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Single-charm baryons can be classified into two SU(3), multiplets: (i) the 3z-plet and (ii) the 6 -plet.
Each SU(3) multiplet of charmed baryons has at most four different chiral SU; (3) x SUg(3) symmetry
multiplets associated with it, i.e., each physical state is a mixture of at most four “chiral” states. Chiral
symmetry imposes conditions/constraints on the interaction Lagrangians involving different chiral
multiplets. We construct effective chiral Lagrangians for hadronic interactions describing transitions,
scatterings, and decays of a single-charm baryon with a single pseudoscalar meson belonging to the
SU(3) nonet (containing the 7, K, 1, 7’ mesons). For this purpose, we use chiral transformation properties
of light diquarks in the linear realization of chiral symmetry. We discuss the U4 (1) symmetry of these chiral
interactions and show that this symmetry imposes selection rules that ought to have observable

consequences, at least in principle.
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I. INTRODUCTION

Individual ground-state single-charm baryons have been
known for more than 30 years, see Refs. [1-6], and recently
there emerge many new data from the BABAR/Belle/
BESHI/LHCb experiments [7-11]. By now all of the
lowest-lying states have been observed, and a number of
higher-lying states are known. In a (small) number of cases,
pionic transitions/decays of excited states have been
observed, as well [7-10].

Nagahiro ef al. [12] have recently evaluated pionic
decays of charmed baryons in a nonrelativistic constituent
quark model with a harmonic oscillator confinement
potential. They found that “the axial-vector-type coupling
of the pion to the light quarks is essential, which is expected
from chiral symmetry, to reproduce the decay widths
especially of the low-lying A} baryons.” Of course, the
nonrelativistic constituent quark model is not chirally
symmetric, by its very construction, and, moreover, it
leads to the well-known 33% overestimate of the nucleon
axial current coupling constant ¢ of the nucleon. This calls
for a (more) careful treatment of chiral symmetry in the
charmed baryons, preferably in a unified treatment with
light-quark baryons, which we shall try and provide in the
present paper.

We start from the original linear realization of chiral
symmetry in QCD and classify the chiral properties of
single-charm baryon fields. An alternative approach to the
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same problem can be found in Refs. [13-15]. Each SU(3)
multiplet of charmed baryons has four different chiral
multiplets associated with it: (i) the 34-plet is contained
in the “direct” 3 € (3,1) @ (1,3), the “mirror” 35 €
(1,3) & (3,1), and in the seemingly “ambidextrous” 3, €
B° = (3,3) chiral multiplet, as well as in its nonidentical
mirror image 3y € B}, = (3,3) [16], whereas (ii) the
67-plet is contained in the direct 6 € (6,1) & (1,6), or in
the mirror 6, € (1,6) @ (6.1), as well as in both kinds
of the ambidextrous chiral multiplet 6, € B® = (3,3) and
6, € B[gmir] = (3, 3). The mirror chiral multiplet might not
appear in the ground state(s), that are described by local
interpolating operators, which are therefore more restricted
by the Pauli principle. Exited states are generally expected
to contain all four chiral components.

Using these chiral properties, we construct all possible
algebraically distinct SU; (3) x SUg(3) chirally invariant
interactions of such baryons with one pseudoscalar (or
scalar) meson. Some of our interaction Lagrangians violate
the U, (1) symmetry, whereas others do not, which in fact
implies selection rules. Now, the U, (1) chiral symmetry
plays a special role in QCD: it is explicitly broken, above
and beyond the usual current-quark mass terms, by topo-
logical effects, specifically by QCD instantons [17,18].
This explicit symmetry breaking is most visibly manifested
in the 7, ' meson masses, which are (much) larger than the
pion’s and/or kaon’s masses, but there are precious few
other places where it is manifested. In this paper, we show
that charm hyperons interactions are one (new) place where
U, (1) symmetry breaking is manifested.

© 2020 American Physical Society
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Our results imply, inter alia, that (i) some baryon-
pseudoscalar-meson interactions are related to 't Hooft’s
instanton-induced interaction in QCD by way of crossing
and/or Fierz relations; see e.g., Refs. [19,20] and (ii) their
coupling constant(s) must be related to the #, 1 masses,
which may make them of different order of magnitude than
the couplings of U, (1)-conserving interactions. These two
facts, besides being of some theoretical interest, ought to
have practical implications: they imply bounds on some
charmed baryons’ pion interactions stemming from entirely
different hadronic properties; that is, however, another
topic, which will not be dealt with here.

In this paper, after some preliminary considerations in
Sec. II that defines the one-heavy-two-light-quark baryon
fields and their chiral transformation properties, in Sec. III
we construct chiral Lagrangians for one-pseudoscalar-
meson (“pionic”) charmed baryon (i.e., light diquark)
transitions/decays in the linear realization of chiral sym-
metry, at first with three light flavors Ny = 3 in Sec. Il A,
and then with two light flavors Ny = 2 in Sec. Il B. That
allows us to determine their U4 (1) symmetry properties in
Sec. III C. In Sec. IV, we discuss the phenomenology of
chiral mixing. Finally, in Sec. V, we summarize and draw
our conclusions. Technical aspects are relocated to the
Appendix.

II. ONE-HEAVY-TWO-LIGHT-QUARK BARYONS

Baryons consisting of one heavy and two light quarks
can be thought of as a bound state of the heavy quark and
the light diquark, which can have different values of the
total angular momentum J = Jgiquark ® Sheavy—quark and
thus ought to be described by different fields, e.g.,
Dirac, Rarita-Schwinger [21-23], and Bargmann-Wigner
[22,23] fields; see below.

