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We propose a novel approach to compute the cross section of near-threshold J=ψ and ϒ production in
electron-proton scattering at large photon virtualitiesQ2 based on an operator product expansion. We show
that the process can be used to extract the gluon part of the D-term gravitational form factor of the proton.
At the subleading level, it is also sensitive to the trace anomaly effect of QCD.
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I. INTRODUCTION

The exclusive photoproduction of J=ψ near threshold
has a long history [1–3], starting almost immediately after
the discovery of J=ψ . In the early days, it was one of the
key measurements for reconfirming the existence of J=ψ ,
as well as studying its basic properties such as the coupling
to hadronic matter. Over the past two decades, theoretical
interest in this reaction resurfaced every once in a while
[4–12]with different focuses, but itwas not until recently that
the subject draw a lot of attention from the viewpoint of the
nucleon structure. It has been suggested theoretically [4,9]
that the detailed behavior of the cross section near threshold
is sensitive to the trace anomaly of QCD, hence it can shed
light on the origin of the proton mass (see the related works
in [13–15]). This is one of the main motivations for the
ongoing experiments at Jefferson laboratory (JLab) [16,17].
Moreover, the National Academy of Science in the U.S. [18]
has recently identified the protonmass problem as one of the
major scientific goals of the future electron-ion collider (EIC)
[19,20]. The subject is also actively discussed in the context
of the EIC in China [21]. It is then perfectly possible that the
physics of near-threshold production grows into an important
subfield in the EIC era.
The existing theoretical approaches are roughly divided

into two categories. The one that has been used since the
1970s [3,4,22,23] is to assume vector meson dominance
(VMD) for the incoming photon. In this approach, the
original problem γp → J=ψp0 is reduced to forward
scattering pJ=ψ → pJ=ψ which is more amenable to
various theoretical tools. A heavy quarkonium interacts
with a hadron only via gluon exchanges. In the heavy quark

mass limit, the interaction effectively becomes local and the
scattering amplitude is described by the moments of the
gluon distribution function. At the subleading level, it also
depends on the gluon condensate in the proton hpjF2jpi
[4,24] which constitutes the major part of the QCD trace
anomaly.
The second approach makes use of ‘two-gluon form

factors’ hp0jFFjpi [5,6,9]. One of the distinctive features of
near-threshold quarkonium production is that the momen-
tum transfer t ¼ ðp0 − pÞ2 is large. However, in the VMD
approach, nonforwardness is trivialized even though the
threshold value

ffiffiffiffiffiffiffiffi
−tth

p
≈ 1.5 GeV is comparable to the

charm quark mass which is treated as the only hard scale
of the problem. In [9], it has been shown via a holographic
method that the amplitude is proportional to the gravita-
tional form factor hp0jTg

αβjpi where Tg
αβ is the gluon part of

the energy momentum tensor. Subsequently, the precise
relation between the trace of Tg

αβ and the gluon condensate
operator F2 has been understood [25,26]. On the other
hand, hp0jTg

αβjpi also contains the so-called D-term which
appears only in nonforward kinematics and which has
attracted a considerable attention lately (see a recent review
[27] and references therein). The results of [9,13,14]
suggest that near-threshold quarkonium production is a
unique process that can directly access not only the gluon
condensate, but also the gluon D-term. The latter aspect is
quite complementary to the ongoing effort to extract the
quark D-term from deeply virtual Compton scattering
(DVCS) [28–30]. Yet, holographic approaches are at best
a model of QCD, and it remains to be seen to what extent
the obtained predictions are borne out in real QCD.
Overall, the current theoretical status just described is not

totally satisfactory. What is missing is a first-principle
approach in QCD which can be systematically improved
and compared to the data. The present work is a step toward
this aim. Instead of photoproduction, we propose to study
leptoproduction with large photon virtualities q2 ¼ −Q2.
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So far, leptoproduction has received remarkably little
attention in the context of threshold production, perhaps
because as Q2 gets larger, one is further away from the
forward kinematics. However, the large-Q2 region appears
to be the cleanest setup from a perturbative QCD point of
view. We in fact consider the limit Q2 ≫ M2 where M is
the quarkonium mass.
This paper is organized as follows. In the next section we

briefly review the kinematics of the reaction γp → J=ψp0
near threshold. In Sec. III, we lay out our strategy to
compute the scattering amplitude based on operator prod-
uct expansion (OPE). In Sec. IV, we discuss the various
two-gluon form factors involved. Then in Sec. V, we
numerically evaluate the cross section and study the impact
of the D-term as well as the gluon condensate. Section VI is
devoted to conclusions.

II. KINEMATICS

We shall be interested in the near-threshold production of
a heavy quarkonium vector meson H with mass M in
electron-proton scattering ep → e0γ�p → e0Hp0. We have
in mind H ¼ J=ψ andϒ. The center-of-mass energyW2 ¼
ðqþ pÞ2 of the virtual photon-proton subsystem at the
threshold is

W2
th ¼ ðmN þMÞ2; ð1Þ

where mN ¼ 0.94 GeV is the proton mass. Numerically,
Wth ≈ 4.04 GeV for J=ψ andWth ≈ 10.4 GeV forϒ. q and
p are the virtual photon and proton momenta, respectively,
with Q2 ¼ −q2 being the photon virtuality. Near the
threshold, the Bjorken variable takes the form

xB ¼ Q2

2p · q
≈

Q2

Q2 þM2 þ 2mNM
: ð2Þ

Equation (2) shows that, unlike the usual situation in DIS,
Q2 and xB are not independent variables. xB approaches
unity as Q2 goes to infinity. We also see that, somewhat
counterintuitively, threshold production can occur even
when Q2 is arbitrarily large, though of course the value
of Q2 is limited in actual experiments. Using the standard
variables in DIS, Sep ¼ ðpþ lÞ2, y ¼ p · q=p · lwhere lμ

is the incoming electron momentum, we can write

W2 ¼ yðSep −m2
NÞ þm2

N −Q2: ð3Þ

Small-W does not necessarily imply small-Sep when Q2 is
large. In particular, the process can be studied at the future
EIC [31].
Let p⃗cm and k⃗cm be the 3-momentum of the incoming

proton and outgoing quarkonium, respectively, in the center
of mass frame of the γ�p subsystem.

