,

σ̄2ðtÞ ¼
� ð1 − tÞf2π t ≤ 1

0 t > 1
: ðH14Þ

With this parametrization, the masses take very simple
forms,

m2
σðtÞ ¼

� ð1 − tÞm2
σ;0 t ≤ 1

1
2
ðt − 1Þm2

σ;0 t > 1

m2
πðtÞ ¼

�
0 t ≤ 1
1
2
ðt − 1Þm2

σ;0 t > 1

m2
ηðtÞ ¼

�m2
η;0 − tðm2

η;0 − 2χ1Þ t ≤ 1

1
2
ðt − 1Þm2

σ;0 þ 2χ1 t > 1

m2
a0ðtÞ ¼

�m2
a0;0

− tðm2
a0;0

− 2χ1Þ t ≤ 1

1
2
ðt − 1Þm2

σ;0 þ 2χ1 t > 1
: ðH15Þ

We see that mσðtÞ and mπðtÞ are independent of the
anomalous couplings. σ is the critical mode that becomes
massless at the phase transition. The mass splitting between
the chiral pairs ðσ; π⃗Þ and ðη; a⃗0Þ in the symmetric phase is
induced by χ1. This mass splitting vanishes in the limit
t → ∞. In absence of the quartic couplings, χ2 ¼ λ̄3 ¼ 0,
one has 2χ1 ¼ m2

η;0 so the η mass is independent of t in the
broken phase. An interesting observation is that for
0 < ð2χ2 − λ̄3Þ < m2

η;0=f
2
π, mη is a strictly decreasing

function of t in the broken phase and strictly increasing
in the symmetric phase. Hence, it has a minimum at the
chiral phase transition. This behavior can therefore be
attributed to corrections related to couplings induced by
topological charge two.

The masses and the characteristic scales mvac and mcrit
only depend on χ1. Hence, due to Eq. (H9), only the
combination of anomalous quartic couplings ð2χ2 − λ̄3Þ is
relevant. We want to focus on the coupling ∼χ2 which is
induced by instantons with Q ¼ �2. An analysis of the
vacuum stability of the effective potential shows that
λ̄3 ≤ m2

σ;0=4f
2
π ≈ 4.62. We therefore conclude that setting

λ̄3 ¼ 0, which we made in the main text, is innocuous. Most
importantly, Fig. 1 does not change qualitatively for any
value of λ̄3. Our estimated values for the couplings χ1 and
χ2 do change, however. The larger λ̄3 < 0 is, the smaller χ1
and χ2 become. Even so, λ̄3 has to become very large to
have any significant effect.
By bosonizing the multiquark interactions generated by

Q-instantons, the fermionic couplings κQ can be related to
the anomalous mesonic couplings χQ. For two flavors, κ1 is
a four-quark coupling and can readily be bosonized by
means of a Hubbard-Stratonovich transformation. The 2-
instanton term κ2 is an 8-quark interaction for two flavors,
so more elaborate path integral bosonization techniques are
required [23]. Here we adopt a simplistic bosonization
scheme motivated by low-energy models where mesons are
coupled to quarks through Yukawa interactions, i.e., quark-
meson models. Using the equations of motion, mesons are
proportional to quark bilinears, so we make a simple ansatz
based upon Eq. (H2),

Φ ¼ 1

2M2
½ðψ̄ψ þ ψ̄γ5ψÞ þ ðψ̄ τ⃗ ψ þ ψ̄γ5τ⃗ψÞτ⃗�: ðH16Þ

M is a fundamental parameter of our effective theory and
has dimensions of mass. By using the identity,

ϵijϵfg ¼ 1

2
½δifδjg − ðτaÞifðτaÞjg�; ðH17Þ

the instanton-induced quark determinant becomes

detðψ̄PRψÞ ¼
1

2
ϵijϵfgðψ̄ iPRψfÞðψ̄ jPRψgÞ

¼ 1

8
½ðψ̄ψ þ ψ̄γ5ψÞ2 − ðψ̄ τ⃗ ψ þ ψ̄γ5τ⃗ψÞ2�

¼ M4

2
detΦ; ðH18Þ

and similarly for the anti-instanton term,

detðψ̄PLψÞ ¼
M4

2
detΦ†: ðH19Þ

The 1-instanton induced effective interaction transforms as
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κ1
K1;2

½detðψ̄PRψÞ þ detðψ̄PLψÞ� ¼
κ1M4

2K1;2
ðdetΦþ detΦ†Þ;

