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We evaluate axial vector transition form factors in holographic QCD models that have been shown to
reproduce well recent experimental and theoretical results for the pion transition form factor. Comparing
with L3 data on f1 → γγ� we find remarkable agreement regarding the shape of single-virtual form factors.
In the double-virtual case, the holographic results differ strongly from a simple dipole form, and this has an
important impact on the corresponding estimate of the axial vector contribution to the anomalous magnetic
moment of the muon aμ through hadronic light-by-light scattering. We demonstrate that hard-wall models
satisfy the Melnikov-Vainshtein short-distance constraint for the latter, if and only if the infinite tower of
axial vector states is included. The results for aμ, however, are strongly dominated by the first few

resonances. Numerically, these results turn out to be surprisingly large: ð2.9–4.1Þ × 10−10 in the hard-wall
models, 57%–58% of which are due to the longitudinal contribution, which is the one responsible for the
Melnikov-Vainshtein short-distance constraint. Rescaling the holographic result to obtain an optimal fit of
L3 data, but then matching only 52% of the asymptotic constraint, the result is reduced to 2.2ð5Þ × 10−10,
which is still significantly larger than most previous phenomenological estimates of the axial vector
exchange contribution.

DOI: 10.1103/PhysRevD.101.114015

I. INTRODUCTION AND SUMMARY

Presently, there is a discrepancy between the measured
and the predicted values of the anomalous magnetic
moment of the muon [1] of the order of [2–4] aexp :μ −
atheoryμ ≃ 26 × 10−10, above 3 standard deviations with
currently estimated errors. In view of the upcoming
new experiment at FERMILAB [5], much effort is being
put into reducing the theoretical uncertainty of the
Standard Model prediction, which is dominated by had-
ronic effects [2–4,6–10] (with interesting recent progress
in lattice QCD [11–16]), while QED [17] and electroweak
effects [18,19] appear under control (see [1,10] for more
references).
Although being smaller than the effects of hadronic

vacuum polarization, the hadronic light-by-light (HLBL)
scattering contribution has a comparable uncertainty. There
the exchange of single pseudoscalar mesons P ¼ π0; η; η0 is
the most important contribution. For the latter recent
advances have been made in particular using dispersion

relations [9,20] and lattice QCD [13] to determine the
all-important pseudoscalar transition form factors (TFF)
P → γ�γ�, for which direct experimental information is
available almost exclusively in the single-virtual case.
However, the HLBL contribution involves both a single-
virtual and a double-virtual TFF (in the external vertex and
the internal vertex, respectively).
In Ref. [21], we have recently revisited the predictions of

chiral holographic QCD models [22–26]. While these
models are certainly only a crude approximation to real
QCD (also in the chiral limit), we found that the bottom-up
holographic models introduced in [27–29] agree remark-
ably well with new recent low-energy data [10] for π → γγ�
as well as with the results of the dispersive approach for
double-virtual pion TFF [9], leading to a result [21] for
aπ

0

μ ≃ 5.9ð2Þ × 10−10 which is close to the new evaluations
in [9,10,13]. The bottom-up holographic models with
asymptotic anti–de Sitter (AdS) geometry can be matched
to reproduce the leading-order (LO) perturbative QCD
(pQCD) short-distance constraint (SDC) of the vector
current two-point function and then even reproduce the
exact form of the asymmetry function

fðwÞ ¼ 1

w2
−
1 − w2
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in the LO pQCD limit of the double-virtual TFF FðQ2
1; Q

2
2Þ,

where Q2
1;2 are photon virtualities [23].

An important SDC established by Melnikov and
Vainshtein (MV) [30] for the four-photon amplitude in
the special limit Q2

1 ∼Q2
2 ≫ Q2

3 → ∞ is, however, missed
by the pseudoscalar pole contribution to HLBL (unless the
single-virtual pion TFF at the external vertex is artificially
eliminated and replaced by its on-shell value, a procedure
which was proposed in [30] as a simple model to estimate
the effect of incorporating the MV-SDC).
Encouraged by the success of bottom-up holographic

models in treating the pion-pole contribution, we consider
here the axial vector contributions arising from the five-
dimensional Chern-Simons action, which is responsible for
the correct inclusion of the axial anomaly and which in
the chiral holographic models involves one pseudoscalar
multiplet and an infinite tower of vector and axial vector
mesons. We verify that the latter are indeed responsible for
satisfying the MV-SDC, if these complete towers of (axial)
vector mesons are included; any truncation leads to a
violation at infinite momenta. Nevertheless, in the final
result for aμ only the first few multiplets of axial vector
mesons contribute significantly, with the lowest one yield-
ing about 80% of the complete result.
The TFF of the lightest isoscalar axial vector mesons that

are predicted by the holographic models can in fact be
compared to experimental data from the L3 Collaboration
[31,32]. Doing so, we find that the predicted Q2 depend-
ence of the single-virtual TFF agrees perfectly with the
data, when the parameters of the holographic models are
fixed to reproduce fπ and mρ (as was done in our study of
the pion TFF [21]). With the latter, the hard-wall model of
Ref. [29] (called HW2 below) reproduces the MV-SDC
parametrically, but numerically only at the level of 62%,
while the model of Refs. [27,28] (HW1), which has one
more free parameter, can be made to saturate it fully. These
models therefore provide a plausible extrapolation of the
single-virtual TFF to the double-virtual case needed for
evaluating the axial vector contributions to aμ. Using a
simple dipole ansatz, Pauk and Vanderhaeghen (PV) [33]
have extrapolated the experimental data for the single-
virtual case to estimate af1μ . The holographic results turn
out to have a very different asymptotic behavior and yield
much larger contributions. The HW2 model, which
reaches 62% of the asymptotic MV-SDC but agrees well
with the low-energy normalization of the axial vector TFF
extracted from experiment, yields aAVμ ≈ 2.9 × 10−10,
while the HW1 model, which satisfies 100% of the
MV-SDC but overestimates the low-energy normalization,
gives approximately 4.1 × 10−10. Approximately 58% and
57% of these results (1.7–2.3 × 10−10) arise from the
longitudinal part of the axial vector meson propagator
that is responsible for the MV-SDC. Coincidentally, this is
comparable to (albeit smaller than) the extra contribution

obtained originally in the MV model [30], ΔaPS;MV
μ ¼

2.35 × 10−10, where one structure function is artificially
kept fixed to its on-shell value. However, when the MV
model is updated to current input data [34], this increases
to ΔaPS;MV

μ ¼ 3.8 × 10−10. Above all, our holographic
QCD study (together with our previous evaluation of the
pseudoscalar pole contribution [21]) indicates that the
simple MV model is not the correct way to implement
the MV-SDC, but that additional degrees of freedom are
needed for that.
In Ref. [34] a different approach was recently taken to

include the MV-SDC by means of an infinite tower of
pseudoscalar states (but vehemently criticized in [35]).
There the obtained estimate for the effects of the MV-SDC
was smaller than our results, 1.3ð6Þ × 10−10. As discussed
in [34], in the chiral large-Nc limit only the lightest
pseudoscalar states contribute, while an infinite tower of
axial vector mesons is present. The latter were not
considered further in [34] on the grounds that they are
poorly understood so far and that a good theoretical
framework for treating them was missing. The results
obtained here demonstrate that they are naturally included
in holographic QCD, leading to a somewhat larger
estimate of the effects of the MV-SDC than obtained in
the model of [34].
This paper is organized as follows. In the next section we

briefly recapitulate the holographic hard-wall models
already discussed in our previous work on the pion TFF
[21], including for comparison also the top-down model of
Sakai and Sugimoto, which is found to compare well with
low-energy results for the axial vector TFF (in particular the
experimental result for its normalization) while missing
the SDC. In Sec. III we first compare with the single-virtual
results from the L3 Collaboration [31,32]. We then display
the axial vector TFF also for the double-virtual case,
highlighting its difference from the simple model used
in Ref. [33], and work out its asymptotic behavior. In
Sec. IV we show that the MV-SDC becomes satisfied when
the complete infinite tower of axial vector meson contri-
butions is summed, while each individual contribution
decays too fast to do so, and in Sec. V we finally evaluate
the contributions to aμ. Since in real QCD, away from the
chiral large-Nc limit, both excited pseudoscalar mesons and
axial vector mesons contribute, we also consider a data-
driven adjustment of the holographic results, which are thus
used as a mere, albeit sophisticated phenomenological
model for the axial vector TFF and the resulting contribu-
tion for aμ, and which could be combined with models for
excited pseudoscalar mesons along the lines of Ref. [34].