In the present study, we shall only construct the Dirac
fields of J” =1/2% (denoted as J) and the Rarita-
Schwinger fields of J” =3/2" (denoted as J,), while
those negative-parity fields can be easily obtained by
adding one extra ys matrix, i.e., ys5J is a Dirac field of
JP=1/27 and ysJ 4 1s a Rarita-Schwinger field of
JP =3/27. We note that the field J can couple to both
the state X having the same (positive) parity as well as the
state X’ having the opposite (negative) parity [24-27],
through

(O171X) = fxu(p). (1)

OMIX") = fxysu'(p). (2)
Or we can use its partner field ysJ,

= fxrsu(p). 3)

[yt (p). (4)

(Olys/1X)

(OlysJ|X") =

So do the Rarita-Schwinger fields J, and ysJ,. The
Bargmann-Wigner fields of J” =3/2* (denoted as J,,
with two antisymmetric Lorentz indices) are slightly differ-
ent, because each of these fields already contains both
positive- and negative-parity components. However, J,,
still has its partner field ysJ/,,, and both of them can couple
to the same states.

The (light-flavor) chiral properties of such baryon fields
are entirely determined by the chiral properties of the light
diquark, which have been classified in previously published
papers: for Ny = 2 case, see Ref. [28], and for N = 3 case,
see Ref. [29]. We could have followed the (far more)
complicated route outlined in Ref. [29]: first take all bilocal
three-quark interpolating fields, which allows for all
possible chiral multiplets, the mirror ones included—the
results are shown in Tables III-VII of Ref. [29].

One notices immediately the presence of both the direct
and mirror chiral multiplets, as a consequence of the
weaker influence of the Pauli principle on nonlocal fields.
Taking the bilocal fields is necessary, as we are not
considering only the ground states (which correspond to
the local interpolator fields) of the single-charm baryons,
but also the excited states, which are generally nonlocal.
Then one may let the mass of one of the quarks grow
beyond all bounds and thus obtain a one-heavy-two-light-
quark baryon, which we are interested in.

)

A. Dirac fields with spin 1/2

1. Flavor 3 baryons

Let us start with writing down five baryon fields which
contain a diquark formed by five sets of Dirac matrices, 1,

V55 Yus Vs V5o and Ouys

Bgl = €4pc€ ABG( CC]B)ySC

Bgz €abc€ ABG( C}’ qB) P

B, = e’ (g4 Cr,rsqp)rice.

Bg4 = €4pbc€ ABG( 7;¢qB)yﬂy5C s

Bg;5 eabceA G( CO-;w‘IB) /wySC (5)

where a, b, ¢ are color indices and the sum over repeated
indices is taken; A, B, G are SU(3), indices, so that
ga = {u,d,s}; e*BY is the totally antisymmetric matrix
with G = 1, 2, 3, so that Bgi belongs to the 3F—plet; cCis
the charm quark field with the color index c; C is the
charge-conjugation matrix. The charm quark may also exist
in the diquark, but one can always use the Fierz trans-
formation to move it to the last position, and so write it as a
combination of the five fields shown in Eq. (5).

Among these five fields, we can show that the fourth and
the fifth ones vanish, BG 45 = 0, due to the Pauli principle.
Therefore, in this case there are altogether three
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independent fields, Bg;l 53 # 0, which can be associated

with the three kinds of diquark fields,

G __ abc pG c
B3.,1 = e"°PY s,
G _ G .c

B:-;.2 = €4peS3,CEs

G,
33G,3 = €upcVimprhc. (6)

Here P§,,, S, and V3G£‘b are the diquark fields of J¥ = 0,
0T, and 17, respectively.

2. Flavor 6 baryons

Among the five 65 baryon fields formed by the five
different y-matrices, only two are nonzero,

BgA = eabCSXB(qﬁTC}/ﬂqg)yﬂyscC,

Bg.S = €achXB(CIXTC%qu)UWYSCC, (7)

where S{, are the six totally symmetric matrices with
U =1...6, so that ng belongs to the 6p-plet. We can
associate them with the two kinds of diquark fields,

U _ Un c
B3’4 - eabcAﬁahYﬂySC s

U _ Unv c
Bg.s - eabcTﬁab 0/41/75C s (8)

where Agj’b and Tgf,f are the diquark fields of J* = 17 and
1%, respectively.

B. Rarita-Schwinger fields with spin 3/2

In this subsection, we study the properties of Rarita-
Schwinger fields [21,22] in the form of

B, (x) ~ €anc(q4 (x)CT1q3(x))Taqg (), ©)

where there are eight possible pairs of I'; and I,

(Fh F2) = (1’ }/ﬂ)’ (7/5’ yﬂ}’S)’ (y,u}/Sv }/5)’
(}/D}/Sv aﬂyy5)7 (y/u 1)’ (yu’ 6;!1/)?
(04 7"). (075 7°75)- (10)

The fields formed by these (I';, ;) pairs are labeled by the
subscript i = (1, ...,8) with the ordering of Eq. (10).

1. Flavor 35 baryons

For flavor 3 Rarita-Schwinger baryon fields, there are
four apparently nonzero ones,

BS |, = €ancc(q57 Caly)yuc,
BY,, = €ance(q57 Crsah)rrsc,
ng = €€ (g5 Cyy5q%)rsce,
BY,, = €ance® (a5 Cr'ysag)oursct, (1)

so there are altogether four independent fields in this case.
Among these four freedoms, three can be related to the
previous Dirac fields, and the only new field can be
obtained by acting on the projection operator

1
Pfu/zz - (g/w - Zyuyu) (12)

on B¢

G
33 (or BY ),

3.4u

B§ = P%ZBgGSU

3,
1 ABG ( ,aT b c
=\ G =7l | €ance (g4 Crursqg)rsc
_po 41, po 13
— P33y + ZYﬂyS 33" ( )

2. Flavor 6 baryons

For flavor 6 Rarita-Schwinger baryon fields, we have
four potentially nonzero ones,

