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We develop a covariant model for the γ�N → Nð1535Þ transition in the timelike kinematical region, the
region where the square momentum transfer q2 is positive. Our starting point is the covariant spectator
quark model constrained by data in the spacelike kinematical region (Q2 ¼ −q2 ≥ 0). The model is used to
estimate the contributions of valence quarks to the transition form factors, and one obtains a fair description
of the Dirac form factor at intermediate and largeQ2. For the Pauli form factor there is evidence that beyond
the quark-core contributions there are also significant contributions of meson cloud effects. Combining the
quark-core model with an effective description of the meson cloud effects, we derive a parametrization of
the spacelike data that can be extended covariantly to the timelike region. This extension enabled us to
estimate the Dalitz decay widths of the Nð1535Þ resonance, among other observables. Our calculations can
help in the interpretation of the present experiments at HADES (pp collisions and others).
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I. INTRODUCTION

The creation and propagation of intermediate nucleonic
excitations or N� states, followed by virtual photon
transitions leading to N�→γ�N→eþe−N decays [1–11],
can be probed with data on dielectron production from
proton-proton (pp) and proton-nucleus (pA) collisions, as
well as on inclusive and exclusive pion-nucleus reactions
provided by secondary pion beams experiments. Those
experiments by the HADES collaboration at GSI [1,7,
12–15] expand the information from electron-scattering
experiments to electromagnetic decay rates, and provide
knowledge on momentum evolution of the electromagnetic
couplings of nucleon excitations. An example was the
recent extraction of the Δð1232Þ Dalitz decay branching
ratio by the HADES collaboration [1].
Small Q2 photon virtualities are sensitive to the more

peripheral structure of baryons, and may improve the
description of several resonances electrocouplings based
on quark-core constituents alone. In theory, general uni-
tarity requirements impose meson-baryon contributions to
the electromagnetic excitation and decay of the baryons,

but in practice how to combine both meson-baryon and
quark-core regimes in electromagnetic reactions is a current
challenge of hadron physics. Lattice QCD calculations of
transition form factors are not yet available, except for a
few baryons and when they will be provided, the separation
of both effects has to rely on models.
The γ�N → Nð1535Þ transition in particular is still

a very perplexing transition from the theoretical point
of view, since at the moment there are no models that
describe the measured transverse and longitudinal helicity
transition amplitudes A1=2 and S1=2 in the full range of Q2.
In this work it is more convenient to discuss directly
the transition form factors Dirac (F�

1) and Pauli (F
�
2), which

can be written as linear combinations of the helicity
amplitudes.
Quark models give a partial description of the Dirac form

factor [16–19], suggesting that it is dominated by valence
quark degrees of freedom. However, calculations based on
chiral models, where the baryon states are dynamically
generated by baryon-meson resonances, suggest that the
Pauli form factor at low Q2 is dominated by meson cloud
effects [17,18,20]. In addition, results based on a light-front
relativistic quark model indicate that the meson cloud
contributions to the γ�N → Nð1535Þ transition have an
isovector character [21]. The transition form factors have
also been calculated using light cone sum rules, based on the
distribution amplitudes determined by lattice QCD [22,23].
There are also calculations based on coupled-channel
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models [24–26], constituent quark models [27], light-front
quark models [28] and AdS/QCD [29,30].
In this work, we apply the covariant spectator quark

model [31–33] to this problem, since it has advantageous
specific features, namely vector dominance of the quark
electromagnetic current, enabling us to consistently expand
calculations probed in the spacelike regime to the timelike
region. The covariant spectator quark model was tested in
the description of other resonance sectors [16,33–39], and
it is here used to describe the γ�N → Nð1535Þ transition in
the kinematic region of dielectron production, the timelike
region, and we calculate for the first time the Dalitz decay
widths in terms of the energy of the resonance W. The
results for the Nð1535Þ Dalitz decay are then compared to
the Dalitz decays results for other resonances [3–5].
In Ref. [16], we presented the first results for this

resonance in the spacelike regime. However, in that work
the validity of our valence quark model was limited to the
Q2 > 2 GeV2 region. As meson cloud effects are naturally
more important in the vicinity of theQ2 ¼ 0 point, the search
for those effects requires that this restriction is lifted—which
is an important objective accomplished in this work.
The restriction to the large Q2 region was a consequence

of the difficulty of the covariant spectator quark model in
defining a covariant wave function of the Nð1535Þ com-
patible with the orthogonality of the states, and with a
gauge invariant transition current. This happens because the
baryon wave functions that we use are constructed by using
symmetries alone, and not obtained from a dynamical
calculation. In the Q2 ¼ −q2 → 0 limit, because of the
difference of masses between the initial and final baryons,
covariance makes the three-vector q nonzero, and the initial
and final state become nonorthogonal (in the nonrelativistic
sense). The consequence of the nonorthogonality is that the
transition current violates gauge invariance and conse-
quently the transition form factors (F�

1 and F�
2) are not

well defined. In these conditions the helicity amplitudes are
also not well defined at lowQ2, and our estimates cannot be
compared with experimental data. For large Q2, the impact
of the gauge invariance breaking is small and the form
factors and helicity amplitudes can be computed without
restrictions [16].
To fix the problem above, we treat here the baryon

transitions within what we call the semirelativistic approxi-
mation, introduced in Ref. [34] and seen to be compatible
with the construction of the wave function from symmetry
principles alone. This approach allows us to obtain the
correct behavior of the form factors and of the helicity
amplitudes and to satisfy gauge invariance exactly.
Similarly to what is done in heavy-baryon chiral perturba-
tion theory [40], the mass difference between the baryons is
neglected in a first approximation, such that the orthogon-
ality of the wave functions in the nonrelativistic sense is
preserved, while the covariance of the model is kept at the
same time. Notice that the mass difference is not neglected

in the kinematic factors in the formulas of the helicity
amplitudes as combinations of the transition form factors.
Not only the analytic expressions for the transition form

factors are simpler when we consider the semirelativistic
approximation [34], but also in that approximation the
radial wave function of the resonance (ψR) can be taken
with the same form of the wave function of the nucleon
(ψN) without destroying gauge invariance. Then the only
input into our model is the parametrization of the quark
form factors and of the nucleon radial wave function, both
determined in the study of the nucleon electromagnetic
structure [31].
In this work, we conclude that the contributions of the

valence quarks degrees of freedom are insufficient to
describe the two transition form factors in the range
Q2 ¼ 0–4 GeV2. Therefore we extracted also some phe-
nomenological parametrizations of the meson cloud contri-
butions for the transition form factors. Those contributions
are seen to be negligible when compared with the valence
quark contributions at large Q2. Also, although the meson
cloud contributions seem to be dominated by the isovector
component, we tested the role of a non-negligible contribu-
tion from the isoscalar component.
The first part of this article includes the calibration of the

meson cloud contribution by the physical data in the
spacelike region. With the valence quark and the meson
cloud contributions fixed in the spacelike domain, we
proceed in the second part to perform their extension to
the timelike region. We present results for the two isospin
cases, i.e., reactions with proton or neutron targets, for
which HADES experimental data can be provided.
This article is organized as follows: In the next section

we review the formalism associated with the γ�N →
Nð1535Þ transition. The covariant spectator quark model
and the theoretical expressions for the transition form
factors are presented in Sec. III. In Sec. IV, we present
the results of the extension of our model to the timelike
region. The formalism associated with Nð1535Þ Dalitz
decay is given in Sec. V. The numerical results related to the
Nð1535Þ Dalitz decay are presented in Sec. VI. Outlook
and conclusions are given in Sec. VII. Additional infor-
mation is included in the Appendices.

II. γ�N → Nð1535Þ TRANSITION

We present here the different parametrizations of
the electromagnetic structure between a state JP ¼ 1

2
þ

(spin 1=2, positive parity), and a resonance JP ¼ 1
2
−

(spin 1=2, negative parity).
The γ�N → Nð1535Þ transition current can be written, in

units of elementary charge (e), as [16,41]

Jμ ¼ ūR

�
F�
1

�
γμ −

qqμ

q2

�
þ F�

2

iσμνqμ
MR þMN

�
γ5uN; ð2:1Þ
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where uR and uN are the resonance and nucleon spinors,
respectively, and MR and MN are the masses of the
resonance and the nucleon, respectively. Equation (2.1)
defines the elementary form factors, Dirac (F�

1) and Pauli
(F�

2) [11,16,34]. Due to gauge invariance, we can conclude
that F�

1 ∝ Q2 near Q2 ¼ 0 [41,42] [a simple way to see this

is to notice that the qqμ

q2 term in (2.1) would not be finite

unless F�
1 ∝ q2]. In the calculations, we distinguish

between the form factors of the proton and neutron targets.
The empirical data associated with the electromagnetic

structure of the γ�N → Nð1535Þ transition are usually
represented in terms of the helicity amplitudes in the
resonance rest frame. In this frame themomentum transfer is

q ¼
�
M2

R −M2
N −Q2

2MR
;q

�
: ð2:2Þ

Here q is the photon three-momentum, with magnitude

jqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þQ2

−
p
2MR

; ð2:3Þ

with

Q2
� ¼ ðMR �MNÞ2 þQ2

¼ ðMR �MNÞ2 − q2: ð2:4Þ

Since the magnitude of the photon three-momentum jqj
is non-negative by construction, the analysis of the helicity
amplitudes and transition form factors is restricted to
the region Q2

− ≥ 0, or equivalently q2 ≤ ðMR −MNÞ2.
The point q2 ¼ ðMR −MNÞ2, when Q2

− ¼ 0, is usually
referred to as the pseudothreshold [43–45]. Experiments
based on electron-nucleon scattering probe only the space-
like region (Q2 ≥ 0) [2,6,11].
The explicit forms for the transverse (A1=2) and longi-

tudinal (S1=2) amplitudes in the resonance rest frame are
[16,41,43,46]

A1=2 ¼ B½F�
1 þ ηF�

2�; ð2:5Þ

S1=2 ¼ −
Bffiffiffi
2

p ðMR þMNÞ
jqj
Q2

½ηF�
1 − τF�

2�; ð2:6Þ

where B ¼ e
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

þ
MNMRK

q
, K ¼ M2

R−M
2
N

2MR
, η ¼ MR−MN

MRþMN
, and e is

the elementary electric charge (α≡ e2
4π ≃ 1=137). The

amplitudes for the proton targets are represented by Ap
1=2,

Sp1=2; the amplitudes associated with neutron targets are
represented by An

1=2, S
n
1=2.

