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Precision background predictions with well-defined uncertainty estimates are important for interpreting
collider-physics measurements and for planning future high-energy collider experiments. It is especially
important to estimate the perturbative uncertainties in predictions of inclusive measurements of jet
observables, that are designed to be largely insensitive to non-perturbative effects such as the structure of
beam remnants, multiparton scattering, or hadronization. In this study, we discuss possible pitfalls in
defining the perturbative uncertainty of unitarized next-to-leading order (NLO) multijet merged
predictions, using the PYTHIA event generator as our vehicle. For this purpose, we consider different
choices of unitarized NLO merging schemes as well as consistent variations of renormalization scales in
different parts of the calculation. Such a combined discussion allows to rank the contribution of scale
variations to the error budget in comparison to other contributions due to algorithmic choices that are often
assumed fixed. The scale uncertainty bands of different merging schemes largely overlap, but differences
between the “central” predictions in different schemes can remain comparable to scale uncertainties even
for very well-separated jets, or be larger than scale uncertainties in transition regions between calculations
of different jet multiplicity. The availability of these variations within PYTHIA will enable more systematic
studies of perturbative uncertainties in precision background calculations in the future.
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I. INTRODUCTION

Precision predictions of the final states of high-energy
scattering signal or background processes are crucial for the
continued success of high-energy collider physics. This
includes e.g., exploiting the potential of indirect searches
for physics beyond the Standard Model (SM) at the Large
Hadron Collider, or precision SM measurements at future
lepton colliders. The more detailed signal and background
final states can be predicted, the larger the set of conceiv-
able measurements. General-Purpose Event Generators
(GPEGs) [1] produce a detailed description of final states
at the level of individual particles, and thus provide
controlled pseudodata (in the form of simulated scattering
events) that can be used to develop new analysis strategies.
At the same time, GPEGs aim to predict moderately
exclusive final states with as high precision as possible,
such that precision SM predictions can be juxtaposed with
data to allow setting exclusion limits on parameters in
Beyond-the-SM theories.
The precision of GPEG simulations is typically difficult

to quantify, since the calculations are based on a mix of

perturbative calculations (to determine the distribution of
the highest-energy transfer scattering and its radiative
cascade) and phenomenological models, which are neces-
sary to describe the scattering final state in detail (e.g., to
incorporate the remnants of colliding beams after scattering
and to ensure conservation of momentum, electric, and
QCD color charges). Some measurements are constructed
to be as insensitive as possible to phenomenological beam
remnant, multiparticle scattering, or hadronization models,
such that the uncertainties due to perturbative approxima-
tions dominate the overall error budget. Measurements in
this category are very inclusive measurements of inelastic
scattering processes that do not, at lowest order, include
QCD couplings, or moderately inclusive measurements
constructed with the help of infrared safe observables.
The goal of this work is to discuss, define, and assess the

contribution of uncertainties due to perturbative approx-
imations to the error budget of predictions to multijet final
states at colliders, using precise next-to-leading (NLO)
multijet merged predictions within the PYTHIA event gen-
erator [2,3] as a case study. Similar case studies within
individual leading-order or NLO matched predictions have
been considered in [4,5], while [6] focussed on the
technical validation of variations within a specific NLO
merging scheme. More generally, NLO matched or NLO
multijet-merged predictions commonly consider or allow
for fixed-order scale variations as source of uncertainties;
see e.g., [7–12] and [13–16]. Parton-shower resummation
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has employed renormalization scale variation as resumma-
tion uncertainty estimate [17–21]. Within the context of
analytic resummation, uncertainties due to the algorithm
for matching the fixed-order and resummed description of
single observables have been discussed in the seminal work
[22]. Many ways to perform the matching exist [22–28]
and are routinely performed in analytic calculations (see
[12,29–32] for illustrative examples).
We extend these discussions of perturbative event gen-

erator uncertainties by considering the scale uncertainties in
the combination of several NLO calculations (a particular
scheme of combining NLO calculations will define what
we call an NLO merging scheme) and the uncertainty due
to choices in the combination procedure i.e., the merging
scheme.1 In particular, we focus on the interplay of
uncertainties from defining exclusive cross sections at
higher orders, and scale variations within unitarized merg-
ing schemes, thus addressing the questions: what is the
impact of choices that are not constrained by requirements
from retaining shower- and/or fixed-order accuracy on the
prediction and uncertainty of the overall calculation? Do
some merging schemes exhibit spuriously sized scale
uncertainties?

II. UNITARIZED NLO-MERGED CALCULATIONS

Scattering events at high-energy colliders such as the
LHC potentially contain many well-separated jets of
particles. To obtain a sound perturbative model in such a
situation, several precise fixed-order calculations are nec-
essary to supplement the parton shower, which, due to its
ordering requirement, cannot reach all regions of phase
space. Since the parton shower also relies on approximate
collinear/soft splitting kernels, its model of hard well-
separated jets is typically insufficient. Disregarding hard
regions can affect the overall event generator tune, since
they can e.g., significantly alter the description of large
particle-multiplicity tails.
Thus, several calculations (that are themselves combi-

nations of fixed-order and all-order perturbative compo-
nents) need to be combined. We will refer to a combination
scheme as merging scheme.2 The prerequisite for these are
matrix-element generators that can readily provide the
necessary fixed-order calculations. Fixed-order calcula-
tions with light final-state partons require regularization
to avoid infrared singularities. This regularization can be
achieved by removing all phase-space regions for which the
value of a kinematically defined merging scale falls below
a predefined value. Events that were thus discarded can be
recovered by subsequent parton showering. Thus, the

merging scale takes on a twofold meaning: it acts as
regularization of fixed-order calculations and as a separator
between fixed-order and parton-shower phase-space
regions. Since the merging scale definition and value are
not unique, this introduces an algorithmic uncertainty into
merging schemes. The aim of the current study will be to
investigate the interplay between theoretically unavoidable
uncertainties due to truncation of the perturbative series and
higher-order uncertainties in the definition of the merging
prescription. This interplay can be obscured by varying
other algorithmic choices such as the merging scale. To
avoid inconclusive statements, we will thus not consider
such variations below.
Merging schemes rely on consistency conditions

designed to ensure that the precision of none of their parts
is degraded: in the phase-space regions in which fixed-
order calculations are supplemented, the fixed-order expan-
sion of the merged prediction should recover the original
calculation, while throughout the phase space available to
showering, the all-order results should recover parton-
shower resummation. The interplay between these require-
ments is especially delicate in “transition regions,” where
several components contribute almost equally to the final
result, and in “non-shower regions” beyond the reach of
(ordered) showering, for which no comprehensive all-order
description is known.
A straightforward consistency constraint can be obtained

from the unitary nature of the parton shower i.e., that the
sum of exclusive n-parton cross section and inclusive
nþ 1-parton cross section recovers the inclusive n-parton
cross section for observables only sensitive to n partons.
We can extend this property also to merged calculations,
thus arriving at unitarized merging schemes [16,34–37].
Unitarized NLO merging schemes enforce consistency

between different calculations by removing the complete
impact of newly added high-parton-multiplicity configu-
rations from the inclusive prediction by explicit subtraction
of reduced-multiplicity counterevents,

hOin ¼ ððinclusive rate for n partonsÞ½Φn�
− ðinclusive rate for nþ 1 partonsÞ½Φnþ1�ÞOn½Φn�
þ ðinclusive rate for nþ 1 partonsÞ½Φnþ1�
×Onþ1½Φnþ1�; ð1Þ

where On denotes a fully differential measurement of all
momenta in the stateΦn. In reality, this complete removal is
only achieved for very specific observables (e.g., jet observ-
ables defined by using the merging scale definition as
separation criterion and the inverse of the parton-shower
kinematics as recombination scheme), while residual
higher-multiplicity sensitivity remains in observables that
are very different to the fixed-order regularization cut.
Nevertheless, the same cancellation should in principle also
apply to the uncertainty on the high-parton-multiplicity

1The scheme uncertainty is, in spirit, though not in practice,
similar to the uncertainties assessed by performing R- or
logR-matching [22] in analytic resummation.