Bgsu = eathXB(quC}/ﬂqg)cc,

BY, = €ancSS5(a5 Cr q5)o,ucC.

ng = eathgB(QXTC%ng)V”C",

By, = €areSH5(44 Coursap)rrses,  (14)

so there are altogether four independent fields in this case.
Among these four degrees of freedom, two can be related to
the previous Dirac fields. The two new fields can be
obtained using the projection operator

U _ p32pUu
B6,/4 - Pl”/ BG,S:/

1
= <g/41/ - Z%ﬂ@) eachgB(q/?lTCyvqg)CC

1
= By, + 3 7ur5Bi (15)
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3/2
B/ﬁljl =Pu ! (th +B68y)
1
= (g;w - Zyﬂyb> (th + B6 81/)

i
53’,4753%],5- (16)

=B 271/ +B g,&/ +
C. Wigner-Bargmann (tensor) fields with spin 3/2

In this subsection, we study the antisymmetric Wigner-
Bargmann (tensor) baryon fields J,,, with J,,, = —J,, [23].
For the tensor fields, we can form 9 three-quark fields,
where the possible pairs of I'; and I, are

(C1.T2) = (e rays) =1 < v (rurs.v) —p < v,

€ups (12 77) €upe (757775,

(1 0 uyS)’(}/S’GMu)7 (%u#s)a

(01752 1) €4po (012 O51).- (17)
The fields formed by these (I';, ;) pairs are labeled by the
subscript i = (1, ...,9) with the ordering of Eq. (17).

1. Flavor 3 baryons

The flavor 3 tensor baryon fields have the following
four potentially nonzero interpolators among nine fields:

ABG (g  Crrsqh)y e — (u < v),

32uv = €gbc
BG aT b :
GMVﬂU(qA C]//,]/SQB)}’(,]/SCL,
— ABG aT b c
3.5u0 = €4pc€ (LIA CQB)G/WJ/SC s

BS
B3 4;w - ubceA
BS
BY, ABG(g4T Cys5q5)0,,cC. (18)

= €4pc€

Therefore, there are altogether four independent fields in
this case. However, all of them can be related to the
previously found Dirac and Rarita-Schwinger fields.

2. Flavor 6 baryons

The flavor 65 tensor baryon fields have the following
five potentially nonzero interpolators:

1w = €abeSHp(a8T Cruap)rorset — (u < v),
63 — eachXBeuvpﬂ(quCqu}l}?)yacc7

O d)YsC,

6.8u0 — €aneSyp(q4 Co v75q3) )

BY
BY
B6 N7 = €abc SXB (qflTC
BY
BY o = €abe S 5€upo (45 C,1q%)041C°. (19)
Therefore, there are altogether five independent fields in
this case. Among these five freedoms, four can be related to
the previously found Dirac and Rarita-Schwinger fields.

The only new field can be obtained by acting the projection
operator

1 1 1
l’wyaﬂ — (gﬂagy[)’ _ Egz//)'y;l},(z + 5 gy/iyzzya + 6 Gﬂyaaﬂ) ,

on 6 N + B6 Buv?
Bllij.ﬂzz = Fﬂyaﬂ<Bg,7aﬁ + Bé{Saﬁ)

1
10 U U U
- B6,7/u/ + B6,8Mv - E Yuls (B6,7u + B6,8y)

1
~o"BY.. (20)

1
+_7uy5(B[6{7/4+Bg,8ﬂ) +3

2

D. Chiral transformation properties

Summarizing the above three subsections, we obtain four
independent flavor 3 baryon fields and five independent
flavor 6 ones,

B¢ ,BY  BY B-G

3177322733
U U U U U
B65’B64’B6;4’B6;4’B6/w (21)

In this subsection, we study their chiral transformation
properties, where the chiral transformation of quarks is
given by the following equations:

/10
Ull)y:q - eXP<i—ao>q =q+dq.

SUQB)y:q — expiz- a>q—q+5“q,

-

U(I)A3q—’eXP(WsEbo)Q—Q‘f‘(ssq,
A
SU(3)x:q — exp 1755 b q—q+55q (22)

Here 1° = \/7 15,3 and J are the eight Gell-Mann
matrices; a° is an infinitesimal parameter for the U(1),
transformation, a the octet of SU(3),, group parameters, b°
an infinitesimal parameter for the U(1), transformation,
and b the octet of the chiral transformations.

Following Ref. [30], we can extract the chiral trans-

formation properties of Bf  and B, to be

i
) 7s bNﬂI}IG (351

> I
52(321 +Bgc_2) = _EVSbN’ljl\V/G

b (RG G
55(33,1 _Bé,z) _Bgz)’

(B3, +B3,). (23)

those of BY Bg4, BG

U
33 and B6,/4 to be
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TABLE 1. The Abelian U,(1), the Lorentz group SO(3,1), and the non-Abelian SU, (3) x SUg(3) chiral
transformation properties/axial charges of Dirac, Rarita-Schwinger, and Bargmann-Wigner baryon fields with
N = 3. In the sixth column, we show the sign under transposition of the two quarks in the color state. In the last
column, we show the symbols B* and H* used to construct chiral invariant Lagrangians.