p2
cm ¼ W4 − 2W2ðm2

N −Q2Þ þ ðm2
N þQ2Þ2

4W2
;

k2cm ¼ ðW2 − ðM þmNÞ2ÞðW2 − ðM −mNÞ2Þ
4W2

: ð4Þ

The momentum transfer is

t ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
cm þm2

N

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2cm þm2

N

q
Þ2 − ðp⃗cm þ k⃗cmÞ2: ð5Þ

At the threshold, kcm ¼ 0 so that

tth ¼ 2mNðmN −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
cm þm2

N

q
Þ ¼ −

mNðM2 þQ2Þ
mN þM

: ð6Þ

We see that jtthj is minimal in photoproduction Q2 ¼ 0 and
monotonously increases with increasing Q2. In the heavy-
quark mass limit, Q2 ≫ jtthj. Away from the threshold, t
takes a value in the range jtmaxj > jtj > jtminj depending on
the angle between p⃗cm and k⃗cm. The differential cross
section is given by

dσγ
�p
T=L

dt
¼ αem

8ðW2 −m2
NÞWpcm

1

2

X
spin

jhp0kjϵT=Lq · Jemð0Þjpij2;

ð7Þ

where Jμem ¼ P
f efq̄fγ

μqf is the electromagnetic current
(ef being the charge in units of jej) and T=L refers to the
transversely (T) or longitudinally (L) polarized virtual
photon. The factor 1=2 is for averaging over proton
helicities. The nontrivial dynamics of QCD is contained
in the hadronic matrix element

Z
d4ye−iq·yhp0kjJνemðyÞjpi

¼ ð2πÞ4δðkþ p0 − q − pÞhp0kjJνemð0Þjpi: ð8Þ

Computing (8) from first principles in QCD is a challeng-
ing task. Most of the previous theoretical works have
focused on the photoproduction limit. In contrast, in this
paper we shall investigate leptoproduction in the large
Q2 ≫ M2 region.

III. OPE AT LARGE Q2

In this section, we formulate our strategy to calculate the
hadronic matrix element hp0kjJemjpi near threshold at large
Q2 ≫ M2. We have chosen to work in the high Q2 region
for reasons to become clear shortly. For definiteness, we
consider J=ψ production, but the case withϒ is completely
analogous. In fact, our approach is better justified when
M ≫ mN . Thus, ϒ production is more preferred from a
theoretical point of view, though of course experimentally it
is more challenging.
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Let us first mention that, if the center of mass energy is
sufficiently high s ¼ W2 ≫ M2; jtj, the process is com-
monly called deeply virtual meson production (DVMP).
The cross section is known to factorize in perturbative QCD
in terms of the generalized parton distribution (GPD) and
the meson distribution amplitude (DA) [32]. Near the
threshold, s ¼ OðM2Þ, and jtj is comparable to, or even
exceeds s depending on the value of Q2, see (6). Note,
however, that s is small because of the cancellation s ¼
2p · q −Q2 þ � � � and xB ¼ Q2=2p · q stays close to unity.
Moreover, 2p · q ∼Q2 ≫ jtj at least parametrically when
M ≫ mN [see (6)]. This gives us some hope that a
perturbative approach is possible, see [33,34] for an
approach potentially related to the following discussion.
Our basic argument is that near the threshold, the

amplitude (8) is related to the following current-current
correlator

ϵ�μðkÞi
Z

d4xd4yeik·x−iq·yhp0jTfc̄γμcðxÞJνemðyÞgjpi; ð9Þ

where ϵμðkÞ is the J=ψ polarization vector. This matrix
element is similar to the one that appears in doubly virtual
Compton scattering (DDVCS) γ�ðqÞp → γ�ðkÞp0, or time-
like Compton scattering (TCS) in the special case q2 ¼ 0
(see, e.g., [35]). However, there is a crucial difference. The
DDVCS amplitude is given by the correlator hJemJemi,
and is dominated by the light quark degrees of freedom
(light quark GPDs) except in the very small-xB region
where it is dominated by gluons. In (9), on the other hand,
one of the electromagnetic currents has been replaced by
the charm quark current operator (bottom quark, in the case

ofϒ production). As a result, only the charm component of
the other Jem is relevant, and the matrix element becomes
primarily sensitive to the gluonic content of the proton.
That the J=ψ production amplitude is related to a

DDVCS-like (photon production) amplitude is intuitively
reasonable, in view of the fact that in actual experiments, a
J=ψ and a timelike photon with virtuality exactly at the
J=ψ mass are practically indistinguishable as they are
probed via leptonic final states (eþe− pairs). However,
in DDVCS or TCS, the resonance region k2 ≈M2 is usually
avoided because the nonperturbative final state effect to
produce the vector meson comes into play. As a function of
k2, (9) has a sharp resonance peak near the J=ψ mass shell.
Using the LSZ reduction formula, we can write

eefϵ�μðkÞi
Z

d4xd4yeik·x−iq·yhp0jTfc̄γμcðxÞJνemðyÞgjpi

≈
gγJ=ψ

k2 −M2 þ iMΓ

Z
d4ye−iq·yhp0kjJνemðyÞjpi; ð10Þ

where ef ¼ 2=3 for the charm quark and Γ is the total width
of J=ψ . The decay constant is related to the electromagnetic
width as

Γeþe− ¼ αemg2γJ=ψ
3M3

: ð11Þ

Away from the very narrow peak (note that
Γ ¼ 93 keV≪ M ¼ 3.1 GeV), the current correlator is
expected to behave smoothly. We thus arrive at the relation

Z
d4ye−iq·yhp0kjJνemðyÞjpi ¼ β

eefM2

gγJ=ψ
ϵ�μðkÞi

Z
d4xd4yeik·x−iq·yhp0jTfc̄γμcðxÞJνemðyÞgjpi; ð12Þ

where β is a c-number of order unity which is not under
control. It is understood that the right-hand side is evaluated
close to, but not too close to the J=ψ mass shell
jk2 −M2j ≫ MΓ. Our key observation is that in this off-
mass-shell region, one can perform an operator product
expansion (OPE) when Q2 is large.
Before doing so, a few additional remarks are in order.