For the calculations in the timelike region (Sec. V), it is
convenient to introduce the electric (GE) and Coulomb
(GC) transition form factors:

GE ¼ F�
1 þ ηF�

2; ð2:7Þ

GC ¼ −
MR

2

ðMR þ NNÞ
Q2

½ηF�
1 − τF�

2�: ð2:8Þ

The previous definitions of GE and GC are nonstandard,
and differ from other forms in the literature, by multipli-
cative factors [44,47]. The conversion to alternative repre-
sentations is presented in the Appendix A.
The form factors GE and GC are related to the helicity

amplitudes from Eqs. (2.5) and (2.6) by

GE ¼ 1

B
A1=2; GC ¼ 1ffiffiffi

2
p

B

MR

jqj S1=2; ð2:9Þ

and have the advantage of being dimensionless, contrary to
other definitions [44,47]. Details related to the γ�N →
Nð1535Þ form factors and the helicity amplitudes are
presented in Appendix A.
The available data for the γ�N → Nð1535Þ transition for

the amplitudes A1=2 and S1=2 are mainly from CLAS at
JLab [48]. For large Q2 (Q2 > 5 GeV2) there are mea-
surements of the A1=2 amplitude (neglecting the effect of
S1=2) from JLab/Hall C [49]. There are also some estimates
of the helicity amplitudes from MAID [50,51] based on
data from different experiments (including CLAS). Our
calculations are preferentially compared with the CLAS
data, well distributed in the range Q2 ¼ 0–4 GeV2, and
Particle Data Group (PDG) at Q2 ¼ 0 [52].

A. Brief review of the literature

There are estimates of the valence quark contribu-
tions to the γ�N → Nð1535Þ form factors based on the
EBAC/Argonne-Osaka coupled-channel dynamical model
[19,24,25]. The hybrid structure (baryon core combined
to meson cloud) of the Nð1535Þ is also supported by
Hamiltonian field theory applications to lattice QCD
simulations [26].
The results from EBAC [19] are very close to the valence

quark estimates based on the covariant quark model
[16,34]. However, there is some evidence that the γ�N →
Nð1535Þ transition form factors at low Q2 cannot be
described only on the basis of the valence quark structure,
as discussed in Ref. [34]. Calculations based on the chiral
unitary model [20], which use meson-baryon resonance
states as effective degrees of freedom, also indicate that the
meson cloud effects can be significant, in particular to F�

2.
Those calculations show that the meson cloud contributions
are comparable in magnitude to the estimates from the
covariant spectator quark model but differ in sign [18]. This
result provides a possible explanation to the small magni-
tude of the experimental data for F�

2, for Q
2 > 2 GeV2, as

discussed in the following sections (see also Ref. [17]).
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An alternative explanation for the results for F�
2 come

from light-front sum rules in next-to-leading order [23].
The calculations suggest that the p-state three-quark wave
functions give important contributions to F�

2. A recent
light-front quark model calculation predicts that the quark-
core contributions for F�

2 are significant at low Q2 [30].
There is, however, some disagreement with the S1=2 andGC

data at low Q2. The experimental data for GE can also be
described in the low-Q2 region by a nonrelativistic con-
stituent quark model calculation where two-body exchange
currents are included [27]. The estimate based on the
valence quark degrees of freedom is improved when
interactions associated with gluon a meson cloud exchange
are taken into account.
Calculations based on a light-front relativistic quark

model [21] indicate that the transition form factors can be
explained as a combination of the valence quark and meson
cloud contributions. The authors use the model and the data
to estimate meson cloud contributions and conclude that
the relative contribution is 16%. They conclude also that
the meson cloud contributions are dominated by isovector
components [21].
There are also calculations of transition form factors

based on AdS/QCD [28,29]. Reference [28] shows that the
data can be described assuming significant contribution of
higher order Fock states, namely from qq̄ and ðqq̄Þðqq̄Þ
contributions.
Given the success of the covariant spectator quark model

in the description of other resonances both in the spacelike
and timelike regime, we investigate here the valence quark
and meson cloud contributions to the Nð1535Þ excitation
within that model.

III. COVARIANT SPECTATOR QUARK MODEL

The covariant spectator quark model is based on the
covariant spectator theory [53]. In this framework, the
baryons can be described as quark-diquark systems, where
the diquark is on-mass shell with an effective massmD. The
electromagnetic interaction with the baryon is described by
the photon coupling with a single quark at a time (impulse
approximation). This coupling is characterized by constitu-
ent quark forms factorswhich take into account thegluon and
quark-antiquark dressing effects of the quarks [31–33,54].
The covariant spectator quark model has been applied to

the study of the structure of the nucleon [55–57], to the
electromagnetic structure of several nucleon excitations
[16,35–39,58–60], as well as to the electromagnetic struc-
ture of octet and decuplet baryons [55,61–65]. An overview
of the results of the covariant spectator quark model for
several nucleon resonances can be found in Ref. [33].
The nucleon wave function was obtained in Ref. [31] and

the wave function of the resonance Nð1535Þ in Ref. [16].
Those wave functions describe only the valence quark
content of those baryons allowing estimates of those

contributions to electromagnetic transitions. In this work
we combine the covariant spectator quark model with the
semirelativistic approximation [34], which guarantees the
orthogonality between the initial and final baryon states,
and provide a significant simplification in the transition
form factor. Our quark model estimates are then used to
obtain a consistent parametrization of the meson cloud
contributions, including the isoscalar and isovector com-
ponents, from the constraints imposed by the data. The
combined parametrization of the two effects is presented at
the end.
We start by discussing the general formalism developed

for the study of the spacelike region Q2 ¼ −q2 ≥ 0.

A. Formalism

The constituent quark electromagnetic current in the
SUð2Þ sector is written as the sum of a Dirac and a Pauli
component, as

jμqðqÞ ¼
�
1

6
f1þ þ 1

2
f1−τ3

�
γμ

þ
�
1

6
f2þ þ 1

2
f2−τ3

�
iσμνqν
2MN

; ð3:1Þ

where τ3 is the Pauli matrix that acts on the (initial and
final) baryon isospin states, fi�ðq2Þ are the quark isoscalar/
isovector form factors. Those form factors are parametrized
with analytical formulas consistent with the vector meson
dominance (VMD) mechanism [31,59,60]. This dominance
in the quark-photon vertex is very useful for generalizations
of the dynamics from spacelike to the timelike region
[3–5,64]. The covariant spectator quark model explicit
formulas for the quark form factors fi� (i ¼ 1, 2) in the
timelike region can be found in Ref. [5].
Since in our calculation within the covariant spectator

quark model we use the relativistic impulse approximation,
the transition current can be written in terms of nucleon
wave function (ΨN) and the resonance wave function (ΨR)
both expressed in terms of the single quark and quark-pair
states, specified by the adequate flavor, spin, orbital
angular momentum and radial excitations of the quark-
diquark states defined by the baryon quantum numbers
[11,31,32,54,61,62].
In the impulse approximation the electromagnetic

baryon transition current reads [31,32,54]

Jμ ¼ 3
X
Γ

Z
k
Ψ̄RðPR; kÞjμqΨNðPN; kÞ; ð3:2Þ

where PR, PN , and k are the resonance, the nucleon, and the
diquark momenta, respectively. The previous equation is
the result of integrating over the internal relative motion of
the quarks in the diquark. The index Γ labels the inter-
mediate diquark polarization states, the factor 3 takes into
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account the contributions from all different quark pairs, and
the integration symbol represents the covariant integration
over the diquark on-mass-shell momentum. In the study of
the inelastic transitions we use the Landau prescription to
ensure current conservation [34,35,66–68].
The radial wave function of the nucleon ψNðPN; kÞ in the

covariant spectator quark model is taken as a function of the
dimensionless variable [31]:

χ ¼ ðMN −mDÞ2 − ðPN − kÞ2
2MNmD

: ð3:3Þ

This representation is possible because the baryons and the
diquark are both on-mass shell [31]. The explicit form for
ψN is

ψBðPN; kÞ ¼
N0

mDðβ1 þ χÞðβ2 þ χÞ ; ð3:4Þ

where N0 is a normalization constant and the parameters
β1 ¼ 0.049 and β2 ¼ 0.717 are parameters determined by
the fit to the nucleon electromagnetic form factor data [31].
They effectively represent two different momentum ranges
that have to be described by the radial wave function. In the
next subsection we discuss the radial wave function of the
resonance ψRðPR; kÞ.
To represent the transition form factors it is convenient to

use the symmetric (S) and antisymmetric (A) combination
of quark currents, which read as combinations of quark
form factors [31,55,61,62] (i ¼ 1, 2):

jSi ¼
1

6
fiþ þ 1

2
fi−τ3; ð3:5Þ

jAi ¼ 1

6
fiþ −

1

6
fi−τ3: ð3:6Þ

In the limit Q2 ¼ 0, the quark form factors are charac-
terized by f1�ð0Þ ¼ 1, f2þð0Þ ¼ κþ and f2−ð0Þ ¼ κ−,
where κþ and κ− are the quark isoscalar and isovector
anomalous magnetic moments, respectively. Those values
were determined by reproducing the experimental proton
and neutron magnetic moments [31]. The explicit values
are κþ ¼ 1.639 and κ− ¼ 1.823. For the quark u and d
anomalous magnetic moments this gives κu¼1

4
ðκþþ3κ−Þ¼

1.778 and κd ¼ 1
2
ð−κþ þ 3κ−Þ ¼ 1.915. We notice that our

anomalous magnetic moments are defined independently of
the quark charge (eq), according to eqκq ¼ 1

6
κþ þ 1

2
κ−τ3, in

nuclear magneton units [31].
The quark anomalous magnetic moments are negligible

in models with light quarks [69,70]. The origin and
estimates of the quark anomalous magnetic moments for
constituent light quarks can be found e.g., in Refs. [69–72],
which consider gluon and/or meson dressing of the photon-
quark vertex. Within the formalism of the covariant

spectator theory, one concludes that the lowest order effect
of the gluons to the electromagnetic vertex gives κq ≃ 1.5
(q ¼ u, d) [31].
For a more direct comparison with the other results in the

literature, expressed usually in e
2mq

units, where mq is the
quark mass, we need to convert nuclear magneton units into
e

2mq
, and include the quark charge eq in the definition of the

quark anomalous moment. One obtains then the conversion
expression κ0q ¼ 1

3
eqκq [31,62]. This gives for our model

κ0u ¼ 0.395 and κ0d ¼ −0.213, values that are larger than the
ones in Refs. [69,72], but are comparable with estimates
based on the SUð3Þ nonrelativistic quark model [73] and
calculations that include dynamical chiral symmetry break-
ing [74]. In Ref. [71], where the relation of spontaneous
chiral symmetry breaking and the magnetic moment is
established, only in the simplest Nambu-Jona-Lasino mod-
els, one obtains also a small constituent anomalous quark
magnetic moment. In the model closest to QCD a large
anomalous magnetic moment is obtained.
To obtain the effect of the quark magnetic moment in the

baryon structure, the single quark anomalous magnetic
moment contribution has to be distorted and tuned by the
final and initial baryon states. In Ref. [31], we discussed
that the quark anomalous moment contributions for the
baryon electromagnetic couplings can be taken as part of an
elaborated wave function if it incorporates Fock space
components with both elementary quarks and gluons.
Alternatively, it can be taken as part of a constituent quark
form factor weighted by the baryon wave functions when
these ones are reduced to effective constituent quarks.
Although the ingredients of the two approaches are differ-
ent, the final result should be the same if consistency is
preserved within the approach. In our model we adopt the
second procedure (depicted in Fig. 2 of Ref. [31]). We
therefore start with Eq. (3.2).
The γ�N → N� transition current (3.2), where N� is a

JP ¼ 1
2
− or a JP ¼ 3

2
− state, becomes proportional to the

following overlap integral [34,35]:

IRðQ2Þ ¼
Z
k

kz
jkjψRðPR; kÞψNðPN; kÞ: ð3:7Þ

The integral (3.7) is frame invariant and can be evaluated in
any frame. For simplicity, we write the integral (3.7) in the
resonance rest frame. The general expression for IR can be
found in Refs. [16,35].

