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y*N — A*(1600) transition form factors in light-cone sum rules
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The form factors of y* N — A(1600) transition is calculated within the light-cone sum rules assuming that
A*(1600) is the first radial excitation of A(1232). The Q* dependence of the magnetic dipole G, (Q?), electric
quadrupole G(Q?), and Coulomb quadrupole G.(Q?) form factors are investigated. Moreover, the Q2

G:(0?) _ 1 2 2 2 2_ . 212G:(0%)
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are studied. Finally, our predictions on G,,(Q?), G(Q?), and G (Q?) are compared with the results of other

dependence of the ratios Rgy = —

theoretical approaches.
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I. INTRODUCTION

Advance technologies in accelerators enabled to search
of high energy regions as well as improving the precision of
the experiments by collecting data with high luminosity.
This reveals new possibilities to study the electromagnetic
structures of the baryon resonances above the ground state
region. The facilities like CLAS (Jefferson Lab), BATES
(MIT), MAMI (Mainz), Spring-8 (Japan), and ESSA
(Bonn) have the potential to measure the electromagnetic
structures of baryons around their first excitations. These
experimental possibilities stimulated theoretical studies for
deeply understanding the properties of the baryon reso-
nances. A(1600) baryon, which is the first excitation of
A(1200) one, may be one of the resonances which deserves
special attention. Theoretically, this resonance has not been
studied comprehensively yet.

The electroproduction of A(1600) is studied within the
quark model [1], and the effects of A(1600) in baryon-
meson reactions is studied in [2,3]. However, the existing
data [2,4] can be used for a more detailed analysis of this
resonance. The y*p — AT(1232), (AT (1600)) transitions
are computed using a diquark-quark picture and a covariant
spectator constituent quark model in [5,6], respectively.

The form factors of the y*N — A(1232) and y*octet —
decuplet baryon transitions within the same framework was
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studied in [7,8], respectively. In the present work, we study
the transition form factors for the electroproduction of the
A(1600) resonance within light-cone sum sum rules
method.

The article is organized as follows. In Sec. II, the sum
rules for the transition form-factors of y*N — A(1600)
within the light-cone sum rules (LCSR) is derived. The
numerical analysis of the obtained LCSRs is carried out
in Sec. III. This section also contains discussion and
summary.

II. DERIVATION OF LCSR FOR y*N — A(1600)
TRANSITION FORM FACTORS

The transition y*N — A(1200) and A(1600) is des-
cribed by the matrix element of the electromagnetic current
Ju = e iy, u+ edﬁyﬂd between the nucleon, ground, and
first radial excitation of A baryon (A;(p")|j,(0)|N(p)).

By using the Lorentz invariance and current conserva-
tion, this matrix element is determined in terms of the
following form factors [9]:

(AP EDING)) = 0 (PG (0?) (~quty + #90s)
9(0%)(~4P, + (4P) )
(Guty — Pga)yrsu(p) (1)

where i =0, and i =1 corresponds to the ground and
first radial excitation of A baryon, Gi, G}, and G} are
the corresponding form-factors, and P, =% (p + p'), =
% (2p’ + q),. However, the multipole form factors are more
useful than the form factors G;, G,, and G5 for the
experimental point of view. The relations among the form
factors G,(Q?), G,(Q?), and G5(Q?) and multipole form
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factors (magnetic dipole Gy, electric quadrupole G, and
Coulomb quadrupole G.) form factors are given in [10]:

N @) = S )
[ m,  mam, ) + 9 S
+ (m3, —m})Gy)(Q%) - 2QZG§">(Q2>} :
GL(Q) =5 {(mA,. — i} - 0?) 5:1(32)
0, = )6 - 20°6 (7).
GE(0) =3t [2ma 60
3G+ + 076 (02)
3, = - 096007 @

After these preliminary remarks, we can proceed with the
determination of these form factors for y*N — A(1600)
transitions within the light-cone QCD sum rules. For this
purpose, we consider the following correlator function

M, =i / e (T 0) 2 C)IN(P)).  (3)

where 77, is the interpolating current with the same quantum
numbers of A(1232) and A(1600), and j¢' is the electro-
magnetic current.