(i) On general grounds, one expects corrections to (10)
from higher resonances which the operator c̄γμc can excite.
However, this effect will be suppressed near threshold
because, at fixed values of s and t, only the resonances with
mass smaller than

ffiffiffi
s

p
−mN can be produced. There may

also be contributions from the deep Euclidean region
k2 < 0 if one considers a dispersion relation for the current
correlator in k2 similarly to [33,34,36,37].1 Such an

analysis may lead to a more precise evaluation of the
quarkonium matrix element and help to constrain the value
of β. We leave this to future work. (ii) Our argument is
similar in spirit to the vector meson dominance (VMD)
hypothesis. Note that this is different from the VMD
assumption used in many literature works on J=ψ photo-
production mentioned in the introduction [3,4,22,23]. In
these works, VMD has been applied to the incoming
massless photon γ → J=ψ . In photoproduction, this results
in a significant mismatch between the initial and final
virtualities 0 → M2. Here, in a sense, we apply VMD in a
reverse way to the outgoing J=ψ → γ� (cf. [8,36,38]).
While the difference in virtualities partly remains, this has
little impact on the overall kinematics of the reaction
because jk2 −M2j ≪ Q2; jtj. (iii) On the other hand, our
approach is different from the nonrelativistic (NR)QCD
framework [39] which is commonly used for quarkonium1We thank K. Tanaka for pointing this out.
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production in hadronic collisions. In NRQCD, the charm
and anticharm quarks in the perturbative amplitude which
couple to an external J=ψ are both on-shell to leading order
in the velocity expansion. However, in (12), c and c̄ are far
off-shell with virtuality of the order of Q2 (see below).
Moreover, (9) assumes that J=ψ is produced only in a

color-singlet state. This is reasonable because near the
threshold, all the energy has to be used to create a J=ψ , and
there is little phase space for extra gluon emissions.
Let us now discuss the OPE. The current correlator on

the right-hand side of (12) can be written as

i
Z

d4xd4yeik·x−iq·yhp0jTfc̄γμcðxÞJνemðyÞgjpi

≈ efð2πÞ4δð4Þðkþ p0 − q − pÞi
Z

d4reir·
kþq
2 hp0jTfc̄γμcðr=2Þc̄γνcð−r=2Þgjpi; ð13Þ

where r ¼ x − y. The product of currents can be expanded if the relative distance jrμj is small, which is the case when the
momentum kþq

2
is deeply spacelike. From (6), near the threshold,

t ¼ ðk − qÞ2 ¼ M2 þ q2 − 2k · q ≈ −
mNðM2 þQ2Þ

mN þM
: ð14Þ

Therefore,

ðkþ qÞ2 ¼ M2 þ q2 þ 2k · q ≈ 2M2 − 2Q2 þmNðM2 þQ2Þ
mN þM

: ð15Þ

This can be made arbitrarily negative by choosing
Q2 ≫ M2. We need to also make sure that the large
momentum Q does not “leak” into the proton vertex which
in practice meansQ2 ≫ jtj. Very close to the threshold, this
is satisfied if M ≫ mN . As one goes away (but not too far
away) from the threshold, the condition Q2 ≫ jtj is well

satisfied when t ∼ tmin.
2 As we shall see in Sec. V, t ∼ tmin is

the most interesting region.
However, for technical reasons the “symmetric” form

(13) is not very convenient. Being a nonforward matrix
element, it can be expressed in several different “frames”

i
Z

d4reir·
kþq
2 hp0jT

�
c̄γμc

�
r
2

�
c̄γνc

�
−
r
2

��
jpi ¼ i

Z
d4reir·qhp0jTfc̄γμcð0Þc̄γνcð−rÞgjpi

¼ i
Z

d4reir·khp0jTfc̄γμcðrÞc̄γνcð0Þgjpi: ð16Þ

The meaning of the OPE is different in different frames. The final result must be the same, but this equivalence is often
difficult to see. We shall return to this issue later. For the moment we find it most convenient to start with the middle
expression of (16). We evaluate it as

i
Z

d4reir·qc̄γμcð0Þc̄γνcð−rÞ ¼ i
Z

d4reir·qðc̄ð0ÞγμSð0;−rÞγνcð−rÞ þ c̄ð−rÞγνSð−r; 0Þγμcð0ÞÞ

− i
Z

d4reir·qTr½γμSð0;−rÞγνSð−r; 0Þ� þ � � � ; ð17Þ

where S is the charm quark propagator in the presence of background gluon fields. Since we work in the regime Q2 ≫ M2,
jrμj is typically much smaller than 1=M and the heavy quark mass mc ≈M=2 can be neglected to first approximation. An
important point of our approach is that we shall expand (17) in terms of local operators [40,41], instead of nonlocal light-
cone correlators as is usually done in high energy scattering. Near the threshold, the role of light-cone directions appears to

