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Single-charm baryons can be classified into two SUð3ÞF multiplets: (i) the 3̄F-plet and (ii) the 6F-plet.
Each SUð3ÞF multiplet of charmed baryons has at most four different chiral SULð3Þ × SURð3Þ symmetry
multiplets associated with it, i.e., each physical state is a mixture of at most four “chiral” states. Chiral
symmetry imposes conditions/constraints on the interaction Lagrangians involving different chiral
multiplets. We construct effective chiral Lagrangians for hadronic interactions describing transitions,
scatterings, and decays of a single-charm baryon with a single pseudoscalar meson belonging to the
SUð3ÞF nonet (containing the π, K, η, η0 mesons). For this purpose, we use chiral transformation properties
of light diquarks in the linear realization of chiral symmetry. We discuss theUAð1Þ symmetry of these chiral
interactions and show that this symmetry imposes selection rules that ought to have observable
consequences, at least in principle.

DOI: 10.1103/PhysRevD.101.114016

I. INTRODUCTION

Individual ground-state single-charm baryons have been
known for more than 30 years, see Refs. [1–6], and recently
there emerge many new data from the BABAR/Belle/
BESIII/LHCb experiments [7–11]. By now all of the
lowest-lying states have been observed, and a number of
higher-lying states are known. In a (small) number of cases,
pionic transitions/decays of excited states have been
observed, as well [7–10].
Nagahiro et al. [12] have recently evaluated pionic

decays of charmed baryons in a nonrelativistic constituent
quark model with a harmonic oscillator confinement
potential. They found that “the axial-vector-type coupling
of the pion to the light quarks is essential, which is expected
from chiral symmetry, to reproduce the decay widths
especially of the low-lying Λ�

c baryons.” Of course, the
nonrelativistic constituent quark model is not chirally
symmetric, by its very construction, and, moreover, it
leads to the well-known 33% overestimate of the nucleon
axial current coupling constant gNA of the nucleon. This calls
for a (more) careful treatment of chiral symmetry in the
charmed baryons, preferably in a unified treatment with
light-quark baryons, which we shall try and provide in the
present paper.
We start from the original linear realization of chiral

symmetry in QCD and classify the chiral properties of
single-charm baryon fields. An alternative approach to the

same problem can be found in Refs. [13–15]. Each SUð3ÞF
multiplet of charmed baryons has four different chiral
multiplets associated with it: (i) the 3̄F-plet is contained
in the “direct” 3̄F ∈ ð3̄; 1Þ ⊕ ð1; 3̄Þ, the “mirror” 3̄F ∈
ð1; 3̄Þ ⊕ ð3̄; 1Þ, and in the seemingly “ambidextrous” 3̄F ∈
B9 ¼ ð3; 3Þ chiral multiplet, as well as in its nonidentical
mirror image 3̄F ∈ B9

½mir� ¼ ð3; 3Þ [16], whereas (ii) the

6F-plet is contained in the direct 6F ∈ ð6; 1Þ ⊕ ð1; 6Þ, or in
the mirror 6F ∈ ð1; 6Þ ⊕ ð6; 1Þ, as well as in both kinds
of the ambidextrous chiral multiplet 6F ∈ B9 ¼ ð3; 3Þ and
6F ∈ B9

½mir� ¼ ð3; 3Þ. The mirror chiral multiplet might not

appear in the ground state(s), that are described by local
interpolating operators, which are therefore more restricted
by the Pauli principle. Exited states are generally expected
to contain all four chiral components.
Using these chiral properties, we construct all possible

algebraically distinct SULð3Þ × SURð3Þ chirally invariant
interactions of such baryons with one pseudoscalar (or
scalar) meson. Some of our interaction Lagrangians violate
the UAð1Þ symmetry, whereas others do not, which in fact
implies selection rules. Now, the UAð1Þ chiral symmetry
plays a special role in QCD: it is explicitly broken, above
and beyond the usual current-quark mass terms, by topo-
logical effects, specifically by QCD instantons [17,18].
This explicit symmetry breaking is most visibly manifested
in the η, η0 meson masses, which are (much) larger than the
pion’s and/or kaon’s masses, but there are precious few
other places where it is manifested. In this paper, we show
that charm hyperons interactions are one (new) place where
UAð1Þ symmetry breaking is manifested.
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Our results imply, inter alia, that (i) some baryon-
pseudoscalar-meson interactions are related to ’t Hooft’s
instanton-induced interaction in QCD by way of crossing
and/or Fierz relations; see e.g., Refs. [19,20] and (ii) their
coupling constant(s) must be related to the η, η0 masses,
which may make them of different order of magnitude than
the couplings of UAð1Þ-conserving interactions. These two
facts, besides being of some theoretical interest, ought to
have practical implications: they imply bounds on some
charmed baryons’ pion interactions stemming from entirely
different hadronic properties; that is, however, another
topic, which will not be dealt with here.
In this paper, after some preliminary considerations in

Sec. II that defines the one-heavy-two-light-quark baryon
fields and their chiral transformation properties, in Sec. III
we construct chiral Lagrangians for one-pseudoscalar-
meson (“pionic”) charmed baryon (i.e., light diquark)
transitions/decays in the linear realization of chiral sym-
metry, at first with three light flavors Nf ¼ 3 in Sec. III A,
and then with two light flavors Nf ¼ 2 in Sec. III B. That
allows us to determine their UAð1Þ symmetry properties in
Sec. III C. In Sec. IV, we discuss the phenomenology of
chiral mixing. Finally, in Sec. V, we summarize and draw
our conclusions. Technical aspects are relocated to the
Appendix.

II. ONE-HEAVY-TWO-LIGHT-QUARK BARYONS

Baryons consisting of one heavy and two light quarks
can be thought of as a bound state of the heavy quark and
the light diquark, which can have different values of the
total angular momentum J ¼ Jdiquark ⊗ sheavy−quark and
thus ought to be described by different fields, e.g.,
Dirac, Rarita-Schwinger [21–23], and Bargmann-Wigner
[22,23] fields; see below.
In the present study, we shall only construct the Dirac

fields of JP ¼ 1=2þ (denoted as J) and the Rarita-
Schwinger fields of JP ¼ 3=2þ (denoted as Jμ), while
those negative-parity fields can be easily obtained by
adding one extra γ5 matrix, i.e., γ5J is a Dirac field of
JP ¼ 1=2− and γ5Jμ is a Rarita-Schwinger field of
JP ¼ 3=2−. We note that the field J can couple to both
the state X having the same (positive) parity as well as the
state X0 having the opposite (negative) parity [24–27],
through

h0jJjXi ¼ fXuðpÞ; ð1Þ

h0jJjX0i ¼ fX0γ5u0ðpÞ: ð2Þ

Or we can use its partner field γ5J,

h0jγ5JjXi ¼ fXγ5uðpÞ; ð3Þ

h0jγ5JjX0i ¼ fX0u0ðpÞ: ð4Þ

So do the Rarita-Schwinger fields Jμ and γ5Jμ. The
Bargmann-Wigner fields of JP ¼ 3=2� (denoted as Jμν
with two antisymmetric Lorentz indices) are slightly differ-
ent, because each of these fields already contains both
positive- and negative-parity components. However, Jμν
still has its partner field γ5Jμν, and both of them can couple
to the same states.
The (light-flavor) chiral properties of such baryon fields

are entirely determined by the chiral properties of the light
diquark, which have been classified in previously published
papers: forNf ¼ 2 case, see Ref. [28], and forNf ¼ 3 case,
see Ref. [29]. We could have followed the (far more)
complicated route outlined in Ref. [29]: first take all bilocal
three-quark interpolating fields, which allows for all
possible chiral multiplets, the mirror ones included—the
results are shown in Tables III–VII of Ref. [29].
One notices immediately the presence of both the direct

and mirror chiral multiplets, as a consequence of the
weaker influence of the Pauli principle on nonlocal fields.
Taking the bilocal fields is necessary, as we are not
considering only the ground states (which correspond to
the local interpolator fields) of the single-charm baryons,
but also the excited states, which are generally nonlocal.
Then one may let the mass of one of the quarks grow
beyond all bounds and thus obtain a one-heavy-two-light-
quark baryon, which we are interested in.