Ua(1) SO(3.1) SU,L(3) x SUR(3) SUB3),  SUB3).  Symbol

B, -B, 2 GOe0y  Bnewd 3 1 B’

By, + B3, +2 L) e 31 3 1 B
Bgﬁ (3’ 3)[mir] 3 1 B([)mir]
Bgs 6 1

B +2 (1.6)® (6.1 6 i B,
B, 0 (L)@ G.1) (3.3) 3 1 B’

Bgy 0 6 1

B -2 (6.1) @ (1.6) 6 1 BS

52 BS, = —iysh"TX,BY,, where the matrices TV and F" are given in the Appendix.

> i
8Bg, = —EYSbNT%Bgy

SLBS = iysh" TN, BY,,

; i
83Bg, =5 rsb" TygBY,.

and those of BY, B

U
o0 and B6-,/w to be

51573&]5 = i}/sbNF{\JIVBX’S,
523’6{; = —inbNFﬁng‘fﬂ,

bpU _ : LNRN RV
5586441/ - 17/5b FUVBG./u/’

Altogether we obtain one (3,1) @ (1,3), one (1,3) @
(3,1), two (3,3), one (6,1) @ (1,6), and two (1,6) &
(6,1) chiral multiplets,

B, ~BS,€(3.1) @ (1.3).
B, +BY, € (1.3) @ (3.1).
(BS 5. Bgs) € (3.3)mi)-
BYs€(1.6) @ (6.1),
(BS,.Bg,) € (3.3),
BY, € (6,1) ® (1,6),
B¢, €(1,6) & (6.1). (26)

TABLE II. The Abelian U,(1), the Lorentz group SO(3,1), and the non-Abelian SU; (2) x SUr(2) chiral
transformation properties/axial charges of Dirac, Rarita-Schwinger, and Bargmann-Wigner baryon fields with

Ny=2.
Ua(1) S0(3,1) SUL(2) x SUR(2) SUQ2)p SU3)e Symbol
HE, — Hg, -2 (5.0) ® (0.5) (0.0) 0 1 H'
Hf, + Hf, +2 (0,0 0 1 H!
HOG3 0 % ’ %) [mir] 0 1 H?mir]
HY, 0 1 1
HY, +2 0,1) @ (1,0) 1 1 H}
Hf, 0 1Lhed.n) ) 0 1 H*
H{’_M 1 1
HY, -2 1,0) @ (0.1 1 1 H3
Y, +2 (2.0) & (0.3) 0.1) @ (1,0) 1 1 fmir]
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Note that once the chiral representation of the meson field
MP = 6” +iysab is fixed as (3,3) @ (3.3), the chiral
representations of the above baryon fields are also fixed,
i.e., either as direct or as the mirror.

We summarize their chiral properties in Table I, which
are primarily determined by the chiral properties
of the light diquarks involved, but also by the Dirac
structure of the whole baryon field. Of course, they also
depend on the number of light flavor N. Table I is for
the N = 3 case. For completeness, we also show the

Ny =2 case in Table II, where the symbol H?I/JZ)N(M
denotes the corresponding baryon fields in the N, =2
case. A significant difference is that both H§, — H{, and
H§, + H, are chiral singlets, so their mirror fields are
just themselves.

In the next section, we shall use these baryon fields to
construct chiral invariant Lagrangians together with pseu-
doscalar mesons belonging to the SU(3) ; nonet. To do this,
only their chiral properties are relevant, so we shall use the
symbols B* and H” to denote the corresponding chiral
multiplets, where the “exponent index” «a indicates how
many components these multiplets contain, as shown in
Tables I and II.

III. BARYON-MESON INTERACTIONS

The one-heavy-two-light-quark baryon interpolating
fields can be found in Sec. II. Their chiral transformation
properties are essentially determined by those of the light
diquarks that they contain. It is then no surprise that their
interactions are also determined by the diquark-meson
interactions.

Yet, there are (many) more baryon fields than there are
diquarks, the main difference being the additional Lorentz
indices p, v that have to be “absorbed” somehow. That is
usually by one of three ways: (i) by operating with
derivatives on the spinless meson fields; or (ii) by con-
tractions with the free Lorentz indices on the vector and
axial-vector meson fields; or (iii) by contractions with free
Lorentz index on another baryon field.

Thus, certain differences appear in the interaction
Lagrangians that depend on the total spin of the baryon
in question: the spin-} Dirac fields couple differently
among themselves from the corresponding coupling to
the spin-3 Rarita-Schwinger and the Bargmann-Wigner
fields. Manifestly, a large number of off-diagonal terms
can be constructed with ease, so we shall not dwell on that
issue, but shall keep it in the back of our mind.

A. Baryon-meson interactions with Ny=3

We use M? = 6" + iysn” to denote the scalar ¢” and
pseudoscalar z” meson field nonets belonging to the
(3,3) ® (3,3) chiral multiplet, and M = ¢ — iysa®
defining its mirror conjugate,

8L(6” + iysn®) = —iysbd . (o° + iysn®),
52(“” —iysan®) = iysbdypc (0 — iysnc). (27)
The chirally invariant interactions are listed in Table III.

There are altogether five distinct terms (as well as five
mirror ones),

8
Ly=gB> MGB?, (28)
a=0
_ 8
Ly = g8, ;M“G§B9, (29)
_ 8
Ly=g;B3) MGIB’, (30)
a=0
_ 8
Ly= 9B, Y MG{B’, (31)
a=0
B 8
Ls=gsB®> M GIB’, (32)
a=0

where the matrices G?’2,3’4’5 with a = 0...8 are as follows:

2
G(l) = (AO)T = \/;13><37 G}f’ = (AN)T,

8
6= (~Shsbucs). GY = (@, —vaTY)

8
6= (~ S bucs). GY = (@ vaTY),
2
Gg - <06X37%16X6> 5 Giv = (TTN, \/EFN>,
2
Gg = (06><3v _ﬁ16x6>’ va = (TTN’ _\/EFN)

The matrices TV and FV in the above expressions can be
found in the Appendix.