2For example, if we set W ¼ 4.4 GeV and Q2 ¼ 100 GeV2, we find jtmaxj ≈ 52 GeV2 and jtminj ≈ 10 GeV2.
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be less conspicuous as the scattering is not necessarily in
the forward direction. More importantly, the OPE with
local operators is well suited for our purpose of establishing
a connection to the D-term which is the matrix element of
the (local) energy momentum tensor operator.
Consider the first line on the right-hand side of (17). The

lowest contribution comes from the operator c̄γμγ5c,
followed by higher dimensional operators such as
c̄γμDνc, c̄γμFαβc and c̄F̃αβγβγ5c. The (nonforward) matrix
elements of these operators measure the intrinsic charm
contents of the proton which are in general believed to be
tiny (see however, [5]). In this paper we simply neglect all
of them, although they can be straightforwardly restored if
need arises (see however, footnote 5 in Sec. V).
We thus focus on the second line of (17). Basically, we

only keep dimension-4 purely gluonic operators. This in
particular includes the gluon part of the QCD energy
momentum tensor

Tαβ
g ¼ −FαρFβ

ρ þ gαβ

4
FμνFμν; ð18Þ

whose proton matrix element hp0jTαβ
g jpi is what we are

ultimately interested in. However, certain higher dimension
operators are a priori not suppressed. As in usual DIS or
DVCS, the contribution of the leading twist operator with
Lorentz spin-j is proportional to ð2q · p=Q2Þj ∼ ð1=xBÞj
and xB ∼ 1 for our problem. The difficulty to sum over
these higher spin operators with j > 2 is the reason why the

local version of the OPE is not commonly used in DVCS.
Here, however, we do not attempt to perform this summa-
tion. Among the twist-two operators, the energy momen-
tum tensor Tg

αβ with j ¼ 2 dominates in the sum whenQ2 is
sufficiently large. The contributions from the other twist-2
operators with spin j > 2 are relatively suppressed because
their anomalous dimensions are nonvanishing. Admittedly,
the rate of this suppression is slow, only logarithmic in Q2,
so a large leverage in Q2 is needed to isolate the spin-2
component. While this may seem a difficult task, we point
out that a very similar problem exists in the current strategy
to extract the quark D-term from the DVCS data [28–30].
The subtraction constant in the dispersion relation between
the real and imaginary parts of the Compton form factor,
commonly denoted by ΔðtÞ [27], is given by the sum
of infinitely many Gegenbauer coefficients Δðt; Q2Þ ¼
d1ðt; Q2Þ þ d3ðt; Q2Þ þ � � �. In order to isolate the quark
D-term ∝ d1ðtÞ which has the same anomalous dimension
as the energy momentum tensor, one needs a large leverage
in Q2 to disentangle different moments. Assuming that
such an analysis is feasible at the future EIC, we expect that
the same can be done for the gluon D-term.
We shall work in Fock-Schwinger gauge rμAμðrÞ ¼ 0 for

actual calculations. In this gauge, in the small-r limit, the
massless quark propagator in the background gluon
field is given by, in d ¼ 4 − 2ε dimensions (see for
example, [42,43])

Sðr; 0Þ ¼ iΓðd=2Þ
2πd=2

=r

ð−r2Þd=2 −
igΓð1 − εÞ
25πd=2

rαFμνð0Þ
ð−r2Þ1−ε ðγ

ασμν þ σμνγαÞ þ i
g2Γð−εÞð−r2Þε

26πd=2Nc
rαFa

αρF
ρ
aβð0Þγβ

− i
g2Γð−εÞð−r2Þε

3 · 26πd=2

�
γαFαρFρ

βð0Þrβ þ rαFαρFρ
βð0Þγβ − =rFαβFαβð0Þ þ 2ε=r

r2
rαFαρFρ

βð0Þrβ
�
þ � � � ; ð19Þ

where Fαβ ¼ Fαβ
a ta with TrðtatbÞ ¼ δab=2 and our con-

vention for the covariant derivative is Dμ ¼ ∂μ þ igAμ. In
the denominators, r2 is short for r2 − iϵ. In (19), we have
kept only the terms which contribute to dimension-4
gluonic operators FF. At first sight, the dimension-3
operators of the form DαFβγ are irrelevant because they
are matrices in color space so when inserted in (17), they
either vanish after tracing over color indices or lead to
operators with dimension-5 or larger. However, for the
present problem, it turns out that they cannot be neglected.

We shall discuss this later. Note that, since the Fock-
Schwinger gauge breaks translational invariance, in general
Sðr; 0Þ ≠ Sð0;−rÞ. However, for the terms listed in (19),
the relation Sðr; 0Þ ¼ Sð0;−rÞ actually holds.
In the second line of (17), the unit operator can be

neglected because we are computing the nonforward
amplitude hp0j1jpi ¼ 0. Consider then the Oðg2FFÞ terms
in (19) which lead to a logarithmically enhanced contri-
bution as implied by the prefactor Γð−εÞ. Taking the trace
of the g2FF terms in (19) in color space, we find

Trcolor½Sðr; 0Þ� ∼ i
g2Γð−εÞð−r2Þϵ

3 · 25πd=2

�
rαγβT̂g

αβð0Þ −
ε

2r2
=rT̂g

αβr
αrβ

�
; ð20Þ
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where

T̂αβ
g ≡ −Fαρ

a Fβ
aρ þ gαβ

d
Fμν
a Fa

μν; ð21Þ

is the traceless part of the gluon part of the QCD energy momentum tensor. (20) explicitly shows that the logarithmic part is
insensitive to the trace anomaly. Inserting the first term of (20) into the second line of (17), we find