A. Dirac fields with spin 1=2

1. Flavor 3̄F baryons

Let us start with writing down five baryon fields which
contain a diquark formed by five sets of Dirac matrices, 1,
γ5, γμ, γμ, γ5, and σμν,

BG
3̄;1

¼ ϵabcϵ
ABGðqaTA CqbBÞγ5cc;

BG
3̄;2

¼ ϵabcϵ
ABGðqaTA Cγ5qbBÞcc;

BG
3̄;3

¼ ϵabcϵ
ABGðqaTA Cγμγ5qbBÞγμcc;

BG
3̄;4

¼ ϵabcϵ
ABGðqaTA CγμqbBÞγμγ5cc;

BG
3̄;5

¼ ϵabcϵ
ABGðqaTA CσμνqbBÞσμνγ5cc; ð5Þ

where a, b, c are color indices and the sum over repeated
indices is taken; A, B, G are SUð3ÞF indices, so that
qA ¼ fu; d; sg; ϵABG is the totally antisymmetric matrix
with G ¼ 1, 2, 3, so that BG

3̄;i
belongs to the 3̄F-plet; cc is

the charm quark field with the color index c; C is the
charge-conjugation matrix. The charm quark may also exist
in the diquark, but one can always use the Fierz trans-
formation to move it to the last position, and so write it as a
combination of the five fields shown in Eq. (5).
Among these five fields, we can show that the fourth and

the fifth ones vanish, BG
3̄;4;5

¼ 0, due to the Pauli principle.
Therefore, in this case, there are altogether three
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independent fields, BG
3̄;1;2;3

≠ 0, which can be associated

with the three kinds of diquark fields,

BG
3̄;1

¼ ϵabcPG
3abγ5c

c;

BG
3̄;2

¼ ϵabcSG3abc
c;

BG
3̄;3

¼ ϵabcV
Gμ
3abγ

μcc: ð6Þ

Here PG
3ab, S

G
3ab, and V

Gμ
3ab are the diquark fields of J

P ¼ 0−,
0þ, and 1−, respectively.

2. Flavor 6F baryons

Among the five 6F baryon fields formed by the five
different γ-matrices, only two are nonzero,

BU
6;4 ¼ ϵabcSUABðqaTA CγμqbBÞγμγ5cc;

BU
6;5 ¼ ϵabcSUABðqaTA CσμνqbBÞσμνγ5cc; ð7Þ

where SUAB are the six totally symmetric matrices with
U ¼ 1…6, so that BU

6;i belongs to the 6F-plet. We can
associate them with the two kinds of diquark fields,

BU
3̄;4

¼ ϵabcA
Uμ
6abγ

μγ5cc;

BU
3̄;5

¼ ϵabcT
Uμν
6ab σμνγ5c

c; ð8Þ

where AUμ
6ab and T

Uμν
6ab are the diquark fields of JP ¼ 1þ and

1�, respectively.

B. Rarita-Schwinger fields with spin 3=2

In this subsection, we study the properties of Rarita-
Schwinger fields [21,22] in the form of

BμðxÞ ∼ ϵabcðqaTA ðxÞCΓ1qbBðxÞÞΓ2qcCðxÞ; ð9Þ

where there are eight possible pairs of Γ1 and Γ2,

ðΓ1;Γ2Þ ¼ ð1; γμÞ; ðγ5; γμγ5Þ; ðγμγ5; γ5Þ;
ðγνγ5; σμνγ5Þ; ðγμ; 1Þ; ðγν; σμνÞ;
ðσμν; γνÞ; ðσμνγ5; γνγ5Þ: ð10Þ

The fields formed by these ðΓ1;Γ2Þ pairs are labeled by the
subscript i ¼ ð1;…; 8Þ with the ordering of Eq. (10).

1. Flavor 3̄F baryons

For flavor 3̄F Rarita-Schwinger baryon fields, there are
four apparently nonzero ones,

BG
3̄;1μ

¼ ϵabcϵ
ABGðqaTA CqbBÞγμcc;

BG
3̄;2μ

¼ ϵabcϵ
ABGðqaTA Cγ5qbBÞγμγ5cc;

BG
3̄;3μ

¼ ϵabcϵ
ABGðqaTA Cγμγ5qbBÞγ5cc;

BG
3̄;4μ

¼ ϵabcϵ
ABGðqaTA Cγνγ5qbBÞσμνγ5cc; ð11Þ

so there are altogether four independent fields in this case.
Among these four freedoms, three can be related to the
previous Dirac fields, and the only new field can be
obtained by acting on the projection operator

P3=2
μν ¼

�
gμν −

1

4
γμγν

�
ð12Þ

on BG
3̄;3μ

(or BG
3̄;4μ

),

BG
3̄;μ

¼ P3=2
μν BG

3̄;3ν

¼
�
gμν −

1

4
γμγν

�
ϵabcϵ

ABGðqaTA Cγνγ5qbBÞγ5cc

¼ BG
3̄;3μ

þ 1

4
γμγ5BG

3̄;3
: ð13Þ

2. Flavor 6F baryons

For flavor 6F Rarita-Schwinger baryon fields, we have
four potentially nonzero ones,

BU
6;5μ ¼ ϵabcSUABðqaTA CγμqbBÞcc;

BU
6;6μ ¼ ϵabcSUABðqaTA CγνqbBÞσμνcc;

BU
6;7μ ¼ ϵabcSUABðqaTA CσμνqbBÞγνcc;

BU
6;8μ ¼ ϵabcSUABðqaTA Cσμνγ5qbBÞγνγ5cc; ð14Þ

so there are altogether four independent fields in this case.
Among these four degrees of freedom, two can be related to
the previous Dirac fields. The two new fields can be
obtained using the projection operator

BU
6;μ ¼ P3=2

μν BU
6;5ν

¼
�
gμν −

1

4
γμγν

�
ϵabcSUABðqaTA CγνqbBÞcc

¼ BU
6;5μ þ

1

4
γμγ5BU

6;4; ð15Þ

CHIRAL SULð3Þ × SURð3Þ SYMMETRY OF … PHYS. REV. D 101, 114016 (2020)

114016-3



B0U
6;μ ¼ P3=2

μν ðBU
6;7ν þ BU

6;8νÞ

¼
�
gμν −

1

4
γμγν

�
ðBU

6;7ν þ BU
6;8νÞ

¼ BU
6;7ν þ BU

6;8ν þ
i
2
γμγ5BU

6;5: ð16Þ

C. Wigner-Bargmann (tensor) fields with spin 3=2

In this subsection, we study the antisymmetric Wigner-
Bargmann (tensor) baryon fields Jμν with Jμν ¼ −Jνμ [23].
For the tensor fields, we can form 9 three-quark fields,
where the possible pairs of Γ1 and Γ2 are

ðΓ1;Γ2Þ ¼ ðγμ; γνγ5Þ − μ ↔ ν; ðγμγ5; γνÞ − μ ↔ ν;

ϵμνρσðγρ; γσÞ; ϵμνρσðγργ5; γσγ5Þ;
ð1; σμνγ5Þ; ðγ5; σμνÞ; ðσμν; γ5Þ;
ðσμνγ5; 1Þ; ϵμνρσðσρl; σσlÞ: ð17Þ

The fields formed by these ðΓ1;Γ2Þ pairs are labeled by the
subscript i ¼ ð1;…; 9Þ with the ordering of Eq. (17).