2A relatively complete list of matching and merging methods
employed by event generators can be found e.g., in [33].
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configurations. The latter require very careful handling of all
components of the calculation.
A sensible inclusive prediction should also be comple-

mented with an accurate description of exclusive cross
sections that are sensitive to exactly n (and only n) jets or
partons.3 Unitarization introduces higher-order components
that depend on higher-parton-multiplicities into exclusive
cross sections, by means of the explicit subtraction i.e.,
through the second term in Eq. (1). These differ from the
naive parton-shower result by subleading terms in the
parton-shower evolution variable. At NLO, similar sub-
leading terms can appear by introducing all-order correc-
tions to (hard) virtual diagrams i.e., through the first term in
Eq. (1). The interplay of these terms is beyond both NLO
fixed-order accuracy as well as shower accuracy. However,
it is of the same order as variations that are used to gauge
NLO fixed-order uncertainties.
It is prudent to require a merged calculation to recover

the fixed-order result as well as the uncertainty of the latter
in certain regions of phase space. However, it is not a priori
clear how these regions should be defined, nor that it is
obvious that any merging scheme (taken here to be defined
by different choices of reweighting the NLO corrections)
fulfills this requirement. The aim of the current pilot study
is to initiate the discussion of these points. To be able to
discuss subtle changes in the NLO merged event generator
predictions by using a (large) fixed set of statistically
produced events, we focus on “reweightable variations”
here, such that the impact of purely statistical fluctuations
can be minimized. Possible reweightable perturbative
variations are as follows:
(a) Variations of the renormalization scale, correlated

between fixed-order and parton-shower components.
(b) Variations of the (all-order) reweighting of higher-

order fixed-order terms.
Many other variations are of course possible in an NLO
merged calculation. However, these might not be reweight-
able4 and thus require prohibitively large event samples to
minimize statistical effects, or do not have a well-defined
perturbative expansion.5 Hence, the current study is limited
to a consistent definition and assessment of the variations
(a) and (b) above. Other variations (such as factorization

scale changes) will not invalidate the findings below and
instead might serve to put more stringent constraints on the
allowed form of NLO merging schemes.

III. THEORY AND IMPLEMENTATION

In this section, we define several variants of unitarized
NLO merging strategies that have well-motivated, yet
different, higher-order structure. For this, we will start
from a very general form of a unitarized merging pre-
scription, of which the UNLOPS prescriptions [16,36] are
subsets. This general starting point allows to define several
classes of unitarized NLO merging schemes and thus
suggests a large associated uncertainty. However, most
unitarized NLO merging schemes will have a spurious
behavior e.g., if their all-order behavior does not recover
the all-order logarithmic structure of QCD. Thus, we will
discuss conditions that sensible new unitarized NLO
merging schemes need to fulfill, e.g., how to define
schemes in which scale uncertainties do not deteriorate
the accuracy of the overall prediction. The result of this is
that we allow a new source of uncertainty—the scheme
uncertainty—and determine sensible scheme variations that
may constitute a reasonable assessment of this uncertainty.
To begin, it is useful to examine the construction of

exclusive jet rates in the merged calculation, with the
exclusive one-jet rate being a sufficiently complicated
example. In a general unitarized calculation, this rate is
given by

hO1i ¼ O1½Φ1�
�
ðB1½Φ1� þ BNLO

1 ½Φ1�ÞwNLO½Φ0;Φ1�

þ B1½Φ1�ðwLO½Φ0;Φ1� − wI½Φ0�
− wS½Φ0;Φ1�αsfwLO½Φ0;Φ1�g1Þ

−
Z

B2½Φ2�ΘðtMSðΦ2Þ − tcutMSÞwLO½Φ0;Φ1�

× wLO½Φ1;Φ2� − S3

�
; ð2Þ

where we assume that the observableO1½Φ1� contains a cut
ΘðtMSðΦ1Þ − tcutMSÞ that guarantees that one-jet configura-
tions Φ1 yield merging scale values tMSðΦ1Þ above the
merging scale tcutMS. The factors wX are a priori weights that
have to be chosen to preserve certain accuracy criteria. The
symbolsBi½Φi� denote the inclusive tree-level calculation of
the i-jet rate. BNLO

1 ½Φ1� refers to all NLO corrections
(including all virtual and real corrections) to the one-jet rate,

BNLO
1 ½Φ1� ¼ V1½Φ1� þ

Z
B2½Φ2�ðΘðtMSðΦ2Þ − tcutMSÞ

þ ΘðtcutMS − tMSðΦ2ÞÞÞ: ð3Þ
Underlying one-jet configurations for the real-emission
corrections in BNLO

1 are obtained by performing one

3These two requirements often lead to tensions in the defi-
nition of the algorithm. As an example, inclusive correctness of
nþ 1-parton states requires power corrections and the treatment
of 4-momentum conservation when sampling each nþ 1-parton
state, whereas exclusive correctness of n-parton states is difficult
to formally achieve if recoil effects are present.

4… as would be the case for factorization scale variations,
since initial-state parton-shower evolution links factorization
scales to the phase-space boundaries of the shower, or variation
of the event generator tune, since different tunes may disallow
different perturbative states due to changes in the shower cutoff.

5… as would be the case for reweightable variations of the
parton distribution function (PDF) set or PDF member, or
nonreweightable merging scale variations.
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clustering step inverting parton-shower branching kinemat-
ics. All other terms of α3s or higher (stemming from the
unitarization of higher-multiplicity contributions or sub-
tractions to guarantee NLO accuracy) have been collected
into the symbol S3 for readability. Φi denotes the momenta
of the i-jet state. The merging scale value is denoted by tcutMS,
and fXgi denotes the ith order contribution to X expanded
in the strong coupling αs. We assume that all factors wX
have a well-defined expansion,

wXðμrÞ¼
X∞
i¼0

αisðμrÞfwXgi

¼ 1þαsðμrÞfwXg1þα2sðμrÞfwXg2þOðα3sÞ: ð4Þ

This expansion immediately guarantees that the lowest-
order terms in the expansion of Eq. (2) is correctly given by
the tree-level result O1½Φ1�B1½Φ1�. Similarly, the next term
in the expansion is correctly given by the exclusive NLO
cross section,

hO1ið2Þ ¼O1½Φ1�
�
BNLO
1 ½Φ1�−

Z
B2½Φ2�ΘðtMSðΦ2Þ−tcutMSÞ

�

¼O1½Φ1�
�
V1½Φ1�þ

Z
B2½Φ2�ΘðtcutMS−tMSðΦ2ÞÞ

�
;