− ig2
Γð−εÞΓðd=2Þ
3 · 25πd=2þ2

Z
ddreir·q

rαrλ
ð−r2 þ iϵÞd=2−ε Tr½γ

μγλγνγβ�T̂g
αβð0Þ

¼ αs
12π

�
1

ε
− lnð−q2=μ2Þ þ 1þ � � �

��
gαλ
q2

− 2ð1þ εÞ q
αqλ

ðq2Þ2
�
Tr½γμγλγνγβ�T̂g

αβð0Þ

→ −
αs
3π

ðlnð−q2=μ2Þ − 1Þ
�
gαλ
q2

− 2
qαqλ
ðq2Þ2

�
ðgμλgνβ − gμνgλβ þ gμβgλνÞT̂g

αβð0Þ −
αs
6π

qαqλ
ðl2Þ2 Tr½γ

μγλγνγβ�T̂g
αβð0Þ: ð22Þ

Note that in the last step we have dropped the divergent
piece 1=ε. It can be absorbed into the renormalization of the
twist-two operator T̂μν

c ∼ c̄γðμDνÞc contained in the first line
of (17). The coefficient αs

3π can be identified with the
anomalous dimension γc←g of this operator. As we already

mentioned, we neglect the matrix element of (renormal-
ized) T̂μν

c so in practice the 1=ε simply disappear.
The nonlogarithmic terms in (22) combine with those

from the second term of (20) and the square of the OðgFÞ
term in (19). After a tedious but straightforward calculation,
we arrive at the total αsFF contribution

Aμν ≡ i
Z

d4reir·qc̄γμcð0Þc̄γνcð−rÞ

≈ −
αsðμRÞ
3πq2

�
2 lnð−q2=μ2RÞ

��
gμα −

qμqα

q2

��
gνβ −

qνqβ

q2

�
þ qαqβ

q2

�
gμν −

qμqν

q2

��
T̂g
αβð0Þ

− 2
qαqβ

q2

�
gμν −

qμqν

q2

�
T̂g
αβð0Þ þ 3

qαqβ
q2

FμαFνβð0Þ
�
; ð23Þ

where the operators are defined at the scale μR. This is
manifestly transverse with respect to q, i.e., qμAμν ¼
Aμνqν ¼ 0, as a consequence of the Ward-Takahashi
(WT) identity. In Appendix A, we show that the forward
matrix element of (23) reproduces the 1-loop coefficient
functions of the DIS structure functions. However, (23) has
an obvious problem. The tensor Aμν is transverse with
respect to qμ and qν, but this is becausewe have started with
the middle expression in (13). In the present problem,
gauge invariance rather implies kμAμν ¼ Aμνqν ¼ 0.
Actually, problems of this kind typically arise in off-
forward kinematics. It is known that ensuring the electro-
magnetic gauge invariance of DVCS amplitudes is a highly
nontrivial issue [44,45]. The leading order (leading twist)
result does not fully satisfy the WT identity, and one has to
include higher twist corrections to restore it. In the context
of OPE, this amounts to including operators with total
derivatives [46]. In Appendix B, we demonstrate that the
dimension-3 operatorsDαFβγ which were neglected in (17)
indeed give rise to total derivative operators. This calcu-
lation suggests that a complete treatment of the problem

requires the inclusion of dimension-5 and even dimension-
6 operators in the expansion (17), which is beyond the
scope of this work. Here instead, we suggest an ad hoc
solution of the problem. In (23), we set q2 ¼ −μ2R to elimi-
nate the logarithmic terms. In the remainder terms, we im-
plement the following minimal modifications3 to make Aμν

transverse with respect to kμ and qν, and symmetric in
q and k

Aμν→−
αs

3πðq ·kÞ2
�
−2qαkβ

�
gμν−

qμkν

q ·k

�
T̂g
αβ

þ3kαqβFμαFνβ

�
; ð24Þ

3There is an ambiguity when replacing q2 with q · k ¼
q2 − q · Δ, since q2 → ðqþk

2
Þ2 ¼ q2 − q · Δþ Δ2=4 seems to be

an equally good choice [cf. (13)]. However, the difference is
subleading because q2 ≈ 2q · k ≫ Δ2 in the present kinematics,
see (14). This ambiguity can only be resolved by including the
dimension-6 operator ∂2Tαβ.
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where the coupling and the operators are evaluated at the
scaleOðQ2Þ. In the “leading-twist” approximation, one can
further simplify [see (A2)]

−FμαFνβ ≈
1

2
ðgμνT̂αβ

g − gμβT̂αν
g − gανT̂μβ

g þ gαβT̂μν
g Þ: ð25Þ

Actually, since we are neglecting the twist-2 operators with
spin j > 2, it is not entirely consistent to include anything
beyond (25) as it corresponds to twist-4 effects. Still, for

phenomenological purpose it may be interesting to include
at least the trace part of Tαβ

g in order to assess the impact of
the trace anomaly.

IV. TWO-GLUON FORM FACTORS

In order to compute the actual cross section, we need to
parametrize the nonforward matrix element of two-gluon
operators in (24) in terms of form factors. First we have the
gravitational form factors at our disposal [47]

hp0jTμν
g jpi ¼ ūðp0Þ

�
Agγ

ðμPνÞ þ Bg
PðμiσνÞαΔα

2mN
þDg

ΔμΔν − gμνΔ2

4mN
þ C̄gmNgμν

�
uðpÞ; ð26Þ

where Δμ ¼ p0μ − pμ, Pμ ≡ pμþp0μ
2

and AðμBνÞ ≡ ðAμBν þ AνBμÞ=2. All four form factors are functions of t ¼ Δ2 and the
renormalization scale μR in the MS scheme. Dg is the gluon part of the D-term form factor which we are mainly interested
in. (In the literature often the notationCg ¼ Dg=4 is often used.) The C̄g form factor is related to the trace anomaly [25]. The
traceless part reads

hp0jT̂μν
g jpi ¼ ūðp0Þ

�
Agγ

ðμPνÞ þ Bg
PðμiσνÞαΔα

2mN
þ Dg

4mN

�
ΔμΔν −

gμν

d
Δ2

�
−
mNgμν

d

�
Ag þ

Δ2

4m2
N
Bg

��
uðpÞ: ð27Þ

Next consider the two gluon operator with four open indices

hp0j − Fμα
a Fνβ

a jpi: ð28Þ

Its most general parametrization consistent with parity, Hermiticity and time-reversal symmetry is4