1. Flavor 3̄F baryons

The flavor 3̄F tensor baryon fields have the following
four potentially nonzero interpolators among nine fields:

BG
3̄;2μν

¼ ϵabcϵ
ABGðqaTA Cγμγ5qbBÞγνcc − ðμ ↔ νÞ;

BG
3̄;4μν

¼ ϵabcϵ
ABGϵμνρσðqaTA Cγργ5qbBÞγσγ5cc;

BG
3̄;5μν

¼ ϵabcϵ
ABGðqaTA CqbBÞσμνγ5cc;

BG
3̄;6μν

¼ ϵabcϵ
ABGðqaTA Cγ5qbBÞσμνcc: ð18Þ

Therefore, there are altogether four independent fields in
this case. However, all of them can be related to the
previously found Dirac and Rarita-Schwinger fields.

2. Flavor 6F baryons

The flavor 6F tensor baryon fields have the following
five potentially nonzero interpolators:

BU
6;1μν ¼ ϵabcSUABðqaTA CγμqbBÞγνγ5cc − ðμ ↔ νÞ;

BU
6;3μν ¼ ϵabcSUABϵμνρσðqaTA CγρqbBÞγσcc;

BU
6;7μν ¼ ϵabcSUABðqaTA CσμνqbBÞγ5cc;

BU
6;8μν ¼ ϵabcSUABðqaTA Cσμνγ5qbBÞcc;

BU
6;9μν ¼ ϵabcSUABϵμνρσðqaTA CσρlqbBÞσσlcc: ð19Þ

Therefore, there are altogether five independent fields in
this case. Among these five freedoms, four can be related to
the previously found Dirac and Rarita-Schwinger fields.

The only new field can be obtained by acting the projection
operator

Γμναβ ¼
�
gμαgνβ −

1

2
gνβγμγα þ 1

2
gμβγνγα þ 1

6
σμνσαβ

�
;

on BU
6;7μν þ BU

6;8μν,

BU
6;μν ¼ ΓμναβðBU

6;7αβ þ BU
6;8αβÞ

¼ BU
6;7μν þ BU

6;8μν −
1

2
γμγ5ðBU

6;7ν þ BU
6;8νÞ

þ 1

2
γνγ5ðBU

6;7μ þ BU
6;8μÞ þ

1

3
σμνBU

6;5: ð20Þ

D. Chiral transformation properties

Summarizing the above three subsections, we obtain four
independent flavor 3̄F baryon fields and five independent
flavor 6F ones,

BG
3̄;1
; BG

3̄;2
; BG

3̄;3
; BG

3̄;μ
;

BU
6;5; B

U
6;4; B

U
6;μ; B

0U
6;μ; B

U
6;μν: ð21Þ

In this subsection, we study their chiral transformation
properties, where the chiral transformation of quarks is
given by the following equations:

Uð1ÞV∶q → exp

�
i
λ0

2
a0

�
q ¼ qþ δq;

SUð3ÞV∶q → exp

�
i
λ⃗

2
· a⃗

�
q ¼ qþ δa⃗q;

Uð1ÞA∶q → exp

�
iγ5

λ0

2
b0

�
q ¼ qþ δ5q;

SUð3ÞA∶q → exp

�
iγ5

λ⃗

2
· b⃗

�
q ¼ qþ δb⃗5q: ð22Þ

Here λ0 ¼ ffiffiffiffiffiffiffiffi
2=3

p
13×3 and λ⃗ are the eight Gell-Mann

matrices; a0 is an infinitesimal parameter for the Uð1ÞV
transformation, a⃗ the octet of SUð3ÞV group parameters, b0

an infinitesimal parameter for the Uð1ÞA transformation,
and b⃗ the octet of the chiral transformations.
Following Ref. [30], we can extract the chiral trans-

formation properties of BG
3̄;1

and BG
3̄;2

to be

δb⃗5ðBG
3̄;1

− BG
3̄;2
Þ ¼ i

2
γ5bNλNFGðBF

3̄;1
− BF

3̄;2
Þ;

δb⃗5ðBG
3̄;1

þ BG
3̄;2
Þ ¼ −

i
2
γ5bNλNFGðBF

3̄;1
þ BF

3̄;2
Þ; ð23Þ

those of BG
3̄;3
, BU

6;4, B
G
3̄;μ
, and BU

6;μ to be
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δb⃗5B
G
3̄;3

¼ −iγ5bNTN
GUB

U
6;4;

δb⃗5B
U
6;4 ¼ −

i
2
γ5bNT

†N
UGB

G
3̄;3
;

δb⃗5B
G
3̄;μ

¼ iγ5bNTN
GUB

U
6;μ;

δb⃗5B
U
6;μ ¼

i
2
γ5bNT

†N
UGB

G
3̄;μ
; ð24Þ

and those of BU
6;5, B

0U
6;μ, and BU

6;μν to be

δb⃗5B
U
6;5 ¼ iγ5bNFN

UVB
V
6;5;

δb⃗5B
0U
6;μ ¼ −iγ5bNFN

UVB
0V
6;μ;

δb⃗5B
U
6;μν ¼ iγ5bNFN

UVB
V
6;μν; ð25Þ

where the matrices TN and FN are given in the Appendix.
Altogether we obtain one ð3̄; 1Þ ⊕ ð1; 3̄Þ, one ð1; 3̄Þ ⊕

ð3̄; 1Þ, two (3,3), one ð6; 1Þ ⊕ ð1; 6Þ, and two ð1; 6Þ ⊕
ð6; 1Þ chiral multiplets,

BG
3̄;1

− BG
3̄;2

∈ ð3̄; 1Þ ⊕ ð1; 3̄Þ;
BG
3̄;1

þ BG
3̄;2

∈ ð1; 3̄Þ ⊕ ð3̄; 1Þ;
ðBG

3̄;3
; BU

6;4Þ ∈ ð3; 3Þ½mir�;

BU
6;5 ∈ ð1; 6Þ ⊕ ð6; 1Þ;

ðBG
3̄;μ
; BU

6;μÞ ∈ ð3; 3Þ;
B0U
6;μ ∈ ð6; 1Þ ⊕ ð1; 6Þ;

BU
6;μν ∈ ð1; 6Þ ⊕ ð6; 1Þ: ð26Þ

TABLE I. The Abelian UAð1Þ, the Lorentz group SOð3; 1Þ, and the non-Abelian SULð3Þ × SURð3Þ chiral
transformation properties/axial charges of Dirac, Rarita-Schwinger, and Bargmann-Wigner baryon fields with
Nf ¼ 3. In the sixth column, we show the sign under transposition of the two quarks in the color state. In the last
column, we show the symbols Bα and Hα used to construct chiral invariant Lagrangians.

UAð1Þ SOð3; 1Þ SULð3Þ × SURð3Þ SUð3ÞF SUð3ÞC Symbol

BG
3̄;1

− BG
3̄;2

−2 ð1
2
; 0Þ ⊕ ð0; 1

2
Þ ð3̄; 1Þ ⊕ ð1; 3̄Þ 3̄ 1 B3

BG
3̄;1

þ BG
3̄;2

þ2 ð1; 3̄Þ ⊕ ð3̄; 1Þ 3̄ 1 B3
½mir�

BG
3̄;3

0 ð3; 3Þ½mir� 3̄ 1 B9
½mir�

BU
6;4 0 6 1

BU
6;5 þ2 ð1; 6Þ ⊕ ð6; 1Þ 6 1 B6

½mir�

BG
3̄;μ

0 ð1; 1
2
Þ ⊕ ð1

2
; 1Þ ð3; 3Þ 3̄ 1 B9

BU
6;μ 0 6 1

B0U
6;μ −2 ð6; 1Þ ⊕ ð1; 6Þ 6 1 B6

BU
6;μν þ2 ð3

2
; 0Þ ⊕ ð0; 3

2
Þ ð1; 6Þ ⊕ ð6; 1Þ 6 1 B6

½mir�

TABLE II. The Abelian UAð1Þ, the Lorentz group SOð3; 1Þ, and the non-Abelian SULð2Þ × SURð2Þ chiral
transformation properties/axial charges of Dirac, Rarita-Schwinger, and Bargmann-Wigner baryon fields with
Nf ¼ 2.