Since A"(1232) and AT(1600) states have the same
quantum numbers, the interpolating current for these states
is also the same and it is given by the following expression

|

L

we get the following result for the correlation function

__ZmA — 5 (P + A){gaﬂ_gyayﬂ_

{Gi(—apr, + 9pudt) + G5(=asP, + 9p.aP) + Gi(q5q,

At this point, we would like to make the following
remark. In general, the interpolating current, 5,, interacts
not only with spin-3/2 states, but also with the spin-1/2
ones. For the generic spin-1/2 states, the matrix element of
the 7, current between the vacuum and spin 1/2 state is
determined as

-+ ma)d

1
e = 5 (0 Crod? i+ Cro )], (4

where a, b, ¢ are color indices, and C is the charge
conjugation operator. According to the sum rules method
approach, the correlation function should be calculated in
two different regions. In one domain, the correlation
function is saturated by the full tower of states carrying
the quantum numbers of A baryon in the region p'* ~ mj .
On the other hand, the correlation function is calculated in
the deep Euclidean region where p’?> < 0 by using the
operator product expansion (OPE) in terms of the nucleon
distribution amplitudes with an increasing twist. The sum
rules for the relevant physical quantities are obtained by
matching these results of the representations of the corre-
lation functions via the dispersion relation.

Following the mentioned prescription above and for the
hadronic part of the correlation function after isolating the
contributions of the ground A(1232), and its first radial
excitation A(1600) state we get

2~ (0[74(0)|Ai) (A IJ”\N> o TId(s)
HW:_Z 2 72 s / ds —= 2
So

i=1 My, — P s=p
(5)

where i corresponds to the ground and first excited states.
Parametrizing the matrix element

<O|’1(1|Al(pl)> = liu(l(p/% (6)

where u,(p’) is the Rarita-Schwinger spinor and
p' = p —q. Performing summation over the spins of
Rarita-Schwinger spinors with the help of the formula

b /
Gap ~ %}/aYﬁ - 23p njé: ﬂ payg; m—fﬂa} (7)
2paPs  Palp— p’ﬂya}
3m2A’_ 3my,
- gﬂﬂq2)}y5u1\/(p)' (8)
I
(Ol 5 () = (mra —4pJu(p). ()

In other words, the terms with ~y, and p/, contain the
contributions of the spin-1/2 states. Comparing Egs. (8)
and (9), it follows that only the terms with ~g,,; contains the
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information of purely spin-3/2 states. Hence, for our
problem the terms containing spin-1,/2 contributions should
be removed. Retaining the contributions of spin-3/2 states
only, we get

A
H(lﬂ = _ﬁ (ﬂ/ + mO)[Gl (_qayy + g{lﬂq)
mo - p
+ Ga[=9.(P" +q/2), +q- (P + 4/2) Gl

[
+ G3(909, — 4° 9a)7sun(p)

A

—m(ﬂ +m1)[G ( Q(zyﬂ—"_gaﬂﬁ)

+Gal=q.(P' + 9/2), +a- (P + a/2)94)
+ G31q44, — 4 9alrsun(p). (10)

in which Aq, my(4,,m;) are the residue and mass of the

ground state, A(1232), A(1600) baryons and G;(G;) are the
form factors for y*N — A(1232) and y*N — A(1600)
transitions, respectively. For simplicity, the mass of the
A(1600) state we will be denote as m; from now on.
From Eq. (10), it follows that, for the description y*N —
A(1600) transition we have six form factors which should be
determined. To determine the six form factors, we need six
structures. It should be noted that all structures are not inde-
pendent. To obtain the independent structures, the ordering
procedure of the Dirac matrices is implemented. In this
work, we choose the following order of Dirac matrices
Ya?'47,75- Taking into account this remark, the correlation
function can be decomposed in terms of the following
independent invariant functions as follows [see Eq. (8)]:

Moy =00 qY5 9o + 1Y 59y + 1375 PG + Ta¥5 Py
+ 1575944, + Tey5q,q, + other structures  (11)