B. Semirelativistic approximation

We consider now the results for the γ�N → Nð1535Þ
transition [34] within the covariant spectator quark model
in the semirelativistic approximation.
The semirelativistic approximation is based on two

assumptions [34]:
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(i) The difference of mass between the nucleon and the
resonance can be neglected in the calculation of the
Dirac and Pauli form factors from Eq. (2.1).

(ii) One takes ψR ≡ ψN , i.e., the radial structure of the
resonance to be the same as the radial structure of the
nucleon, with no need to introduce additional
parameters for the structure of the resonance (in
ψR we replace the mass and momentum by MR
and PR).

We implement the semirelativistic approximation replac-
ing the dependence on MR and MN by M, where

M ≡ 1

2
ðMN þMRÞ; ð3:8Þ

in the calculation of the overlap integral (3.7), and use the
result to estimate the Dirac and Pauli form factors. The final
expressions for the transition form factors and helicity are,
however, still covariant [33,34]. The label semirelativistic
approximation is motivated by the condition of no mass
difference, as in the nonrelativistic limit.
From the previous assumptions, one can conclude

that [16,34]

IR ∝ jqj ∝ Q; ð3:9Þ

where the last relation is a consequence of the form for jqj,
in the semirelativistic approximation

jqj ¼ Q
ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
; ð3:10Þ

with τ ¼ Q2

4M2.
The consequence of (3.9) is that the overlap integral (3.7)

vanishes, ensuring the orthogonality between the states
[34]. The final expressions for the transition form factors
depend on the quark form factors and on the radial wave
functions. Those formulas have no adjustable parameters,
since the quark current was previously determined from the
study of the nucleon electromagnetic form factors [31].
Therefore those formulas provide predictions from assum-
ing that nucleon and resonance have basically the same
radial wave functions. We present next the expressions for
the valence quark contributions to the γ�N → Nð1535Þ
transition, and after that, we will discuss the parametriza-
tions of the meson cloud contributions that we indirectly
extract from the data.
It is convenient at this moment to discuss the range of

application of the semirelativistic approximation. A conse-
quence of the approximation is that MR −MN ≃ 0, and the
variables (2.4) become Q2

− ¼ Q2 and Q2þ ¼ 4M2 þQ2.
This prevents the direct calculation of transition form factors
forQ2 < 0, sinceQ2

− ≥ 0. The minimal value for jqj is then
obtained when Q2 ¼ 0 (jqj ¼ 0). This is an important
difference between this work and the previous applications
of the covariant spectator quark model [3–5,64] that did not

use the semirelativistic approximation and could access
the Q2 < 0 region directly. Instead, we perform here a
numerical extrapolation of the spacelike results into the
region −ðMR −MNÞ2 ≤ Q2 < 0. This process is discussed
in Sec. IV.

C. Valence quark contributions

In the semirelativistic approximation, we obtain the
following final results from the valence quark contributions
to the transition form factors [34]:

FB
1 ðQ2Þ ¼ 1

2
ð3jS1 þ jA1 ÞZIR; ð3:11Þ

FB
2 ðQ2Þ ¼ −

1

2
ð3jS2 − jA2 ÞZIR; ð3:12Þ

where the factor Z ∝
ffiffiffiffiffiffi
Q2

p
, introduced in the present work

for the first time, is discussed next. The upper index B
labels the bare contribution. For a detailed discussion of
Eqs. (3.11) and (3.12), check Refs. [33,34].
As discussed in Refs. [33,34], the equations with Z ¼ 1

are derived for the case MR −MN ≃ 0 and thus do not
include any dependence on the mass difference MR −MN .
The consequence then would be that the form factors FB

1

and FB
2 go with Q near Q2 ¼ 0. In those conditions, we fail

to obtain the expected result F�
1 ∝ Q2 needed for gauge

invariance. The form FB
1 ∝ Q would also change the

expected behavior of the helicity amplitudes. In particular
the amplitude S1=2 defined by Eq. (2.6) would diverge at
Q2 ¼ 0, unless we replace jqj by its equal mass limit value
jqj ¼ Q

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
(see discussion in Ref. [34]).

To have the correctQ2 behavior of F�
1 near the origin, we

then define Z as

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2

Λ2
R þQ2

s
; ð3:13Þ

where ΛR is a momentum scale. This scale should be small
compared to the nucleon and resonance masses, in order to
preserve the good results at intermediate and largeQ2 of the
valence quark model [34], but should not be too small in
order to avoid singularities within the range of its extension
to the timelike region.
With the inclusion of Z, we recover the expected

behavior near Q2 ¼ 0, FB
1 ∝ Q2. When we consider a

moderate scale for ΛR, and keep the results for intermediate
Q2 almost unchanged.
A particular good choice for this scale is ΛR ¼ mρ (rho

mass). It allows the extension of our spacelike results into
the region 0 < q2 ≤ ðW −MNÞ2 for a given resonance
energy W, provided that W ≤ MN þmρ. We will turn to
this point later in more detail.
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The valence quark contributions to the form factors F�
1,

F�
2 and GE, GC, defined by Eqs. (2.7)–(2.9), are presented

in Figs. 1 and 2 for the proton target, by the dashed lines.
The results for the neutron target are presented in Figs. 3
and 4, also by the dashed lines. Note in this case the small
magnitude of the valence quark contributions for F�

1 and in
particular for GE.
From Fig. 1, we can conclude that in the semirelativistic

approximation the valence quark contributions alone pro-
vide a fair description of the data at large Q2 [34],
particularly for F�

1, but it does not properly describe the
low-Q2 region.

D. Meson cloud contributions

The failure of the quark model at low Q2 indicates the
importance of the meson cloud excitations on baryon bare
cores, probed in the low-Q2 regime. In order to improve the
description of the data, we consider here effective para-
metrizations which mimic the effects not included in
our valence quark model. It is necessary to identify three
different contributions associated with the Dirac and Pauli
form factors. There are two components for the Pauli form
factor (one isovector and one isoscalar) and one isovector
component for the Dirac form factor.

To prepare the following discussion, it is important to
notice that F�

1ð0Þ ¼ 0 by construction, and that the ampli-
tude S1=2 cannot be measured at the photon point since
there are no real photons with longitudinal polarization.
Therefore, the direct information about the form factors at
Q2 ¼ 0 come only from A1=2 and F�

2. Those functions are
seen to be related at Q2 ¼ 0 by

A1=2ð0Þ ¼ CF�
2ð0Þ; ð3:14Þ

where C ¼ B0η, where B0 is the value of B, defined in
Eq. (2.6) at Q2 ¼ 0. One obtains then C ¼ e

2
MR−MNffiffiffiffiffiffiffiffiffiffiffiffiffi
MNMRK

p .

A summary of the A1=2 and F�
2 data at Q

2 ¼ 0 is presented
in Table I.
Having in mind that at low Q2 the meson cloud

excitations are important, we decompose the transition
form factors into a bare term (labeled with superscript B)
and a meson cloud term (labeled with superscript mc):

F�
1 ¼ FB

1 þ Fmc
1 ; ð3:15Þ

F�
2 ¼ FB

2 þ Fmc
2 ; ð3:16Þ
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FIG. 1. γ�N → Nð1535Þ transition form factors for proton target. Data from CLAS [48] (circles), MAID [50] (squares), and JLab/Hall
C [49] (triangles). The data at Q2 ¼ 0 is from PDG [52].
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FIG. 2. γ�N → Nð1535Þ transition form factors GE and GC for proton target. Data from CLAS [48] (circles), MAID [50] (squares),
and JLab/Hall C [49] (triangles). The data at Q2 ¼ 0 is from PDG [52].
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where the bare contributions are determined by Eqs. (3.11)
and (3.12) of the covariant spectator quark model in the
semirelativistic approximation. The meson cloud terms Fmc

1

and Fmc
2 are to be extracted indirectly from the data.

We start our discussion with F�
2. Since F

mc
2 is a function

of Q2, we can use the general decomposition

Fmc
2 ðQ2Þ ¼ AðQ2Þ þ BðQ2Þτ3; ð3:17Þ

where A represents the isoscalar contribution and B
represents the isovector contribution. Note that we cannot
parametrize the functions A and B simultaneously because
the empirical data for finite Q2 are restricted to proton
targets. Only for Q2 ¼ 0, there are data for neutron targets.

In the last case then we can extract the contributions for A
and B using

Að0Þ ¼ 1

2C
½Ap

1=2ð0Þ þ An
1=2ð0Þ�; ð3:18Þ

Bð0Þ ¼ 1

2C
½Ap

1=2ð0Þ − An
1=2ð0Þ�: ð3:19Þ

The results of Að0Þ and Bð0Þ extracted from the exper-
imental data for Ap;n

1=2ð0Þ for proton and neutron targets are
presented in Table I.
We conclude from Table I that the isovector component

dominates, near Q2 ¼ 0, since Bð0Þ ≫ Að0Þ. Although
the results from Table I suggest that Að0Þ is almost
compatible with zero, consistent with the isovector domi-
nance of the meson cloud contribution, the upper limit of
Að0Þ could also be as large as about 1=4 of B. This is why
we include the isoscalar term A in our parametrization of
the meson cloud.
We now discuss the function F�

1. Since F�
1ð0Þ ¼ 0 and

the bare contribution also vanishes at Q2 ¼ 0, we conclude
that the meson cloud contribution should also vanish at
Q2 ¼ 0. From the difference between the data and the
valence quark contributions (dashed line) in Fig. 1, we infer
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FIG. 4. γ�N → Nð1535Þ transition form factors GE and GC for neutron target. The data are from PDG [52].