hp0j − Fμα
a Fνβ

a jpi ¼ A
2
ūðp0ÞðgμνγðαPβÞ − gμβγðαPνÞ − gανγðμPβÞ þ gαβγðμPνÞÞuðpÞ

þ B
4mN

ūðp0ÞðgμνiσðαλΔλPβÞ − gμβiσðαλΔλPνÞ − gανiσðμλΔλPβÞ þ gαβiσðμλΔλPνÞÞuðpÞ

þ D
8mN

ūðp0ÞðgμνΔαΔβ − gανΔμΔβ þ gαβΔμΔν − gμβΔαΔνÞuðpÞ

þW
3
mNūðp0Þðgμνgαβ − gμβgανÞuðpÞ

þ X
2m2

N
ūðp0ÞððγμΔα − γαΔμÞðPνΔβ − PβΔνÞ þ ðPμΔα − PαΔμÞðγνΔβ − γβΔνÞÞuðpÞ

þ Y
m3

N
ūðp0ÞðPμΔα − PαΔμÞðPνΔβ − PβΔνÞuðpÞ

þ Z
4mN

ūðp0ÞðiσμαðPνΔβ − PβΔνÞ þ iσνβðPμΔα − PαΔμÞÞuðpÞ: ð30Þ

The seven form factors can be partly constrained by requiring consistency with (26). Contracting the indices αβ in (30),
we get

4Terms which contain the antisymmetric tensor ϵμαρλ are not independent. For example, the following identity holds

iū0ϵμαρλγ5γρP̄λu ¼ mNū0iσμαuþ 1

2
ū0ðΔμγα − ΔαγμÞu: ð29Þ
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hp0j − Fμα
a Fν

aαjpi ¼
A
2
ūðp0ÞðmNgμν þ 2γðμPνÞÞuðpÞ þ B

4mN
ūðp0ÞðgμνiσαλΔλPα þ 2iσðμλΔλPνÞÞuðpÞ

þ D
8mN

ūðp0ÞðgμνΔ2 þ 2ΔμΔνÞuðpÞ þWmNgμνūðp0ÞuðpÞ

þ X
m2

N
ūðp0ÞðPðμγνÞΔ2 þmNΔμΔνÞuðpÞ þ Y

m3
N
ūðp0ÞðPμPνΔ2 þ P2ΔμΔνÞuðpÞ

þ Z
4mN

ūðp0Þð2iσðμαPνÞΔα þ ΔμΔνÞuðpÞ

¼ Agūðp0ÞγðμPνÞuðpÞ þ
�
A
2
þW þ 2Dg þD

8m2
N

Δ2 þ BΔ2

8m2
N

�
gμνmNūðp0ÞuðpÞ

þ Bg

2mN
ūðp0ÞiσðμλΔλPνÞuðpÞ þ Dg

4mN
ūðp0ÞðΔμΔν − gμνΔ2ÞuðpÞ; ð31Þ

where in the second equality we used the following
relations which can easily be obtained by term-by-term
comparison:

Aþ Δ2

m2
N
ðX þ YÞ ¼ Ag; ð32Þ

Bþ Z −
Δ2

m2
N
Y ¼ Bg; ð33Þ

Dþ 4X þ 4Y þ
�
Z −

Δ2

m2
N
Y

�
¼ Dg: ð34Þ

We see that only two linear combinations of X, Y, Z enter
these relations.
By comparing the coefficients of gμν, one should be able

to obtain another relation betweenW and C̄g. However, this
is nontrivial due to the presence of the QCD trace anomaly.

If one naively contracts the indices μν in (31) and computes
the matrix element of Tμν

g by forming the linear combina-
tion (18), one ends up with a wrong relation C̄g ¼ −Ag=4
(in the forward limit) andW is undetermined. The problem
is intimately tied to operator renormalization. In dimen-
sional regularization, the following innocent-looking rela-
tion does not hold

gμνðFμαFν
αÞ ≠ F2: ð35Þ

Namely, operator renormalization and trace operation do
not commute. The correct way to proceed is to write

−Fμα
a Fν

aα ¼ Tμν
g −

gμν

4
F2; ð36Þ

on the left-hand side of (31) and sum over the indices μν
using (26) and (31). This gives

hp0jF2jpi ¼
�
−2Ag − 4W þ 4C̄g −

�
3Dg

2
þ Bg

2
− 4ðX þ YÞ − Z þ Δ2

m2
N
Y

�
Δ2

m2
N

�
mNūðp0ÞuðpÞ: ð37Þ

On the other hand, the matrix element hp0jF2jpi has to be carefully evaluated in a chosen regularization scheme [25,26] (see
also [48]). In dimensional regularization, it is given by a linear combination of the gravitational form factors, see Eq. (13) of
Ref. [13]

hp0jF2jpi ¼
�
KgðAg þ 4C̄gÞ þ KqðAq þ 4C̄qÞ þ ðKgBg þ KqBq − 3KgDg − 3KqDqÞ

Δ2

4m2
N

�
mNūðp0ÞuðpÞ; ð38Þ

where the quark gravitational form factors Aq; Bq;
Dq; C̄q are defined analogously to (26) for the quark
part of the energy momentum tensor. The coeffi-
cients Kq;g are defined in [13] and can be evaluated,
in principle, to arbitrary order in perturbation theory.
At the moment, the three-loop results are available [25,26].