ðH20Þ

and for the 2-instanton term,

κ2
K2;2

f½detðψ̄PRψÞ�2 þ ½detðψ̄PLψÞ�2g

¼ κ2M8

4K2;2
½ðdetΦÞ2 þ ðdetΦ†Þ2�: ðH21Þ

We therefore identify

χ1 ¼
κ1M4

2K1;2
; χ2 ¼

κ2M8

4K2;2
: ðH22Þ

By plugging this into the expressions for the mesons
masses above, the dependence on χ1 and χ2 is replaced
by a dependence only on M, provided that we know the
values of κ1 and κ2. This reduces the number of indepen-
dent parameters to four. Given the four input parameters
(H7), at the level of mean field theory the effective
Lagrangian of Eq. (11) is uniquely determined.

APPENDIX I: THE INSTANTON DENSITY

In vacuum the instanton density is given by Eq. (14),
where

dMS ¼
2e5=6

π2ðNc − 1Þ!ðNc − 2Þ! e
−1.511374Ncþ0.291746Nf ; ðI1Þ

g2ðρΛMSÞ is the running coupling constant at two loop
order,

g2ðxÞ ¼ ð4πÞ2
β0 logðx−2Þ

�
1 −

β1
β20

logðlogðx−2ÞÞ
logðx−2Þ

�
; ðI2Þ

with β0 ¼ ð11Nc − 2NfÞ=3 and β1¼34N2
c=3−ð13Nc=3−

1=NcÞNf.ΛMS is the renormalization mass scale of QCD in
the modified minimal subtraction scheme. This expression
is valid for small x, where logðx−2Þ is positive. By
asymptotic freedom, the coupling g2ðρΛMSÞ is small at
small ρ, so instantons are suppressed by the exponential of
the classical action, 8π2=g2. Of necessity in a semiclassical
computation, the exponential from the classical action
dominates over the prefactor, ∼g−12, which arises from
the Jacobian for the collective coordinates of the instanton
[4]. Conversely, when ρ increases so does the coupling
g2ðρΛMSÞ. The instanton density increases at first, but
eventually decreases, suppressed by the prefactor from the
Jacobian. The instanton density n1ðρΛMSÞ is illustrated in
Fig. (3); as seen there, there is a natural maximum when
ρ ∼ 0.50ΛMS in the vacuum.

For a single instanton, at a temperature T and quark
chemical potential μ, we approximate the change to the
instanton density as

n1ðρ; T; μÞ ¼ exp
�
−
2π2

g2
ρ2m2

D − 12AðπρTÞ

×

�
1þ 1

6
ðNc − NfÞ

��
n1ðρÞ; ðI3Þ

where

m2
DðT; μÞ ¼ g2

��
Nc

3
þ Nf

6

�
T2 þ Nf

2π2
μ2
�
; ðI4Þ

is the Debye mass at leading order, and [12,13]

AðxÞ ¼ −
1

12
log

�
1þ x2

3

�
þ :0129

�
1þ 0.159

x3=2

�
−8
: ðI5Þ

The dominant term, ∼ρ2m2
D, is straightforward to under-

stand. The topological charge is proportional to trðE⃗ · B⃗Þ,
where E⃗ and B⃗ are the color electric and magnetic fields. In
any plasma, electrically charged particles screen static
electric fields over distances ∼1=mD. Since instantons
must carry color electric fields, by itself Debye screening
suffices to suppress the instanton density. Needless to say,
this argument applies in a plasma where there is Debye
screening, and not at low temperature.
For a single instanton at T ≠ 0 and μ ¼ 0, to one loop

order the instanton density can be computed analytically
either with puerile brute force [12] or by being clever [13].
The computation at μ ≠ 0 is, unexpectedly, rather more
difficult [15,21], and as of yet has not been computed for
arbitrary values of ρμ. At nonzero μ, then, we only include
the leading contribution of quarks to the Debye mass. At
μ ¼ 0 and T ≠ 0, though, numerically one can show that