II. HOLOGRAPHIC QCD MODELS

The AdS=CFT conjecture [36] has led to many appli-
cations in strongly interacting non-Abelian gauge theories
in the limit of large color number Nc. In a top-down
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string-theoretic approach using type-IIA supergravity,
Witten [37] has shown that by a supersymmetry-breaking
compactification one can construct a model of low-energy
QCD based on the near-horizon geometry of D4 branes.
Sakai and Sugimoto (SS) [38,39] have extended this model
by introducing Nf probe D8 and anti-D8 branes localized
in the extra dimension of the Witten model, leading to a
geometrical realization of chiral symmetry breaking of the
UðNfÞL ×UðNfÞR symmetry of the unconnected branes,
which in the confining geometry are forced to join in the
bulk of the higher-dimensional spacetime.
While the SS model is at best a model of low-energy

QCD at large Nf, with no conformal symmetry emerging at
high momentum scales, simpler so-called bottom-up mod-
els have been constructed that break conformal symmetry
by either a hard [27,28] or a soft wall [40] in the bulk. The
flavor gauge fields corresponding to chiral symmetry
breaking are then introduced by hand and are subjected
to appropriate boundary conditions on these walls.
Thus both the top-down and the various bottom-up

models eventually describe vector and axial vector mesons
through a UðNfÞ × UðNfÞ Yang-Mills action in a curved
five-dimensional background [with or without a nontrivial
dilaton (Φ) background],

SYM ∝ tr
Z

d4x
Z

z0

0

dze−ΦðzÞ ffiffiffiffiffiffi
−g

p
gPRgQS

× ðFL
PQF

L
RSþFR

PQF
R
RSÞ; ð2Þ

where P;Q;R;S¼ 0;…;3;z and FMN ¼ ∂MBN − ∂NBM−
i½BM;BN �.
In the SS model the D8 brane action also involves a

Chern-Simons term, which leads to the correct Wess-
Zumino-Witten term [38,39]

SCS ¼
Nc

24π2

Z
tr

�
BF 2 −

i
2
B3F −

1

10
B5

�
: ð3Þ

In the bottom-up models, where BL and BR fields appear
separately, the action (3) is added by hand as SLCS − SRCS.
The electromagnetic gauge field can be introduced as a
nondynamical background field through a nonzero boun-
dary value for the vector gauge field with generator equal to
the electric charge matrix, which naturally leads to vector
meson dominance (VMD) [39].
As shown in Ref. [41], Eq. (3) implies the correct leading

SDC for the structure functions wT;LðQ2Þ in the vertex
function of two vector and one axial-vector currents,
wLðQ2Þ ¼ 2Nc=Q2 (which is exact in the chiral limit),
and wTðQ2Þ ¼ Nc=Q2, which does not get perturbative
corrections [42], but does receive nonperturbative contri-
butions [18,43] that are suppressed by higher inverse
powers of Q2, which in holographic QCD depend on the
model [41,44].

In the following we recapitulate the relevant formulas for
the various models that we will use for deriving the axial
vector TFF and their contribution to aμ. For more details
see Ref. [21] and references therein.

A. Sakai-Sugimoto model

With a dimensionless coordinate Z along the connected
D8-D8 branes and holographic boundary at Z ¼ �∞, the
Yang-Mills part of the action of the SS model reads [38,39]

SYM ¼ −κtr
Z

d4x
Z

∞

−∞
dZ

�
1

2
ð1þ Z2Þ−1=3ημρηνσF μνF ρσ

þ ð1þ Z2ÞM2
KKη

μνF μZF νZ

�
ð4Þ

with κ ¼ λNc=ð216π3Þ and λ ¼ g2YMNc.
An infinite tower of massive vector and axial vector

mesons arises from even and odd eigenmodes of BðnÞ
μ ¼

ψnðZÞvðnÞμ ðxÞ with eigenvalue equation

−ð1þZ2Þ1=3∂Z½ð1þZ2Þ∂Zψn� ¼ λnψn; ψnð�∞Þ¼ 0:

ð5Þ

The lowest mode vð1Þμ is interpreted as the isotriplet
ρ meson [or the ω meson for the U(1) generator] with
mass m2

ρ ¼ λ1M2
KK. The numerical result λ1 ¼ 0.669314…

fixes the Kaluza-Klein mass of the SS model to MKK ¼
1.2223mρ.
The holographic pion mode function is associated with

the derivative of the non-normalizable zero mode of (5) of
the axial vector sector, αSSðZÞ ¼ π

2
arctanðZÞ. Multiplied

with a massless pseudoscalar field in Minkowski space,
this appears as the field BZ or, when the radial gauge
BZ ¼ 0 is used, in nontrivial boundary conditions on
Bμ [38]. The pion decay constant is given by f2π ¼
λNcM2

KK=ð54π4Þ so that choosing fπ ¼ 92.4 MeV corre-
sponds to κ ¼ 0.00745 or λ ≈ 16.63 for Nc ¼ 3.
A background electromagnetic field AμðxÞ can be

included by setting ψð�∞Þ ¼ 1 for Bμ ¼ QAμðxÞψðZÞ
with Q¼ ediagð2

3
;−1

3
;−1

3
Þ. A real photon with q2 ¼ 0

corresponds to the trivial solution ψðZÞ≡ 1, whereas a
virtual photon with spacelike momentum Q2>0 is
described by a solution where λn → −Q2=M2

KK. This
defines the so-called bulk-to-boundary propagator J ,
which is determined by

ð1þ Z2Þ1=3∂Z½ð1þ Z2Þ∂ZJ � ¼ Q2

M2
KK

J ;

J ðQ;Z ¼ �∞Þ ¼ 1: ð6Þ

At order 1=Nc the axial Uð1ÞA is broken in the SS model,
which thereby includes a Witten-Veneziano mechanism
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[45,46] for giving mass to the η0 pseudoscalar according to
[38,47,48]m2

0 ¼ Nfλ
2M2

KK=ð27π2NcÞ. When explicit mass
terms are added [49,50], this indeed gives the right ballpark
to account for realistic pseudoscalar meson masses [51].
However, since the SS model is not asymptotically AdS,

as it has a diverging dilaton in the UV, it can serve as a
holographic model of QCD only at small momenta.

B. Hard-wall models

In the hard-wall models of Refs. [27–29], the back-
ground geometry is instead chosen as pure AdS with metric

ds2 ¼ z−2ðημνdxμdxν − dz2Þ ð7Þ

(conformal boundary at z ¼ 0), but with a cutoff at some
finite value of the radial coordinate z0.
The action for the flavor gauge fields reads

SYM ¼ −
1

4g25

Z
d4x

Z
z0

0

dz
ffiffiffiffiffiffi
−g

p
gPRgQS

× trðFL
PQF

L
RS þ FR

PQF
R
RSÞ; ð8Þ

where P;Q;R;S¼ 0;…;3;z and FMN ¼ ∂MBN − ∂NBM−
i½BM;BN �.

1. Hard-wall model with bi-fundamental scalar (HW1)

In Refs. [27,28], a bifundamental bulk scalar X is
introduced, with a five-dimensional mass term determined
by the scaling dimension Δ ¼ 3 of the chiral-symmetry
breaking order parameter q̄q of the boundary theory,

SX ¼
Z

d4x
Z

z0

0

dz
ffiffiffiffiffiffi
−g

p
tr ðjDXj2 þ 3jXj2Þ; ð9Þ

where DX ¼ ∂X − iBLX þ iXBR and X ¼ Uðx; zÞvðzÞ=2
with vðzÞ ¼ mqzþ σz3, where mq is the quark mass and σ
the quark condensate.
At a finite value z0, a cutoff of AdS5 space is imposed

with boundary conditions FL;R
zμ ¼ 0.

Vector mesons have holographic wave functions
given by

∂z

�
1

z
∂zψnðzÞ

�
þ 1

z
M2

nψnðzÞ ¼ 0 ð10Þ

with boundary conditions ψnð0Þ ¼ ψ 0
nðz0Þ ¼ 0, solved

by ψnðzÞ ∝ zJ1ðMnzÞ with Mn determined by the zeros
of the Bessel function J0, denoted by γ0;n. Identifying
M1 ¼ mρ ¼ 775 MeV, we obtain

z0 ¼ γ0;1=mρ ¼ 3.103 GeV−1: ð11Þ

The vector bulk-to-boundary propagator is obtained by
replacing M2

n → −Q2 and choosing the boundary condi-
tions J ðQ; 0Þ ¼ 1 and ∂zJ ðQ; z0Þ ¼ 0, which gives

J ðQ; zÞ ¼ Qz

�
K1ðQzÞ þ K0ðQz0Þ

I0ðQz0Þ
I1ðQzÞ

�
: ð12Þ

The coupling constant g5 can be fixed by requiring that
the vector current two-point function matches the pQCD
result [27]

ΠVðQ2Þ¼−
1

g25Q
2

�
1

z
∂zJ ðQ;zÞ

�����
z→0

¼−
Nc

24π2
lnQ2;

ð13Þ
leading to g25 ¼ 12π2=Nc.
In the chiral limit, the holographic wave functions of the

axial vector mesons are given by

∂z

�
1

z
∂zψ

A
nðzÞ

�
− g25σ

2z3ψA
nðzÞ þ

1

z
ðMA

nÞ2ψA
nðzÞ ¼ 0 ð14Þ

with the same boundary conditions, ψA
nð0Þ¼ψA0

nðz0Þ¼ 0.
The pion field appears as the longitudinal part of

BA
Mk ¼ ∂Mφ. In the chiral limit, its holographic wave

function can be given in closed form as ϕðzÞ¼J Að0;zÞ−
1, where J AðQ; zÞ is the axial vector bulk-to-boundary
propagator with [22,23]

J Að0; zÞ ¼ ΨðzÞ ¼ Γ
�
2

3

�
ðξz3=2Þ1=3

×

�
I−1=3ðξz3Þ −

I2=3ðξz30Þ
I−2=3ðξz30Þ

I1=3ðξz3Þ
�
; ð15Þ

where ξ ¼ g5σ=3. The pion decay constant is determined
by [27]

f2π ¼ −
1

g25

�
1

z
∂zΨðzÞ

�����
z→0

ð16Þ

yielding

6π2

Nc
f2π ¼

Γð2
3
Þ

Γð4
3
Þ
I2=3ðξz30Þ
I−2=3ðξz30Þ

ðξ=2Þ2=3: ð17Þ

This fixes ξ ¼ ð0.424 GeVÞ3 for fπ ¼ 92.4 MeV.