One can see in Table III that there are no chirally
invariant interactions between B® and B® baryon fields,
but there is a standard mirror-field chiral invariant mass

(constant—no meson interaction) term between the Bf’mir]

and B fields. Similar behaviors can be found for the B?,
B, and B[gm. baryon fields. Only the B3 and B? baryon

ir]
fields allow a diagonal interaction with M € (3,3) @ (3,3)
mesons, so all the rest are off-diagonal. Therefore, only the
B? baryon may acquire an effective mass term from the
spontaneous symmetry breaking in the case with three
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TABLEIIL The non-Abelian (SU; (3) x SUg(3)) chiral invariant interactions of baryons B, antibaryons B belonging to various chiral
multiplets, and meson fields M € (3, 3) [4) (3, 3). - -- means that there is no chiral invariant interaction, and 1 means that the “mirror
mass” term ]_S[mir] B itself (without interaction with mesons) is chirally invariant. This table is for the Ny = 3 case, and there are five more

interactions containing B[gmir] and B?mir].

) ) o B e (6.1) B € (L.6)
B'e(31)®(1.3) B}, (L3 @31 & (1,6) ® (6.1) B’ € (3,3)
B*e(1,3)®(3.1) Me(3,3)®(3,3) 1 Mfe(3,3)®(3.,3)
Bl Me(3,3)®(3.3)

€e(3.1)®(1.3) 1
B®e(1,6)®(6.1) :
B € (6,1)®(1.6)
B’€(3.3)

M'e(3,3)®(3.3) Me(3,3)(3,3)

Mfe(3.3)®(3.3)

1 Mfe(3,3)®(3,3)
Me(3.3)®(3.3)

Mie(3.3)®(3.3) Me(3.3)®(3.3)

flavors. Even this one disappears in the case with two
flavors, as we shall see in the next subsection.

We shall see in Sec. IIIC that the SU;(3) x SUg(3)
chirally invariant interactions involving pseudoscalar mes-
ons (7, K, n, ') necessarily violate the U(1), symmetry.
This fact translates into a statement about the strength of
these effective interactions, as all of them have to be related
to the 7/, n masses, and not to the usual pion-quark
coupling, as one might expect. However, we shall also
see that the SU;(2) x SUg(2) chirally invariant inter-
actions involving pseudoscalar mesons (7, #*) do not
necessarily violate the U(1), symmetry, i.e., they may
respect it.

B. Baryon-meson interactions with N, =2

Before we begin, we recall that the Ny =2 scalar-
pseudoscalar meson chiral multiplet M“ comes in
two varieties, A?, B?, defined in Egs. (24) and (25) of
Ref. [31] as

3
A= ZA"T“ =0+ iyst-m, (33)
a=0
3
B = ZB”T“ =7-06+iys1. (34)
a=0

Both chiral multiplets A + B € (3.3), but they transform
into each other under U,(1) chiral transformations,

85(A + B) = —2iysa(A + B), (35)

85(A — B) = +2iysa(A — B). (36)
Therefore, the — linear combination has a positive U4 (1)
chiral charge, whereas the 4 linear combination has a
negative U, (1) chiral charge, which allows us to build
U4 (1) chirally conserving and breaking interactions with
equal ease.

The two-flavor baryon-meson interactions have the same
form as the three-quark interactions in Egs. (29)—(32), but
the one corresponding to Eq. (28) does not exist anymore.
Thus, there are 4 two flavor analogous of Egs. (29)—(32) (as
well as four mirror ones),

3
Ly =g, H' >  MGyH, (37)
a=0
_ 3
Ly =gl Y MUGIH?, (38)
a=0
B 3
Ly = gH L MGLH?, (39)
a=0
_ 3
Ly =gl MGeH*, (40)

a=0

where the matrices G’z‘f3 45 with a = 0...3 are as follows:

G2 = (—V611,1,04,3),
Géo = ( \/611x1’01><3)7
GZO = (03><]s\/§13><3)’

GY = (03><1’_\/§13><3)’

6L = (01, —V2TY),

G = (01,,,V2TV),
GQN _ (T’TN, \/EF’N),

G/SN — (T/TN’ —\/EF/N).

The matrices T’V and F'V in the above expressions can be
found in the Appendix.

Besides, there are other two baryon-meson interactions
in the Ny =2 case (as well as two mirror ones),

3
Ly = gt} > MiGEH, (41)
a=0
B 3
Ly =gl MUGiH?, (42)

a=0
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TABLE IV. The non-Abelian (SU, (2) x SUg(2)) chiral invariant interactions of baryons H, antibaryons H belonging to various

chiral multiplets, and meson fields M € (% , %) This table is for the N, = 2 case, and there are six more interactions containing H

4
[mir]

and I:I‘[‘mir].

H' €(0.0) H'e(10)® (0.1 H, €(0.1)®(1.0) H'e(3.)
H' €(0.0) 1 : Me (L h/Med
B e(0.1)® (1.0 1 Me . hmied
Hfmir] € (1’0) @ (07 1) M e (%,%)/MT e (%,%)

e (1.}

12 Me(G.a)/M e.))

Me(G.3)/M € 3.3

MeG.)/M el

where

G = (03, —V313,3),
GY = (03,1, V3 13,3),

G/6N _ (Tr{-N’ \/EF'N),
G/7N — (T’TN, —\/EF'N).

Note that the above forms are the same for both ground-
state and excited diquarks with identical chiral transforma-
tion properties, as only the chiral properties count here,
which do not depend on spatial variables.

C. U4(1) chiral symmetry

The Ny =3 chiral-invariant diagonal interaction (in
Table 11I) of the B* € (3,1) & (1,3) and B € (1,3) @
(3,1) multiplets violates the Abelian U, (1) chiral sym-
metry. Recall that the scalar and pseudoscalar meson fields
M and M carry g/(f) = —2 and +2, respectively. Therefore,
by using the result of Table III, we have the net Uy(1)
charge as

g =42-2+2=2%0, (43)

for the diagonal interaction Eq. (28). The off-diagonal
interactions (29)-(32), on the other hand, are U,(1)

invariant, because they involve the B° € (3,3), which

carries g/({0> = 0 axial baryon number.