ð5Þ

provided that fwNLOg1 ¼ fwIg1 and that the real correc-
tions in BNLO

1 and the unitarization term
R
tms

B2 are
mapped in an identical way to the Φ1 phase-space points.
Non-unitarized merging schemes arrive at the exclusive
NLO cross section in a somewhat different manner [38].
Note that to achieve the correct behavior for any choice

of the renormalization scale requires fwNLOg1 ¼ fwIg1 for
each scale value and thus implies that the expansion of
either weight can be defined with reference to a common
scale, and that

wXðμrÞ − wXðkμrÞ ¼ α2sðμrÞ
β0
2π

lnðkÞfwXg1 þOðα3sÞ
X ∈ fNLO; Ig: ð6Þ

If this condition is not guaranteed, then the all-order
accuracy of the prediction, as defined by reference to the
parton shower, is compromised. Changes due to scale
variations of weights applied to Born-level contributions
enter at the same order (Oðα3sÞ) as a nontrivial reweighting
of higher-order (virtual) corrections. The interplay between
these corrections is the main interest of this paper. In order
to avoid overgeneralizations of conclusions about uncer-
tainties drawn from scale variations, we will analyze the
Oðα3sÞ expansion of Eq. (2) and set up conditions for the
reweighting of higher-order corrections. Any reweighting
must not, of course, introduce spurious enhancements at

any order, since this would exaggerate the “scheme
variation.” With this in mind, different reweighting strat-
egies can be used together with scale variations to deter-
mine more robust uncertainties.
The Oðα3sÞ expansion of Eq. (2) reads [36]

hO1ið3Þ ¼O1½Φ1�
�
α2sfwNLOg2B1þαsfwNLOg1BNLO

1

þα2sfwLOg2B1−α2sfwIg2B1−α2sfwSg1fwLOg1B1

−
Z

BNLO
2 ΘðtMSðΦ2Þ− tcutMSÞ

−
ZZ

B3ΘðtMSðΦ3Þ− tcutMSÞΘðtcutMS− tMSðΦ2ÞÞ
�
;

ð7Þ

where we have explicitly included the relevant S3 terms
and assumed that fwNLOg1 ¼ fwIg1 also applies to the
reweighting of two-parton corrections. The symbol
BNLO
2 ½Φ2� refers to all NLO corrections to the two-jet

rate. Note that the observable O1½Φ1� again enforces
a cut ΘðtMSðΦ1Þ − tcutMSÞ on the one-jet configurations.
Underlying one-jet configurations for the virtual correc-
tions in BNLO

2 are obtained by one clustering step. Two
clustering steps, with tMSðΦ2Þ > tcutMS and tMSðΦ1Þ > tcutMS,
are required to obtain an underlying one-jet configuration
for the real-emission corrections contained in the BNLO

2

term.
It is reasonable to expect that Eq. (7) reproduces the

correct coefficient of the largest contribution for the
observableO1½Φ1�. If the observable measures the merging
scale value of states in Φ1, we expect a behavior

Oð3Þ
1 ∝ α3s ln6ðtcutMSÞ. Since α2sfwLOg2B1 ∝ α3s ln6ðtcutMSÞ, this

amounts to constraints on and/or cancellations between the
different weights in Eq. (7). The most straightforward way
to enforce such cancellations is to set wNLO ¼ wI for any
scale value (we have already seen that this holds for the
lowest and next-to-lowest order), and then constrain the
concrete form of wNLO from the remaining terms. If we
assume that fwLOg1B1 provides a sensible approximation
of the leading parts of BNLO

1 , it is tempting to identify

fwNLOg1BNLO
1 − fwSg1αsfwLOg1B1

→ fwg1½BNLO
1 − αsfwLOg1B1�i:e:fwSg1

¼ fwNLOg1 ¼ fwg1ð¼fwIg1Þ: ð8Þ

As long as αsfwg1 scales as αs ln2ðtcutMSÞ or less, and while
the difference in brackets is subleading, this combination
will not lead to undesirable enhancements. Nevertheless,
while fwg1 ≠ 0 and BNLO

1 ≠ αsfwLOg1B1, this contribution
is a new, process-dependent source of scale uncertainties
beyond the NLO and parton-shower approximations. The
impact of this term on the overall uncertainty is thus best
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estimated by considering explicit test cases, as e.g., done in
the next section. It could be argued that havingw ≢ 1 brings
the merging prescription closer to the traditional separation
into all-order W-terms and fixed-order Y-terms in analytic
resummation [39,40], which typically includes hard virtual
corrections into the all-order W-term [41] and assumes that
the fixed-order Y-term not only remains constant, but
vanishes in the limit whenΦ1 andΦ2 become indistinguish-
able [42]. It is however not directly obvious that the
calculation in [41] translates to the context of a fully
differential event generator employing IR/UV regularization
prescriptions different from [41]. An assessment of the
numerical effect of different treatments is thus interesting
in its own right, also beyond the context of its interplay with
renormalization-scale variations in NLO merging schemes.
To summarize, the above considerations lead to a simple

guideline how higher-order corrections may be reweighted
without compromising the quality of the calculation: all
terms in the expansion of the leading-order reweightingwLO,

and all NLO corrections, should be reweighted by the same
(potentially dynamical) weight. Enhancements appearing in
the expansion of this weight should be in agreement with
standard QCD expectations. Below, we describe different
unitarized NLO merging strategies that meet these criteria.
We then assess the uncertainties on predictions that result
from consistent renormalization-scale variations in matrix
element generation, merging and parton shower, as well as
the “merging-scheme”uncertainty.We limit the discussion to
predictions that are NLO correct up to the first additional jet
with respect to the reference process and LO correct for the
second jet. The generalization to higher multiplicity is
straightforward, but omitted here in favor of readability.

A. UNLOPS

We start from the UNLOPS multileg NLO merging
scheme described in detail in [36]. The expectation value of
an arbitrary jet observable O in UNLOPS is given by

O0

�
B̄0−

Z
tMSðΦ1Þ>tcutMS

B1

�
Π0ðkÞwf;0

αsðkp⊥;1Þ
αsðkμRÞ

K−1−fΠ0ðkÞgαsðkμRÞ−fwf;0gαsðkμRÞ−
�
αsðkp⊥;1Þ
αsðkμRÞ

�
αsðkμRÞ

−fKgαsðμRÞ
�

−
Z
tMSðΦ1Þ>tcutMS

B̄1−
ZZ

tMSðΦ1Þ<tcutMS

tMSðΦ2Þ>tcutMS

B2Π0ðkÞwf;0
αsðkp⊥;1Þ
αsðkμRÞ

Π1ðkÞwf;1
αsðkp⊥;2Þ
αsðkμRÞ

K

�

þO1

�
B̄1þB1

�
Π0ðkÞwf;0

αsðkp⊥;1Þ
αsðkμRÞ

K−1−fΠ0ðkÞgαsðkμRÞ−fwf;0gαsðkμRÞ−
�
αsðkp⊥;1Þ
αsðkμRÞ

�
αsðkμRÞ

−fKgαsðμRÞ
�

−
Z
tMSðΦ2Þ>tcutMS

B2Π0ðkÞwf;0
αsðkp⊥;1Þ
αsðkμRÞ

Π1ðkÞwf;1
αsðkp⊥;2Þ
αsðkμRÞ

K

�
þO2B2Π0ðkÞwf;0

αsðkp⊥;1Þ
αsðkμRÞ

Π1ðkÞwf;1
αsðkp⊥;2Þ
αsðkμRÞ

K; ð9Þ

with k ¼ 1. Merging scale cuts on subtracted samples are now indicated by limits on the integrals instead of explicit theta
functions. In the above equation, B and B̄ denote fully differential cross sections at leading and next-to-leading order in the
strong coupling, in the following also called matrix element samples. In contrast to BNLO

i , B̄1 does also contain the born
contribution Bi. These are interfaced using the Les Houches Event File format. fXgαs denotes theOðαsÞ contribution to the
term X, including the factor of αs. ΠnðkÞ is short for

Πnðp⊥;n; p⊥;nþ1; x; kÞ ¼
Y
j

exp

�
−
X
i

Z
p⊥;n

p⊥;nþ1

dp2⊥
p2⊥

Z
dz
z
αsðkp⊥Þ

2π
PjiðzÞ

fiðx=z; p⊥Þ
fjðx; p⊥Þ

�
ð10Þ

and describes the no-emission probability between the two
evolution scales, taking into account all allowed i → j
splittings of all legs in an n parton state, as described by the
kernels PjiðzÞ. This no-emission probability can be calcu-
lated numerically by trial parton showering [43]. In
PYTHIA 8 [3], where the evolution of partons by emissions
and the simulation of secondary multiparton interactions