UAð1Þ SOð3; 1Þ SULð2Þ × SURð2Þ SUð2ÞF SUð3ÞC Symbol

HG
0;1 −HG

0;2 −2 ð1
2
; 0Þ ⊕ ð0; 1

2
Þ ð0; 0Þ 0 1 H1

HG
0;1 þHG

0;2 þ2 ð0; 0Þ 0 1 H1

HG
0;3 0 ð12 ; 12Þ½mir� 0 1 H4

½mir�
HU

1;4 0 1 1

HU
1;5 þ2 ð0; 1Þ ⊕ ð1; 0Þ 1 1 H3

½mir�

HG
0;μ 0 ð1; 1

2
Þ ⊕ ð1

2
; 1Þ ð12 ; 12Þ 0 1 H4

HU
1;μ 0 1 1

H0U
1;μ −2 ð1; 0Þ ⊕ ð0; 1Þ 1 1 H3

HU
1;μν þ2 ð3

2
; 0Þ ⊕ ð0; 3

2
Þ ð0; 1Þ ⊕ ð1; 0Þ 1 1 H3

½mir�
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Note that once the chiral representation of the meson field
Mb ¼ σb þ iγ5πb is fixed as ð3; 3̄Þ ⊕ ð3̄; 3Þ, the chiral
representations of the above baryon fields are also fixed,
i.e., either as direct or as the mirror.
We summarize their chiral properties in Table I, which

are primarily determined by the chiral properties
of the light diquarks involved, but also by the Dirac
structure of the whole baryon field. Of course, they also
depend on the number of light flavor Nf. Table I is for
the Nf ¼ 3 case. For completeness, we also show the

Nf ¼ 2 case in Table II, where the symbol HG=U
SUð2ÞF;iðμνÞ

denotes the corresponding baryon fields in the Nf ¼ 2

case. A significant difference is that both HG
0;1 −HG

0;2 and
HG

0;1 þHG
0;2 are chiral singlets, so their mirror fields are

just themselves.
In the next section, we shall use these baryon fields to

construct chiral invariant Lagrangians together with pseu-
doscalar mesons belonging to the SUð3ÞF nonet. To do this,
only their chiral properties are relevant, so we shall use the
symbols Bα and Hα to denote the corresponding chiral
multiplets, where the “exponent index” α indicates how
many components these multiplets contain, as shown in
Tables I and II.

III. BARYON-MESON INTERACTIONS

The one-heavy-two-light-quark baryon interpolating
fields can be found in Sec. II. Their chiral transformation
properties are essentially determined by those of the light
diquarks that they contain. It is then no surprise that their
interactions are also determined by the diquark-meson
interactions.
Yet, there are (many) more baryon fields than there are

diquarks, the main difference being the additional Lorentz
indices μ, ν that have to be “absorbed” somehow. That is
usually by one of three ways: (i) by operating with
derivatives on the spinless meson fields; or (ii) by con-
tractions with the free Lorentz indices on the vector and
axial-vector meson fields; or (iii) by contractions with free
Lorentz index on another baryon field.
Thus, certain differences appear in the interaction

Lagrangians that depend on the total spin of the baryon
in question: the spin-1

2
Dirac fields couple differently

among themselves from the corresponding coupling to
the spin-3

2
Rarita-Schwinger and the Bargmann-Wigner

fields. Manifestly, a large number of off-diagonal terms
can be constructed with ease, so we shall not dwell on that
issue, but shall keep it in the back of our mind.

A. Baryon-meson interactions with Nf = 3

We use Mb ¼ σb þ iγ5πb to denote the scalar σb and
pseudoscalar πb meson field nonets belonging to the
ð3; 3̄Þ ⊕ ð3̄; 3Þ chiral multiplet, and M†b ¼ σb − iγ5πb

defining its mirror conjugate,

δb⃗5ðσb þ iγ5πbÞ ¼ −iγ5badabcðσc þ iγ5πcÞ;
δb⃗5ðσb − iγ5πbÞ ¼ iγ5badabcðσc − iγ5πcÞ: ð27Þ

The chirally invariant interactions are listed in Table III.
There are altogether five distinct terms (as well as five
mirror ones),

L1 ¼ g1B̄3
X8
a¼0

MaGa
1B

3; ð28Þ

L2 ¼ g2B̄3
½mir�

X8
a¼0

MaGa
2B

9; ð29Þ

L3 ¼ g3B̄3
X8
a¼0

M†aGa
3B

9; ð30Þ

L4 ¼ g4B̄6
½mir�

X8
a¼0

MaGa
4B

9; ð31Þ

L5 ¼ g5B̄6
X8
a¼0

M†aGa
5B

9; ð32Þ

where the matrices Ga
1;2;3;4;5 with a ¼ 0…8 are as follows:

G0
1 ¼ ðλ0ÞT ¼

ffiffiffi
2

3

r
13×3; GN

1 ¼ ðλNÞT;

G0
2 ¼

�
−

ffiffiffi
8

3

r
13×3; 03×6

�
; GN

2 ¼ ððλNÞT;−
ffiffiffi
2

p
TNÞ;

G0
3 ¼

�
−

ffiffiffi
8

3

r
13×3; 03×6

�
; GN

3 ¼ ððλNÞT;
ffiffiffi
2

p
TNÞ;

G0
4 ¼

�
06×3;

2ffiffiffi
3

p 16×6

�
; GN

4 ¼ ðT†N;
ffiffiffi
2

p
FNÞ;

G0
5 ¼

�
06×3;−

2ffiffiffi
3

p 16×6

�
; GN

5 ¼ ðT†N;−
ffiffiffi
2

p
FNÞ:

The matrices TN and FN in the above expressions can be
found in the Appendix.
One can see in Table III that there are no chirally

invariant interactions between B̄6 and B6 baryon fields,
but there is a standard mirror-field chiral invariant mass
(constant—no meson interaction) term between the B̄6

½mir�
and B6 fields. Similar behaviors can be found for the B̄9,
B9, and B̄9

½mir� baryon fields. Only the B̄3 and B3 baryon

fields allow a diagonal interaction with M ∈ ð3̄; 3Þ ⊕ ð3; 3̄Þ
mesons, so all the rest are off-diagonal. Therefore, only the
B3 baryon may acquire an effective mass term from the
spontaneous symmetry breaking in the case with three
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flavors. Even this one disappears in the case with two
flavors, as we shall see in the next subsection.
We shall see in Sec. III C that the SULð3Þ × SURð3Þ

chirally invariant interactions involving pseudoscalar mes-
ons (π, K, η, η0) necessarily violate the Uð1ÞA symmetry.
This fact translates into a statement about the strength of
these effective interactions, as all of them have to be related
to the η0, η masses, and not to the usual pion-quark
coupling, as one might expect. However, we shall also
see that the SULð2Þ × SURð2Þ chirally invariant inter-
actions involving pseudoscalar mesons (π, η�) do not
necessarily violate the Uð1ÞA symmetry, i.e., they may
respect it.

B. Baryon-meson interactions with Nf = 2

Before we begin, we recall that the Nf ¼ 2 scalar-
pseudoscalar meson chiral multiplet Ma comes in
two varieties, Aa, Ba, defined in Eqs. (24) and (25) of
Ref. [31] as

A ¼
X3
a¼0

Aaτa ¼ σ þ iγ5τ · π; ð33Þ

B ¼
X3
a¼0

Baτa ¼ τ · σ þ iγ5η: ð34Þ

Both chiral multiplets A� B ∈ ð12 ; 12Þ, but they transform
into each other under UAð1Þ chiral transformations,

δ5ðAþ BÞ ¼ −2iγ5aðAþ BÞ; ð35Þ

δ5ðA − BÞ ¼ þ2iγ5aðA − BÞ: ð36Þ

Therefore, the − linear combination has a positive UAð1Þ
chiral charge, whereas theþ linear combination has a
negative UAð1Þ chiral charge, which allows us to build
UAð1Þ chirally conserving and breaking interactions with
equal ease.