They depend on the number of flavors and the
renormalization scale via the QCD coupling αsðμRÞ.
(37) and (38) give a complicated relation between X, Y,
Z, W and the quark and gluon gravitational form factors.
In the forward limit t ¼ 0 it somewhat simplifies and
we find
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4Wð0Þ ¼ 4C̄gð0Þð1 − Kg þ KqÞ − ð2þ Kg − KqÞAgð0Þ − Kq; ð39Þ

where we used Aqð0Þ þ Agð0Þ ¼ 1 and C̄qðtÞ þ C̄gðtÞ ¼ 0. The relation to the parameter b often used in the literature [49] is

b≡ hpjð1þ γmÞ
P

mfq̄fqfjpi
2m2

N
; 1 − b ¼

hpj βðgÞ
2g F2jpi
2m2

N
¼ β

2g
ððAgð0Þ þ 4C̄gð0ÞÞðKg − KqÞ þ KqÞ; ð40Þ

where γm is the mass anomalous dimension. b is the
partition of the trace anomaly into the quark and gluon
condensates. It is scheme and scale dependent.

V. NUMERICAL RESULTS

In this section we show numerical results for the
differential cross section based on the formula (24). We
do not intend to perform a complete calculation which is
anyway not possible at the moment as it requires the
detailed knowledge of all seven form factors AðtÞ; BðtÞ;….
On the other hand, some information about the gravita-
tional form factors Ag; Bg;Dg; C̄g is already available in
the literature. Based on this, we consider two interesting
cases which allow us to make a quantitative prediction.
Case 1: We use the “leading-twist” approximation (25)
and keep only the traceless part of the energy momentum
tensor (27). As explained in Sec. III, in doing so we assume
that the contributions from the twist-2 operators with
spin j > 2 can be either neglected or separated out by
using a large leverage in Q2. Case 2: We evaluate the full
two-gluon operators (24) including the trace part of the
energy momentum tensor. While this is not a consistent

approximation (because we keep the twist-4 effect and
neglect the twist-2, spin-j > 2 contributions), it is an
instructive exercise to assess the impact of the trace
anomaly. In both cases, we set Bg ¼ 0 following the
suggestion from lattice QCD (see, e.g., [50]) that this form
factor is numerically small. In Case 2, we also set X ¼
Y ¼ Z ¼ 0 as we know nothing about these form factors.
On the other hand, the W form factor is related to the trace
anomaly and will be given full consideration.
We use the following parametrization of the gravitational

form factors

AgðtÞ ¼
Agð0Þ

ð1 − t=m2
AÞ2

; AqðtÞ ¼
1 − Agð0Þ
ð1 − t=m2

AÞ2
;

DgðtÞ ¼
Dgð0Þ

ð1 − t=m2
CÞ3

; C̄gðtÞ ¼
C̄gð0Þ

ð1 − t=m2
AÞ2

: ð41Þ

The tripole form of the D-term is motivated by the quark
counting rule [51]. Since the form factors are evaluated at a
large scale μ2R ¼ Q2, to first approximation we can use the
asymptotic results

Aqð0Þ ≈
nf

4CF þ nf
; Agð0Þ ≈

4CF

4CF þ nf
; Dqð0Þ ≈

nf
4CF

Dgð0Þ; ð42Þ

with CF ¼ N2
c−1
2Nc

and nf ¼ 3 represents the number of light
flavors in the proton.5 The value Dgð0Þ is our main interest
and should be determined by future experiments. Here, for
the sake of demonstration, we use the results of a recent
lattice simulation Dgð0Þ ¼ −7.2 (Cgð0Þ ¼ −1.8) with
mA ¼ 1.13 GeV and mC ¼ 0.76 GeV at μR ¼ 2 GeV
[53]. (We neglect the scale dependence of these parame-
ters.) On the other hand C̄g at zero momentum transfer is
related to the QCD trace anomaly [25]. Asymptotically
μ2R → ∞,

C̄gð0Þ ≈
1

4

�
nf

4CF þ nf
þ 2nf

3β0

�
−
1

4

�
2nf
3β0

þ 1

�
b

1þ γm
;

ð43Þ

where b is introduced in (40). To one-loop, β0 ¼ 11Nc=3 −
2nf=3 and γm ¼ 3CFαs

2π . A more precise expression can be
found in [25,26].
Under these assumptions, (37) and (38) reduce to a

simple formula

4WðtÞ¼4C̄gðtÞð1−KgþKqÞ−
�
2þKgþ

1−Agð0Þ
Agð0Þ

Kq

�
AgðtÞ

þ3DgðtÞ
�
Kgþ

nf
4CF

Kq−2
�

Δ2

4m2
N
: ð44Þ

For simplicity, we use the one-loop result Kq;g

5As we commented in Sec. III, we neglect the charm quark
operators in the expansion (17). Let us nevertheless give a rough
estimate of its impact. The charm quark contribution to the proton
momentum is Ac ≈ 0.02 in the relevantQ2 range (see for example
[52]). Comparing this to αsAg ¼ 0.64αs, we see that the correc-
tion due to intrinsic charm is less than 20%. Still, this may have to
be included in more precise calculations in future.
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Kg ¼
�
CgF −

Cgm
Cqm

CqF

�
−1
; Kq ¼ −

Cgm
Cqm

Kg; ð45Þ

where [αs ¼ αsðQ2Þ]