(MPI) is described by a common, interleaved, evolution
sequence, the no-emission probabilities generated by trial
showering can also accommodate no-MPI probabilities of
the relevant transverse momentum scales [44]. This allows
a smooth combination of input matrix element samples
with the MPI machinery. In case of hadronic initial states,
the necessary PDF ratios

wf;n ¼
xþn fþn ðxþn ; p⊥;nÞ
xþn fþn ðxþn ; μFÞ

x−n f−n ðx−n ; p⊥;nÞ
x−n f−n ðx−n ; μFÞ

Yn
i¼1

xþi−1f
þ
i−1ðxþi−1; p⊥;i−1Þ

xþi−1f
þ
i−1ðxþi−1; p⊥;iÞ

x−i−1f
−
i−1ðx−i−1; p⊥;i−1Þ

x−i−1f
−
i−1ðx−i−1; p⊥;iÞ

ð11Þ
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are included as additional weights. As argued above, we do
not vary the factorization scale, since it is not obvious how to
achieve a consistent reweightable variation in this case. The
subscript on On denotes the final-state multiplicity of the
states handed to subsequent event generation steps. Thus, in
some cases, e.g., to create counterevents for unitarization,
the state used to evaluate the matrix element calculation is
replaced by a lower-multiplicity state determined by reclus-
tering according to a reconstructed parton-shower history.
Finally, the K factor is only applied to configurations that
could have been produced by parton-shower emissions.
These regions are defined by being able to construct at least
one parton-shower history of emissions that are ordered in a
decreasing sequence of evolution scales. This choice is
consistent with the MC@NLO matching scheme, where hard
real-emission configurations not reachable by showering are
described with tree-level matrix elements.
Note that in this UNLOPS scheme, we set wS ¼ wNLO ¼

wI ≡ 1 i.e., treat all higher-order fixed-order corrections as
“hard corrections” that do not contribute to the all-order
result. This relatively conservative approach has the advan-
tage that scale variations due to “hard” virtual corrections do
not introduce all-order uncertainties. It has the disadvantage
that any “soft” virtual correction terms in BNLO

1 that are not
correctly reproduced by the parton shower are not leveraged
to define a more realistic all-order uncertainty.
We may estimate the theoretical uncertainties of pre-

dictions obtained by the UNLOPS NLOmerging procedure
by variations of the renormalization scale μR. For consis-
tency, these variations should not be limited to the seed
cross sections, but should also include renormalization-
scale variations of the parton shower. For this reason, we
employ the scale variations that have been implemented in
the PYTHIA 8 parton shower [20]. We extend this procedure
to ensure consistent simultaneous variations in the calcu-
lation of merging weights and a consistent setup between
matrix-element and parton-shower contributions. Every
renormalization scale in the matrix element samples Bn,
B̄n is varied, as is every explicit occurrence of μR in the
above formula. Furthermore, the same variation is applied

to each argument of p⊥;n in the strong coupling αs in the
parton shower. The variation can be produced by reweight-
ing using the variation factor k in Eq. (9).
Note that in this particular NLO merging prescription,

the NLO corrections B̄n are not reweighted. Below, we will
consider variants in which NLO events are weighted in
different a manner.

B. UNLOPS-P

Alternative unitarized merging schemes that remain
NLO correct and do not degrade the all-order behavior
can be obtained by suitably changing how all-order weights
are applied to higher-order fixed-order contributions. In
Eqs. (7) and (8), we have argued that choosing a common
reweighting for the NLO corrections BNLO

1 and the OðαsÞ
expansion of the parton shower is one (simple) way to
comply with all accuracy constraints.
As first alternative to UNLOPS, we define the

UNLOPS-P scheme (where “P” is intended to signify
the extended use of no-emission probabilities). This alter-
native unitary merging scheme is inspired by the treatment
of higher-multiplicity NLO corrections in the UN2LOPS
NNLOmatching prescription [45] and amounts to applying
a Sudakov weight factor (consisting of PDF ratios and no-
emission probabilities) to the higher-order terms. In [45], it
was argued that reweighting the remnant bracket in Eq. (8)
with a Sudakov factor can be interpreted as dressing an
IR-subtracted hard state with the effects of soft and
collinear radiation. In UNLOPS, the IR-subtracted NLO
correction is instead not dressed with higher-order effects.
The use of Sudakov factors could be regarded more
physical. It has the added benefit that the impact NLO
corrections to one-jet states in soft/collinear regions is
reduced, thus leading to a gain in numerical stability for
small merging scale values. In the UNLOPS-PC scheme
below, we will reassess and refine the interpretation as
dressing with the effects of radiation.
The expectation value of an arbitrary jet observable O in

UNLOPS-P is given by

O0

�
B̄0−

Z
tMSðΦ1Þ>tcutMS

B1Π0ðkÞwf;0

�
αsðkp⊥;1Þ
αsðkμRÞ

K− 1− fΠ0ðkÞgαsðkμRÞ − fwf;0gαsðkμRÞ−
�
αsðkp⊥;1Þ
αsðkμRÞ

�
αsðkμRÞ

− fKgαsðμRÞ
�

−
Z
tMSðΦ1Þ>tcutMS

B̄1Π0ðkÞwf;0−
ZZ

tMSðΦ1Þ<tcutMS

tMSðΦ2Þ>tcutMS

B2Π0ðkÞwf;0
αsðkp⊥;1Þ
αsðkμRÞ

Π1ðkÞwf;1
αsðkp⊥;2Þ
αsðkμRÞ

K

�

þO1

�
B̄1Π0ðkÞwf;0þB1Π0ðkÞwf;0

�
αsðkp⊥;1Þ
αsðkμRÞ

K− 1− fΠ0ðkÞgαsðkμRÞ − fwf;0gαsðkμRÞ−
�
αsðkp⊥;1Þ
αsðkμRÞ

�
αsðkμRÞ

− fKgαsðμRÞ
�

−
Z
tMSðΦ2Þ>tcutMS

B2Π0ðkÞwf;0
αsðkp⊥;1Þ
αsðkμRÞ

Π1ðkÞwf;1
αsðkp⊥;2Þ
αsðkμRÞ

K

�
þO2B2Π0ðkÞwf;0

αsðkp⊥;1Þ
αsðkμRÞ

Π1ðkÞwf;1
αsðkp⊥;2Þ
αsðkμRÞ

K: ð12Þ
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The double logarithmic Sudakov factor is dominant in the
soft/collinear region, suppressing the rise of the OðαsÞ
corrections. These features should be noticeable both in
one-jet inclusive observables, but also, by virtue of uni-
tarization, in exclusive zero-jet observables.