The two-flavor baryon-meson interactions have the same
form as the three-quark interactions in Eqs. (29)–(32), but
the one corresponding to Eq. (28) does not exist anymore.
Thus, there are 4 two flavor analogous of Eqs. (29)–(32) (as
well as four mirror ones),

L0
2 ¼ g02H̄

1
X3
a¼0

MaG0a
2 H

4; ð37Þ

L0
3 ¼ g03H̄

1
X3
a¼0

M†aG0a
3 H

4; ð38Þ

L0
4 ¼ g04H̄

3
½mir�

X3
a¼0

MaG0a
4 H

4; ð39Þ

L0
5 ¼ g05H̄

3
X3
a¼0

M†aG0a
5 H

4; ð40Þ

where the matrices G0a
2;3;4;5 with a ¼ 0…3 are as follows:

G00
2 ¼ ð−

ffiffiffi
6

p
11×1; 01×3Þ; G0N

2 ¼ ð01×1;−
ffiffiffi
2

p
T0NÞ;

G00
3 ¼ ð−

ffiffiffi
6

p
11×1; 01×3Þ; G0N

3 ¼ ð01×1;
ffiffiffi
2

p
T0NÞ;

G00
4 ¼ ð03×1;

ffiffiffi
3

p
13×3Þ; G0N

4 ¼ ðT0†N;
ffiffiffi
2

p
F0NÞ;

G00
5 ¼ ð03×1;−

ffiffiffi
3

p
13×3Þ; G0N

5 ¼ ðT0†N;−
ffiffiffi
2

p
F0NÞ:

The matrices T0N and F0N in the above expressions can be
found in the Appendix.
Besides, there are other two baryon-meson interactions

in the Nf ¼ 2 case (as well as two mirror ones),

L0
6 ¼ g06H̄

3
½mir�

X3
a¼0

M†aG0a
6 H

4; ð41Þ

L0
7 ¼ g07H̄

3
X3
a¼0

MaG0a
7 H

4; ð42Þ

TABLE III. The non-Abelian (SULð3Þ × SURð3Þ) chiral invariant interactions of baryonsB, antibaryons B̄ belonging to various chiral
multiplets, and meson fields M ∈ ð3; 3̄Þ ⊕ ð3̄; 3Þ. � � � means that there is no chiral invariant interaction, and 1 means that the “mirror
mass” term B̄½mir�B itself (without interaction with mesons) is chirally invariant. This table is for theNf ¼ 3 case, and there are five more
interactions containing B9

½mir� and B̄9
½mir�.

B3 ∈ ð3̄; 1Þ ⊕ ð1; 3̄Þ B3
½mir� ∈ ð1; 3̄Þ ⊕ ð3̄; 1Þ

B6 ∈ ð6; 1Þ
⊕ ð1; 6Þ

B6
½mir� ∈ ð1; 6Þ
⊕ ð6; 1Þ B9 ∈ ð3; 3Þ

B̄3∈ ð1;3Þ⊕ ð3;1Þ M∈ ð3; 3̄Þ⊕ ð3̄;3Þ 1 � � � � � � M†∈ ð3̄;3Þ⊕ ð3; 3̄Þ
B̄3
½mir�∈ ð3;1Þ⊕ ð1;3Þ 1 M†∈ ð3̄;3Þ⊕ ð3; 3̄Þ � � � � � � M∈ ð3; 3̄Þ⊕ ð3̄;3Þ

B̄6∈ ð1; 6̄Þ⊕ ð6̄;1Þ � � � � � � � � � 1 M†∈ ð3̄;3Þ⊕ ð3; 3̄Þ
B̄6
½mir�∈ ð6̄;1Þ⊕ ð1; 6̄Þ � � � � � � 1 � � � M∈ ð3; 3̄Þ⊕ ð3̄;3Þ

B̄9∈ ð3̄; 3̄Þ M†∈ ð3̄;3Þ⊕ ð3; 3̄Þ M∈ ð3; 3̄Þ⊕ ð3̄;3Þ M†∈ ð3̄;3Þ⊕ ð3; 3̄Þ M∈ ð3; 3̄Þ⊕ ð3̄;3Þ � � �
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where

G00
6 ¼ ð03×1;−

ffiffiffi
3

p
13×3Þ; G0N

6 ¼ ðT0†N;
ffiffiffi
2

p
F0NÞ;

G00
7 ¼ ð03×1;

ffiffiffi
3

p
13×3Þ; G0N

7 ¼ ðT0†N;−
ffiffiffi
2

p
F0NÞ:

Note that the above forms are the same for both ground-
state and excited diquarks with identical chiral transforma-
tion properties, as only the chiral properties count here,
which do not depend on spatial variables.

C. UAð1Þ chiral symmetry

The Nf ¼ 3 chiral-invariant diagonal interaction (in
Table III) of the B3 ∈ ð3̄; 1Þ ⊕ ð1; 3̄Þ and B̄3 ∈ ð1; 3Þ ⊕
ð3; 1Þ multiplets violates the Abelian UAð1Þ chiral sym-
metry. Recall that the scalar and pseudoscalar meson fields

M andM† carry gð0ÞA ¼ −2 andþ2, respectively. Therefore,
by using the result of Table III, we have the net UAð1Þ
charge as

gð0ÞA ¼ þ2 − 2þ 2 ¼ 2 ≠ 0; ð43Þ

for the diagonal interaction Eq. (28). The off-diagonal
interactions (29)–(32), on the other hand, are UAð1Þ
invariant, because they involve the B9 ∈ ð3; 3Þ, which

carries gð0ÞA ¼ 0 axial baryon number.
As all of these effective diquark-meson interactions are

six-quark/antiquark operators, one might conclude that all
of them must be related to the UAð1Þ symmetry-breaking
’t Hooft instanton-induced interaction,

Lð6Þ
tH ¼ K½detfðψ̄ð1þ γ5ÞψÞ þ detfðψ̄ð1 − γ5ÞψÞ�; ð44Þ

by means of crossing and Fierz relations, as Eq. (44) is the
only SULð3Þ × SURð3Þ chirally invariant and Lorentz-
invariant parity-conserving six-quark/antiquark operator.
Therefore, all such terms ought to be UAð1Þ symmetry
breaking themselves.
That conclusion would be too hasty, however, as the

ð3; 3Þ-multiplet diquarks are Lorentz vector (or axial-
vector) mesons, which means that no Lorentz-invariant
interaction with Lorentz pseudoscalar (or scalar) mesons

and diquark is allowed. Rather, the said interaction is a
Lorentz vector (or axial-vector) with one free Lorentz index
that must be contracted with a γμ matrix. Consequently,
such interactions are not Fierz related to the ’t Hooft
interaction and preserve UAð1Þ symmetry. Note, moreover,
that all SULð3Þ × SURð3Þ- and UAð1Þ-conserving inter-
actions are off-diagonal.
In the case of Nf ¼ 2, as discussed above in Sec. II D,

both HG
0;1 −HG

0;2 and HG
0;1 þHG

0;2 are chiral singlets, so
they are SULð2Þ × SURð2Þ chiral invariant. However, they
are not UAð1Þ chiral invariant, as shown in Table II. Hence,
one can see in Table IV that for each interaction term
containing H1 without Abelian UAð1Þ chiral symmetry
breaking, there is one interaction term with Abelian UAð1Þ
chiral symmetry breaking, i.e., interactions given in
Eqs. (37) and (38) as well as their mirror ones. Plainly
put, the non-Abelian chiral symmetry does not restrict the
Abelian UAð1Þ chiral symmetry breaking, in the Nf ¼ 2

case, in contrast to the Nf ¼ 3 case. This is in agreement
with the conclusions of Refs. [14,31].