From Eqgs. (9) and (10), the following six structures are
found to determine the six form factors

M- - AG ﬁléim
my—p my—p
n, = - 0 AmC,
my—p my—p
, = G2 5162/2
my—p my—p
m, - zozmo(;/22 llzml(f?v/zz’
my—p my—p
s _Wtﬁﬁ)p’z {%_Q] m?/Ep’Q {%_Q]’

Solving these equations for the form factors we get

MG,
—moll; +11, = —ﬁ<m1 - m),
my—p
/1 G,
—moll; + 11 = 2,2 (my —myg),
1 -p
A
—molls +1ls =~ 55 (my —my)
1
G, —
x [72—63} (13)

From Eq. (13), it follows that to obtain the sum rules for
the y*N — A(1600) transition form factors, we need to
know the invariant functions I1;. According to the sum rules
methodology, the invariant functions IT;(i = 1+6) are
calculated at deep Euclidean domain with virtuality p’2 =
(p—q)* <0 in terms of the nucleon distribution ampli-
tudes (DA’s). The nucleon DA’s are the main nonperturba-
tive ingredients of LCSR and they are calculated up to
twist-6 in [11-15]. For completeness, definition of the
nucleon’s DA’s and their expressions are presented in
Appendix A.

Using the expressions of the nucleon DA’s and applying
the quark-hadron duality ansatz, the invariant functions, I1;,
can be written in the following form

p, '(x, 4% p?)
Mi(p® / ((g—px)?)" (14)

Matching the representations of the correlation functions
and performing Borel transformations with respect to the
variable —p’> = —(p — ¢)? in order to suppress the con-
tributions of higher states and continuum, the correspond-

ing sum rules for the form factors G(Q?), G,(Q?) and

%) _ G4(0?) can be obtained as
—xllz;vl(Qz)(ml - 1710)6""%/1‘/12 = —mol,(M?, 0°, )
+12(Q27M2730)’
G (0) (my = mg)e™™/M = oI (M2, 02, 50)

+ I4(Q27M27 SO)’

G
A (_2 - G3>( mo)‘f_m%/M2 = —mols(M?, Q*, 5)
+16(Q2’M2’S0)'
(15)

The functions 1;(M?, Q?, s) can be written in the form of a
master formula (see [16,17])
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.1 (=1 A
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Z/ dxe =Dl (Mz) e

SJEDTES 1 1 1y
(n— 1)l (M?)"=i=1 ' \dx s’ x"

‘x:x‘o

(16)

2 et O5
ds myXx+0°x

where x =1 —x, s—d,s: , and x, is the

solution of sy = s equation. The explicit forms of the

functions, p(-")

;. are presented in Appendix B. From Eq. (15),
we see that to determine the y*N — A(1600) transition
form factors, the residue of A(1600) is also needed. This
value within QCD sum rules is already calculated in [18]
and obtained as 4, = (0.057 £ 0.016) GeV>.

At the end of this section, we present the ratios Rgy [10]
and Rgy [11] that are more suitable for the experimental

point of view

R E;E(QZ)
MGy
_ 2 m%—mN 0%)? 1 GC(Q)
Rom = \/Q o . G0 (17)

It should be noted that these ratios are identically zero in
SU(6) symmetric constituent quark model. The nonzero
values are the indications of the deformation of one or both
hadrons.

III. NUMERICAL ANALYSIS

This section is devoted to the numerical analysis of
the multipole form factors as well as Rgy; and Rgy; ratios.
The main nonperturbative input parameters of LCSR
are the DA’s. In numerical calculations, for nucleon
DA’s we will use the results of [12—15], where the general
expressions of DA’s in terms of the orthogonal polynomials
are obtained for octet baryons. The first few polynomials
are obtained in [14]. The parameters entering in expressions
of DA’s are determined in [14].

In addition to these input parameters, the sum rules
contain two auxiliary parameters; the Borel parameter M?
and continuum threshold s,. The physically measurable
quantities should be independent on these auxiliary param-
eters. Therefore, the working regions of M? and s, should
be determined in such a way that the physically measurable
quantity should exhibit good stability to the variation of
these parameters. The upper and lower bounds of the Borel
parameter M? are determined by imposing the following
two conditions.