C. UNLOPS-PC

Another alternative to UNLOPS is the UNLOPS-PC
scheme defined in the following (where “C” is intended to
signify the extended use of running-coupling factors). This
scheme is motivated by clarifying the argument of [45]: that
reweighting the remnant bracket in Eq. (8) can be interpreted
as dressing a IR-subtracted hard state with the effects of soft

and collinear radiation. InUN2LOPS andUNLOPS-P, it was
assumed that the latter effects can be approximated through
the application of Sudakov factors. Sudakov factors pri-
marily encapsulate the dressing of parton propagators with
self-energy corrections. However, a systematic treatment of
leading-logarithmic dressing also includes the effect of
vertex corrections and of running-coupling effects [46] to
obtain an approximation of the correct ladder diagrams. It
thus stands to reason that a more physical notion of dressing
with the effects of radiation should include both Sudakov-
and running-coupling reweighting. This constitutes the
UNLOPS-PC scheme, in which the expectation value of
an arbitrary jet observable O is given by

O0

�
B̄0 −

Z
tMSðΦ1Þ>tcutMS

B1Π0ðkÞwf;0
αsðkp⊥;1Þ
αsðkμRÞ

�
K − 1 − fΠ0ðkÞgαsðkμRÞ − fwf;0gαsðkμRÞ −

�
αsðkp⊥;1Þ
αsðkμRÞ

�
αsðkμRÞ

− fKgαsðμRÞ
�

−
Z
tMSðΦ1Þ>tcutMS

B̄1Π0ðkÞwf;0
αsðkp⊥;1Þ
αsðkμRÞ

−
ZZ

tMSðΦ1Þ<tcutMS

tMSðΦ2Þ>tcutMS

B2Π0ðkÞwf;0
αsðkp⊥;1Þ
αsðkμRÞ

Π1ðkÞwf;1
αsðkp⊥;2Þ
αsðkμRÞ

K

�

þO1

�
B̄1Π0ðkÞwf;0

αsðkp⊥;1Þ
αsðkμRÞ

þ B1Π0ðkÞwf;0
αsðkp⊥;1Þ
αsðkμRÞ

�
K − 1 − fΠ0ðkÞgαsðkμRÞ − fwf;0gαsðkμRÞ

−
�
αsðkp⊥;1Þ
αsðkμRÞ

�
αsðkμRÞ

− fKgαsðμRÞ
�
−
Z
tMSðΦ2Þ>tcutMS

B2Π0ðkÞwf;0
αsðkp⊥;1Þ
αsðkμRÞ

Π1ðkÞwf;1
αsðkp⊥;2Þ
αsðkμRÞ

K

�

þO2B2Π0ðkÞwf;0
αsðkp⊥;1Þ
αsðkμRÞ

Π1ðkÞwf;1
αsðkp⊥;2Þ
αsðkμRÞ

K: ð13Þ

This scheme treats leading-order and next-to-leading
order contributions on equal footing. The inclusion of
no-emission probabilities regulates the contribution of
radiative events in soft/collinear regions of phase space.
The inclusion of the strong coupling ratio produces an
opposing effect, increasing the impact of NLO corrections
at lower splitting scales. Due to the exponential form of the
no-emission probability, the Sudakov suppression will
naturally overcome the coupling ratio effect at lower scales.
Nevertheless, away from the collinear limit, the single
logarithmic evolution of the strong coupling ratio is not
negligible compared to the Sudakov double logarithm.

D. Comparison of + 1j contributions

Before continuing, it is useful to reiterate the differences
between the UNLOPS variants, in order to gain some
intuition about the impact on phenomenology. The

differences mostly pertain to the treatment of the þ1 jet
contribution. For clarity, we split the Bornþ virtualþ real
contribution B̄i into its LO component Bi and a pure NLO
correction BNLO

i , and label the original UNLOPS prescrip-
tion as UNLOPS-1, since a unit weight is applied to NLO
contributions. With the notation

w1 ¼ Π0ðkÞwf;0
αsðkp⊥;1Þ
αsðkμRÞ

K;

w2 ¼ Π0ðkÞwf;0
αsðkp⊥;1Þ
αsðkμRÞ

Π1ðkÞwf;1
αsðkp⊥;2Þ
αsðkμRÞ

K; ð14Þ

the exclusive þ1 jet components of the merging
schemes read

[UNLOPS-1]

B1w1 þ
�
BNLO
1 − B1

�
Π0ðkÞjαsðkμRÞ þ wf;0jαsðkμRÞ þ

αsðkp⊥;1Þ
αsðkμRÞ

����
αsðkμRÞ

þ KjαsðμRÞ
��

−
Z
tMSðΦ2Þ>tcutMS

B2w2; ð15Þ

SCALE AND SCHEME VARIATIONS IN UNITARIZED NLO … PHYS. REV. D 101, 114007 (2020)

114007-7



[UNLOPS-P]

B1w1 þ
�
BNLO
1 − B1

�
Π0ðkÞjαsðkμRÞ þ wf;0jαsðkμRÞ þ

αsðkp⊥;1Þ
αsðkμRÞ

����
αsðkμRÞ

þ KjαsðμRÞ
��

Π0ðkÞwf;0 −
Z
tMSðΦ2Þ>tcutMS

B2w2; ð16Þ

[UNLOPS-PC]

B1w1 þ
�
BNLO
1 − B1

�
Π0ðkÞjαsðkμRÞ þ wf;0jαsðkμRÞ þ

αsðkp⊥;1Þ
αsðkμRÞ

����
αsðkμRÞ

þ KjαsðμRÞ
��

Π0ðkÞwf;0
αsðkp⊥;1Þ
αsðkμRÞ

−
Z
tMSðΦ2Þ>tcutMS

B2w2: ð17Þ

Thus, the main difference between the variants lies in
the factor multiplying the term in square brackets. As
argued above, it is important to apply weights to this
combined term, since, if a logarithmically enhanced weight
is applied to only the NLO term, or only the product of
Born-term and the first-order expanded weight, then a
leading-logarithmic term will be introduced on higher
orders in αs, thus spoiling the LL accuracy of the merging
prescription.
For well-separated hard emissions, the UNLOPS-1 and

UNLOPS-P schemes should agree, since the Sudakov
factor is approaching unity. This does not necessarily
extend to the UNLOPS-PC scheme, for which
αsðp⊥;1Þ=αsðμRÞ ≠ 1 is possible if p⊥ ↛ μR for increas-
ingly hard emissions. This is e.g., the case in eþe− → jets
processes in PYTHIA, where the emission p⊥ in final-state
radiation is bounded by p⊥ < meþe−=2, and μR is typically
set to meþe− , such that the ratio is strictly larger than one.
The ratio may also be smaller than one if parton-shower
emissions or reconstructed histories are possible at higher
p⊥ values than μR, as is e.g., the case in Drell-Yan events
with a jet p⊥ > μR ¼ MZ.
The term in brackets can, depending on kinematics, have

either sign. Thus, it is not immediately obvious if changing
from one UNLOPS variant to another will uniquely lead to
either enhancement or depletion. However, we expect the
UNLOPS-P prediction to be closest to a leading-order
unitarized result, since the Sudakov weight is smaller
than unity. Due to the application of the Sudakov factor
in UNLOPS-P, the fraction of negative cross section in
the event generation is expected to be reduced. In
UNLOPS-PC, the Sudakov factor and the coupling ratio
weight have opposite effects on the fraction of negative
cross section, so that the net effect is not obvious. For the
specific example of eþe− → jets at the center of mass
energy

ffiffiffi
s

p ¼ MZ, with up to one additional jet at NLO, and
a merging cut at minij pLund⊥;ij ¼ 5 GeV, we find that the
fractions of negative contributions to the cross section are
given by

UNLOPS-1 UNLOPS-P UNLOPS-PC

jσ−inclj
jσ−incljþjσþinclj

35.7% 32.4% 36.2%

Thus, the amount of negative contributions differs only
very mildly between the schemes.