2. Hirn-Sanz model (HW2)

The hard-wall model by Hirn and Sanz [29] (called HW2
in [21,26]) does not introduce a matrix-valued scalar field
for the purpose of chiral symmetry breaking, but imposes
different boundary conditions for vector and axial vector
mesons at z0, which correspond exactly to the relations that
are obtained in the SS model at the point where D8 and
anti-D8 branes meet. Vector mesons are given by (10) with
ψnð0Þ ¼ ψ 0

nðz0Þ ¼ 0 as in the HW1 model, while axial
vector mesons satisfy the same eigenvalue equation but
with ψA

nð0Þ ¼ ψA
nðz0Þ ¼ 0 and ψA0

nðz0Þ ≠ 0. This gives
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ψA
nðzÞ ∝ zJ1ðMA

nzÞ; MA
n ¼ γ1;n=z0: ð18Þ

Since z0 is already fixed by mρ, this leads to the prediction
MA

1=mρ¼ γ1;1=γ0;1¼ 1.593 � � �, which is very close to the ex-
perimental values ma1ð1269Þ=mρ≈1.587 and mf1ð1285Þ=mω≈
1.638. As shown in Tables I and II the results for the
lightest axial vector masses in the other models are also
close, but not as good, whereas excited (axial) vector
masses turn out somewhat too high in all models.
Similar to the SS model, the pion field in the HW2

model is contained in Wilson lines running along the
holographic direction, UðxÞ ¼ ξRðxÞξLðxÞ with ξL;R ¼
P expð−i R z0

0 dzBL;R
z Þ. Its holographic wave function is

determined by the axial vector bulk-to-boundary propaga-
tor at Q2 ¼ 0,

J Að0; zÞ ¼ ΨðzÞ ¼ 1 −
z2

z20
; ð19Þ

so that (16) yields

g25 ¼
2

f2πz20
: ð20Þ

Having fixed z0 by the ρ meson mass, a realistic choice
of fπ ¼ 92.4 MeV now leads to a coupling g5 ≈ 4.932
which is much smaller than the value g5 ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffi
Nc=3

p
needed at Nc ¼ 3 to match pQCD according to (13).
In Ref. [21] we have seen that the HW2 model produces

a pion TFF that agrees well with existing experimental data
when the model is matched to mρ and fπ . The short-
distance constraints for the pion TFF are then only satisfied
at the level of 62%. Setting g5 to match the short-distance
constraint (13) would lead to a ρ meson mass of 987 MeV
and also strong discrepancies with the low-energy pion TFF
data which are of crucial importance to the HLBL

contribution to aμ. In the application to aμ we shall
therefore keep the parameters obtained by matching the
low-energy regime. This is, however, still an important
improvement over the SS model, since the short-distance
constraints are then satisfied at least qualitatively. The HW2
model with UV-fitted g5 ¼ 2π, Nc ¼ 3, and then z0 ¼
2.4359 GeV−1 instead of 3.103 GeV−1 is referred to as
HW2(UV-fit) in Tables I and II.
Because of the extra parameter σ, the HW1 model is able

to incorporate both the desired low-energy parameters mρ

and fπ as well as the full asymptotic pQCD limits.
However, the latter are then presumably reached too
quickly for Q2 ≫ m2

ρ because pQCD corrections typically
reduce leading order results by nonnegligible amounts at
most energy scales of interest. Taken together we might
hope, however, that the HW1 and HW2 models span a
plausible range of predictions for real QCD.
In contrast to [21,26], where the pion TFF was

studied, we do not include the soft-wall model consid-
ered there. The original soft-wall model introduced in
[40] is very close to the HW1 model except that it
introduces a nontrivial dilaton. As shown in Table II this
leads to a poor fit of the mass of the lightest axial vector
meson. Moreover the results of Ref. [53] indicate that
the HW1 model generally agrees better with pion data
than the SW model. In fact, in [21,26], following
Ref. [23], a simplified version of the SW model without
bi-fundamental bulk scalar X and an ad hoc choice for
the pion wave function was used that does not cover the
axial vector sector.

III. AXIAL VECTOR TRANSITION FORM
FACTOR

A. Holographic results

The effective Lagrangian for the coupling of two photons
with one axial vector meson arises from the Chern-Simons
action (3) after integrating over the holographic coordinate,
which in the case of the SS model reads

TABLE I. Holographic values of the masses of the three lowest
vector mesons in comparison with PDG data for the masses of ρ,
ω, and ϕ mesons in MeV [52]. All holographic models except
HW2(UV-fit) are with mV ¼ 775 as input; HW2(UV-fit), which
is used only for the sake of comparison, is the HW2 model with
g5 at Nc ¼ 3 matched to pQCD asymptotics, resulting in a
smaller z0 and thus much higher mV.

mV mV� mV��

SS 775 1606.0 2379.3
HW1,2 775 1778.9 2788.8
HW2(UV-fit) 987.2 2266.1 3552.6
SW 775 1096.0 1342.3
mρ (PDG) 775.26(25) 1465(25) 1720(20)
mω (PDG) 782.65(12) 1425(25) 1670(30)
mϕ (PDG) 1019.461(19) 1680(20)

TABLE II. Holographic values of the masses of the three lowest
axial vector mesons with fixed mρ in comparison with PDG data
for the masses of a1 and f1 mesons in MeV [52]. (SW1 is the
soft-wall version [53] of HW1.)

mA mA� mA��

SS 1186.5 2019.8 2843.2
HW1 1375.5 2154.2 2995.1
HW2 1234.8 2260.9 3278.6
HW2(UV-fit) 1573.0 2880.1 4176.4
SW1 1674.1 2669.2 3497.6
ma1 (PDG) 1230(40) 1655(16) 1930ðþ30−70Þ
mf1 (PDG) 1281.9(0.5) 1670(30) 1971(15)
mf0

1
(PDG) 1426.3(0.9)
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LAγγ ¼ −i
Nc

12π2
tr ϵμνρσ

Z
∞

−∞
dZðaμV 0

ν∂ρVσ þ Vμa0ν∂ρVσ þ VμV 0
ν∂ρaσÞ; ð21Þ

where aμðx; ZÞ is the normalizable axial vector meson field and Vμðx; ZÞ is a vector field whose boundary condition is the
background photon field; a prime denotes differentiation with respect to Z. With partial integrations this can be simplified to

LAγγ ¼ −i
Nc

12π2
tr ϵμνρσ

�Z
∞

−∞
dZð−3V 0

μaν∂ρVσÞ þ Vμaν∂ρVσ

����∞
Z¼−∞

�
: ð22Þ

In the HW models the integral over Z becomes
2
R z0
0 dzð� � �Þ. The boundary term appearing in (22) van-

ishes in the SS model because aμðx;�∞Þ ¼ 0. In the HW2
model, the corresponding boundary term also vanishes
because aμðx; 0Þ ¼ 0 ¼ aμðx; z0Þ, but not in the HW1
model, where aμðx; z0Þ ≠ 0. Similar to the case of the pion
TFF in the HW1 model [23], the resulting nonzero con-
tribution at the infrared wall needs to be subtracted from the
Chern-Simons action. Otherwise one would obtain a non-
zero amplitude for the decay of an axial vector meson in two
real photons (for which Vμ is simply a constant with respect
to the holographic coordinate), and this would violate the
Landau-Yang theorem [54]. The latter is realized by the fact
that V 0