TABLE I. Amplitude A1=2ð0Þ and results for F�
2ð0Þ for the

γ�N → Nð1535Þ transition. A1=2ð0Þ is in units GeV−1=2. The data
are from PDG [52]. In the last column, the first line refers to Að0Þ
and the second line to B(0), defined by Eqs. (3.18) and (3.19).

A1=2ð0Þ F�
2ð0Þ Að0Þ; Bð0Þ

p 0.105� 0.015 0.97� 0.14 0.14� 0.12
n −0.075� 0.020 −0.69� 0.19 0.83� 0.12
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FIG. 3. γ�N → Nð1535Þ transition form factors for neutron target. The data are from PDG [52].
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that the meson cloud contributions for F�
1 can be signifi-

cant, below Q2 ¼ 1 GeV2. Those contributions are impor-
tant to the amplitude A1=2 (proportional to GE) which
dominates the structure of the resonances at small q2 in the
timelike region, as discussed in Sec. V. To parametrize the
meson cloud contribution to F�

1, we consider the form

Fmc
1 ðQ2Þ ¼ CðQ2Þτ3; ð3:20Þ

where C is a function proportional to Q2, near Q2 ¼ 0.
With this parametrization, we assume the isovector char-
acter of the meson cloud term, motivated by the evidence of
the isovector dominance in the amplitude A1=2 at Q2 ¼ 0

seen in Table I. However, the isovector character of Fmc
1

cannot be tested with the present data, since Fmc
1 ¼ 0 at

Q2 ¼ 0, and there are at the moment no available data for
the amplitude A1=2 with neutron targets, for nonzero Q2.
Our description of Fmc

1 is then based on an ansatz that can
only be tested in the future, once helicity amplitude data for
the neutron for finite Q2 become also available.
In summary, we can parametrize the meson cloud

contributions to the form factors F�
1 and F�

2 using three
functions (A, B and C). The parametrization of Fmc

2 near
Q2 ¼ 0 is fixed by the experimental results for the
amplitudes Ap;n

1=2ð0Þ, while the general Q2 dependence is
determined only by the combination Aþ B (proton target),
since there are no data yet for A − B (neutron targets) for
finite Q2.
The available data support the dominance of the iso-

vector component of the meson cloud on the form factors
F�
1 and F

�
2. This effect can be observed in the results for the

proton targets (Fig. 1) and neutron targets (Fig. 3), where
one can notice that the combination of the bare contribu-
tions with the meson cloud contributions (solid lines) based
on the isovector dominance provide a good description of
the data. Recall that also calculations based on light front
relativistic quark models [21] conclude that the meson
cloud contributions to both Dirac and Pauli form factors are
dominated by the isovector component.
To define a parametrization of the meson cloud effects,

we have looked at the possible decays of the Nð1535Þ state.
There are two main channels for these decays, the πN
channel and the ηN channel with about 50% contribution
from each component. Minor contributions came from πΔ,
σN and πNð1440Þ. We ignore these last contributions,
since the combined effect of those channels is at most 14%
[52]. We can then assume that the electromagnetic inter-
action with the meson cloud is dominated by the πN and
the ηN states. Since the η meson has no charge, we
conclude that the ηN states contribute to the isoscalar
component of the meson cloud, and therefore to the
function A, while the πN states contribute to the isovector
component of the meson cloud, and therefore to the
function B.

For the isoscalar component, we take a parametrization
of the form A ∝ Fη, where Fη is the η electromagnetic form
factor and the additional factors is a multipole type function
with a phenomenological cutoff. Since Fη is not known, we
consider the simplest case where all the structure is
simulated by a single multipole function,

AðQ2Þ ¼ Að0Þ
�

Λ2
A

Λ2
A þQ2

�
5

; ð3:21Þ

and where ΛA is a cutoff parameter. Importantly, this
choice was made to be consistent with perturbative
QCD (pQCD) estimates where for very large Q2, one
has A ∝ 1=Q10 [75].1

As for the isovector component, the coupling with the
πN states is in the first approximation determined by the
photon coupling with the pion, which is given by the pion
electromagnetic form factor Fπ. Then one expects that the
function B in Eq. (3.17) to have the form

BðQ2Þ ∝ FπðQ2Þ:

The omitted multiplicative functions in this relation are
structure functions that determine the extension of the
nucleon and resonance cores. One then writes this structure
in an effective way as

BðQ2Þ ¼ Bð0Þ
�

Λ2
B

Λ2
B þQ2

�
4

ð1þ cQ2ÞFπðQ2Þ; ð3:22Þ

where the ΛB is a short-range (large Q2) regulator and c is
an adjustable coefficient. The factor ð1þ cQ2Þ was
included to improve the quality of the fit by smoothening
the variation with Q2 in the low-Q2 region: a multipole
function alone is incompatible with a smooth behavior near
Q2 ¼ 0 for F�

2 andGE. The power of the multipole function
is chosen in order to mimic the falloff of pQCD at very
large Q2. In a model with Fπ ∝ 1=ðQ2 logQ2Þ, as the one
that we consider here, we obtain then B ∝ 1=ðQ8 logQ2Þ,
close 1=Q10, expected from pQCD. Note, however, that for
the purpose of the present study, the exact power of the
multipole in Eq. (3.22) (power 3 or 4) is not very relevant,
since Λ2

B only cuts the large momentum Q2 region, and the
behavior of Fmc

2 is more sensitive to the low-Q2 scale
included in FπðQ2Þ.

1According to the pQCD analysis, the leading order contri-
bution to F�

2 comes from the N ¼ 3 contribution (three constitu-
ents) and has the form F�

2 ∝ 1=Q2 · 1=Q2ðN−1Þ ¼ 1=Q6. The next
leading order contribution associated with a qq̄ excitation implies
that N ¼ 5 (five constituents), which corresponds to a correction
of the previous estimate by a factor 1=Q4, leading to the estimate
Fmc
2 ∝ 1=Q10.
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To describe Fmc
1 , we consider the parametrization

CðQ2Þ ¼ −C0

Q2

Λ2
C

�
Λ2
C

Λ2
C þQ2

�
3

FπðQ2Þ; ð3:23Þ

where C0 is a positive constant, and ΛC is an adjustable
cutoff. At large Q2, Fmc

1 goes with 1=ðQ6 logQ2Þ, closer to
the falloff 1=Q8 estimated by pQCD.2 The factor Fπ is
included due to the isovector form associated with Fmc

1

discussed before.
For Fπ we use the parametrization already tested in the

case of the Δð1232Þ [3],

FπðQ2Þ ¼ α

αþQ2 þ 1
π βQ

2 log Q2

m2
π

;

¼ α

α − q2 − 1
π βq

2 log q2

m2
π
þ iβq2

; ð3:24Þ

where α ¼ 0.696 GeV2, β ¼ 0.178, and mπ is the pion
mass.
The previous parametrization was derived in Ref. [3]

based on analytic expressions that take into account the
effects of the pion loop contributions to the ρ-meson
propagator. The original form [76–78] included the effect
of the two-pion threshold expressed by a dependence on
ðq2 − 4m2

πÞ. We consider the approximation q2 ≫ 4m2
π and

obtain a smoother description of the imaginary components
without loss of accuracy [3,4].

E. Combination of valence quark
and meson cloud contributions

The parameters of meson cloud contributions to the
transition form factors F�

1 and F
�
2 can be determined by the

fit of the parameters of the expressions (3.21), (3.22) and
(3.23), to the F�

1 and F
�
2 form factor data for proton targets,

and the F�
2ð0Þ data for neutron targets. An alternative is to

fit those parametrizations directly to the form factors GE
and GC.
We choose the second option for two main reasons: our

final goal is to derive parametrizations for the multipole
form factors in the timelike region; the F�

1 and F�
2 data are

represented by very sharp functions near Q2 ¼ 0. By
contrast the form factors GE and GC have a softer shape
at low Q2.
In the fit, we considered an additional constraint: we

imposed that the ratio AðQ2Þ=BðQ2Þ should not increase in
the region of study (Q2 < 5 GeV2) in order to be consistent

with the isovector dominance observed at the photon point
(Q2 ¼ 0), and supported by independent calculations [21].
The parameters associated for the best fit to GE and GC

with the described constrains are displayed in Table II. In the
following, we represent the meson cloud contributions
associated with the fit by the dash-dotted lines. The valence
quark (bare) contributions are represented by dashed lines.
The result of the combination of the valence quark and the
meson cloud contributions is represented in the same graph
by the solid lines.We start our discussion with the results for
proton targets. The final results for the F�

1 and F�
2 form

factors for proton target are presented in Fig. 1. The
corresponding results forGE andGC are presented in Fig. 2.
In the figures, one notices a sharp variation of the

functions GE and GC at low Q2, more particularly in the
range Q2 ¼ 0–0.3 GeV2. Those results are a consequence
of the fit to the low-Q2 data and of the lack of data in the
region Q2 ¼ 0–0.3 GeV2. New data in that region are
necessary for more definitive conclusions relative to the
shape of GE and GC at low Q2 [42,45]. It is interesting to
notice, however, that the shape ofGC nearQ2 ¼ 0 is similar
to the shape estimated with the constraints from Siegert’s
theorem [42,43].
The results of the form factors for neutron targets are

presented in Figs. 3 and 4. From the figures, we can
conclude that the magnitudes of the F�

1 and F�
2 are smaller

than those for the proton target. As for the GE form factor it
is interesting to notice that GE is very small (except for
Q2 < 0.25 GeV2) as a consequence of the cancellation
between valence quark and meson cloud contributions for
the neutron case. As for GC, one notices that it is larger in
magnitude than in the case of the proton, as the conse-
quence a less significant cancellation between valence
quark and meson cloud contributions.
Our result of GC for the proton target at low Q2 (Fig. 2)

requires some extra discussion. In the graph the function
changes sign, when Q2 approaches the photon point. But
due to the lack of data below Q2 ¼ 0.3 GeV2, we cannot
say that this change of sign is imposed by the data. Other
parametrizations suggest that GC is small near Q2 ¼ 0
[42,45,50], but the present data are unable to determine the
exact sign. In our model, the magnitude of GC near Q2 ¼ 0

TABLE II. Parameters of the meson cloud parametrizations.
The numerical results for the functions A, B and C are presented
in Fig. 6.