IV. APPLICATION AND RESULTS

This section intends to assess the impact of renormal-
ization-scale and merging-scheme variations using a small
selection of illustrative example observables. We have
implemented the different variants of unitary NLO merging
in PYTHIA 8, relying on matrix element input from
MadGraph5_aMC@NLO [47]. Furthermore, we implemented
the renormalization scale variation, taking into account
variations of fixed-order and parton-shower origin, as well
as in the weights applied in the merging procedure. See
Appendix for further details. The implementation will be
made available in a future release of PYTHIA8.3.
For reasons of consistency between the parton-shower

subtraction terms employed in aMC@NLO and the event
generator, we use a nondefault configuration of the parton
shower for the first emission. This includes a global recoil
scheme, where the recoil of a final-state emission is shared
among all final-state partons in the event. Furthermore,
matrix element corrections to the parton shower are
removed, and we do not allow for an αs running in the
first parton-shower emission, since we use fixed renorm-
alization-scale choices in aMC@NLO when generating
matrix elements. We terminate the evolution after the first
emission, and store the resulting events as Les-Houches
event files. Using these settings ensures that the parton-
shower contribution of the first emission on Born configu-
rations correctly cancels the parton-shower subtraction
terms used in the generation of matrix elements, leading
to a consistent NLO event sample. This event sample is
then used as input for subsequent NLO merging, which
proceeds using a default PYTHIA shower setup. For con-
sistency with the scale variations performed in the matrix
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element generation, which are based on the αs running
provided by the employed PDF packages, we use a second-
order running coupling with reference value of αsðMZÞ ¼
0.118. This allows us to consistently vary renormalization
scales within matrix element generation, merging weight
evaluation, and parton-shower emissions.
To generate events, we employ the minimal value of all

possible shower splitting scales pLund⊥;ij as a merging scale6 to
regularize fixed-order inputs and act as separator between
the hard emission phase space described by the fixed-order
matrix element, and the soft region described by the parton
shower.
To assess uncertainties, we investigate the effect of

variations on the modeling of the eþe− → jets and pp →
W þ jets processes. For both processes,we include up to one
additional jet at NLOand the second and third jet emission at
LO fixed-order accuracy. The plots in this section are
generated using the RIVET toolkit [48]. In order to suppress
large fluctuations in the variation bands at low scales, we do
not allow for shower variations below three times the shower
cutoff, and limit the allowed range of variation of the strong
coupling by requiring jα0s − αsj ≤ 0.75.

A. Jet production in electron-positron collisions

In this section, we highlight renormalization-scale and
merging-scheme uncertainties by referring to electron-
positron annihilation into jets. Electron-positron collisions
are simulated at the center of mass energy

ffiffiffi
s

p ¼ MZ to be

able to compare the different merging prescriptions to LEP
data. We use a pLund⊥;ij merging scale of value 5 GeV.

1. Comparison of UNLOPS-1,
UNLOPS-P and UNLOPS-PC

Figure 1 shows the differential jet separation distribu-
tions in the 3 → 2 clustering y23 and in the 4 → 3 clustering
y34, with the Durham k⊥-jet separation [49],

yij ¼ 2ð1 − cos θijÞ minðE2
i ; E

2
jÞ=s; ð18Þ

normalized with the squared CM energy s. The differing
weighting prescriptions in the different schemes affect
both the central prediction and the renormalization-scale
variation bands.
The y23 jet separation distribution in Fig. 1 shows that the

central prediction at NLO accuracy agrees between
UNLOPS-1 and UNLOPS-P at high jet separations, since
the Sudakov factor is close to unity in these regions, and no
strong coupling ratios are applied in the two schemes. In
the UNLOPS-PC prescription, the strong coupling ratio
introduces an upward shift, by effectively evaluating
the coupling at a lower scale. Going to lower scales,
UNLOPS-P falls compared to UNLOPS-1, due to the
Sudakov suppression. In UNLOPS-PC, the strong coupling
running counteracts this effect, leading to a milder
decrease. The unitary property in all schemes ensures that
an increase (decrease) at high scales induces a decrease
(increase) and lower scales. This leads to the observed
central predictions at low separations behaving opposite to
the high scale results for every scheme. High y34 values
agree for all schemes, since in this region, all schemes

FIG. 1. Differential jet separation distributions y23 and y34 in eþe− → jets at
ffiffiffi
s

p ¼ MZ. The left distribution is described at NLO
accuracy at high scales, the right at LO accuracy for all jet separations.

6See e.g., [35] for a detailed definition.
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recover the result of the UMEPS unitary merging pre-
scription [35]. However, we observe differences at lower
scales. This can be explained by the NLO precise lower
multiplicity sample (here, the eþe− → 3jet NLO sample),
that is modified by the different weighting prescriptions,
and is showered below the merging scale, thus contributing
to y34 at small separations. Overall, the central description
of jet separation observables, which are very sensitive to the
merging weight prescriptions, differs by up to about 5%
between the described schemes.
Scale variation bands for each merging scheme include

variations of fixed-order, parton-shower, and merging-
reweighting origin. As opposed to renormalization-scale
variations in the matrix elements only, this induces larger
uncertainties at small jet separations, where emissions are
generated by the parton shower. For observables at LO
precision e.g., y34 in Fig. 1, variations of the scales induce a
very large band, amounting to about 20% in each direction
for all schemes alike. In unitary merging schemes, the
subtraction of the respective jet multiplicity sample from
the next-lower jet topology turns the variation bands
around, since they contribute, via showering, at low jet
separations. This leads to a region with unphysically small
uncertainty bands where the varied distributions cross.
Predominantly NLO precise distributions, such as y23 in

Fig. 1, show smaller bands at high jet separations. In this
region, renormalization-scale uncertainties in the method
contribute only at Oðα2sÞ due to NLO-precise inputs,
instead of OðαsÞ otherwise. At small jet separations, the
distribution is again described by parton-shower emissions
instead, so that a large variation is observed. At the
transition, there is an unphysically small variations, as
observed for LO observables.
Comparing the size of the variation bands between

UNLOPS-1, UNLOPS-P, and UNLOPS-PC, we note
that UNLOPS-1 and UNLOPS-PC are very similar, while
UNLOPS-P leads to larger scale variation bands. This
suggests that the application of Sudakov suppressions
alone—without taking strong coupling ratios into
account—introduces an additional variation, which is
partly canceled by the coupling ratio variation in
UNLOPS-PC. The Sudakov variation behaves as
1 − αsðc1L2 þ c2Lþ c3Þ þOðα2sÞ, while the αs ratio
behaves as 1þ αsc0LþOðα2sÞ, where L denotes a loga-
rithmic enhancement of type lnQ2=p2⊥, Q denotes a
characteristic scale of the hard process and p2⊥ the scale
of jet separation. AtOðα3sÞ (i.e., induced byOðαsÞ terms of
the reweighting), we thus observe a partial cancellation in
the single logarithmic contribution in UNLOPS-PC, which
is not present in UNLOPS-P. We have found changes of
similar size when setting wS ¼ 1, wNLO ¼ wLO, i.e., remov-
ing the consistency condition in Eq. (8) and jeopardizing
the logarithmic accuracy. Thus, a very conservative uncer-
tainty estimate that also acknowledges the potential of
subleading-logarithmic mismodeling should likely consist

of the combination of the scale uncertainties of all three
merging schemes.