μ in the integral in (22) vanishes when Q2 → 0.
We therefore write the amplitude γ�ðqð1ÞÞγ�ðqð2ÞÞ → Aa

for photon virtualities Q2
i ¼ −q2ðiÞ as

Ma ¼ i
Nc

4π2
trðQ2taÞϵμð1Þϵνð2Þϵ�ρA ϵμνρσ

× ½qσð2ÞQ2
1AðQ2

1; Q
2
2Þ − qσð1ÞQ

2
2AðQ2

2; Q
2
1Þ�; ð23Þ

where Q ¼ e diagð2
3
;− 1

3
;− 1

3
Þ and the flavor matrices are

given by ta ¼ λa=2 and t0 ¼ 1=
ffiffiffi
6

p
. The polarization

vectors in (23) are transverse to the respective four-
momenta; writing M with photon polarization vectors
removed, one should supply the corresponding projection
operators. The form of (23) is, however, such that no factors
1=Q2

1;2 are left when doing so:

Mμνðqð1Þ; qð2ÞÞ
∝ ϵ�ρA ϵαβρσ½ðq2ð1Þδαμ − qαð1Þqð1ÞμÞqσð2ÞδβνAðQ2

1; Q
2
2Þ

− ðq2ð2Þδβν − qβð2Þqð2ÞνÞqσð1ÞδαμAðQ2
2; Q

2
1Þ�: ð24Þ

(See Appendix A for the resulting helicity amplitudes.)
In contrast to the model used in Ref. [33], which assumes

a similar form of M, the axial vector form factor A
following from (22) is not symmetric.1 In the HW models,
it is given by

AðQ2
1;Q

2
2Þ¼

2

Q2
1

Z
z0

0

dz

�
d
dz

J ðQ1;zÞ
�
J ðQ2;zÞ

×ψAðzÞ
��

g−25

Z
z0

0

dz
z
ðψAÞ2

�
1=2

; ð25Þ

whereas in the SS model we have

ASSðQ2
1; Q

2
2Þ ¼

1

Q2
1

Z
∞

−∞
dZ

�
d
dZ

J SSðQ1; ZÞ
�
J SSðQ2; ZÞ

× ψA
SSðZÞ

��
κ

Z
∞

−∞

dZ
Z

ðψA
SSÞ2

�
1=2

: ð26Þ

Because d
dzJ ðQ1; zÞ vanishes like Q2

1 in the limit
Q2

1 → 0, these expressions have a finite limit Að0; 0Þ. In
the HW models, one obtains

lim
Q→0

1

Q2

d
dz

J ðQ; zÞ ¼ z lnðz=z0Þ; ð27Þ

and in the SS model

lim
Q→0

M2
KK

Q2

d
dZ

J SSðQ;ZÞ ¼ Z
1þ Z2 2F1

�
1

3
;
1

2
;
3

2
;−Z2

�
:

ð28Þ

Using this, the result for Að0; 0Þ can be given in closed
form for the HW2 model, reading for the lightest axial
vector meson

Að0; 0Þ ¼ −4
ffiffiffi
2

p J0ðγ1;1Þ − 1

γ31;1J0ðγ1;1Þ
g5z20

¼ −0.3502g5z20 ¼ −16.633 GeV−2 ðHW2Þ
ð29Þ

with g5 ¼
ffiffiffi
2

p ðfπz0Þ−1 ≈ 4.932. (With UV-fit at fixed Nc

and fπ , one would obtain −13.056 GeV−2.)
In the HW1 and SS models, the corresponding results

have to be obtained numerically. For the former, we find

Að0;0Þ¼−0.3478g5z20¼−21.043GeV−2 ðHW1Þ ð30Þ

1Even with asymmetric form factor A, the form (24) is
not the most general one permitted by gauge invariance. The
latter admits another independent asymmetric form factor, called
C in Ref. [55], which turns out to vanish for the Chern-Simons
Lagrangian (22).
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with g5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12π2=Nc

p
¼ 2π and z0 ¼ 3.103 GeV−1. In the

case of the SS model, the result is

Að0;0Þ¼−1.2379κ−1=2M−2
KK ¼−15.926GeV−2 ðSSÞ:

ð31Þ

B. Comparison with experimental data for γγ� → f 1
The above results for Að0; 0Þ can be compared with

experimental data from the L3 Collaboration [31,32] for the
so-called equivalent two-photon decay width of the lightest
f1 mesons with one quasireal longitudinal photon of
virtuality Q2

1 and one real transverse photon [56,57],

Γ̃γγ ¼ lim
Q2

1
→0
ΓðA → γ�LγTÞM2

A=ð2Q2
1Þ: ð32Þ

This is related to the form factor Fð1Þ
Aγ�γ� defined in

Ref. [57] by

Γ̃γγ ¼
πα2MA

12
½Fð1Þ

Aγ�γ� ð0; 0Þ�2; ð33Þ

which in turn is related to Að0; 0Þ by

M−2
A Fð1Þ

Aγ�γ� ð0; 0Þ ¼
Nc

4π2
trðQ2taÞAð0; 0Þ; ð34Þ

where for f1 mesons ta can be replaced by a mixture of
singlet and octet generators. Similar to ω and ϕ, the
physical f1 and f01 states are expected to be close to an
ideal mixing scenario, where f1 is predominantly ūuþ d̄d,
while f01 is mainly s̄s. The experimental results Γ̃γγ ¼
3.5ð8Þ keV for f1ð1285Þ [31] and 3.2(9) keV for f1ð1420Þ
[32], which are fairly close numerically, indicate, however,
a certain deviation from ideal mixing; otherwise the
radiative decay of f01 would be more strongly suppressed
compared to f1. The mixing angle for the f1 − f01 system is
usually defined as

jf1ð1285Þi ¼ cosϕfjn̄ni − sinϕfjs̄si ð35Þ

with jn̄ni ¼ ðjūui þ jd̄diÞ= ffiffiffi
2

p
. Assuming a universal

value of Að0; 0Þ, the experimental results for Γ̃γγ imply
ϕf ≈ 20.4°, which is close to the recent LHCb result [58] of
ϕf ¼ �ð24� 3Þ° and other results pointing to a range of
þð20…30Þ° [59,60]. Translated to Að0; 0Þ, the experimen-
tal results [31,32] thus imply a value of

jAð0; 0Þjexp : ≃ 15ð2Þ GeV−2: ð36Þ

The above holographic results for the SS and HW2 models
agree remarkably well with this, while the HW1 model
appears to overestimate the radiative decay amplitudes of
the lightest f1 mesons by 40% (corresponding to a factor
of 2 for Γ̃γγ).

There exist also data on the Q2 dependence of f1 → γγ�.
In the analysis of the L3 data [31,32] the single-virtual TFF
of the axial vector mesons has been modeled by a dipole
ansatz corresponding to

AðQ2
1; 0Þ

Að0; 0Þ ¼ 1

ð1þQ2
1=Λ2

DÞ2
ð37Þ

with ΛD ¼ 1040� 78 MeV and 926� 78 MeV for
f1ð1285Þ and f1ð1420Þ, respectively.
As will be discussed below, an asymptotic behavior

∼Q−4
1 is indeed also implied by the holographic HW

results, which, however, have a more complicated form
at moderate values of Q1. In Fig. 1 we compare the
experimental fit for f1ð1285Þ to the three holographic
results, displaying a remarkable agreement with all of them
when their parameters are fixed to match the low-energy
input parameters fπ and mρ.

2 (This agreement is, however,
spoiled if the HW2 model is forced to exactly match pQCD
asymptotically, as also happens in the case of the pion TFF.)
In Fig. 2 we display the holographic results also for the

double virtual TFF with Q2
1 ¼ Q2

2 ¼ Q2. In the calculation
of the f1 axial vector meson contributions to aμ by PV [33],
the experimental fit has been extrapolated to

APVðQ2
1; Q

2
2Þ

Að0; 0Þ ¼ 1

ð1þQ2
1=Λ2

DÞ2ð1þQ2
2=Λ2

DÞ2
: ð38Þ

This is represented by the dashed lines in Fig. 2,
which deviate rather strongly from the holographic results.

FIG. 1. Single-virtual axial vector TFF from holographic
models (SS: blue curve; HW1: orange curve; HW2: red curve)
compared with dipole fit of L3 data for f1ð1285Þ (grey band).
The parameters of all models are fixed by matching fπ and mρ.
The results for HW1 and HW2 almost coincide, with HW2 at
most a line thickness above HW1. When the mass scale z−10 is not
fixed bymρ but matched to the pQCD withNc ¼ 3, HW2(UV-fit)
instead gives the significantly larger result denoted by the red
dotted line.

2The results for f1ð1420Þ are lower than those f1ð1285Þ with
some overlap. However, since we consider only chiral models in
this paper, a comparison with the result for f1ð1285Þ is more
relevant, as the latter is dominantly n̄n.
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Indeed, the asymptotic behavior of the latter has the same
power law in the single and the double virtual cases, as we
discuss in the following, while (38) decays like Q−8 in the
double virtual case.