Að0Þ 0.125
Λ2
A (GeV2) 2.384

Bð0Þ 0.810
c (GeV−2) 2.040
Λ2
B (GeV2) 3.365

C0 0.873
Λ2
C (GeV2) 0.785

2The leading order form factors (F�
1) are ruled by the

1=Q2ðN−1Þ ¼ 1=Q4 falloff. The meson cloud contribution
changes N ¼ 3 to N ¼ 5 (extra qq̄ pair) leading to a Fmc

1 ∝
1=Q8 falloff.

G. RAMALHO and M. T. PEÑA PHYS. REV. D 101, 114008 (2020)

114008-10



is related to the regularization of the form factors

F�
i ðQ2Þ, specifically the factor

ffiffiffiffiffiffiffiffiffiffiffi
Q2

Λ2
RþQ2

q
from Eq. (3.13).

In Appendix B, we explicitly demonstrate this by decom-
posing GCð0Þ into three terms, two positive in sign,
associated with F�

2ð0Þ and with the meson cloud contri-
bution to F�

1, and one negative, proportional to 1=Λ2
R. Then,

a small value for ΛR leads to a large cancellation of terms
and a small value for GCð0Þ. A larger value for ΛR, like
ΛR ¼ mρ, reduces the magnitude of that cancellation and
increases the value of GCð0Þ. In summary, the value for
GCð0Þ is a consequence of the value ΛR chosen to estimate
the bare contribution of the transition form factors, and it is
not well constrained by the data.
On the other hand, the combined fit to the proton and

neutron data for GEð0Þ is weakly dependent on the
parameter Bð0Þ. This is a consequence of the small error
bars of the F�

2 data for the proton, for finite Q2, and the
large error bars at Q2 ¼ 0 of the data for the proton and
neutron (PDG data). For that reason the finite Q2 points
have a stronger impact on the fit, leaving less room for the
much less constrained data at Q2 ¼ 0.
To exhibit the control on the uniqueness of the param-

eters obtained in the fitting procedure we show in Fig. 5
the results of Fmc

2 for the proton and neutron cases in
comparison with their parametrizations by AþB and A−B
respectively. The Fmc

2 experimental points are determined
by Fmc

2 ¼ F�
2 − FB

2 , where F
�
2 is the experimental value and

FB
2 the model result, for both proton and neutron targets

(there is a single experimental point for the neutron case).
Those experimental points are included just to guide the

eye, since the meson cloud parametrizations are determined
by the direct fit to the GE and GC data. If we neglect the
isoscalar component, we obtain Fmc

2n ¼ −Fmc
2p , or in other

words, the difference between the red and blue curves of
Fig. 5 is due to that component alone.
Figure 5 shows also that increasing or decreasing the

estimate for Fmc
2n by about 0.05 (one third of the error bar)

the result for Fmc
2n ð0Þ, is still consistent with its experimental

limits. This result shows that Bð0Þ can vary within a certain
range without changing the results for Fmc

2p provided that the
value for Að0Þ is redefined in order to keep the result for
Fmc
2pð0Þ ≃ 0.97 (estimated based on experimental data,

Table I). In summary, we obtain a solid estimate for the
proton data, but a poorer estimate of the neutron data. This
happens because the neutron data is constrained only by
one data point (Q2 ¼ 0) with a large error bar.
We represent separately in Fig. 6, the functions A, B and

C, parametrizing the meson cloud effects. In the case of the
functions A and B, we include also their experimental limits
at Q2 ¼ 0 presented in Table I. We recall that (i) by
construction, and to enforce the isovector dominance for
larger values ofQ2, the ratio A=B is smaller than the ratio at
Q2 ¼ 0 (about 0.15=0.82 ≈ 0.2); (ii) there are no exper-
imental constraints except for Cð0Þ ¼ 0.
We emphasize that the isovector character of Fmc

1 from
Eq. (3.20) is an ansatz. No empirical information is available
at the moment that allows us to test this assumption.
From the study of the proton and neutron form factors,

we conclude that it is possible to obtain an accurate
description of the proton target data. The results for the
neutron target, however, are poorly constrained. More
precise calculations of the transition form factors with
neutron targets are possible only with more accurate
constraints from the neutron sector.
It is worth mentioning that we can obtain almost

equivalent descriptions of the proton and neutron target
data with a small modification of the parameter Að0Þ,
provided that Bð0Þ is readjusted such that Bð0Þ ≃
½F�

2pð0Þ�exp − Að0Þ holds, and keeping all the remaining
parameters unchanged. The results for the proton target
remain almost unchanged and the results for F�

2 for the
neutron target are modified according with the new values
for Að0Þ and Bð0Þ. This property may be very useful in
future works, allowing us to investigate the sensitivity of
the neutron transition form factors for different classes of
parametrizations characterized by different Að0Þ.

0 1 2 3 4 5 6
Q

2
 [GeV

2
]

0

0.2

0.4

0.6

0.8

1

1.2

+ F
2p

 mc

-  F
2n

 mc

FIG. 5. Data estimate of the functions Fmc
2p (circles) and −Fmc

2n
(diamond) for the γ�N → Nð1535Þ transition.

0 1 2 3 4
Q

2
 [GeV

2
]

0

0.4

0.8

1.2

Function A
Function B
Function C

FIG. 6. γ�N → Nð1535Þ transition: functions A, B and C used
to parametrize the meson cloud contributions to the transition
form factors Fmc

1 and Fmc
2 .

COVARIANT MODEL FOR THE DALITZ DECAY OF THE … PHYS. REV. D 101, 114008 (2020)

114008-11



F. Summary of the results in the spacelike region

Combining the parametrizations of the meson cloud
contribution with results from the valence quark contribu-
tion from the covariant spectator quark model we obtain a
good description of the proton target data for GE and GC
and at the same time a good description of the form factors
F�
1 and F

�
2 in the spacelike region. Also, we have identified

the isoscalar and isovector contributions, based on the
Pauli-Dirac representation, in a model that accounts for
transitions both with proton and neutron targets.
Next, in the extension of their results to the timelike

region, we will focus on the form factors GE and GC, since
timelike formulas for decay widths are more readily
expressed in terms of those form factors.

IV. EXTENSION TO THE TIMELIKE REGION

We describe now the extension of the model from the
spacelike region for the timelike region. In the timelike
region, we vary the energy W of the γ�N system, which
may differ from the Nð1535Þ resonance mass (MR). In
transforming the spacelike formulas to the timelike region
we then replaceMR byW. As done in the spacelike region,
we decompose the form factors into the bare and meson
cloud contributions, according to Eqs. (3.15) and (3.16).
A note about the range of application of our framework is

in order. We are aiming at the region ofW accessible in the
present day experiments, in particular the range of W
probed at HADES, which is restricted to typical values of
W ≃ 1.490 GeV [1,13]. Since, according to the kinematic
relations (2.3) and (2.4), the values of q2 are restricted to
q2 ≤ ðW −MNÞ2, one concludes that the square invariant
moment of the dilepton are limited to q2 ≤ 0.3 GeV2.
The formalism described in the present work for the

valence quark component of the model is constrained by
the scale ΛR ¼ mρ and therefore restricted to the upper
limit W ¼ MN þmρ ≃ 1.7 GeV. The numerical approxi-
mations discussed below, however, are also limited to not
very large values for q2, reducing the range of application
of W to the order 1.6 GeV, still within the window covered
by the HADES experiments. In comparison with other
resonances described by the covariant spectator quark
model, Δð1232Þ and Nð1520Þ [3–5], the Nð1535Þ reso-
nance is the one lying closer to the ρ-pole. Thus, for large
W, there is the possibility of enhancement of the transition
form factors.

A. Valence quark contributions

In the present work, we use the timelike extension of the
quark electromagnetic form factors of the covariant spec-
tator quark model defined by the study of the γ�N →
Nð1520Þ transition in the timelike region [5]. Note that
differently to the γ�N → Δð1232Þ transitions the γ�N →
Nð1535Þ and γ�N → Nð1520Þ transitions require isovector
and isoscalar components.

The extension to timelike of the valence quark contri-
butions is based on the analytic expressions for FB

1 and FB
2

in the spacelike region, given by Eqs. (3.11) and (3.12). In
those expressions we convert Q2 → −q2, and replace the
physical mass MR by W.
One can factorize the bare form factors (3.11) and (3.12)

into two leading factors: One first factor includes all the
functions jA;Si (i ¼ 1, 2) comprising the quark form factors,
according to Eqs. (3.5) and (3.6). There, the quark isoscalar
and isovector form factors contain the vector meson poles,
including the mesons ρ and ω, and are then naturally
defined in the timelike region with the introduction of q2-
dependent widths.
The other factor is the product of Z from Eq. (3.13) and

the integral IR over the radial wave functions in Eq. (3.7),
and reads

I 0
R ¼ IR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

m2
ρ þQ2

s
: ð4:1Þ

Remember that, as discussed in the context of the
semirelativistic approximation, the overlap integral IR of
Eq. (3.7) cannot be evaluated below Q2 ¼ 0 because the
region −ðW −MNÞ2 ≤ Q2 < 0 cannot be accessed. One
can, however, use a numerical extrapolation of the results in
the spacelike region to the timelike region, using an
analytic continuation for Q2 < 0.
The analytic continuation of IR is based on the obser-

vation that in the spacelike region the function IR=jqj is
well described by a dipole form for small values ofQ2. One
uses then the replacement,

IR

jqj →
GDðq2Þ
MN

; ð4:2Þ

where GD is a dipole function with GDð0Þ and a cutoff ΛD

determined by the values ofQ2 close toQ2 ¼ 0. The details
of this procedure are presented in Appendix C.
Combining the analytic extension of the two factors from

Eq. (4.1), we obtain (see Appendix C)

I 0
R ≃ −

q2GDðq2Þ
MNðW þMNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW þMNÞ2 − q2

m2
ρ − q2

s
: ð4:3Þ

It is worth noticing that this analytic extrapolation is
not free of uncertainties and that especially an extension
for very large values of q2 may not be very accurate.
Nonetheless, since we are restricted to q2 ≤ ðW −MNÞ2,
the approximation is justified as far as we restrict our study
to not very large values for W. For W ¼ 1.535 GeV, we
obtain at most q2 ≃ 0.35 GeV2 or

ffiffiffiffiffi
q2

p
≃ 0.6 GeV.