FIG. 3. The instanton density for a dilute instanton gas,
Eq. (14), versus ρΛMS, for two massless quarks and three
different temperatures at μ ¼ 0.
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for the instanton density, the relative difference between the
complete result and that with just the leading term from the
Debye mass is small, at most a few percent for all values of
ρT. We comment that the instanton density to one loop
order could be computed at μ ≠ 0 numerically using the
Gelfand-Yaglom method [6], as has been done for the
computation of the one loop determinant in an instanton
field for quarks of nonzero mass [27].
Using the elementary ansatzes of Eqs. (14), (17) and (I3),

we can calculate numerically how the density changes with
temperature and chemical potential. Consider first T ≠ 0
and μ ¼ 0. As illustrated in the left plot of Fig. (4), as the
Debye mass increases the instanton density decreases
smoothly. To have some definite measure, we define the
temperature as that where the integrated instanton density is
1=10th its value at zero temperature as TI. For three colors
and two massless flavors, T2fl

I ≈ 0.71ΛMS; for three mass-

less flavors, T3fl
I ≈ 0.74ΛMS. Using ΛMS ≈ 332 MeV [49],

for two flavors T2fl
I ≈ 236 MeV, and T3fl

I ≈ 246 MeV
for three.
We stress that these numerical values are, at best, merely

suggestive. Under our naive ansatz for a dilute instanton
gas, the instanton density is very sensitive to the choice of
ΛMS; after all, merely on dimensional grounds the instanton
density is ∼ðΛMSÞ4.
At nonzero temperature, to date the results from lattice

QCD find that above temperatures 300–400 MeV, the fall
off with temperature is a power law, whose value follows
from the classical action for a single instanton and the
running of the coupling g2 with temperature. The overall
prefactor measured in lattice QCD is approximately 10
times larger than the one loop result, but at high temper-
ature perhaps this is ameliorated by the complete compu-
tation at two loop order [19]. It is still an open question as to
whether topologically nontrivial fluctuations become dilute
below [33,36] or above [34] the appropriate transition
temperature. This is presumably due to a combination of

effects from fractional dyons and instantons with integral
topological charge, either as a liquid or a gas. For our
purposes, which is frankly phenomenological, the moral
which we draw is that a dilute instanton gas is not a
preposterous assumption, at least at temperatures about Tχ .
Consider next the case of zero temperature and nonzero

quark chemical potential. As for temperature, the density of
instantons are smoothly suppressed as μ increases. The
integrated density of instantons, shown in the right plot of
Fig. 4, is 1=10th that in vacuum when μ2flI ≈ 2.44ΛMS for

two flavors, and μ3flI ≈ 2.22ΛMS for three flavors. These

correspond to μ2flI ≈ 810 MeV for two flavors, and μ3flI ≈
737 MeV for three. Taking Tχ ≈ 156 MeV [50], this is
approximately ∼1.5πTχ.
While even the instanton density at one loop order is

incomplete at μ ≠ 0, we note that these are extremely high
values of the quark chemical potential. They are almost into
the perturbative regime, for μ > 1 GeV [54].
This gross disparity has a simple origin and thus may

persist a more careful analysis. In a thermal bath, or the
Fermi sea of cold, dense quarks, instantons are suppressed
primarily because of Debye screening. As can be seen from
the expression for the Debye mass in Eq. (I4), the natural
scale for the chemical potential is μ ≈ πT. Indeed, as the
Euclidean energy of any fermion field is an odd multiple of
πT, this balance between μ and πT is true of the propagator
at tree level.
The weak dependence upon the quark chemical potential

can also be understood in the limit of large Nc. As Nc → ∞
the coupling g2 ∼ 1=Nc, so that if the number of quark
flavors Nf is held fixed as Nc → ∞, any effects of quarks
are suppressed by ∼1=Nc. In the plane of T and μ, large Nc
then generates a “quarkyonic” regime [55]. Our naive
estimate for a dilute instanton gas is simply another
illustration of this.
At present, numerical simulations of lattice QCD with

classical computers can only provide results at nonzero

FIG. 4. For two flavors, the ratio of the density of an instanton gas, integrated over ρ and normalized to the vacuum value. The left plot
shows this as function of T=ΛMS at μ ¼ 0 and the right plot as a function of μ=ΛMS at T ¼ 0. This demonstrates graphically that
instantons evaporate much more slowly as the quark chemical potential increases, as opposed to increasing the temperature.

MULTI-INSTANTON CONTRIBUTIONS TO ANOMALOUS QUARK … PHYS. REV. D 101, 114019 (2020)

114019-21



temperature and μ ≤ T. Simulations of cold, dense quark
matter may be possible with quantum computers but will
not be available for some time. Studying the dense regime
of QCD with functional continuum methods, on the other

hand, is possible even in the near-term [47]. Still, using an
effective model, such as a dilute gas of instantons, is useful
for developing the physical picture before results from first
principles are available.
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