2. Comparison to LEP measurements

As observed above, the difference between the weighting
prescriptions is rather minor, amounting to no more than
about 5% for very sensitive jet separation observables. We
furthermore do not observe a large difference in the
description of experimentally measured data distributions.
In Fig. 2, we compare the thrust and Durham jet resolution
to ALEPH [50] and OPAL [51] data.
The Durham jet separation distribution is well described

by all schemes, especially at large jet separations. In total,
the data are compatible with the prediction of all schemes
across most jet separations. Only at very low separations,
where the statistical uncertainty on the data is rather large,
do the predictions differ mildly from the data distribution.
Overall, UNLOPS-PC agrees slightly better with the
measured data distribution, compared to the other weight-
ing schemes.
The thrust distribution

1 − T ¼ 1 −max
n⃗

P
ijn⃗ · p⃗ijP
ijp⃗ij

ð19Þ

ranges between zero for very narrow back-to-back jet
configurations, corresponding to very soft “hardest” emis-
sions, and 1=3, corresponding to three very well-separated
jets. We find larger scale variations—caused by shower
emissions—at low 1 − T, while high 1 − T variations are
milder. The band is in general wider than in the Durham jet
separation distribution, since the thrust distribution is more
sensitive to further emissions described only at LO. The
agreement with data is satisfactory, with differences only at
low 1 − T, where even the hardest emission is modeled
solely by the parton shower.
In both cases, the unphysically narrow variation bands

where the variations cross can potentially lead to a
significant deviation from measured data. In the observ-
ables shown in Fig. 2, an envelope of the result of all
schemes may be used to mitigate such an effect. The
unphysical “squeezing” of the variation bands is produced
by the unitary nature of the simulation, i.e., by the fact that
the area under the curve is fixed, and identical for all
variations. Thus, a downward deformation in one part of
the spectra will be compensated by an upward deformation
in another part of the spectra, such that the area is
preserved. Such constrained shifts of three curves will
induce a crossing point where the bands are very narrow.
The shift is different for different variations, such that the
effect is mitigated by including the scheme variations.
Other variations that induce similar constrained shifts (e.g.,
variations of the merging scale value, the parton-shower
starting scale, or of power corrections to the parton-shower
splitting kernels) could lead to similar mitigation and
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should be included in a comprehensive event generator
uncertainty budget. We do not include these very different
sources of variation here.

B. W + jets production in proton-proton
collisions at LHC

The simulation of final states in hadron collisions is
typically much more involved than in lepton collisions, due
to the rich structure of the composite colliding particles, as
well as the larger phase space available to the final-state
particles. Thus, an assessment of uncertainties due to scale
and scheme variations in hadron colliders is necessary. In
this section, we illustrate these uncertainties usingW þ jets
final states at proton-proton collisions at

ffiffiffi
s

p ¼ 7 TeV. Jet
observables of this process are then compared to LHC data.
We use a pLund⊥;ij merging scale definition, with value 10 GeV
as merging scale cut. Furthermore, we apply an NLO
K-factor K ¼ σNLOðpp → WÞ=σLOðpp → WÞ to all lead-
ing-order input configurations that could have otherwise
been reached by the p⊥ ordered shower. Non-ordered
additional jet configurations are thus interpreted as
“genuine” real-emission corrections, for which a naive
rate correction can be considered questionable. All results
are produced using the NNPDF3.1_nlo_as_0118 PDF set
[52] via the LHAPDF framework [53].
Proton-proton collisions introduce (at least) two more

sources of renormalization-scale uncertainty: the treatment
of running couplings in initial-state shower evolution
and in multiparton interactions. Since the latter are highly
correlated with other semi- or non-perturbative para-
meters, we do not consider their impact in this study.

Renormalization-scale and merging-scheme variations for
hadronic initial states thus require only simple generaliza-
tions on top of the previous section.
Since the term in parentheses in Eqs. (15)–(17) acquires

PDF-dependent components, it is not obvious that the level
of similarity found in eþe− collisions is also present at
hadron colliders. Figure 3 shows the weighting schemes
compared to pp → W þ jets data at

ffiffiffi
s

p ¼ 7 TeV for the
k⊥ 0 → 1 clustering scale [54] and the exclusive jet
multiplicity [55]. At high

ffiffiffiffiffi
d0

p
, no difference between

the schemes is found. This is due to the reference
renormalization scale μR ¼ MW chosen in the generation
of matrix elements being reachable by parton showering.
Thus, the differences between UNLOPS-P and UNLOPS-
PC are less pronounced than in eþe− collisions. We observe
a very light suppression of UNLOPS-PC at high

ffiffiffiffiffi
d0

p
,

compared to UNLOPS-P. The strong coupling ratio enhan-
ces UNLOPS-PC compared to UNLOPS-P below MW. At
very low scales, the distribution is again dominated by
parton-shower emissions from zero-parton states, as well as
shower emissions from the integrated subtraction of the
NLO one-jet sample. The overall strong coupling ratio
enhancement of the subtraction in UNLOPS-PC is con-
sistent with the lower UNLOPS-PC result observed at low
scales. Note that with the chosen PDF set, all schemes
struggle to describe the low-p⊥ region satisfactorily. This
suggests that a retuning of the MPI model might be
necessary when using this setup productively.
The first jet clustering scale

ffiffiffiffiffi
d0

p
is dominated by NLO-

precise contributions at high values and thus has a very
small scale variation band in that region. However, this
seems to also be the case at small separation, where the

FIG. 2. Renormalization-scale variation bands for the differential Durham jet resolution and thrust compared for the different
variations of unitary NLO multijet merging. Data from [50,51].
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parton shower, as well as MPI effects, dominate. The reason
for these milder variations lies in the implementation of the
shower scale variations in PYTHIA 8 [20]: in order to avoid
numerical instabilities in the reweighting procedure when
approaching low scales, no shower variations are performed
below a certain scale (determined by multiplication of a
factor and the shower cutoff scale). In initial-state radiation,
this is applied to the regularization parameter pT0Refwith
default value of 2 GeV, while in final-state radiation, it
applies to the pT0 parameter of default value 0.5 GeV.
Thus, shower variations in initial-state radiation are sup-
pressed below transverse momentum scales of about 6 GeV.
These values were chosen to limit the size of the weight
fluctuations induced by the shower reweighting procedure
of [20], but lead to the merging prescriptions not agreeing
within their bands at low scales. Using different merging
schemes thus helps to isolate phase-space regions with
questionable uncertainty estimates, and a combination of
scheme variations is advisable.
The right plot in Fig. 3 shows the exclusive jet multi-

plicity of jets with p⊥ > 30 GeV [55]. The zero-jet and
one-jet bins, which are described with NLO precision, are
reproduced very well. Higher multiplicities, described at
LO or parton-shower accuracy only, are underestimated.
While the differences between UNLOPS-P and UNLOPS-
PC are negligible in this observable, both schemes yield a
very slightly larger exclusive one-jet rate than UNLOPS-1.
If the contribution of the term in square brackets in
Eqs. (15)–(17) was mostly positive in the relevant region
of phase space, the Sudakov factor should rather lead to a
lower prediction for UNLOPS-PC and UNLOPS-P. That
this is not the case suggests that the contribution is negative

at least in some parts of the phase space, highlighting that
there is a nontrivial interplay between the different con-
tributions, and that rule-of-thumb reasoning should be
considered with caution.
The left two plots in Fig. 4 show the scalar sum of jet

transverse momenta HT for inclusive and exclusive two-jet
events. In particular, distribution of HT in exclusive two-
jet events shows a strong overshooting of the prediction,
compared to the data. This is due to a mismodeling of the
prediction for the transverse momenta of the first- and
second-hardest jets. In inclusive two-jet events, this effect is
milder due to an underestimate of subleading jet transverse
momenta, which conspires with the former effect to yield a
less pronounced effect. Appropriate scale choices for
unordered jet event topologies [56] or the inclusion of
electroweak histories [57,58] have been inferred to improve
this situation.7 The new NLO merging prescriptions pro-
posed in this study do not improve this mismodeling of
data. Finally, the right plot in Fig. 4 shows the azimuthal
distance between the hardest jet and the muon in leptonicW
signatures. No significant differences between the schemes
is observed, suggesting that the correlation between QCD
and electroweak parts of the events are insensitive to the
scheme variation.
The observables discussed here serve as an illustrative

example of the effects of scale and scheme variations in
unitary NLO merging. Similar effects can be seen in other

FIG. 3. W þ jets production at proton-proton collisions with
ffiffiffi
s

p ¼ 7 TeV: k⊥ splitting scale of first jet [54] and exclusive jet
multiplicity [55].