(i) The reasonable suppression of the integral over the

higher states contributions estimated in accordance
of the hadron-quark duality ansatz.

1 _| T T T T T |_

[ ¥ * N — A(1600) ——M?-30
0.8 o s, =6.0 GeV? ——M?=35 ]
r —*—MZ2=4.0

FIG. 1. The dependency of the G,;(Q?) on Q7 at a fixed values
of s, and M>.

(i) Contributions of the higher twist terms should
be smaller than the contributions of the leading
twist term.

Besides, the values of continuum threshold s is determined
from the condition that the sum rules should reproduce the
mass of A(1600) state with 10% accuracy. These con-
ditions lead to the following working regions of M? and s:
2.0 GeV? < M? < 4.0 GeV?, 55 = (5.5+0.5) GeV>.

Having specified all the input parameters and determined
the working region of M? and s, we are ready to perform
the numerical calculations.

In Figs. 1, 2, and 3, we present the dependencies of
Gy (0?), Gp(Q?), and G(Q?) on Q7 at fixed s, and for
various M? values. Here, we would like to note that since
LCSR predictions on the form factors are reliable only in
the Q% > 1 GeV? region, we present the results only for
this domain. From these figures, it follows that all three
form factors decrease with increasing Q2 and saturates for
high Q? values.

By comparing the form factors of y*N — A(1232)
obtained in [7] and y*N — A(1600) transitions, we infer
the following results:

O -
~0.05 |
1)
=, -0.1
O]
_015'_ ——M2=30 ]
’ [ v * N — A(1600) ——M2=35
[ s, = 6.0 GeV? —#—M?=40 A
_0.2 1 1 1 1 1
2 3 4 5 6 7 8
Q? (GeV?)

FIG. 2. The same as in Fig. 1, but for Gz(Q?) form factor.
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0 [ T T T T T

~0.05f

1
=, —0.1
{0}

-0.15 v *N — A(1600) ——M2=35 ]
s, = 6.0 GeV* —-M2=40 ]
Q% (GeV?)

FIG. 3. The same as in Fig. 1, but for GVC(Qz) form factor.

(i) The electric quadrupole form factor is small in
magnitude compared to the form factors, G,;(Q?)
and G(Q?) in both transitions.

(ii) For the region, Q> > 1 GeV?, the transition form
factors, G, (Q?) for y*N — A(1600) are larger than
the ones for y*N — A(1232). This result indicated
that the y*N — AT (1600) transition is more local-
ized in configuration space.

Moreover, we also compared our results on the consid-
ered form factors with the predictions obtained by
quark-diquark approximation to the Poincaré-covariant
three-body bound state problem in relativistic quantum
field theory [5] and found out that our predictions on the
form factors at the considered regions of Q? is considerably
larger in magnitude than the one predicted in [5].

Furthermore in Figs. 4 and 5, we present the Q2
dependence of Rgy(Q?) and Rgy at fixed values M?
and sy considering their working regions. From these
figures, we observe that while Rgy(Q?) is negative,
Ren(Q?) is positive at all values of Q2.

Comparing our predictions on Rgy with the results
obtained in [7], we observed similar qualitative behavior

0257 ; : : : : \

. v * N — A(1600) —— M2=30 1

ook s, = 6.0 GeV? —— M?=35 ]
0.15%
E L
o C
0.1F
0.05}

0 L 1 1 1 1 1
2 3 4 5 6 7 8
Q? (GeV?)

FIG. 4. The dependency of Ry on Q2 at the fixed values of s
and M>.