D. Lorentz structure

So far, we have not included the Lorentz indices in the
interaction Lagrangians, which we shall do that next. As
shown in Table II, the baryon fields have Lorentz group
indices associated with them: (i) the Dirac fields have
only the Dirac index (ranging from 1 to 4); (ii) the
Rarita-Schwinger fields have one Dirac index and a
Lorentz one μ; and (iii) the Bargmann-Wigner fields
have two antisymmetric Lorentz indices μ, ν. Therefore,
the interaction Lagrangians as shown in Eqs. (28)–(32)
and Eqs. (37)–(42) may have one or more unsaturated
Lorentz indices.
One way to saturation of Lorentz indices is to have a

derivative four-vector ∂μ acting only on the scalar-pseu-
doscalar meson fields, but never on the Lorentz indices of
baryon fields. In this way, one avoids having to apply the
auxiliary conditions ∂μBμ ¼ 0 for the Rarita-Schwinger
and Wigner-Bargmann fields.
Thus, a new set of derivative-coupled interaction

Lagrangians appears even in the linear realization of chiral
symmetry,

TABLE IV. The non-Abelian (SULð2Þ × SURð2Þ) chiral invariant interactions of baryons H, antibaryons H̄ belonging to various
chiral multiplets, and meson fields M ∈ ð12 ; 12Þ. This table is for the Nf ¼ 2 case, and there are six more interactions containing H4

½mir�
and H̄4

½mir�.

H1 ∈ ð0; 0Þ H3 ∈ ð1; 0Þ ⊕ ð0; 1Þ H3
½mir� ∈ ð0; 1Þ ⊕ ð1; 0Þ H4 ∈ ð12 ; 12Þ

H̄1 ∈ ð0; 0Þ 1 � � � � � � M ∈ ð12 ; 12Þ=M† ∈ ð12 ; 12Þ
H̄3 ∈ ð0; 1Þ ⊕ ð1; 0Þ � � � � � � 1 M ∈ ð12 ; 12Þ=M† ∈ ð12 ; 12Þ
H̄3

½mir� ∈ ð1; 0Þ ⊕ ð0; 1Þ � � � 1 � � � M ∈ ð12 ; 12Þ=M† ∈ ð12 ; 12Þ
H̄4 ∈ ð12 ; 12Þ M ∈ ð12 ; 12Þ=M† ∈ ð12 ; 12Þ M ∈ ð12 ; 12Þ=M† ∈ ð12 ; 12Þ M ∈ ð12 ; 12Þ=M† ∈ ð12 ; 12Þ � � �
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LI
1 ¼ gI1B̄

3ð∂μMÞaGa
1γμγ5B

3;

LII
1 ¼ gII1 B̄

3
½mir�ð∂μMÞ†aGa

1γμγ5B
3
½mir�;

LI
2 ¼ gI2B̄

3
½mir�ð∂μMÞaGa

2B
9
μ;

LII
2 ¼ gII2 B̄

3ð∂μMÞ†aGa
2γμγ5B

9
½mir�;

LI
3 ¼ gI3B̄

3ð∂μMÞ†aGa
3B

9
μ;

LII
3 ¼ gII3 B̄

3
½mir�ð∂μMÞaGa

3γμγ5B
9
½mir�;

LI
4 ¼ gI4B̄

6
½mir�ð∂μMÞaGa

4B
9
μ;

LII
4 ¼ gII4 B̄

6
½mir�;μνð∂μMÞaGa

4B
9;ν;

LIII
4 ¼ gIII4 B̄6

μð∂μMÞ†aGa
4B

9
½mir�;

LI
5 ¼ gI5B̄

6
μð∂νMÞ†aGa

5γνγ5B
9;μ;

LII
5 ¼ gII5 B̄

6
½mir�ð∂μMÞaGa

5γμγ5B
9
½mir�; ð45Þ

where we have explicitly added the Lorentz indices in the
symbol Bα (see Table I),

B3 ¼ BG
3̄;1

− BG
3̄;2
;

B3
½mir� ¼ BG

3̄;1
þ BG

3̄;2
;

B9
½mir� ¼ ðBG

3̄;3
; BU

6;4Þ;
B6

½mir� ¼ BU
6;5;

B9
μ ¼ ðBG

3̄;μ
; BU

6;μÞ;
B6

μ ¼ B0U
6;μ;

B6
½mir�;μν ¼ BU

6;μν: ð46Þ

These interactions are particularly interesting because
they are the terms that lead to derivative-coupled inter-
actions in the nonlinear realization of chiral symmetry,
quite unlike the ordinary nucleon case, where the kinetic
energy produces such derivative terms.

E. Lorentz and chiral mixing

First, let us note that the Lorentz group indices ðp; kÞ are
not good quantum numbers—rather, only the (total) angu-
lar momentum j ∈ jp − kj;…; ðpþ kÞ of a free particle is
conserved. Similarly, the left- and right-handed isospins
ðIL; IRÞ are not good quantum numbers—rather, only the
isospin I ∈ jIL − IRj;…; ðIL þ IRÞ is conserved.
This means that one may have identical spin fields/

particles from different representations of the Lorentz
group. For example, spin-3=2 baryons can be described
by both the Rarita-Schwinger fieldsHμ and the Bargmann-
Wigner ones Hμν. Consequently, physical baryons may be
admixtures of these two, depending on the interactions,
which ought to preserve both the Lorentz and chiral
symmetries. Similarly, the spin-1=2 baryons can be des-
cribed by both the Dirac fields H and by the spin-1=2

complement to the Rarita-Schwinger field Hμ. As these
three types of fields (may) have different chiral properties,
see Table II, we must expect to have chiral mixing as well.
All of this has been known for some time in the case of
three-light-quark baryons, as documented in Refs. [32,33].
An analogous study of spin-1=2 and spin-3=2 charmed
baryons would demand a (far) deeper knowledge of
experimental baryons’ pion decay rates and/or axial cou-
plings than presently available.
A general feature of the linear realization of chiral

symmetry is that physical baryon states are linear super-
positions of bare baryon fields, i.e., there is (chiral)
mixing of different chiral multiplets with identical overall
quantum numbers, such as the spin J, and flavor SU(3).
For example, the baryon fields with the same spin and
isospin, e.g., H1 and H4, mix as a consequence of
spontaneous and explicit chiral symmetry breaking.
Unfortunately, the diagonal and off-diagonal mass terms
alone are insufficient to determine the mixing angles; see
Sec. IVA.
Another way to determine some functions of the mixing

angles is to use the hyperon’s axial couplings. They are
generally unknown, unless one accepts a lattice QCD
calculation [34] as experimental input; see Sec. IV B.
The knowledge of off-diagonal pion coupling constants,
e.g., as in Refs. [32,33], is another possible input, but, at the
present time, it is insufficient to fix the mixing parameters.

IV. CHIRAL MIXING AND EXPERIMENT

In order to fix the free parameters of this model, one
needs experimental input, just as it was needed in the case
of three-light-quark baryons [29–31,35]. There are, how-
ever, several important differences: (i) there are fewer
(4) chiral multiplets here than in the three-light-quark case
(6) and (ii) there are fewer experimental data available here:
two masses of Λcð2595Þ and Λcð2625Þ þ ðpossiblyÞ one
axial coupling, than in the three-light-quark case (where we
had four massesþ two axial couplings [31,32,35]), which
are not in “conflict” with each other.