7We use the PYTHIA settingsMerging:unorderedASscalePrescri
p ¼ 1 to use a combined scale setting in αs for unordered histories
and Merging:IncompleteScalePrescri p ¼ 1 to get sensible
shower starting scales for incomplete histories.
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observables. More observables, processes, and energies can
be studied with the implementation made available in a
future release of PYTHIA 8.3.

V. SUMMARY AND OUTLOOK

Event generator uncertainties are one of the main
obstacles to precision measurements in collider experi-
ments. This is particularly obvious when event generators
are used as an accurate model of large backgrounds to high-
energy signal processes with low rate appearing in the tails
of Standard-Model-dominated observables. To describe
such backgrounds, precise NLO merged event generator
calculations are needed. Variations of perturbative param-
eters in such calculations should give a good indication of
the overall precision of the predictions. However, since
NLOmerged calculations include fixed-order as well as all-
order effects, and combine multiple calculations in an
intricate manner, it is not completely obvious how a realistic
perturbative uncertainty should be assessed. In this paper,
we have presented steps toward this goal and in particular
focused on the interplay between renormalization-scale
choices and the very definition of the merging scheme at
higher orders. These enter at the same order, such that it is
important to quantify their individual impact, as well as their
correlation. For this purpose, we extended the unitarized
NLO merging prescription in PYTHIA 8 to accommodate
renormalization-scale variations (as a combined framework
encompassing correlated variations of fixed-order, parton-
shower, and merging components) and merging-scheme
changes. For the latter, we have introduced two extensions
of the UNLOPSmethod, which were motivated by different
interpretations of dressing process-dependent NLO correc-
tionswith the all-order effects of soft and collinear radiation.
The implementation will be publicly available in a future
release of the PYTHIA 8.3 event generator.
The renormalization-scale and merging-scheme varia-

tions were used to estimate the perturbative uncertainty
of illustrative observables in electron-positron and

proton-proton collisions. Overall, the estimate is as
expected: the uncertainty is small in regions that are
primarily sensitive to the NLO fixed-order components
of the calculation and large in regions dominated by parton
showering. The renormalization-scale uncertainty bands of
different merging schemes largely overlap. In transition
regions between calculations of different jet multiplicity,
the difference between (the central result of) the schemes
can be larger than scale variations, due to the latter being
artificially small due to unitarity requirements. Some
visible differences between the merging schemes, in size
similar to scale uncertainties, can also remain in regions
sensitive to very well-separated jets. This is mainly related
to a different definition of the functional form of the
argument of the running coupling at higher orders, which
persists even in those phase-space regions. Thus, a joint
scale and scheme variation may be considered a more
reliable uncertainty estimate.
The current study should be regarded as an initial step in

the assessment of uncertainties in unitarized NLO merging
schemes.We have focused on a subset of variations forwhich
a minimization of contamination by statistical fluctuations
in the event generation is possible through a reweighting
procedure. It would be very valuable to extend this property
also to other sources of uncertainty, such as consistent
combined factorization scale and shower starting-scale var-
iations, changes in cutoff of parton-shower evolution, and
changes in the merging scale definition and value. These
would require an extensive redesign of the parton-shower
algorithm.More insight into the effect of using different PDF
parametrizations would also be valuable, but is complicated
by the strong correlation with other semi or non-perturbative
components of the event generator—which is commonly
held fixed after event generator tuning. Nevertheless, we
believe thatmaking thedevelopments presented in the current
study available within the PYTHIA 8 event generator will
already allow also nondevelopers to performmore systematic
studies of Standard-Model background uncertainties.

FIG. 4. W þ jets production at proton-proton collisions with
ffiffiffi
s

p ¼ 7 TeV: scalar sum of jet transverse momenta HT for inclusive and
exclusive two jet events [55] and azimuthal distance Δϕ between hardest jet and muon [59].
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APPENDIX: IMPLEMENTATION DETAILS

1. Merging weight variation

For completeness, we describe some details of the
implementation of scale variations, especially for the
OðαsÞ contribution.

We generate the matrix element samples with a fixed
renormalization scale. At leading order, we do not use
scale variations in the matrix element samples, since αs
variations can simply be implemented as strong coupling
ratios in PYTHIA based on the jet multiplicity of the
event.
The all-order weights are calculated as described

above. For leading-order samples, the strong coupling
ratio has the central scale in the denominator, to be
consistent with no variations in the leading-order matrix
element samples. Emission probability variations are
generated from weight variations in the parton shower.
The PDF ratio, MPI weights, and the K factor are not
varied.
The expanded weights to OðαsÞ, which are only

applied to leading-order matrix element input, can be
written as

BnðμRÞ
�
αsðkμRÞ
αsðμRÞ

�
n
�
1þ αsðkμRÞ

αsðμRÞ
ðfirst term in αsðμRÞ expansion of weight factorsÞ þ fKgαsðμRÞ

�
; ðA1Þ

with jet multiplicity n. The first order contribution to the
strong coupling ratio is αsðkμRÞb0=ð2πÞ0.5 logðμ2R=p2⊥Þ.
The variation in the logarithm cancels since it is applied to
both the renormalization scale and the shower scale. For
other weight components, only the αs coefficient is varied.
The K factor is not varied.

2. e + e − jet cut

The pLund⊥ cut we employ as merging scale cut is not
available for NLO matrix elements in MG5_aMC. Instead,
a sufficiently inclusive jet k⊥ cut can be used to regularize
collinear divergences, and the pLund⊥ cut is then applied in
PYTHIA 8. To make sure that this alternative k⊥ cut is not
stronger than pLund⊥ for specific configurations, the k⊥ value
is usually chosen much smaller than the desired merging
cut, leading to a lower efficiency.
For electron-positron collisions, a Durham k⊥ jet cut

[49], denoted as dij, can be used to regularize the þ1 jet
NLO matrix elements with the same value as the Lund p⊥
[60] merging scale. The requirement for this to be allowed
is dij ≥ pLund⊥;ij such that a cut on dij is more inclusive than a
pLund⊥ cut. The Lund shower p⊥ is given by

pLund⊥;ij ¼ zð1− zÞq2

¼ EiEj

ðEi þEjÞ2
ðm2

i þm2
j þ 2ðEiEj − jp⃗ijjp⃗jj cosθijÞÞ:

ðA2Þ

Here we use the angle θij between partons i and j and the
energy fractions z and 1 − z as employed by the PYTHIA p⊥
shower. If we generate events with zero quark masses, we
find

pLund⊥;ij ¼ 2E2
i E

2
j

ðEi þ EjÞ2
ð1 − cos θijÞ

¼ 2 minðE2
i ; E

2
jÞmaxðE2

i ; E
2
jÞ

ðminðEi; EjÞ þmaxðEi; EjÞÞ2
ð1 − cos θijÞ ðA3Þ

≤
2 minðE2

i ; E
2
jÞmaxðE2

i ; E
2
jÞ

ðmaxðEi; EjÞÞ2
ð1 − cos θijÞ

¼ 2 minðE2
i ; E

2
jÞð1 − cos θijÞ ¼ dij; ðA4Þ

which justifies the efficient jet dij cut on the generated þ1

jet NLO matrix element samples. However, the above is
only true for the first emission: the energy ratios in the Lund
p⊥ measure are defined in the dipole center of momentum
frame, while the energies in the Durham clustering are
taken in the whole event center of momentum frame. For
the first emission, these two are identical. For further NLO
jet corrections, which we do not employ here, and for
proton proton collisions, a more conservative cut must be
applied.
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