As all of these effective diquark-meson interactions are
six-quark/antiquark operators, one might conclude that all
of them must be related to the Uy (1) symmetry-breaking
’t Hooft instanton-induced interaction,

LE) = K[det,(p(1 + ys)w) + det, (F(1 —ys)w)],  (44)

by means of crossing and Fierz relations, as Eq. (44) is the
only SU;(3) x SUR(3) chirally invariant and Lorentz-
invariant parity-conserving six-quark/antiquark operator.
Therefore, all such terms ought to be Uy(1) symmetry
breaking themselves.

That conclusion would be too hasty, however, as the
(3,3)-multiplet diquarks are Lorentz vector (or axial-
vector) mesons, which means that no Lorentz-invariant
interaction with Lorentz pseudoscalar (or scalar) mesons

and diquark is allowed. Rather, the said interaction is a
Lorentz vector (or axial-vector) with one free Lorentz index
that must be contracted with a y, matrix. Consequently,
such interactions are not Fierz related to the ’t Hooft
interaction and preserve U, (1) symmetry. Note, moreover,
that all SU;(3) x SUg(3)- and U,(1)-conserving inter-
actions are off-diagonal.

In the case of Ny = 2, as discussed above in Sec. 11D,
both H{, — H, and H{, 4+ H{, are chiral singlets, so
they are SU; (2) X SUg(2) chiral invariant. However, they
are not U, (1) chiral invariant, as shown in Table II. Hence,
one can see in Table IV that for each interaction term
containing H'! without Abelian U, (1) chiral symmetry
breaking, there is one interaction term with Abelian U, (1)
chiral symmetry breaking, i.e., interactions given in
Egs. (37) and (38) as well as their mirror ones. Plainly
put, the non-Abelian chiral symmetry does not restrict the
Abelian U,(1) chiral symmetry breaking, in the N, = 2
case, in contrast to the Ny = 3 case. This is in agreement
with the conclusions of Refs. [14,31].

D. Lorentz structure

So far, we have not included the Lorentz indices in the
interaction Lagrangians, which we shall do that next. As
shown in Table II, the baryon fields have Lorentz group
indices associated with them: (i) the Dirac fields have
only the Dirac index (ranging from 1 to 4); (ii) the
Rarita-Schwinger fields have one Dirac index and a
Lorentz one u; and (iii) the Bargmann-Wigner fields
have two antisymmetric Lorentz indices y, v. Therefore,
the interaction Lagrangians as shown in Egs. (28)—(32)
and Egs. (37)—(42) may have one or more unsaturated
Lorentz indices.

One way to saturation of Lorentz indices is to have a
derivative four-vector d, acting only on the scalar-pseu-
doscalar meson fields, but never on the Lorentz indices of
baryon fields. In this way, one avoids having to apply the
auxiliary conditions 9,B# =0 for the Rarita-Schwinger
and Wigner-Bargmann fields.

Thus, a new set of derivative-coupled interaction
Lagrangians appears even in the linear realization of chiral
symmetry,
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L} = g\B*(*M)*Giy,ysB°,
Ly = QHBSmH](aﬂM) GG?}’WSB
£l =gl B[3m1r (0"M)*GSBY,
LY = gIB3 (0" M) G yﬂysB
£} = gl B (0" M) “GSBY

[mir]”

[mir]”

Ly = %IBgmlr](a"M) $7,75 B
‘C}‘- = g4 [m]r (a”M>aGaB9
£ = B, (0M)GIB,

££II IIIB6 (aﬂM)TaGaB9

[mir]
L5 = gsBL(0"M) "Gy, ysB™,
L5 = g/Bf (0" M) Gy, 5B,

[mir]

(45)

[mir]”

where we have explicitly added the Lorentz indices in the
symbol B* (see Table I),

B’ BG ,— B,
Bl =BS, +BY,
B = (BY, By
B?mir] = Bgs’

B, = (B ,Bg{ﬂ),

Bf = B¢,

B6

[mir], v = B6,/w' (46)

These interactions are particularly interesting because
they are the terms that lead to derivative-coupled inter-
actions in the nonlinear realization of chiral symmetry,
quite unlike the ordinary nucleon case, where the kinetic
energy produces such derivative terms.

E. Lorentz and chiral mixing

First, let us note that the Lorentz group indices (p, k) are
not good quantum numbers—rather, only the (total) angu-
lar momentum j € |p — k|, ..., (p + k) of a free particle is
conserved. Similarly, the left- and right-handed isospins
(Ip,Ig) are not good quantum numbers—rather, only the
isospin 1 € |I . (I + Ig) is conserved.

This means that one may have identical spin fields/
particles from different representations of the Lorentz
group. For example, spin-3/2 baryons can be described
by both the Rarita-Schwinger fields H,, and the Bargmann-
Wigner ones H,,,. Consequently, physical baryons may be
admixtures of these two, depending on the interactions,
which ought to preserve both the Lorentz and chiral
symmetries. Similarly, the spin-1/2 baryons can be des-
cribed by both the Dirac fields H and by the spin-1/2

complement to the Rarita-Schwinger field H,. As these
three types of fields (may) have different chiral properties,
see Table II, we must expect to have chiral mixing as well.
All of this has been known for some time in the case of
three-light-quark baryons, as documented in Refs. [32,33].
An analogous study of spin-1/2 and spin-3/2 charmed
baryons would demand a (far) deeper knowledge of
experimental baryons’ pion decay rates and/or axial cou-
plings than presently available.

A general feature of the linear realization of chiral
symmetry is that physical baryon states are linear super-
positions of bare baryon fields, i.e., there is (chiral)
mixing of different chiral multiplets with identical overall
quantum numbers, such as the spin J, and flavor SU(3).
For example, the baryon fields with the same spin and
isospin, e.g., H' and H* mix as a consequence of
spontaneous and explicit chiral symmetry breaking.
Unfortunately, the diagonal and off-diagonal mass terms
alone are insufficient to determine the mixing angles; see
Sec. IVA.