0.6 T T T T T
v *N — A(1600)
05F s, = 6.0 GeV?
0.4
2
o 0.3
0.2
0.1 ]
F —K=MZ=40
0 2 3 4 5 6 7 8
Q® (GeV?)
FIG. 5. The same as in Fig. 4, but for Rgy.

considered in both works. However, behavior of Rgy in
our case is remarkably different than in y*N — A(1232)
transition, i.e., magnitude Rgy; is larger than the one in
y*N — A(1232) transition case. This observation high-
lights the sensitivity of the electric quadrupole form
factor to the degree of deformation of the A baryon.
Finally, we compare our predictions on Rgy and Rgy
with the results obtained within light-front relativistic
quark model [19]. Comparing our results on Rgy
presented in Fig. 4 and the results of [19] we observed
that our result on Rgy; is larger than the one predicted
in [19]. Besides, comparing our result on Rgy, we
deduce that the behavior of Rgy is similar to the results
of [19]. For example, in our case, when Q7 varies
between 2 and 8 GeV? region, the Rgy varies between
(0.1 and 0.5), however it changes between (0.1 and 0.3)
in [19].

Our final note is that the obtained results will shed light
to the understanding the inner structures of the resonance
A(1600), and can be checked in ongoing and planning
experiments.

IV. CONCLUSION

In this article, we stgdied the LCSR to evaluate
the magnetic dipole G)(Q?) electric quadrupole
Gp(Q?) and Coulomb quadrupole G*(Q?) form factors

as well as the ratios Rpy = —% and Rgy = _ﬁx
M my
VAmiQ* + (m3 — Q% — m})? g;((Qsz)) on Q> when Q2

varies in the region 1 GeV? < Q? < 10GeV?. This domain
may be covered in the incoming CLAS-12 at the Jefferson
Lab. Appearance of experimental information would be
very useful to establish the nature of A*(1600) resonance
by assuming it as radial excitation of A(1232) in the y*N —
A(1600) transition. We also compared our predictions on
the form factors G, (Q?), G(Q?), and G(Q?), as well as
Reym and Rgy with results of results of other theoretical
approaches.
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APPENDIX A: NUCLEON DISTRIBUTION AMPLITUDES

For completeness, in this Appendix, we present expressions of distribution amplitudes V;, A;, T, S;, and P; for nucleon.

1 1
Vie = 5 (@ 3/6(x1, X2, X3) + D_3/6(x1, X2, x3)) +5(¢)+.3/6<x2:x1’x3) + D_ 36(x2, X1, X3)),

1 1
Ay = —§(®+.3/6(x],x2,x3) + @_3/6(x1, X2, X3)) +§(q)+.3/6(x2’xl’x3) + D 36(x2, X1, X3)),

Tyj6 = M3/6(x1, %3, X7),
where the DAs on the left-hand side are functions of (x|, x,,x3). The twist 4 and twist 5 amplitudes read

1 1

Sip = 7 (Bqay5(x1, %0, x3) + B 4/5(x1, %2, %3)) — a (B ay5(x2, %1, %3) + B 4/5(x2, X1, x3))

+ = (T 5 (x2, x3, 1) = Ty5(xy, X3, X2)),

1
4

1 _ _ I _ -
P1/2:ﬁ(5+,4/5(x1,x27x3> :_.4/5(x1,x2,x3))—ﬁ(:+,4/5(x2,x1,x3) :_.4/5(x2,x1,x3))
1

7 (T 5 (%2, x3, x1) = Ty 5(x1, X3, X2)),

1 1
Voss = 1 (@ 4y5(x1, X2, X3) + P y5(x1, X2, X3)) + 2 (@ 475 (x2, X1, x3) + D_y5(x2, %1, x3)),
1 1
Ayys = 1 (D ays(x1, X2, X3) + P_gy5(x1, %2, x3)) + 1 (@ 475 (x2, X1, x3) + D_y5(x2, X1, x3)),
1
Vi = 1 (D 4y5(x3, %1, X2) = D_45(%x3, %1, X)) + 1 (D 4ys5(x3, %0, X1) — D_45(%x3, %2, X7)),
1 1

Azpy = ~1 (@ 475 (x3, X1, X3) = D_4/5(x3, %1, %)) + = (@ 4/5(x3, X2, X1) = P_4/5(x3, X3, x7)),

N

- T4/5(X3’x2,)€1)

Tys = B —
1 — —_ — —_
T34 = Byl (B4 ay5(x1, %0, x3) + B 4/5(x1, %2, x3)) + 2 (B4 ay5(x0, %1, %3) + B 4/5(x2, X1, x3))
1
*t1 (TLy 5 (x2, X3, x1) + 1M 5(xy, X3, %2)),

1 1

Ty3=~— 4(E+,4/5(x1,x2,x3) 5—.4/5()‘1’362,)‘3))—ﬁ(3+,4/5(x27x17x3) E_4/5(x2, X1, X3))

[\

+ — (M5 (x2, X3, 1) + Ty 5(x1, X3, X2)).