The singularities presented on (4.3), one associated to
the dipole factor and another with the ρ-pole, can be
regularized: to each regulating scale Λ (ΛD or mρ) we
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associate finite width ΓΛ. For a given power of n (integer)
we then use the replacement

�
Λ2

Λ2 − q2

�
n

→

�
Λ4

ðΛ2 − q2Þ2 þ Λ2½ΓΛðq2Þ�2
�n

2

: ð4:4Þ

This way, we consider the absolute value of the multipole.
The same method was used in previous works [3,5]. The
explicit expression for the effective width ΓΛðq2Þ is
presented in Appendix D. In the case of I 0

R in Eq. (4.3),
we extend the previous expression to half integers, n ¼ 1

2
.

With the procedure (4.4), we simplify the expressions in the
timelike region.

B. Meson cloud contributions

The extension of the meson cloud component to the
timelike region is straightforwardly based on Eqs. (3.17)–
(3.23). The parametrizations of the meson cloud contribu-
tions are determined by the calibration of the form factors
F�
1 and F�

2 at the physical mass (W ¼ MR). Although the
meson cloud parametrizations for F�

1 and F�
2 are indepen-

dent of W, since the calculations GE and GC are done
through Eqs. (2.7) and (2.8) where the coefficients now

depend onW, the meson cloud contributions for those form
factors depend on W.
The relations (3.17)–(3.23) used in the parametrizations

of the meson cloud contributions are automatically con-
verted to the timelike region with the replacement
Q2 → −q2. To regularize the multipole functions we use
the procedure from Eq. (4.4). In the pion form factor
Fπðq2Þ the imaginary component is generated naturally for
q2 > 0 [see Eq. (3.24)]. Due to the magnitude of the
regulators presented on Eqs. (3.21)–(3.23) only the func-
tion C, given by Eq. (3.23), requires in fact the use of the
regularization (4.4), because Λ2

C ≃ 0.785 GeV2 is closer to
the region of study q2 ¼ ðMR −MNÞ2 ≃ 0.36 GeV2.

C. γ�N → Nð1535Þ form factors in the timelike region

We present now the results in the timelike region for the
form factors GE and GC. We start with the results for the
case W ¼ MR that expands Figs. 2 and 4 into the region
−ðMR −MNÞ2 ≤ Q2 ≤ 0. Later on, we study the depend-
ence of the form factors (real and imaginary parts) for
several values of W.
The results in the timelike region are presented in

Fig. 7 for proton targets and in Fig. 8 for neutron targets.
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FIG. 7. Real part of γ�N → Nð1535Þ transition form factors in the spacelike and timelike region, for proton target forW ¼ 1.535 GeV.
Same data as in Fig. 1.
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FIG. 8. Real part of γ�N → Nð1535Þ transition form factors in the spacelike and timelike region, for neutron target for
W ¼ 1.535 GeV. The data at Q2 ¼ 0 is from PDG [52].
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Although the transition form factors became complex
in the timelike region, in the figures, for now, we show only
the real part of the form factors in order to be able to compare
the results directly with the physical spacelike data.
The results from Fig. 7 (proton target) indicate that the real

part ofGE changes sign belowQ2 ¼ 0. This is a consequence
of the combinationF�

1 andF
�
2 andmay have been anticipated

from the results from Fig. 1: since those functions have
opposite sign below Q2 ¼ 0, then GE ¼ F�

1 þ ηF�
2 may

vanish at some point below Q2 ¼ 0. Notice that F�
1 and

F�
2 are both finite at the pseudothreshold [43]. The zero in the

real part ofGC then occurs as a consequence of the constraint
from Siegert’s theorem, which states that GC ∝ GE near the
pseudothreshold. More details can be found in Appendix A.
The results for the real part of the transition form factors

for neutron targets in Fig. 8 show a significant enhancement

of the bare and meson cloud contributions below Q2 ¼ 0

for both form factors. Recall that the value of GE at Q2 ¼ 0
is the only physical constraint used in the model para-
metrization. The results for the neutron target are then the
result of the extrapolation of our model parametrization to
the valence quark contribution and our phenomenologically
motivated parametrization of the meson cloud effects.
Concerning the final result (solid line) for GE and GC,
the negative bump observed in both functions is the
consequence of two main effects: the enhancement of
the function IR due to the dipole shape, and the vicinity
the ρ-meson pole which suppresses the real part of the form
factors, and is present on both the bare and meson cloud
components (since Fπ peaks near q2 ≈m2

ρ).
The results for the form factors for the values W ¼ 1.2,

1.4 and 1.535 GeV are presented in Figs. 9 and 10 for
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FIG. 9. γ�N → Nð1535Þ transition form factors for the proton target for different values of W.
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proton and neutron targets, respectively. The upper value of
q2 for each value of the energy resonance energy W
corresponds to the pseudothreshold point q2¼ðW−MNÞ2.
The figures show both the real part (upper panel) and the
imaginary part (middle panel), and present also the results
for the absolute values jGEj and jGCj (lower panel). For
convenience, we present the results only for the timelike
region, i.e., q2 > 0.
In Figs. 9 and 10 the results near the pseudothreshold,

q2 ¼ ðW −MNÞ2, are modified compared to a model
which ignores the regularization of the singularities (poles
Λ2
D, m

2
ρ, Λ2

C, etc.). In general, the regularization reduces the
magnitude of the form factors in the vicinity of the
pseudothreshold. We can anticipate here that although
the effective results for the real and imaginary parts of

the form factors depend on the regularization, in particular
on the width associated with the dipole function in
Eq. (4.2), the final results for the Nð1535Þ Dalitz decay
widths (integrated in q), presented in Sec. VI, have a very
weak dependence on the regularization parameters.
From the previous figures, one can conclude that GE and

GC have similar magnitudes for their real and imaginary
components. The relevant function for the timelike calcu-
lations, discussed in the next section, is, however, the
effective form factor defined by the combination of jGEj2
and jGCj2,

jGTðq2;WÞj2¼ jGEðq2;WÞj2þ q2

2W2
jGCðq2;WÞj2; ð4:5Þ
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FIG. 10. γ�N → Nð1535Þ transition form factors for the neutron target for different values of W.
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where the form factorsGE andGC are defined by Eqs. (2.7)
and (2.8), with the replacement MR → W.
Notice in Eq. (4.5) that the contribution of jGCj is sup-

pressed at low q2 by the factor q2=ð2W2Þ. One expects then
that jGCj becomes relevant only for large q2 values, corre-
sponding also to large values ofW, since q2 ≤ ðW −MNÞ2.
The results for the form factor jGT j for the values

W ¼ 1.2, 1.4 and 1.535 GeV are presented in Fig. 11 for
proton and neutron targets. Note that the magnitude of jGT j
becomes larger for neutron targets when q2 > 0.1 GeV2. In
both channels the dominant effect comes from the electric
form factor. The contribution of the Coulomb form factors
increases the function jGT j in 10% at most.
In the next section we present the formalism associated

with the Nð1535Þ Dalitz decay. In Sec. VI we use our
results for jGT j to calculate the Dalitz decay functions.

V. Nð1535Þ DALITZ DECAY

We discuss now the formalism associated with the
Nð1535Þ Dalitz decay (N� → eþe−N). As in the previous
section, W represents the mass of the resonance.
Our starting point is the calculation of the function

Γγ�Nðq;WÞ, which determines the decay width of state with
massW into a photon with virtuality q2 > 0. The variable q
is then defined by q ¼

ffiffiffiffiffi
q2

p
.

The function Γγ�Nðq;WÞ is defined according to
Ref. [47],

Γγ�Nðq;WÞ ¼ α

2W3

ffiffiffiffiffiffiffiffiffiffiffi
yþy−

p
yþjGTðq2;WÞj2; ð5:1Þ

where jGTðq2;WÞj is defined by Eq. (4.5) and

y� ¼ ðW �MNÞ2 − q2: ð5:2Þ

From Eq. (5.1) one concludes that the impact of the form
factors in the Dalitz decay functions is determined by the
function jGT j, given by Eq. (4.5).

Once the function Γγ�Nðq;WÞ is defined, one can
calculate the dilepton decay rate using the derivative [47]

Γ0
eþe−Nðq;WÞ≡ dΓeþe−N

dq
ðq;WÞ

¼ 2α

3πq3
ð2μ2 þ q2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4μ2

q2

s
Γγ�Nðq;WÞ;

ð5:3Þ

where μ is the electron mass.
The Dalitz decay width can then be determined by the

integral ofΓ0
eþe−Nðq;WÞ in the region 4μ2≤q2≤ðW−MNÞ2:

Γeþe−NðWÞ ¼
Z

W−MN

2μ
Γ0
eþe−Nðq;WÞdq: ð5:4Þ

The radiative decay, N� → γN, is calculated from the
function Γγ�Nðq;WÞ, in the limits q2 ¼ 0 and W ¼ MR.
Using Eq. (5.1), one obtains

ΓγN ¼ α

M2
R
ðMR þMNÞ2KjGEð0;MRÞj2: ð5:5Þ

The previous result is consistent with the general expres-
sion in terms of helicity amplitudes for a resonance with
spin J ¼ 1

2
; 3
2
[41,79]:

ΓγN ¼ 2

ð2J þ 1ÞπK
2
MN

MR
½jA1=2j2 þ jA3=2j2�; ð5:6Þ

where A1=2, A3=2 represent the transverse helicity ampli-
tudes (at resonance rest frame) for Q2 ¼ 0. As before

K ¼ M2
R−M

2
N

2MR
. In the present case (J ¼ 1

2
), one has A3=2 ≡ 0.
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FIG. 11. Effective form factor function jGT j for different values of W. Comparison between proton and neutron results.
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VI. RESULTS FOR THE RADIATIVE
AND DALITZ DECAY WIDTHS

We present in this section the observables associated
with the timelike region. First, we present our results for the
radiative decay widths (ΓγN). Next we discuss our results
for the dilepton decay rates d

dqΓeþe−Nðq;WÞ. We also show
the results for the Dalitz decay widths (Γeþe−N), as function
of W. We consider the proton and neutron cases.

A. Radiative decay widths

The radiative decay widths for the proton and neutron are
determined by the function Γγ�Nðq;WÞ as defined by
Eq. (5.1) in the limit q2 ¼ 0, when the virtual photon
became real.
The results for ΓγN are presented in Fig. 12, for the

proton and neutron cases. Our results differ significantly
from the results of a model with constant form factors.
Notice that the result for ΓγN is related to jGTð0;WÞj2.