Another way to determine some functions of the mixing
angles is to use the hyperon’s axial couplings. They are
generally unknown, unless one accepts a lattice QCD
calculation [34] as experimental input; see Sec. IV B.
The knowledge of off-diagonal pion coupling constants,
e.g., as in Refs. [32,33], is another possible input, but, at the
present time, it is insufficient to fix the mixing parameters.

IV. CHIRAL MIXING AND EXPERIMENT

In order to fix the free parameters of this model, one
needs experimental input, just as it was needed in the case
of three-light-quark baryons [29-31,35]. There are, how-
ever, several important differences: (i) there are fewer
(4) chiral multiplets here than in the three-light-quark case
(6) and (ii) there are fewer experimental data available here:
two masses of A.(2595) and A.(2625) + (possibly) one
axial coupling, than in the three-light-quark case (where we
had four masses + two axial couplings [31,32,35]), which
are not in “conflict” with each other.

A. Chiral mixing and hyperon masses

The baryon fields with the same spin and isospin, e.g.,
H' and H*, mix as a consequence of spontaneous and
explicit chiral symmetry breaking. Generally speaking, the
masses of baryons are determined by the non-Abelian
(SUL(2) x SUR(2)) chiral invariant interactions, which are
shown in Sec. III B.

For every flavor SU(3) multiplet, there are two different
“naive” chiral fields, plus two “mirror fields,” see
Tables I, V, and VI, thus leading to four independent
operators, and therefore to (at most) four-operator mixing.
Now, a 4 x 4 orthogonal mixing matrix has 4 x 3/2 =6
independent matrix elements, which, in turn, can be para-
metrized with six mixing angles. In order to fix these
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TABLE V. The Abelian and the non-Abelian axial charges
(+ sign indicates naive, — sign mirror transformation properties)
of the non-Abelian chiral multiplets containing a flavor 3-plet.

Case Field 920) gf’) SUL(3) x SUR(3)
I B3 -2 +1 (3.1) & (1,3)
1 B?mir] +2 -1 (1? 3) & (3’ 1)
I B’ 0 +1 3.3)

v B’ 0 -1 (3.3)

[mir]

mixing angles, one needs, in principle at least, six inde-
pendent observables, such as masses, axial couplings, etc.
One can go through a calculation analogous to the one in
Sec. IV B of Ref. [29], but we shall see that, unfortunately,
the diagonal and off-diagonal mass terms stemming from
our interactions alone are insufficient to determine the
mixing angles.

One can see in Table IV that there are no chiral-
invariant interactions between H* and H* on one hand,

nor between I:I?mi q and H‘[‘mi j on the other. A similar

statement holds for the H* and H? baryons, and the H' and
H' baryons, which do not allow a diagonal interaction with
M e (% , %) mesons. The remaining nonzero interaction
terms are all off-diagonal.

What is more, there are no diagonal chirally invariant
interactions involving the isotriplet hyperons, neither.
Consequently, the X-hyperon masses are also independent
of spontaneous symmetry breaking. Therefore, none of the
H', H?, H* baryons acquires an effective mass term from
the spontaneous symmetry breaking, and the “traditional”
way, such as in Refs. [31,32,35], of determining chiral
mixing angles/parameters from the masses does not work
here, as yet. Perhaps, with the increase of the number of
observed hyperons, this may change. Indeed, a similar
analysis in Ref. [13] has identified (only) pairs of “chiral
partners” in each flavor channel, whereas we are looking
for up to four such states in each flavor channel.

But, even if one could identify all four hyperons and
reproduce their masses, at the present moment, four
(diagonal) masses leave two free parameters short of the
six necessary ones. That will have to be dealt with by
means of two independent axial couplings.

TABLE VI. The Abelian and the non-Abelian axial charges
(+ sign indicates naive, — sign mirror transformation properties)
of the non-Abelian chiral multiplets containing a flavor 6-plet.

Case Field gfqo) 9546> SU;(3) x SUR(3)
I B¢ -2 +1 (6,1) & (1,6)
I B[ﬁmir] +2 -1 (1,6) @ (6,1)
I B° 0 +1 (3.3)

v B? 0 -1 (3.3)

[mir]

B. Axial couplings

Another complementary way to determine (some of) the
mixing angles is to use the hyperon’s (isovector) axial
coupling. Each charmed hyperon has two independent axial
couplings: (i) the flavor singlet gfqo) and (ii) the flavor
nonsinglet g;N), where N can be either 3-plet or 6-plet.

Bare hyperonfields belonging to different chiral multip-
lets have different values of these two independent axial
coupling constants, see Tables I, V, and VI, so that the
physical (observed) axial couplings are chiral admixtures
(linear superpositions) of the individual axial couplings.

The hyperon interpolating fields in QCD have well-
defined U,(1) chiral transformation properties, see
Tables I, V, and VI, that can be used to calculate the
(0)

physical flavor-singlet/isoscalar axial coupling g, ., of a
chiral binary mixture,

Tamix = 9;0()1) cos” 0 + g,(qo(>11) sin” 6, (47)
and similarly for the non-Abelian axial coupling,

g = ggz]])> cos? 6 + ggz’,),) sin 6. (48)

Note, however, that due to the different (bare) non-Abelian

ggN) and Abelian 920) axial couplings, see Tables V and VI,

the mixing formula Eq. (47) may yield substantially
different predictions from one case to another. Thus, for
each known physical value of the axial coupling, one can
eliminate one of the mixing angles/parameters.