A. Chiral mixing and hyperon masses

The baryon fields with the same spin and isospin, e.g.,
H1 and H4, mix as a consequence of spontaneous and
explicit chiral symmetry breaking. Generally speaking, the
masses of baryons are determined by the non-Abelian
(SULð2Þ × SURð2Þ) chiral invariant interactions, which are
shown in Sec. III B.
For every flavor SUð3Þ multiplet, there are two different

“naive” chiral fields, plus two “mirror fields,” see
Tables I, V, and VI, thus leading to four independent
operators, and therefore to (at most) four-operator mixing.
Now, a 4 × 4 orthogonal mixing matrix has 4 × 3=2 ¼ 6
independent matrix elements, which, in turn, can be para-
metrized with six mixing angles. In order to fix these
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mixing angles, one needs, in principle at least, six inde-
pendent observables, such as masses, axial couplings, etc.
One can go through a calculation analogous to the one in
Sec. IV B of Ref. [29], but we shall see that, unfortunately,
the diagonal and off-diagonal mass terms stemming from
our interactions alone are insufficient to determine the
mixing angles.
One can see in Table IV that there are no chiral-

invariant interactions between H̄4 and H4 on one hand,
nor between H̄4

½mir� and H4
½mir� on the other. A similar

statement holds for the H̄3 andH3 baryons, and the H̄1 and
H1 baryons, which do not allow a diagonal interaction with
M ∈ ð12 ; 12Þ mesons. The remaining nonzero interaction
terms are all off-diagonal.
What is more, there are no diagonal chirally invariant

interactions involving the isotriplet hyperons, neither.
Consequently, the Σ-hyperon masses are also independent
of spontaneous symmetry breaking. Therefore, none of the
H1, H3, H4 baryons acquires an effective mass term from
the spontaneous symmetry breaking, and the “traditional”
way, such as in Refs. [31,32,35], of determining chiral
mixing angles/parameters from the masses does not work
here, as yet. Perhaps, with the increase of the number of
observed hyperons, this may change. Indeed, a similar
analysis in Ref. [13] has identified (only) pairs of “chiral
partners” in each flavor channel, whereas we are looking
for up to four such states in each flavor channel.
But, even if one could identify all four hyperons and

reproduce their masses, at the present moment, four
(diagonal) masses leave two free parameters short of the
six necessary ones. That will have to be dealt with by
means of two independent axial couplings.

B. Axial couplings

Another complementary way to determine (some of) the
mixing angles is to use the hyperon’s (isovector) axial
coupling. Each charmed hyperon has two independent axial
couplings: (i) the flavor singlet gð0ÞA and (ii) the flavor

nonsinglet gðNÞ
A , where N can be either 3̄-plet or 6-plet.

Bare hyperonfields belonging to different chiral multip-
lets have different values of these two independent axial
coupling constants, see Tables I, V, and VI, so that the
physical (observed) axial couplings are chiral admixtures
(linear superpositions) of the individual axial couplings.
The hyperon interpolating fields in QCD have well-

defined UAð1Þ chiral transformation properties, see
Tables I, V, and VI, that can be used to calculate the

physical flavor-singlet/isoscalar axial coupling gð0ÞAmix of a
chiral binary mixture,

gð0ÞAmix ¼ gð0ÞAðIÞ cos
2 θ þ gð0ÞAðIIÞ sin

2 θ; ð47Þ

and similarly for the non-Abelian axial coupling,

gðNÞ
Amix ¼ gðNÞ

AðIÞ cos
2 θ þ gðNÞ

AðIIÞ sin
2 θ: ð48Þ

Note, however, that due to the different (bare) non-Abelian

gðNÞ
A and Abelian gð0ÞA axial couplings, see Tables V and VI,
the mixing formula Eq. (47) may yield substantially
different predictions from one case to another. Thus, for
each known physical value of the axial coupling, one can
eliminate one of the mixing angles/parameters.
The two axial couplings are generally unknown, with the

possible exception of a lattice QCD calculation [34],
leading to gð3̄ÞA ∼ 0.75 for the Λ − Σ transition (isovector)
axial coupling, which is consistent with a phenomenologi-
cal estimate from Ref. [12,36]. Such a reduced value
implies the presence of mirror fields in chiral mixing
scenarios, which generally reduce this number down from
unity. Note, however, that the knowledge of the isovector
axial coupling does not help us choose between the two
possible naive-mirror-field pairs: as one can see in Table V
that both the ð3̄; 1Þ multiplet and the (3,3) multiplet have
(bare) isovector axial couplings equal to �1.
As we have seen above, a full complement of four

(different) charmed hyperons with identical spin, isospin,
and flavor SUð3Þ content does not exist at this point in
time—therefore, we may have to eliminate one naive and/
or perhaps even one mirror field from consideration.

C. Three-field mixing

When we have three-state mixing, there are three mixing
angles that could be fixed by three masses alone, or
alternatively, one of the masses can be replaced by the
knowledge of one axial coupling of the ground state
hyperon. This is not likely to happen in the foreseeable

TABLE VI. The Abelian and the non-Abelian axial charges
(þ sign indicates naive, − sign mirror transformation properties)
of the non-Abelian chiral multiplets containing a flavor 6-plet.

Case Field gð0ÞA gð6ÞA
SULð3Þ × SURð3Þ

I B6 −2 þ1 ð6; 1Þ ⊕ ð1; 6Þ
II B6

½mir� þ2 −1 ð1; 6Þ ⊕ ð6; 1Þ
III B9 0 þ1 ð3; 3Þ
IV B9

½mir� 0 −1 ð3; 3Þ

TABLE V. The Abelian and the non-Abelian axial charges
(þ sign indicates naive, − sign mirror transformation properties)
of the non-Abelian chiral multiplets containing a flavor 3̄-plet.

Case Field gð0ÞA gð3̄ÞA
SULð3Þ × SURð3Þ

I B3 −2 þ1 ð3̄; 1Þ ⊕ ð1; 3̄Þ
II B3

½mir� þ2 −1 ð1; 3̄Þ ⊕ ð3̄; 1Þ
III B9 0 þ1 ð3; 3Þ
IV B9

½mir� 0 −1 ð3; 3Þ
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future. An alternative would be to have both isovector and
isoscalar axial couplings, perhaps again by way of lattice
QCD calculation. That would allow one to analyze three-
field mixtures, as follows.
For ternary chiral mixtures, we have

gð0ÞAmix ¼ gð0ÞAðIÞcos
2θ þ sin2θ

× ðgð0ÞAðIIIÞcos
2φþ gð0ÞAðIIÞsin

2φÞ; ð49Þ

gðNÞ
Amix ¼ gðNÞ

AðIÞcos
2θ þ sin2θ

× ðgðNÞ
AðIIIÞcos

2φþ gðNÞ
AðIIÞsin

2φÞ: ð50Þ

Note that the above “experimental” value of the non-
Abelian axial coupling constant gðNÞ

A ∼ 0.75 eliminates only
one pair of mixed fields (II-IV), due to the (negative) sign
of the axial coupling, and leaves five allowed pairs. An

inkling of the Abelian axial coupling constant gð0ÞA , which
has been measured for three-light-quark baryons [28,31]
but not for charm hyperons, would take us a great deal
forward.
Experimental knowledge of (other) pion-hyperon cou-

pling constants, as studied in Ref. [12], is insufficient to fix
the mixing parameters at the present moment as they were
fixed, e.g., in Refs. [32,33].

D. Discussion

There are two calculations in the literature that deserve
discussion/comparison with (i) Migura et al. [37] and
(ii) Harada et al. [14].
(i) Migura et al. [37] have used the ’t Hooft interaction

(in addition to a confining potential) in a (semi)relativistic
quark model to calculate the mass spectrum of charmed
baryons (but not their pion decays), and they predicted a
spectrum that agrees fairly with the observed one. That
suggests, though it is not a proof, that the ’t Hooft
interaction ought to lead to similarly good results in our
approach, as well. Unfortunately, Migura et al. [37] have
used the (nonrelativistic) SUFSð8Þ flavor-spin group, and
not the Lorentz and chiral groups, as we did here, to
classify the hyperon states. This fact makes the com-
parison of our two approaches difficult.
It remains to be seen if the observed value(s) of

charmed baryon pion coupling constants are consistent
with Migura et al.’s predictions—for that purpose, it
will be necessary to calculate the charmed-baryon-
pseudoscalar-meson coupling constants as functions of
the ’t Hooft interaction coupling constant, which is
fairly known.
(ii) Harada et al. [14] have recently studied UAð1Þ

symmetry breaking in the interactions of 3̄-plet diquarks
and pseudoscalar mesons, within the setting of SULð3Þ ×
SURð3Þ chiral symmetry. They found only one such

interaction, their Eq. (16), which is the same as our
Eq. (28). Note that their calculation is instructive, as it
shows the connection with the ’t Hooft interaction.