The results of the function jGTð0;WÞj are presented
in Fig. 13. From the figure it is clear that the constant

form factor, i.e., a W independent form factor, is a bad
approximation.
The results for ΓγNðWÞ for the physical point (W ¼ MR)

compare well with experimental values presented in
Table III. The data presented in Fig. 12 are PDG results
based on the amplitudes A1=2ð0Þ (fourth column of
Table III). The uncertainties in the widths are the conse-
quence of limits on A1=2ð0Þ [proportional to GEð0Þ]. Note
that there is some overlap between the data results for the
proton and neutron, meaning that the data are compatible
with an identical result for both decays (exact isospin
symmetry).
In our model, the isospin symmetry is clearly broken in

the Nð1535Þ → γN decay. The good agreement between
model and data is a consequence of the accurate description
of the transition form factor GE at q2 ¼ 0, for both isospin
channels.

B. Dalitz decay rates

The dilepton decay rate d
dqΓeþe−Nðq;WÞ can be calcu-

lated combining Eq. (5.3) with Eq. (5.1). The results for
W ¼ 1.2, 1.4 and 1.535 GeVare presented in Fig. 14 for the
proton (left panel) and neutron (right panel) cases. The
upper limit in q is determined by q ¼ W −MN, as before.
From Fig. 14, we can conclude that the more relevant

kinematic regions, for both channels, is the low-q region or
near the pseudothreshold for large W, where there is a
substantial enhancement of the decay rate. In the figure,
one can also notice that the magnitude of the decay rates
near q2 ¼ 0 is larger for the proton.

C. Dalitz decay widths

The function Γeþe−NðWÞ is determined by the integral of
the dilepton decay rate according to Eq. (5.4). The results
for the proton and neutron cases are presented in Fig. 15.
In the figure we can notice a dominance of the

proton decay width up to W ¼ 1.4 GeV and very close
values for proton and neutron cases near W ¼ 1.5 GeV.
Above 1.5 GeV, close to the ρ meson mass pole
(W ¼ MN þmρ ≃ 1.7 GeV) the effect of the correspond-
ing pole starts to manifest. The main effect is the enhance-
ment of Γeþe−NðWÞ. We have a glimpse of this effect in the
graph for the neutron decay (dashed line).
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FIG. 12. Radiative decay width as a function of W for the
proton and neutron cases. The data (W ¼ MR) are determined
from the PDG data for the amplitude A1=2ð0Þ.
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TABLE III. Nð1535Þ → γN decay widths. The estimate repre-
sents the PDG result calculated from the amplitude A1=2ð0Þ. The
results for the PDG limits are obtained from the branching ratios.

A1=2ð0Þ [GeV−1=2] ΓγN [MeV]

Data Model Estimate PDG limits Model

p 0.105� 0.015 0.101 0.49� 0.14 0.19–0.53 0.503
n −0.075� 0.020 −0.074 0.25� 0.13 0.013–0.44 0.240
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The dominance of the Dalitz decay width for proton
decay over the results for neutron decay is explained by the
dominance of the dilepton decay rates near q ¼ 0, as can be
confirmed by Fig. 14 (right panel versus left panel). For
larger values of q (and larger W) the magnitude of the
neutron dilepton decay rates increases more in comparison
to the proton dilepton decay rates (see Fig. 14). When we
integrate on q to obtain Γeþe−NðWÞ, the impact of the large
q region on the dilepton decay rate is larger, and the neutron
Dalitz decay width is enhanced.
Since we aim at the range of the HADES experiments,

we do not go beyond W ≃ 1.55 GeV. The values of the
function Γeþe−NðWÞ, at W ¼ MR are given in Table IV.
From the table we can conclude that the results for proton
and neutron decays are very close, Γeþe−NðMRÞ ≃ 6–7 keV.
This result contrasts with what occurs in the radiative

decay, ΓγNðMRÞ, where the widths for the two isospin
channels differ much more.
In a model where we reduce the isoscalar component

Að0Þ by about 0.05, which as discussed in Sec. III E
[Að0Þ → Að0Þ − 0.05 ≃ 0.075] is still well within the
experimental limits, the results for Γeþe−NðWÞ are almost
indistinguishable in the two channels.
The timelike data about the neutron decays is very

important because they provide information about the
neutron structure which is not available at the moment
from spacelike experiments. For this reason pion-induced
reactions at HADES [6,7] are fundamental to pin down the
electromagnetic structure of the neutron and complement
the information from the spacelike region.
In Fig. 16, we compare the Nð1535Þ Dalitz widths with

estimates for other light mass resonances, based on the
covariant spectator quark model. We show the results for
the Δð1232Þ3

2
þ, where the pion cloud contributes with

about 45% to the transition form factors at the photon point
[3], and also the results for Nð1520Þ3

2
− [5].

Figure 16 shows that the Δð1232Þ3
2
þ dominates within

the range of W considered, although the Δð1232Þ Dalitz
decay at the pole is measured for smaller values of W.
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FIG. 14. Dilepton decay rates d
dqΓeþe−Nðq;WÞ for the cases W ¼ 1.2, 1.4 and 1.535 GeV. The upper limit in q is W −MN .

TABLE IV. Nð1535Þ → γN Dalitz decay widths, estimated by
the present model.

Γeþe−N (keV)

p 5.7
n 7.2
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FIG. 15. Dalitz decay widths as a function of W for the proton
and neutron.
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FIG. 16. Comparison between Dalitz decay widths Γeþe−NðWÞ
for different resonances. Models are from Refs. [3,5]. The
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The Dalitz decay branching ratio for this resonance is
consistent with the value recently extracted from the
dilepton production spectrum data [1].

VII. OUTLOOK AND CONCLUSIONS

Theoretical models for the electromagnetic structure of
the N� resonances in the timelike region are necessary for
the interpretation ofN� Dalitz decays measured currently in
experiments at HADES [1,7,14].
The structure of the γ�N → Nð1535Þ transition given by

the experimental data for spacelike form factors is nontrivial
and suggests that it results from a combination of valence
quark and meson cloud effects. Valence quark models
describe well the Dirac form factor for Q2 > 1.5 GeV2

but they fail to describe the Pauli form factor data. In
contrast, chiral models predict important meson cloud
contributions to the Pauli form factor in the low-Q2 region.
In this work, we developed a model for the γ�N →

Nð1535Þ transition in the timelike region. The model is
based on the covariant spectator quark model in the space-
like region, which is here combinedwith the semirelativistic
approximation that neglects baryon mass difference in the
overlap integral of the initial and final state. This approxi-
mation guarantees the orthogonality of the initial and final
wave functions as well as current conservation. It also
enables us to use the same radial wave function for the
nucleon and theNð1535Þ. Therefore all the estimates for the
valence quark contributions in the spacelike region are true
predictions of a parametrization fixed from nucleon elastic
form factors. We also modify the behavior of the form
factors at lowQ2 in order to obtain the correct experimental
behavior of the Dirac form factor near Q2 ¼ 0.
In the present work, we use the available data (proton

and neutron targets) to infer the effect of the meson cloud
contributions within the spacelike regime. The meson cloud
contributions are parametrized according to the observed
meson decay rates of theNð1535Þ resonance, dominated by
the πN and ηN channels. The meson cloud parametriza-
tions for the Dirac and Pauli form factors are dominated by
the isovector component, as suggested by the photopro-
duction data [amplitude A1=2ð0Þ], and some other theoreti-
cal models. In the case of the Pauli form factor we consider
also a small isoscalar component.
We extended our parametrizations of the γ�N →

Nð1535Þ transition to the timelike region, considering
analytic continuations of the valence quark and meson
cloud contributions from the spacelike region to the time-
like region. The transition form factors are calculated in
terms of q2 and the invariant mass of the γ�N system W,
and used to estimate the radiative and Dalitz decay widths.
We separated the proton and neutron cases, since the

results reveal an important isospin dependence. Our esti-
mates for neutron targets are poorly constrained by the
spacelike data, but alternative estimates can be performed

adjusting one single parameter [isoscalar coefficient Að0Þ],
when more accurate data will become available. Timelike
experiments provide an alternative method to probe the
physics associated with the neutron targets, where contrary
to spacelike experiments, the channels associated to neu-
trons are directly accessed by pion-induced reactions.
We compared our Nð1535Þ Dalitz decay results as a

function of W with previous results for the Δð1232Þ and
Nð1520Þ resonances (which have almost no isospin depend-
ence). Our calculation can be in the near future compared
with the dilepton decay rates measured at HADES.
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APPENDIX A: γ�N → Nð12 − Þ FORM FACTORS
AND HELICITY AMPLITUDES

We discuss here the generic expressions for the form
factors in different representations and their relations with
the helicity amplitudes. The discussion follows Refs. [44,47],
but is based on the current (2.1), where the form factors F�

i
(i ¼ 1, 2) aredimensionless.To comparewith the results from
Ref. [44] one uses G1 ¼ q2F�

1 and G2 ¼ 2
ðMRþMNÞ2 F

�
2.

The expressions associated with the decay widths can be
expressed directly in terms of the helicity amplitudes,
as in Eq. (5.6), or in terms of multipole form factors.
Those form factors can be defined using different conven-
tions as the ones proposed in Refs. [44,47]. We use here a
representation equivalent to those authors, but with different
normalizations. More specifically, we use the following
representation of the electric and Coulomb form factors:

GE ¼ F�
1 þ ηF�

2; ðA1Þ

GC ¼ −
MR

2

ðMR þMNÞ
Q2

½ηF�
1 − τF�

2�: ðA2Þ

The conversion to the form factors from Ref. [47],

ḠE and ḠC can be performed using ḠE ¼ −
ffiffi
2

p
MR

GE and

ḠC ¼ −
ffiffi
2

p
MR

GC. To compare with the form factors from

Ref. [44] we can use h1 ¼ − 2
MR

GC and h3 ¼ − 2
MR

GE. An
advantage in the use of the form factors (A1) and (A2) is that
they are dimensionless.
The motivation to the identification with the electric and

Coulomb form factors are the result of the resemblance

with the nucleon Sachs form factorsGC ∝ F1 − Q2

4M2
N
F2 and
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GM ∝ F1 þ F2, combined with the connection between
negative parity and positive parity multipole amplitudes.
Recall that in the change from positive parity and negative
parity states we should replace GE ↔ GM [41,44,47].
The multipole form factors can be related to the helicity

amplitudes (2.5) and (2.6) by

GE ¼ 1

B
A1=2; ðA3Þ

GC ¼ 1ffiffiffi
2

p
B

MR

jqj S1=2; ðA4Þ

where

B ¼ e
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þ

MNMRK

s
: ðA5Þ

A simple consequence of the relations (A3) and (A4) is
that, according to Siegert’s theorem, near the pseudothres-
hold, one has [43] S1=2 ≃ 1ffiffi

2
p jqj

MR−MN
A1=2, which implies that

GC ¼ 2
MR −MN

MR
GE; ðA6Þ

when Q2 ¼ −ðMR −MNÞ2.
Another important remark is that Eq. (A6) is valid also

for complex form factors, GE and GC. One has then a
constraint for the real part and another for the imagi-
nary part.
In Fig. 17, we present an example of the analytic

extension of the function IR=jqj to the timelike region
for W ¼ 1.535 GeV.