B

The explicit expressions of the functions @ 3,6, E4 4/5, @+ 4/5, T4/5, and Ilys can be found in [12-14].
APPENDIX B: SUMMARY OF CORRELATION FUNCTION

In this Appendix, we present the explicit expressions of the functions p# entering to the sum rules for the form factors
G,(0%), G,(Q?), and %QZ) — G5(Q?) for the y*N — A(1600) transition.
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1
P (x) =

1
PV (x) =

1. Functions p\")

i

for the form factor /le

8(1 —
(1-x) eqzm[z\,mq2 (x*m3, + Qz)

—4eq3mN(mN36 - 2mq334) + 8e,, mym,, B,

- Seqzmlz\,A dx (T\M — AM)(xp,x,1 = x) —x) + 86q3m12\,/0 dx; T M (x;,1—x; —x,x)

4 -
== (e [(x = 1) (P, + Q)85 + 2x(x + 1)Dy] + e, [Cmi By + Pmi By + (x = 1)(Pmk + Q)

— (x = D) (x?*m% + Q*)C, — x*m3, By — x>m% By — 2x2mqu2H1 + 2x2mqu21~95 + 2x2mquzl~37
+2(x— l)xmlzvég + 2memq21:11 - 2memq21~95 - 2memqZB7 - mequf% +x0°B, + xQ*B, - 2mqu21:96

— 0?B, — Q?By] + xemy[(x = 1)(my(Dg — 2Co) + m,, (Ds — 2Cs + 2B5 + 4B;)) + m, Bg|}

=—e, /dx1(8Bl—8D1)(x1,xl—xl—x)—f—Se /xdxlBl(xl,l—xl—x,x)
0 0

4mN

. le,,(Dy = Cy+ By + By) — e, (xDy + Cy)] + 4(x — l)eqlmNA dx3(C3 — D3)(x, 1 — x — x3,x3)

—de, (x - l)mN/) dx,[(D3 — C3 +2P; = 28;) — 8m,,By|(x;,x,1 — x; — x)

+4eq3(x - l)mN/ dx[(D; —2C3) — 8mq3Bl](x1, I —x; —x,x) (B1)
0

2. Functions p; for the form factor a;

64(x — l)xzeqlm?\,é6 + 16xe, my [4(x — l)me(C ZBS) qzl:?ﬁ]
+ 16xeq3m]2v[mq3f96 —2(x— l)me(D6 - 2C6 + 288)}
32(x — l)eq mN[(x mN +2x0% — QZ)BG + mem(th]

+16(x — 1)e,,m% [2x(xm3, + 0?)Bs — xmym,, (D¢ + 2Cy)]

= —8(1 = 2x)xe,, myCs + 8xe, my[(2x —1)Cy + 2(1 — 2x)By — D, — 2B,

—8xe,, my[xDy — 2xCy + 2(x — 1)B,]
—8(x — 1)xe, m3,(Ds — Cy) — 8, my{(x — Vxmy[Ds — Cy = 2(H, + Ey — Bs)] + (4x — 3)myBq
+ 2qu,B4 + mq (Bz - B4)} + Sxe mN[(x - l)mN(D5 + 2C5 b 2B5) + m (D2 + 2C2)]
+8(2x —1)e, mN/ dx3ViM(x, 1 —x —x3,x3) — 8e,, / dx[AM+(1-2x)V M
0
+2(x = )T M](xy,x, 1 — x; — x) — 16xe, mN/ dx; T M(x;, 1 —x; —x,x)
0
8(2x —1)e,, /xdx3C1(x, 1 —x—x3,x3) — 8e,, /x dx;[Dy — (2x = 1)C; 4+ 2(x = 1)B;](x1, x, 1 —x; — x)
0 0