C. Asymptotic behavior

Inspecting the asymptotic behavior in more detail, we
introduce the definitions

Q2
1;2¼ r21;2Q

2≡ ð1�wÞQ2;

Q2¼ 1

2
ðQ2

1þQ2
2Þ; w¼ðQ2

1−Q2
2Þ=ðQ2

1þQ2
2Þ: ð39Þ

In both HW models we obtain3

AðQ2
1; Q

2
2Þ →

aAð0; 0Þ
ðz0QÞ4 r1r2

Z
∞

0

dξξ3½K1ðr1ξÞ

þ r1ξK0
1ðr1ξÞ�K1ðr2ξÞ

¼ a
ðz0QÞ4

1

w4

�
wð3 − 2wÞ

þ 1

2
ðwþ 3Þð1 − wÞ ln 1 − w

1þ w

�
ð40Þ

with a dimensionless constant a which differs between
HW1 and HW2. Higher axial vector modes have the same
form, but with different a. (The SW model has the same
asymptotic Q and w dependence.)
The w dependence (displayed in Fig. 3) is asymmetric

with a minimum at w ≈ 0.395 and a logarithmic singularity

at w ¼ −1, corresponding to a behavior A ∼ lnðQz0Þ=Q4

for Að0; Q → ∞Þ.
The SS model, which cannot be matched to pQCD at

high momentum scales, decays faster for Q → ∞, with a
qualitatively different w dependence. For completeness, the
asymptotic behavior of the form factor A in the SS model is
given by

ASSðQ2
1; Q

2
2Þ →

aSSASSð0; 0ÞM5
KK

Q5
r−11

×
Z

∞

0

dξξ4ð1þ 3r2Þe−3ðr1ξþr2ξÞ

¼ aSSASSð0; 0ÞM5
KK

Q5

8

81

×
6

ffiffiffiffiffiffiffiffiffiffiffi
1 − w

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ w

pffiffiffiffiffiffiffiffiffiffiffiffi
1þ w

p ð ffiffiffiffiffiffiffiffiffiffiffi
1 − w

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ w

p Þ6 ; ð41Þ

and the form of this w dependence is also displayed in
Fig. 3. This has its minimum at w ≈ 0.560 and a power-law
singularity at w ¼ −1, corresponding to a behavior ASS ∼
1=Q4 for ASSð0; Q → ∞Þ, so that in this particular limit
the discrepancy with the bottom-up models is reduced
to a merely logarithmic one. Note, however, that the single
virtual case a1=f1 → γγ� corresponds to the other limit
of w ¼ þ1.

IV. AXIAL VECTOR CONTRIBUTION TO
THE FOUR-PHOTON AMPLITUDE AND
LONGITUDINAL SHORT-DISTANCE

CONSTRAINTS

In the Bardeen-Tung-Tarrach basis of the HLBL four-
point function [20], the short-distance constraint of
Melnikov and Vainshtein [30] for Nf ¼ 3 reads [34]

FIG. 2. Double-virtual axial vector TFF for Q2
1 ¼ Q2

2 ¼ Q2

from holographic models (SS: blue curve; HW1: orange curve;
HW2: red curve). The black dashed lines denote the extrapolation
of L3 data with a dipole model for each virtuality as used in the
calculation of af1μ in Ref. [33].

FIG. 3. Dependence of AðQ2
1; Q

2
2Þ on the asymmetry parameter

w [defined in (39)] in the asymptotically AdS bottom-up models
(black line) and in the SS model (blue line). In the single-virtual
limit, only w ¼ þ1 appears in scattering amplitudes.

3As we learned through private communication from Martin
Hoferichter and now published in [61], the same asymmetry
function is obtained when the axial vector TFF is calculated in
pQCD with the Brodsky-Lepage formalism.
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lim
Q3→∞

lim
Q→∞

Q2Q2
3Π̄1ðQ;Q;Q3Þ ¼ −

2

3π2
: ð42Þ

We shall now show that this constraint is satisfied in the
HW models with g25 ¼ 12π2=Nc, which also ensures the
correct short-distance limits of single and double virtual
pion TFF. In the HW1 model this can be achieved while
fitting mρ to its experimental value, whereas in the HW2
model the latter together with Nc ¼ 3 needs a smaller value
of g25 ¼ 2=ðfπz0Þ2 so that the SDCs on the pion TFF are
satisfied only at the level of 62% [21].
However, the constraint (42) is only satisfied if the

infinite tower of axial vector mesons is taken into account;
it is missed completely when only pions and a finite
number of axial vector mesons are included.
The axial vector contribution to Π̄1ðQ;Q;Q3Þ comes

from the longitudinal part of the axial vector propagator
qμð3Þq

ν
ð3Þ=ðMA

nQ3Þ2 and has the form

Π̄1¼−
g25
2π4

X∞
n¼1

Z
z0

0

dz

�
d
dz

J ðQ;zÞ
�
J ðQ;zÞψA

nðzÞ
1

ðMA
nQ3Þ2

×
Z

z0

0

dz0
�
d
dz0

J ðQ3;z0Þ
�
ψA
nðz0Þ; ð43Þ

where we have used that
P

a¼0;3;8 ðNctrðQ2ta=e2ÞÞ2 ¼ 1.
The results of the above section show that at Q → ∞ the
first integral appearing therein behaves as 1=Q2 for
Q → ∞, and the second integral, which is a single-virtual
form factor, provides a factor of 1=Q2

3 multiplying a 1=Q2
3

from the propagator. Thus each summand has a vanishing
contribution to (42).
However, the infinite sum behaves differently. This can

be demonstrated in closed form in the HW2 model, where
both J and ψA are given by Bessel functions.
With radial wave functions

ψA
nðzÞ ¼

ffiffiffi
2

p
zz−10 J1ðγ1;nz=z0Þ=jJ0ðγ1;nÞj ð44Þ

normalized such that
R z0
0 dzz−1ðψAðzÞÞ2n ¼ 1 one has

X∞
n¼1

ψA
nðzÞψA

nðz0Þ ¼ zδðz − z0Þ: ð45Þ

The sum
P∞

n¼1 ψ
A
nðzÞψA

nðz0Þ=ðMA
nÞ2 is a special case

of the axial vector bulk-to-bulk propagator. In a mixed
(Euclidean) 4-momentum and radial-coordinate represen-
tation the latter is given by

X∞
n¼1

ψA
nðzÞψA

nðz0Þ
Q2 þ ðMA

nÞ2
¼ GAðQ; z; z0Þ ð46Þ

with

GAðQ;z;z0Þ¼zz0½K1ðQz>ÞI1ðQz0Þ
−I1ðQz>ÞK1ðQz0Þ�I1ðQz<Þ=I1ðQz0Þ; ð47Þ

where z< ¼ minðz; z0Þ and z> ¼ maxðz; z0Þ.
The limiting case of Q ¼ 0 needed for the longitudinal

contribution (43) is given by the simple expression

GAð0; z; z0Þ ¼ z2<ðz20 − z2>Þ
2z20

: ð48Þ

Setting Qz ¼ ξ, Q3z0 ¼ ξ0, the leading term in
GAð0; z; z0Þ at large momenta becomes z2<=2 ¼ minðξ2=Q2;
ξ02=Q2

3Þ=2 so that for Q2 ≫ Q2
3 we obtain

−
g25
2π4

1

2Q2
3

Z
∞

0

dξ
Z

∞

0

dξ0ξK1ðξÞ
d
dξ

½ξK1ðξÞ�

×
d
dξ0

½ξ0K0
1ðξ0Þ�ξ2=Q2

¼ g25
2π4

1

2Q2
3

Z
∞

0

dξξK1ðξÞ
d
dξ

½ξK1ðξÞ�ξ2=Q2

¼−
2

π2
1

2Q2
3

2

3Q2
ð49Þ

for g25 ¼ 4π2 at Nc ¼ 3, exactly reproducing the short-
distance constraint (42). Notice that in this limit the single-
virtual form factor effectively gets replaced by Að0; 0Þ,
something that was done by hand in the model of Ref. [30]
to account for the short-distance constraint (albeit in the
pseudoscalar sector, whereas here this takes place exclu-
sively in the case of axial vector mesons).
In Fig. 4, the axial vector contribution to Q2

3Q
2Π̄1ðQ;

Q;Q3Þ is plotted for the HW2 model as a function of Q3 at
Q ¼ 50 GeV for Q3 up to 5 GeV so that the kinematic

FIG. 4. Axial-vector contribution to Q2
3Q

2Π̄1ðQ;Q;Q3Þ as a
function of Q3 at Q ¼ 50 GeV in the HW2 model normalized to
the asymptotic value (42) [with prefactor g25=ð2πÞ2 set to one].
The black line corresponds to the infinite sum over the tower of
axial vector mesons, and the other lines give the contributions of
the first to fifth lightest axial vector mesons.
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regimeQ2 ≫ Q2
3 ≫ m2

ρ of the SDC (42) is probed. The full
result involving the infinite sum over the tower of axial
vector mesons is given by the black line, which is seen to
approach the correct limit, while each individual contribu-
tion decays for Q3 → ∞.
In the chiral limit, the longitudinal SDC (42) is in fact

stronger and holds for all values of Q3. Including the
pseudoscalar exchange contribution of the HW2 model
[21] (but with vanishing pseudoscalar mass) one can
readily show that

lim
Q→∞

Q2Π̄1ðQ;Q;Q3Þ ¼ −
g25

ð2πÞ2
2

3π2Q2
3

ð50Þ

by partially integrating (43) and using that

∂z0∂zGAð0;z;z0Þ ¼−zδðz− z0Þ−2zz0=z0
¼−zδðz− z0Þ−Ψ0ðzÞΨ0ðz0Þ=ð2z20Þ; ð51Þ

thus verifying that the axial anomaly is correctly imple-
mented. We have checked numerically that this also holds
true for the HW1 model, where J ðQ; zÞ is unchanged but
the bulk-to-bulk propagator at zero momentum (48) is
replaced by4

GAð0;z;z0Þ ¼ π

3
ffiffiffi
3

p zz0I1=3ðξz3<Þ

×

�
I−1=3ðξz3>Þ−

I2=3ðξz30Þ
I−2=3ðξz30Þ

I1=3ðξz3>Þ
�
; ð52Þ

which does not obey a relation analogous to (51).