APPENDIX B: ESTIMATE OF GCð0Þ
In the present Appendix we calculate the value of GC at

Q2 ¼ 0 for the proton target, based on the valence quark
and meson cloud parametrization for the F�

1 and F�
2 form

factors.
Starting from the definition (2.8) we can write

GC ¼ −
1

2
MRðMR −MNÞ

F�
1

Q2
þ MR

2ðMR þMNÞ
F�
2: ðB1Þ

We can then consider the limit Q2 ¼ 0:

GCð0Þ ¼ −
1

2
MRðMR −MNÞ

F�
1

Q2

����
Q2¼0

þ MR

2ðMR þMNÞ
F�
2ð0Þ: ðB2Þ

The value of F�
2ð0Þ is determined exclusively by

the meson cloud contribution Fmc
2 ð0Þ ¼ Að0Þ þ Bð0Þ

according with Eq. (3.17). Recall that Að0Þ and Bð0Þ are
determined by the fit to the data.
We focus now on the calculation of F�

1

Q2 in the limit
Q2 ¼ 0. We recall that F�

1 can be decomposed in two
components (FB

1 þ Fmc
1 ), and that both components scale

with Q2 near the photon point. Based on our parametriza-
tions of the bare and meson cloud components, we can
write

FB
1

Q2

����
Q2¼0

¼ 1

3

I 0
R

Q2

����
Q2¼0

; ðB3Þ

Fmc
1

Q2

����
Q2¼0

¼ −
C0

Λ2
C
; ðB4Þ

using the notation of Eq. (4.3). In the first equation, we used
also the result ð3jS1 þ jA1 ÞjQ2¼0 ¼ 2

3
.

The factor I 0
RjQ2¼0 can be calculated based on the

definition

I 0
R ¼ IR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

m2
ρ þQ2

s

¼ GDðQ2ÞQ2

MNðMR þMNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMR þMNÞ2 þQ2

m2
ρ þQ2

s
; ðB5Þ

using the dipole approximation for IR=jqj, according
with Eq. (4.2). From this previous relation, we conclude
that I 0

R=Q
2 → GDð0Þ=ðMNmρÞ in the limit Q2 ¼ 0. As a

consequence,

FB
1

Q2

����
Q2¼0

¼ 1

3

GDð0Þ
MNmρ

: ðB6Þ

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Q

2
 [GeV

2
]

0

1

2

3

4

M
N

 I
R
/q

Spacelike region (exact)
Timelike region (analytic cont.)

FIG. 17. Representation of the function IR=jqj in terms of Q2

in the spacelike and in the timelike regions, normalized by the
factor MN (nucleon mass), for the case W ¼ 1.535 GeV. The
results in the spacelike region are determined by the quark
model (semirelativistic approach). The results in the timelike
region are determined by the analytic continuation based on
the dipole form GD ¼ C=ð1þQ2=Λ2

DÞ2, with the parameters
C ¼ 1.154 and Λ2

D ¼ 0.4396 GeV2.

G. RAMALHO and M. T. PEÑA PHYS. REV. D 101, 114008 (2020)

114008-20



Combining the previous results, we obtain

GCð0Þ ¼
1

2

MR

MR þMN
F�
2ð0Þ þ

1

2
MRðMR −MNÞ

C0

Λ2
C

−
1

6
MRðMR −MNÞ

GDð0Þ
MNmρ

: ðB7Þ

The corollary of this analysis is that the use of a small
regulator (mass mρ) tends to reduce the magnitude of
GCð0Þ (enhancement of the last term, more significant
cancellation of terms). In alternative, the use of a large
value for mρ tends to increase the value of GCð0Þ (less
significant cancellation of terms).

APPENDIX C: ANALYTIC EXTENSION
OF THE OVERLAP INTEGRALS TO

THE TIMELIKE REGION

In the present Appendix, we describe how we estimate
the overlap integral IR and the function I 0

R in the timelike
region (Q2 < 0). For the purpose of the discussion we
recall that in general IR is proportional to jqj, and that in
the semirelativistic approximation jqj≡ jqjsr ¼ Q

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
.

The effect of the factor Z is discussed later.
Since, in the context of the semirelativistic approxima-

tion, we cannot extrapolate the overlap integral for
jqjsr < 0, because the radial wave functions cannot be
defined below Q2 ¼ 0, we use an analytic continuation of
the overlap integral IR defined in the spacelike region.
Our analytic continuation of IR is based on the obser-

vation that IR=jqj is finite in the limit Q2 ¼ 0, and in the
realization that IR=jqj can for small Q2 be approximated
by a dipole form:

I sr
R

jqjsr
≃
GDðq2Þ
MN

¼ C
MN

�
Λ2
D

Λ2
D − q2

�
2

; ðC1Þ

where C is a constant with no dimensions and ΛD a cutoff
parameter. The upper index on IR indicates the result of the
integral in the semirelativistic approximation.
Our analytic extension is then based on the replacement

IR

jqj →
GDðq2Þ
MN

ðC2Þ

in the Q2 < 0 region. In simple words, we replace the

numeric result I sr
R

jqjsr from spacelike by a simple expression

for IR
jqj for Q

2 < 0. We consider then an analytic continu-

ation of the results for Q2 > 0.
The consequence of this extension is that we estimate

IR, using the relation (C1):

IR ¼ GDðq2Þ
jqj
MN

; ðC3Þ

where jqj represents the magnitude of the transition
momentum in the general case [see Eq. (2.3)]. With this
simple procedure, we obtain an analytic continuation of the
function IR=jqj in the region 0 ≤ q2 ≤ ðMR −MNÞ2.
The transition form factors are then defined by continuity
in the timelike region.
Since the dipole approximation (C1) generates neces-

sarily singularities in the timelike region at q2 ¼ Λ2
D,

it is necessary to regularize the expression including
some effective width ΓD, according to the replacement
Λ2
D → Λ2

D − iΛDΓD. For simplicity, we approximate the
dipole function GD, by the magnitude of GD:

GDðq2Þ → C
Λ4
D

ðΛ2
D − q2Þ þ Λ2

DΓ2
D
: ðC4Þ

The explicit form of the function ΓDðq2Þ is discussed in the
next subsection.
Combining the expression of IR in the semirelativistic

approximation, based on Eq. (C1), IR¼GDQ
ffiffiffiffiffiffiffiffiffiffi
1þτ

p
=MN ,

with Z ¼ Q=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ þQ2
q

, we obtain

I 0
R →

GDQ2

MNðMR þMNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þ

m2
ρ þQ2

s
: ðC5Þ

This expression is consistent with the results from space-
like, and ensures then the continuity between spacelike and
timelike regions, provided that the normalization of GD is
correct.
Note, however, that the relation (C5) includes a singu-

larity for q2 ¼ m2
ρ. Since in the present study, our appli-

cations are restricted to the region MR < MN þmρ, we do
not need to deal with the singularity q2 ¼ m2

ρ directly.
Nevertheless, we recall that the singularity q2 ¼ m2

ρ is
already present in the quark current (VMD parametriza-
tion). For consistence we regularize also the factor

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ − q2
q

, as the remaining multipoles, according to

Eq. (4.4), using n ¼ 1
2
.

1. Explicit form for ΓDðq2Þ
For the effective width ΓD, we follow the regularization

of previous works [3] and use the form

ΓDðq2Þ ¼ Γ0
D

�
q2

Λ2
D þ q2

�
2

θðq2Þ; ðC6Þ

where θ is the Heaviside step function. The parameter Γ0
D

defines the range of influence of the regularization pole
q2 ¼ Λ2

D. For very large values of ΛD we do not need to
worry about the regularization and we can use the dipole
form with ΓD ¼ 0. However, for values of ΛD such that
ΛD ≈mρ, as in the present case, the results can depend
critically of the magnitude of Γ0

D.
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In order to obtain a timelike extension closer to the
natural extension of the transition form factors (when
Γ0
D ¼ 0), and because the form factors are dominated by

the imaginary part of the vector meson poles (ρ and ω) near
q2 ¼ ðW −MNÞ2, we choose Γ0

D ¼ nΓ0
ρ, where Γ0

ρ is the
ρ-meson physical width, and n ¼ 1; 2;…. Larger values of
n lead to a significant reduction of the transition form
factors, comparatively to an extension with Γ0

D ¼ 0, near
the pseudothreshold. Small values of n (n ¼ 1, 2) modify
the transition form factors only slightly, except near the
pseudothreshold. Comparing the final results for the Dalitz
decay width, after the integration on q, we conclude that the
results with n ¼ 1, 2, 3, 4 are almost indistinguishable,
showing that the results are almost independent of the
regulator Γ0

D.
In these conditions, we use Γ0

D ¼ 2Γ0
ρ. One obtains then

transition form factors that are not very large near the
pseudothreshold (as in the cases n ¼ 0 and n ¼ 1), gen-
erating smother functions for the Dalitz decay rates. As for
the Dalitz decay widths, the results are almost insensitive to
the value of Γ0

D.

APPENDIX D: REGULARIZATION OF
MULTIPOLES IN THE TIMELIKE REGION

To regularize the multipole factors associated with a
effective cutoff (regulator) Λ, based on Eq. (4.4) we follow
the procedure from Ref. [5], and include the effective width

ΓΛðq2Þ ¼ 4Γ0
Λ

�
q2

Λ2 þ q2

�
2

θðq2Þ; ðD1Þ

where θ is the Heaviside step function, and Γ0
Λ is a constant

given by Γ0
Λ ¼ 4Γ0

ρ ≃ 0.6 GeV (Γ0
ρ is the ρ physical decay

constant).
The previous definition ensures that ΓΛðq2Þ ¼ 0 when

q2 < 0 and that ΓΛðq2Þ is continuously extended for
q2 > 0. As a consequence, the results in the spacelike
region (where there are no singularities) are kept
unchanged. The factor 4Γ0

Λ was chosen in order to obtain
ΓΛðq2Þ ¼ Γ0

Λ for q2 ¼ Λ2 and ΓΛðq2Þ ¼ 4Γ0
Λ for very large

q2. Finally, the value of Γ0
Λ was chosen to avoid very

narrow peaks around q2 ¼ Λ2.
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