The two axial couplings are generally unknown, with the
possible exception of a lattice QCD calculation [34],
leading to gf ~ (.75 for the A — X transition (isovector)
axial coupling, which is consistent with a phenomenologi-
cal estimate from Ref. [12,36]. Such a reduced value
implies the presence of mirror fields in chiral mixing
scenarios, which generally reduce this number down from
unity. Note, however, that the knowledge of the isovector
axial coupling does not help us choose between the two
possible naive-mirror-field pairs: as one can see in Table V
that both the (3, 1) multiplet and the (3,3) multiplet have
(bare) isovector axial couplings equal to +1.

As we have seen above, a full complement of four
(different) charmed hyperons with identical spin, isospin,
and flavor SU(3) content does not exist at this point in
time—therefore, we may have to eliminate one naive and/
or perhaps even one mirror field from consideration.

C. Three-field mixing

When we have three-state mixing, there are three mixing
angles that could be fixed by three masses alone, or
alternatively, one of the masses can be replaced by the
knowledge of one axial coupling of the ground state
hyperon. This is not likely to happen in the foreseeable
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future. An alternative would be to have both isovector and
isoscalar axial couplings, perhaps again by way of lattice
QCD calculation. That would allow one to analyze three-
field mixtures, as follows.

For ternary chiral mixtures, we have

g0 = gf()l)cosze + sin’¢

0 0 .
X (92()111)005% + gﬁx()n) sinp), (49)
gM. = gg\(ll))coszﬁ + sin%0
N N) .
X (g;(I)H)coszgo + 91(4(1)1) sin?g). (50)

Note that the above “experimental” value of the non-
Abelian axial coupling constant ggm ~ (.75 eliminates only
one pair of mixed fields (II-IV), due to the (negative) sign
of the axial coupling, and leaves five allowed pairs. An
inkling of the Abelian axial coupling constant g&o) , which
has been measured for three-light-quark baryons [28,31]
but not for charm hyperons, would take us a great deal
forward.

Experimental knowledge of (other) pion-hyperon cou-
pling constants, as studied in Ref. [12], is insufficient to fix
the mixing parameters at the present moment as they were
fixed, e.g., in Refs. [32,33].

D. Discussion

There are two calculations in the literature that deserve
discussion/comparison with (i) Migura et al. [37] and
(i1) Harada et al. [14].

(i) Migura et al. [37] have used the 't Hooft interaction
(in addition to a confining potential) in a (semi)relativistic
quark model to calculate the mass spectrum of charmed
baryons (but not their pion decays), and they predicted a
spectrum that agrees fairly with the observed one. That
suggests, though it is not a proof, that the 't Hooft
interaction ought to lead to similarly good results in our
approach, as well. Unfortunately, Migura et al. [37] have
used the (nonrelativistic) SU¢(8) flavor-spin group, and
not the Lorentz and chiral groups, as we did here, to
classify the hyperon states. This fact makes the com-
parison of our two approaches difficult.

It remains to be seen if the observed value(s) of
charmed baryon pion coupling constants are consistent
with Migura et al’s predictions—for that purpose, it
will be necessary to calculate the charmed-baryon-
pseudoscalar-meson coupling constants as functions of
the ’t Hooft interaction coupling constant, which is
fairly known.

(ii) Harada et al. [14] have recently studied U,(1)
symmetry breaking in the interactions of 3-plet diquarks
and pseudoscalar mesons, within the setting of SU, (3) x
SUgR(3) chiral symmetry. They found only one such

interaction, their Eq. (16), which is the same as our
Eq. (28). Note that their calculation is instructive, as it
shows the connection with the ’t Hooft interaction.

V. SUMMARY AND CONCLUSIONS

In this paper, we have considered chiral transformation
properties of one-heavy-two-light-quark baryons. We con-
structed all local single-charm baryon interpolating fields
and determined their chiral transformation properties.
Based on these properties, we constructed all the chirally
invariant interactions of such baryons with one pseudo-
scalar (or scalar) meson.

We found that in the good SU;(3) x SUg(3) limit one
chirally invariant interaction Lagrangian violates the U 4 (1)
symmetry. This means (i) that interaction must be related to
’t Hooft’s instanton-induced interaction in QCD and (ii) its
coupling constant must be related to the 7,7’ masses
[17,18]. Some, perhaps limited progress in this direction
has been reported in Ref. [14].

These facts, in addition to being of theoretical interest,
have practical implications: they imply selection rules (in
the chiral limit) on the baryons’ pion couplings and decay
widths, stemming from two different QCD effects:
(i) U4 (1) symmetry-breaking effects and (ii) current-quark
mass. That is, however, another topic which will not be
dealt with here.

Finally, we note that chiral interaction Lagrangians for
pion transitions between two charmed baryons have been
formulated in terms of effective Lagrangians satisfying
the heavy-quark and chiral symmetries. Yasui [38], in
particular, extended these early ideas and studied the
excited states of one-heavy-quark baryons with arbitrary
angular momentum of the “brown muck” in the O(1/M)
expansion and with chiral Lagrangians. Nevertheless,
these nonlinear Lagrangians do not allow insight into
their QCD origins and in particular not into their U4(1)
symmetry properties. In the future, one may attempt a
“chiral boost,” a la Weinberg, of our linear Lagrangians,
so as to compare their predictions with the nonlinear
ones. As for the O(1/M) expansion of the brown muck,
we are inclined to a pessimistic disposition, in view of its
failure in the case of D)(2317) meson.

We hope to return to the question of crossing and Fierz
relations between apparently independent interaction
Lagrangians reported above.
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00 0 0 0 0
00 0 1 0 o0

1
) 0000 0
=101 000 ol (Al4)

2
1 1
00 %00 %

1
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00 0 —i 0 0
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N
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The matrices TV are

T =(1 0 -1), (A17)
T2 =(i 0 i), (A18)
T =(0 —v2 0). (A19)
The matrices F'V are

0 % 0
Fl=]5 0 5| (A20)

0 % 0

0 -4 0
F2=|5 0 -5, (A21)

0 & 0

10 0
F3=10 0 (A22)
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