V. AXIAL VECTOR CONTRIBUTION TO aμ

Using the method of Gegenbauer polynomials in
Ref. [62], the axial vector contribution to the four-
photon amplitude leads to an integral representation of
the anomalous magnetic moment of the form (for details
see Appendix B)

aAVμ ¼
Z

∞

0

dQ1

Z
∞

0

dQ2

Z
1

−1
dτρaðQ1; Q2; τÞ: ð53Þ

We have checked our master formula also using the
formalism of Refs. [20,63].
In Fig. 5 we compare the integrand obtained with the full

tower of axial vector mesons in the HW2 model to the
contribution of the first three multiplets at Q1 ¼ Q2 and
τ ¼ 0 (implying Q3 ¼

ffiffiffi
2

p
Q). This shows that the higher

modes, which are essential for satisfying the MV-SDC,
contribute only weakly to aμ. In the integrated result

for aAVμ , including only the lightest multiplets of axial
vectors gives about 80% of the full result; after that each
inclusion of one more multiplet roughly halves the distance
to the full result (see Table III). A similar pattern holds for
the HW1 model, where we do not have a closed form
representation of the infinite tower so that we had to resort
to additional numerical estimates.5 There the lightest
multiplet accounts for about 77%. By contrast, the SS
model, which misses the MV-SDC completely and which
wewill therefore discard in the following, has much smaller
contributions from the higher axial vector multiplets.
The numerical results for aAVμ in the HW1 and HW2

models, whose parameters have been fixed to reproduce fπ
and mρ, turn out to be surprisingly large, amounting to
roughly one-half of the π0 pole contribution obtained in our
previous work [21]. Approximately 58% of the result aAVμ
is due to the contribution of the longitudinal part of the
axial vector meson propagator, i.e., ð1.7–2.4Þ × 10−10 for
the range spanned by HW2 and HW1. This is smaller than
the large increase ΔaPSμ jMV obtained in the simple model
suggested in Ref. [30] to satisfy the MV-SDC by replacing
the external form factor by a constant (which gave 2.35 ×
10−10 in [30], but would be 3.8 × 10−10 with current input
data [34]), but somewhat higher than the recent estimate
of [34] at ΔaLSDCμ ¼ 1.3ð6Þ × 10−10. Reference [30] also
applied this modification to the transverse part of the axial
vector meson contribution, leading to an enhancement
by a factor of 2.7 of what their ansatz for the axial vector
TFF would otherwise have given, resulting in the estimate

FIG. 5. The integrand ρaðQ1; Q2; τÞ in (53) in units of GeV−2

for Q1 ¼ Q2 and τ ¼ 0 (implying Q3 ¼
ffiffiffi
2

p
Q) in the case of the

HW2 model. The black line is the result from the infinite sum
over the tower of axial vector mesons, and the other lines give the
contributions of the first to third lightest axial vector meson
multiplets.

4However, for Q ≠ 0, GAð0; z; z0Þ can no longer be given in
closed form but has to be constructed numerically.

5With (52) the longitudinal part of the full integrand is given in
closed form and therefore can be evaluated directly. The trans-
verse contribution was estimated by evaluation of the lowest
seven modes and monitoring the ratio of transverse and longi-
tudinal contributions, from which it was concluded that the
accurately determined longitudinal contribution amounts to 57%
of the full result.
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2.2 × 10−10 for the lowest axial vector meson multiplet.
Our result for the transverse part of the latter amounts
instead to ð1.2–1.7Þ × 10−10.
Even when only the lowest multiplet of axial vector

mesons is included, we find a substantially larger contri-
bution than is typically estimated in the more recent
literature [1,33], where longitudinal and transverse contri-
butions from axial vector mesons are usually not separated.
Replacing the holographic form factors by the one used in
Ref. [33], Eq. (38), we in fact reproduce the result 0.5 ×
10−10 given therein as a central value for aμ½f1ð1285Þ�. The
main discrepancy arises from the different asymptotic
behavior of the form factor, which in Ref. [33] is Q−8 in
the double virtual case. Another difference is the larger value
of jAð0; 0Þj obtained in the holographic models, which
appear to overestimate somewhat the equivalent two-photon
decay width Γ̃γγ . (In the case of the HW2 model, however,
the holographic prediction of 4.2 eV for Γ̃γγ is completely
within the experimental error (3.5� 0.8 eV) when the HW2
model is fitted to correct IR values rather than the pQCD
asymptotics.)
If one uses only the holographic results for the normal-

ized form factor AðQ2
1; Q

2
2Þ=Að0; 0Þ, where the HW1 and

HW2 models obtain very similar results, and adjusts the
normalization Að0; 0Þ in order to match the experimental
result for Γ̃γγ, we find af1μ ¼ 0.88ð20Þ × 10−10 for
f1ð1285Þ, in place of the result 0.5ð2Þ × 10−10 given in
[33]. Extended to the complete a1; f1; f01 multiplet, this
leads to aAV1μ ¼ 1.74ð40Þ × 10−10, which can be viewed as
a data-driven result, where holographic QCD is used as an
interpolator from single-virtual data to the double-virtual
domain.6

The full axial vector exchange contribution will also
involve higher multiplets, for which at present no data are

available. Assuming that the lowest multiplet again
accounts for 80% of the total contribution, our estimate
for the latter is aAVμ ¼ 2.2ð5Þ × 10−10.
This downscaling of our holographic results to match

experimental data implies that the MV-SDC is satisfied to a
lesser degree (unless it is applied only to a finite number of
axial vector multiplets). The HW2 model with IR-fixed
parameters, which reaches only 62% of the MV-SDC,
needs only a moderate change, while the HW1 model,
which saturates the MV-SDC, requires a much stronger
one. After such an overall downscaling, both HW models
have almost exactly the same level of 52% to which
the MV-SDC is met. This could perhaps be interpreted
as an indication that in models that are closer to real QCD
other contributions may be of comparable importance,
notably from the excited pseudoscalar mesons [34], which
in the chiral large-Nc limit of our holographic models do
not arise.

VI. CONCLUSION

In the present study, we have calculated the axial vector
meson contributions arising from the Chern-Simons
action in the holographic QCD models, for which we
had reevaluated the pion-pole contribution to the anoma-
lous magnetic moment of the muon in Ref. [21]. We found
that the infinite tower of axial vector mesons present in all
these models leads to a large-momentum behavior that in
the case of hard-wall models matches the MV-SDC [30]
concurrently with the SDC for the pion TFF.
At low energies, we found that the holographic QCD

models, now including the top-down SS model for low-
energy large-Nc QCD, reproduce well the experimentally
determined shape of the f1ð1285Þ TFF. The SS and HW2
models also agree with its normalization, which is related
to Γ̃γγ , while the HW1 model overestimates the latter. On
the other hand, the HW2 model saturates the MV-SDC only
at the level of 62%, whereas the HW1 model does so
completely.
In Ref. [21] we have found that the HW1 and HW2

models bracket the low-energy results for the pion TFF,
giving also the high and low ends of our results for
aπ

0

μ ¼ 5.9ð2Þ × 10−10. Evaluating the axial vector contri-
butions we obtained aAVμ ¼ 4.06 × 10−10 and 2.87 × 10−10,
respectively, 57% and 58% of which are coming from the
longitudinal contribution responsible for the MV-SDC.
This is somewhat larger than the estimate of ΔaLSDCμ

obtained recently in [34].
The HW1 result, which gives a similarly high result

while completely saturating the MV-SDC, appears to
significantly overestimate the measured two-photon rate
of f1ð1285Þ, so that one might favor the smaller result
coming from the HW2 model. On the other hand, real QCD
has excited axial vector mesons that are lighter than
predicted by the holographic models (see Table II), and