V. SUMMARY AND CONCLUSIONS

In this paper, we have considered chiral transformation
properties of one-heavy-two-light-quark baryons. We con-
structed all local single-charm baryon interpolating fields
and determined their chiral transformation properties.
Based on these properties, we constructed all the chirally
invariant interactions of such baryons with one pseudo-
scalar (or scalar) meson.
We found that in the good SULð3Þ × SURð3Þ limit one

chirally invariant interaction Lagrangian violates the UAð1Þ
symmetry. This means (i) that interaction must be related to
’t Hooft’s instanton-induced interaction in QCD and (ii) its
coupling constant must be related to the η; η0 masses
[17,18]. Some, perhaps limited progress in this direction
has been reported in Ref. [14].
These facts, in addition to being of theoretical interest,

have practical implications: they imply selection rules (in
the chiral limit) on the baryons’ pion couplings and decay
widths, stemming from two different QCD effects:
(i) UAð1Þ symmetry-breaking effects and (ii) current-quark
mass. That is, however, another topic which will not be
dealt with here.
Finally, we note that chiral interaction Lagrangians for

pion transitions between two charmed baryons have been
formulated in terms of effective Lagrangians satisfying
the heavy-quark and chiral symmetries. Yasui [38], in
particular, extended these early ideas and studied the
excited states of one-heavy-quark baryons with arbitrary
angular momentum of the “brown muck” in the Oð1=MÞ
expansion and with chiral Lagrangians. Nevertheless,
these nonlinear Lagrangians do not allow insight into
their QCD origins and in particular not into their UAð1Þ
symmetry properties. In the future, one may attempt a
“chiral boost,” a la Weinberg, of our linear Lagrangians,
so as to compare their predictions with the nonlinear
ones. As for the Oð1=MÞ expansion of the brown muck,
we are inclined to a pessimistic disposition, in view of its
failure in the case of Ds0ð2317Þ meson.
We hope to return to the question of crossing and Fierz

relations between apparently independent interaction
Lagrangians reported above.
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APPENDIX: SUFð3Þ SYMMETRY MATRICES

The matrices TN are

T1 ¼

0
BB@

0 0 0 − 1ffiffi
2

p 0 0

0 0 0 0 1ffiffi
2

p 0

1 0 −1 0 0 0

1
CCA; ðA1Þ

T2 ¼

0
BB@

0 0 0 − iffiffi
2

p 0 0

0 0 0 0 − iffiffi
2

p 0

i 0 i 0 0 0

1
CCA; ðA2Þ

T3 ¼

0
BB@

0 0 0 0 1ffiffi
2

p 0

0 0 0 1ffiffi
2

p 0 0

0 −
ffiffiffi
2

p
0 0 0 0

1
CCA; ðA3Þ

T4 ¼

0
BB@

0 1ffiffi
2

p 0 0 0 0

−1 0 0 0 0 1

0 0 0 0 − 1ffiffi
2

p 0

1
CCA; ðA4Þ

T5 ¼

0
BB@

0 iffiffi
2

p 0 0 0 0

−i 0 0 0 0 −i
0 0 0 0 iffiffi

2
p 0

1
CCA; ðA5Þ

T6 ¼

0
BB@

0 0 1 0 0 −1
0 − 1ffiffi

2
p 0 0 0 0

0 0 0 1ffiffi
2

p 0 0

1
CCA; ðA6Þ

T7 ¼

0
BB@

0 0 i 0 0 i

0 − iffiffi
2

p 0 0 0 0

0 0 0 − iffiffi
2

p 0 0

1
CCA; ðA7Þ

T8 ¼

0
BBB@

0 0 0 0 −
ffiffi
3
2

q
0

0 0 0
ffiffi
3
2

q
0 0

0 0 0 0 0 0

1
CCCA: ðA8Þ

The matrices FN are

F1 ¼

0
BBBBBBBBBB@

0 1ffiffi
2

p 0 0 0 0

1ffiffi
2

p 0 1ffiffi
2

p 0 0 0

0 1ffiffi
2

p 0 0 0 0

0 0 0 0 1
2

0

0 0 0 1
2

0 0

0 0 0 0 0 0

1
CCCCCCCCCCA
; ðA9Þ

F2 ¼

0
BBBBBBBBBB@

0 − iffiffi
2

p 0 0 0 0

iffiffi
2

p 0 − iffiffi
2

p 0 0 0

0 iffiffi
2

p 0 0 0 0

0 0 0 0 − i
2

0

0 0 0 i
2

0 0

0 0 0 0 0 0

1
CCCCCCCCCCA
; ðA10Þ

F3 ¼

0
BBBBBBBBB@

1 0 0 0 0 0

0 0 0 0 0 0

0 0 −1 0 0 0

0 0 0 1
2

0 0

0 0 0 0 − 1
2

0

0 0 0 0 0 0

1
CCCCCCCCCA
; ðA11Þ

F4 ¼

0
BBBBBBBBBB@

0 0 0 1ffiffi
2

p 0 0

0 0 0 0 1
2

0

0 0 0 0 0 0
1ffiffi
2

p 0 0 0 0 1ffiffi
2

p

0 1
2

0 0 0 0

0 0 0 1ffiffi
2

p 0 0

1
CCCCCCCCCCA
; ðA12Þ

F5 ¼

0
BBBBBBBBBB@

0 0 0 − iffiffi
2

p 0 0

0 0 0 0 − i
2

0

0 0 0 0 0 0

iffiffi
2

p 0 0 0 0 − iffiffi
2

p

0 i
2

0 0 0 0

0 0 0 iffiffi
2

p 0 0

1
CCCCCCCCCCA
; ðA13Þ
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F6 ¼

0
BBBBBBBBBB@

0 0 0 0 0 0

0 0 0 1
2

0 0

0 0 0 0 1ffiffi
2

p 0

0 1
2

0 0 0 0

0 0 1ffiffi
2

p 0 0 1ffiffi
2

p

0 0 0 0 1ffiffi
2

p 0

1
CCCCCCCCCCA
; ðA14Þ

F7 ¼

0
BBBBBBBBBB@

0 0 0 0 0 0

0 0 0 − i
2

0 0

0 0 0 0 − iffiffi
2

p 0

0 i
2

0 0 0 0

0 0 iffiffi
2

p 0 0 − iffiffi
2

p

0 0 0 0 iffiffi
2

p 0

1
CCCCCCCCCCA
; ðA15Þ

F8 ¼ 1ffiffiffi
3

p

0
BBBBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 − 1
2

0 0

0 0 0 0 − 1
2

0

0 0 0 0 0 −2

1
CCCCCCCCCA
: ðA16Þ

The matrices T0N are

T01 ¼ ð 1 0 −1 Þ; ðA17Þ

T02 ¼ ð i 0 i Þ; ðA18Þ

T03 ¼ ð 0 −
ffiffiffi
2

p
0 Þ: ðA19Þ

The matrices F0N are

F01 ¼

0
BB@

0 1ffiffi
2

p 0

1ffiffi
2

p 0 1ffiffi
2

p

0 1ffiffi
2

p 0

1
CCA; ðA20Þ

F02 ¼

0
BB@

0 − iffiffi
2

p 0

iffiffi
2

p 0 − iffiffi
2

p

0 iffiffi
2

p 0

1
CCA; ðA21Þ

F03 ¼

0
B@

1 0 0

0 0 0

0 0 −1

1
CA: ðA22Þ
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