— l6xe,, / dxB;(xy, 1 —x; — x,x) (B2)
*Jo

114011-7



ALIEV, BARAKAT, BILMIS, and SAVCI PHYS. REV. D 101, 114011 (2020)

3. Functions p; for the form factor % —/Gv3

p?)(x) = —64(x — 1)2xeqlm13\,é'6 —16(x — 1)eq2m12\, [4(x — l)me(&'6 - 2]238) - 2m421:96]
—16(x — 1)egm3 [2(x — 1)xmy(2Cq — Dg — 2B5) + my, By)

—32(x—1)2 i B
000 =2 0 i + 2600 - Q)5+ xmm, By
16(x —1)?

- fe%m}z\,px(xm[z\, + QZ)B6 — Xmym,, (2Cq + D6)]

pgz)(x) =—16(x — l)xeqlmNéz + 16(x — l)eqsz(—xCZ +2xBy + D, + B,)
+8(x — D)e,,my[xDy — 2xCy 4+ 2(x — 1)B,]

8(x—1)

Péz)(x) =8(x— l)zeqlmzzv(bs - 64) + eqsz{(x - 1)me[D5 - 64 - 2(5’1 + El - Bs)]

+4(x— l)mNéé + 2xmq2l~34}
— 8(x = V)egmy[(x = D)my(Ds + 2Cs = 2Bs) + m, (D, +2C,)]

—16(x — 1)e, m3 /x dx;ViM(x,1 = x — x3,x3)
0
—16(x — 1)e,,m3 /X dx (VM =T M)(x;,x,1 = x; —x)
0
+16(x — 1)e,,my, Ax dx (xp, 1= x; = x,x)
P (x) =0
p(61)(x) =—16(x —1)e,, /x dx;Ci(x, 1 —x — x3,x3)
0

—16(x = 1)e,, /x dx;(Cy = By)(x1,x, 1 —x; — x)
0

+16(x = 1)e,, Ax dxBy(x;, 1 —x; —x,x) (B3)

where ¢, = u, g, = u, and g3z = d, respectively.
In the above expressions for p,, p4, and pg the functions F(x;) are defined in the following way:

<

X 1-x)

(x1) :/ dx/l/ dx; F(x), 1 = x| = x3,x3),
1 0
A Y , ,

(x) = | dx, 1 dxi ; dx; F(x{, 1 = x| — x3,x3),
X2 , 1-x} , /

(x2) = | dx; A dx F(xy, x5, 1 —x; = x5),
X2 )C/z l—x'z’

(x2) 2/1 dx;[ dx;% dx, F(xp, x5, 1 = x; = x3),
X3 l—x;

(x3) :/1 dx,sA dx, F(xy, 1 —x) — Xy, x5),
X3 xg l—xg'

(x3) :/ dxls/ dxg’/ dx, F(x;, 1= x; — x5, x%).
1 1 0

Y N N Ry«

>
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Definitions of the functions B;, C;, D;, E;|, and H; that appear in the expressions for p;(x) are given as follows:

Bz :Tl +T2—2T3,

B4 == Tl —Tz —2T7,

B5 == _Tl + T5 + 2T8»

Bﬁ = 2T1 - 2T3 - 2T4 + 2T5 + 2T7 + 2T8,

B; =T;-Ts,

BSI—T1+T2+T5—T6+2T7+2T8,

C,=V,=-V,=V;s,

C4 == —2V1 + V3 + V4 + 2‘/5,

C5 - V4—V3,

C6:—V1+V2+V3+V4+V5—V6,

D, =-A+ A, —As,

D4 - —2A1 —A3 —A4 + 2A5,

D6 :Al —A2 +A3 +A4—A5 +A67

D5 :A3—A4,
E1:S1—S2,
Hl :PZ_PI'

The expressions of the functions V;, A;, T;, S;, and P; are presented in Appendix A.
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