TABLE III. The contribution of the infinite tower of axial
vector mesons to aAVμ , calculating in the HW2 model with the
analytic expression for the bulk-to-bulk propagator but estimated
numerically for the HW1 model (and for comparison also for the
SS model, which misses the MV-SDC qualitatively). The entries
j ≤ n give the contribution of the first n axial vector multiplets.
[In the text, HW2(UV-fit) is not considered further because it is a
poor fit to IR data, and the SS model is discarded because of its
wrong UV behavior.]

j ¼ 1 j ≤ 2 j ≤ 3 j ≤ 4 j ≤ 5 aAVμ

HW1 3.14 3.62 3.79 3.91 3.96 4.06 × 10−10

HW2 2.30 2.62 2.74 2.79 2.82 2.87 × 10−10

HW2(UV-fit) 2.37 2.69 2.81 2.86 2.89 2.94 × 10−10

SS 1.38 1.45 1.47 1.48 1.48 1.48 × 10−10

6For future tests of the latter, we have included in Appendix A
the expressions for the helicity amplitudes for photoproduction of
axial vector mesons.
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those will also contribute to aAVμ . Moreover, away from the
chiral limit excited pseudoscalar mesons have to be
included, as pointed out in [34]. This could mean that
the final result for Δaμ from the pseudoscalar and axial
vector sector might indeed be in between the HW1 and
HW2 results.
We have also considered the possibility of using the

holographic results for the axial vector TFF as a phenom-
enological interpolator, where the normalization is fitted to
the experimental results for γγ� → f1. Consistency of the
results for f1ð1285Þ and f1ð1420Þ leads to a mixing angle
ϕf ≈ 20° away from ideal mixing, in agreement with other
phenomenological studies. Using the resulting overall
normalization, we arrived at the result aAV1μ ¼ 1.74ð40Þ ×
10−10 for the lightest axial vector meson multiplet. This is
also significantly larger than was obtained in previous
recent studies using various ansätze for the TFF [1,33],
which gave7 aAV1μ ¼ ð0.4–1Þ × 10−10. Since our study
suggests that aAV1μ may account for only 80% of the axial
vector meson sector (perhaps even less, since the holo-
graphic models overestimate the mass of excited axial
vector mesons), also this more data-based approach sug-
gests a contribution of (at least) aAVμ ¼ 2.2ð5Þ × 10−10,
close to the pristine result of the HW2 model.
In summary, our holographic results underline the

numerical importance of axial vector contributions, and
their role in satisfying the MV-SDC [30]. However, our
results for the effect of the latter, which can be attributed to
57%–58% of the axial vector contribution, are significantly
smaller than what is obtained by the simple MV model
(when updated to modern input data), where in the
pseudoscalar contributions one structure function is artifi-
cially kept fixed to its on-shell value. More importantly, the
holographic QCD calculation indicates that the MV model
is not the correct way to implement the MV-SDC, but that
additional degrees of freedom are needed. On the other
hand, our results are larger than (albeit not too far above)
the estimate in [34] from a model involving an infinite
tower of pseudoscalar excitations. Moreover, the axial
vector TFF obtained in holographic QCD provide a well
motivated model for the double-virtual case which differs

strongly from a simple dipole ansatz, suggesting that
previous estimates of the axial vector contribution to aμ
are significantly too small.
After completion of this work, Ref. [65] appeared, which

also has worked out the contribution of axial vector mesons
in the HW2 model, in essence agreeing with our findings,
but employing different sets of parameters (with decay
constants chosen differently for a partition in π0=a1, η=f1,
and η0=f01 sectors).8 Their choice “Set 1” corresponds
roughly to our treatment of the HW2 model, where a fit
of fπ and mρ implies that only 62% of the MV SDC is
reached; “Set 2” corresponds to what we called HW2(UV-
fit), where 100% of the MV SDC is satisfied at the expense
of a much too large ρ meson mass, whereas we have
employed the HW1model to be able to match SDCs as well
as the low-energy parameters. Since Ref. [65] included the
pseudoscalar contributions in their final results, let us point
out that our results are to be added to our previous results of
the pseudoscalar pole contribution calculated before in
Ref. [21]. To facilitate a comparison of our results with
those of Ref. [65], our final results for the pseudoscalar
plus axial vector sector are rendered in Table IV, where the
last column corresponds to the adjustment of the axial
vector contribution to match L3 data. As stated above, this
downscaled result could be viewed as an extrapolation to
real QCD, where in contrast to the chiral large-Nc limit
excited pseudoscalars are also contributing and which one
would then have to add in [34].
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APPENDIX A: HELICITY AMPLITUDES
FOR γ�γ� → A

For future potential tests of the holographic predictions
in the double-virtual case, we list here the helicity ampli-
tudes for photoproduction of axial vector mesons, general-
izing the formulas given in Eq. (C21) of Ref. [57] from a
symmetric structure function AðQ2

1; Q
2
2Þ to the asymmetric

one appearing in (25). Note that the generic form of the
amplitude admits one further structure function [denoted by
CðQ2

1; Q
2
2Þ in Ref. [55]], which vanishes in the holographic

result (23).
With the definitions [57]

ν ≔ qð1Þ · qð2Þ ¼
1

2
ðM2

A þQ2
1 þQ2

2Þ;
X ≔ ν2 −Q2

1Q
2
2; ðA1Þ

and the overall constant C ≔ trðQ2taÞNc=ð4π2Þ, the
holographic result for the amplitude (23) in terms of the
functions A≡ AðQ2

1; Q
2
2Þ and Ā≡ AðQ2

2; Q
2
1Þ contains

the following nonzero γ�γ� → A helicity amplitudes:

−iMþþ=C ¼ ν

MA
ðQ2

1A −Q2
2ĀÞ −

Q2
1Q

2
2

MA
ðA − ĀÞ; ðA2Þ

−iM0þ=C ¼ Q1ðνAþQ2
2ĀÞ; ðA3Þ

−iM−0=C ¼ Q2ðνĀþQ2
1AÞ; ðA4Þ

where the first two indices refer to the helicities of the two
virtual photons.
The structure functions Fð0Þ

Aγ�γ� ðQ2
1; Q

2
2Þ and Fð1Þ

Aγ�γ� ðQ2
1;

Q2
2Þ defined in Eq. (C14) of Ref. [57] are proportional

to Mþþ=½ðQ2
1 −Q2

2Þν=M3
A� and M0þ=½Q1X=ðνM2

AÞ�,
respectively.

APPENDIX B: INTEGRAL
REPRESENTATION OF aAV

μ

With the method of Gegenbauer polynomials described
in Ref. [62] we have obtained

aAVμ ¼−
2α3

3π2

Z
∞

0

dQ1dQ2

Z þ1

−1
dτ

ffiffiffiffiffiffiffiffiffiffiffi
1−τ2

p
Q3

1Q
3
2ðK1þK2Þ;

ðB1Þ

with K1 the integral kernel for the s-channel reading

K1 ¼
AðQ2

3; 0ÞðQ2
1AðQ2

1; Q
2
2Þ þQ2

2AðQ2
2; Q

2
1ÞÞ

2Q1Q2Q2
3m

2
μM2

A
½τðQ2

2ð4σE2 þ ðσE2 Þ2 − 5Þ − 8m2
μÞ

− 4Q2Q1ð−4ðτ2 − 1ÞXm2
μ þ 2Q2

2X − σE1 − σE2 þ 2Þ − 8Q2Q3
1X þQ2

1τð−16Q2
2X þ 4σE1 þ ðσE1 Þ2 − 5Þ�

þ AðQ2
1; Q

2
2ÞAðQ2

3; 0Þ
2Q1Q2

2Q
2
3m

2
μðM2

A þQ2
3Þ
½Q3

2Q
2
1τð−8Q2

2X þ 2σE1 þ ðσE1 Þ2 − 2σE2 τ
2 þ 8σE2 þ ðσE2 Þ2τ2 þ ðσE2 Þ2 þ τ2 − 12Þ

− 4m2
μðQ3

2τ þQ3
1ð1 − 4Q2

2τ
2XÞ þQ2

2Q1ð4Q2
2X þ τ2Þ − 4Q2Q4

1τX þQ2Q2
1τð4Q2

2X þ 3ÞÞ
þ 2Q4

2Q1ð−2Q2
2X þ σE1 − σE2 τ

2 þ 2σE2 þ ðσE2 Þ2τ2 − 3Þ þ 2Q2
2Q

3
1ð−6Q2

2X þ σE1 þ 2σE2 − 3Þ
− 4Q2Q4

1τð4Q2
2X − σE1 þ 1Þ þQ5

1ð−8Q2
2X þ 2σE1 − 2Þ þQ5

2ððσE2 Þ2 − 1Þτ�

þ AðQ2
2; Q

2
1ÞAðQ2

3; 0Þ
2Q2

1Q2Q2
3m

2
μðM2

A þQ2
3Þ
½2Q2

1ð−2Q2τ
2m2

μ þQ3
2ð8τ2Xm2

μ þ 2σE1 þ σE2 − 3Þ − 4Q5
2XÞ − 4Q2Q6

1X

− 2Q2Q4
1ð8Xm2

μ þ 6Q2
2X þ σE1 τ

2 − 2σE1 − ðσE1 Þ2τ2 − σE2 þ 3Þ
×Q3

1τðQ2
2ð−16Q2

2X − 2σE1 ðτ2 − 4Þ þ ðσE1 Þ2ðτ2 þ 1Þ þ 2σE2 þ ðσE2 Þ2 þ τ2 − 12Þ − 4m2
μð4Q2

2X þ 1ÞÞ
− 2Q3

2ð2m2
μ −Q2

2ðσE2 − 1ÞÞ þ 4Q2
2Q1τðm2

μð4Q2
2X − 3Þ þQ2

2ðσE2 − 1ÞÞ −Q5
1τð8Q2

2X − ðσE1 Þ2 þ 1Þ�; ðB2Þ

and K2 for the t- and u-channels,
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K2 ¼
AðQ2

2; 0ÞðQ2
3AðQ2

3; Q
2
1Þ þQ2

1AðQ2
1; Q

2
3ÞÞ

Q1Q2Q2
3m

2
μM2

A
ð−4τm2

μ − 4Q1Q2ðτ2 − 1Þð−4Xm2
μ þ 2Q2

2X − σE1 þ 1Þ þQ2
1ððσE1 Þ2 − 1ÞτÞ

þ AðQ2
1; Q

2
3ÞAðQ2

2; 0Þ
Q1Q2Q2

3m
2
μðM2

A þQ2
2Þ
½2Q2Q3

1ð4Q2
2ðτ2 þ 1ÞX − 4σE1 τ

2 þ ðσE1 Þ2τ2 − σE2 þ 3τ2 þ 1Þ

þQ2
2Q

2
1τð−2σE1 þ ðσE1 Þ2 − 6σE2 − ðσE2 Þ2 þ 8Þ þQ4

1τð16Q2
2X − 6σE1 þ ðσE1 Þ2 þ 5Þ

− 4m2
μðQ2

2τ þ 4Q2Q3
1ðτ2 þ 1ÞX þ 2Q2

1τð6Q2
2X − 1Þ þQ2Q1ð4Q2

2X − 1ÞÞ
þ 2Q3

2Q1ð−2Q2
2X þ σE1 − 3σE2 þ 2Þ þQ4

2ððσE2 Þ2 − 1Þτ þ 4Q2Q5
1X�

−
AðQ2

2; 0ÞAðQ2
3; Q

2
1Þ

Q2
1Q2Q2

3m
2
μðM2

A þQ2
2Þ
½10Q4

2Q1ðσE2 − 1Þτ þ 2Q5
2ðσE2 − 1Þ − 4Q2Q6

1X

þ 4m2
μf4Q2Q4

1ðτ2 þ 1ÞX þ 2Q3
1τð2Q2

2ð2τ2 þ 3ÞX − 1Þ
þQ2Q2

1ð4Q2
2ð3τ2 þ 1ÞX − 4τ2 − 1Þ þ 2Q2

2Q1τð2Q2
2X − 1Þ −Q3

2g
−Q2

2Q
3
1τð16Q2

2ðτ2 þ 1ÞX − 2σE1 ð5τ2 þ 2Þ þ ðσE1 Þ2ðτ2 þ 1Þ − 10σE2 − ðσE2 Þ2 þ 9τ2 þ 14Þ
−Q5

1τð24Q2
2X − 6σE1 þ ðσE1 Þ2 þ 5Þ þ 2Q3

2Q
2
1ðτ2ð−4Q2

2X þ 2σE1 − 9Þ þ σE2 ð6τ2 þ 2Þ þ ðσE2 Þ2τ2 − 2Þ
− 2Q2Q4

1ð2Q2
2ð10τ2 þ 1ÞX − 8σE1 τ

2 þ ðσE1 Þ2τ2 − σE2 þ 7τ2 þ 1Þ�; ðB3Þ

for one axial vector meson multiplet with massMA and form factors as defined in (25), where we have used the notation of
[20,63],

Q2
3 ¼ Q2

1 þ 2Q1Q2τ þQ2
2; X ¼ 1

Q1Q2x
arctan

�
zx

1 − zτ

�
; x ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p
;

z ¼ Q1Q2

4m2
μ
ð1 − σE1 Þð1 − σE2 Þ; σEi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

μ

Q2
i

s
: ðB4Þ

The sum over the infinite tower of axial vector mesons corresponds to replacing the products of two form factors A and
the denominator of the axial vector meson propagator by one double-integral expression involving the bulk-to-bulk
propagator as discussed in Sec. IV, e.g.,

X∞
n¼1

AðnÞðQ2
1; Q

2
2ÞAðnÞðQ2

3; 0Þ
Q2

3 þ ðMA
nÞ2

¼ 4g25
Q2

1Q
2
3

Z
z0

0

dz

�
d
dz

J ðQ1; zÞ
�
J ðQ2; zÞ

Z
z0

0

dz0
�
d
dz0

J ðQ3; z0Þ
�
GAðQ3; z; z0Þ; ðB5Þ

which in longitudinal contributions reduces to

X∞
n¼1

AðnÞðQ2
1; Q

2
2ÞAðnÞðQ2

3; 0Þ
ðMA

nÞ2
¼ 4g25

Q2
1Q

2
3

Z
z0

0

dz

�
d
dz

J ðQ1; zÞ
�
J ðQ2; zÞ

Z
z0

0

dz0
�
d
dz0

J ðQ3; z0Þ
�
GAð0; z; z0Þ: ðB6Þ

As mentioned above, we have checked that our results agree upon integration with those obtained in an alternative
derivation using the formalism of Refs. [20,63]. The latter agree with those given in Appendix C of Ref. [65].

[1] F. Jegerlehner, The anomalous magnetic moment of the
muon, Springer Tracts Mod. Phys. 274, 1 (2017).

[2] F. Jegerlehner, Muon g − 2 theory: The hadronic part, EPJ
Web Conf. 166, 00022 (2018).

[3] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, A new
evaluation of the hadronic vacuum polarisation contribu-
tions to the muon anomalous magnetic moment and to
αðm2

ZÞ, Eur. Phys. J. C 80, 241 (2020).

JOSEF LEUTGEB and ANTON REBHAN PHYS. REV. D 101, 114015 (2020)

114015-14

https://doi.org/10.1007/978-3-319-63577-4
https://doi.org/10.1051/epjconf/201816600022
https://doi.org/10.1051/epjconf/201816600022
https://doi.org/10.1140/epjc/s10052-020-7792-2


[4] A. Keshavarzi, D. Nomura, and T. Teubner, g − 2 of charged
leptons, αðM2

ZÞ, and the hyperfine splitting of muonium,
Phys. Rev. D 101, 014029 (2020).

[5] M. Abe et al., A new approach for measuring the muon
anomalous magnetic moment and electric dipole moment,
Prog. Theor. Exp. Phys. 2019, 053C02 (2019).

[6] J. Prades, E. de Rafael, and A. Vainshtein, The hadronic
light-by-light scattering contribution to the muon and
electron anomalous magnetic moments, Adv. Ser. Dir. High
Energy Phys. 20, 303 (2009).

[7] A. Kurz, T. Liu, P. Marquard, and M. Steinhauser, Hadronic
contribution to the muon anomalous magnetic moment to
next-to-next-to-leading order, Phys. Lett. B 734, 144 (2014).

[8] G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera, and
P. Stoffer, Remarks on higher-order hadronic corrections to
the muon g − 2, Phys. Lett. B 735, 90 (2014).

[9] M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and S. P.
Schneider, Dispersion relation for hadronic light-by-light
scattering: pion pole, J. High Energy Phys. 10 (2018) 141.

[10] I. Danilkin, C. F. Redmer, and M. Vanderhaeghen,
The hadronic light-by-light contribution to the muon’s
anomalous magnetic moment, Prog. Part. Nucl. Phys. 107,
20 (2019).

[11] D. Giusti, V. Lubicz, G. Martinelli, F. Sanfilippo, and
S. Simula, Electromagnetic and strong isospin-breaking
corrections to the muon g − 2 from Lattice QCDþ QED,
Phys. Rev. D 99, 114502 (2019).

[12] C. Davies et al. (Fermilab Lattice, LATTICE-HPQCD,
MILC Collaborations), Hadronic-vacuum-polarization con-
tribution to the muon’s anomalous magnetic moment from
four-flavor lattice QCD, Phys. Rev. D 101, 034512 (2020).

[13] A. Gérardin, H. B. Meyer, and A. Nyffeler, Lattice calcu-
lation of the pion transition form factor with Nf ¼ 2þ 1

Wilson quarks, Phys. Rev. D 100, 034520 (2019).
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