Cqm ¼ 1þ CF

3π
αs; CqF ¼ nf

12π
αs; ð46Þ

Cgm ¼ 7CF

6π
αs; CgF ¼ −

11Nc

24π
αs: ð47Þ

See [26] for the three-loop result. Finally, the square of
the prefactor in (9) is evaluated as [including the factor ef
from (13)]

e4ce2M4

g2γJ=ψ
≈ 24.6; ð48Þ

where we set ec ¼ 2=3, M ¼ 3.1 GeV, Γeþe− ¼ 5.55 keV
and αem ¼ e2=4π ¼ 1=137. The corresponding value for
ϒ is

e4be
2M4

g2γϒ
≈ 19.4; ð49Þ

where eb ¼ −1=3, M ¼ 9.46 GeV and Γeþe− ¼ 1.34 keV.
The parameter β should be determined by fitting the data
(for example the total cross section at some value ofW) for
each quarkonium species. In the numerical results below
we set jβj ¼ 1.
In Fig. 1, we show the total and differential cross sections

for J=ψ at Q ¼ 8 GeV, αsðQÞ ¼ 0.2. The latter is evalu-
ated at W ¼ 4.4 GeV. In both plots, the upper and lower
dashed curves correspond to Case 1 with Dg ¼ 0 and
Dg ¼ −7.2, respectively. We see a dramatic impact of the

gluon D-term.6 A negative (positive) D-term tends to shrink
(enhance) the differential cross section. The same tendency
has been observed in [9] in the case of photoproduction
Q2 ¼ 0. The upper and lower solid curves correspond to
Case 2 with b ¼ 1 (zero gluon condensate) and b ¼ 0 (zero
quark condensate), respectively. We see that the depend-
ence on the parameter b is significant. We also see that the
gluon condensate tends to reduce the cross section, which is
actually opposite to what was found in [9]. It is not clear to
us whether this is due to the fact that different processes
were considered (photoproduction vs leptoproduction), or
perhaps due to the deficiency of the model used in [9].
Next, in Fig. 2 we show the result for ϒ at Q ¼ 18 GeV,

αsðQÞ ¼ 0.16. Near the threshold (Wth ¼ 10.4 GeV), the
cross section becomes very small. In the right panel we
selected a somewhat large value W ¼ 12.5 GeV consider-
ing the realistic luminosity of EIC. Again we see a large
effect of the D-term. However, the impact of the trace
anomaly and the split between b ¼ 1 and b ¼ 0 are barely
visible. This suggests that, at least theoretically, ϒ pro-
duction is better suited for the purpose of extracting the
D-term.
In photoproduction, the J=ψ total cross section is about

1 nb at W ¼ 4.5 GeV [16]. In leptoproduction, we see that
the cross section is several orders of magnitude smaller. For
ϒ production, there is another 2 orders of magnitude
suppression. Besides, what is computed here is the cross
section in the γ�p subsystem. Thus, near-threshold lep-
toproduction is a luminosity-hungry observable. Moreover,
as explained in Sec. III, one needs a large leverage in Q2 to
extract the D-term. Given these requirements, we think that

0.5
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5.0

10.0

50.0

100.0

5

10

15

20

10 15 20 25
4.1 4.2 4.3 4.4 4.5 4.6

FIG. 1. J=ψ total and differential cross sections at Q2 ¼ 64 GeV2. The upper and lower dashed curves correspond to Case 1 with
Dg ¼ 0 and Dg ¼ −7.2, respectively. The upper and lower solid curves correspond to Case 2, Dg ¼ −7.2, with b ¼ 1 and b ¼ 0,
respectively.

6Remember that we neglected the RG evolution of Dg from
μR ¼ 2 GeV toQ ¼ 8 GeV. The value jDgð0Þj at the scaleQwill
be smaller than 7.2 so the actual difference between the two
dashed curves is expected to be smaller.
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the best place to test our proposal is J=ψ (and possibly
also ϒ) production in the high luminosity mode of EIC.

VI. CONCLUSION

In this paper we have proposed a novel strategy to
compute the cross section of near-threshold quarkonium
production at large momentum transfer. Compared to
photoproduction, near-threshold leptoproduction has so
far attracted much less attention due to the lack of strong
phenomenological motivations. We have demonstrated that
the process is useful for probing the gluon D-term, quite
complementary to the ongoing effort to extract the quark
D-term in DVCS. The possible impact of the D-term on the
differential cross section dσ=dt has been already pointed
out in the case of photoproduction using holography [9,14].
In leptoproduction at large Q2 ≫ M2, the problem can be
studied within the perturbative framework. Moreover, at
the subleading level the cross section is also sensitive to
the value of the parameter b defined in Eq. (40) which
characterizes the structure of the QCD trace anomaly. The
proposed measurements require high luminosity and a large
leverage in Q2. The only machine that can deliver these
requirements is the future EIC.
Our analysis in this paper is only the first step and there

are a number of directions for future research. In particular,
it is interesting to see if a similar approach can be applied to
photoproduction using the heavy quark mass as a hard
scale. On the phenomenological side, the contribution from
the Bethe-Heitler process e− → e−γ� needs to be inves-
tigated as J=ψ and ϒ are reconstructed from lepton pairs in
actual experiments, and this should be implemented in
realistic simulations to study experimental feasibility and
detector requirements at the EIC. The seven form factors
introduced in (30) can be calculated in lattice QCD. The
values of t considered in this paper are rather large, and the
extrapolation to the forward limit is a serious challenge.
Lattice calculations of these form factors will be very
valuable in this respect.
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APPENDIX A: DIS COEFFICIENT FUNCTIONS

As a consistency check, let us compute the forward
matrix element of (23) in a single proton state and keep
only the twist-2 contribution. In this approximation, we can
write

hpjT̂αβ
g jpi ¼ 2Agpαpβ; ðA1Þ

where Ag is the fraction of the proton momentum
carried by gluons. We then decompose the operator
FμαFνβ as7

FμαFνβ ¼ 1

d − 2
ðgμνFλαFλ

β − gμβFλαFλ
ν

− gανFλμFλ
β þ gαβFλμFλ

νÞ

þ 1

ðd − 2Þðd − 1Þ ðg
μβgνα − gμνgαβÞgρσFρλFσ

λ

þ Cμανβ; ðA2Þ
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FIG. 2. ϒ total and differential cross sections at Q2 ¼ 182 GeV2. See the caption of Fig. 1 for the explanation of each curve.

7This decomposition is mathematically identical to that of the
Riemann tensor in general relativity. The trace part Tαβ is an
analog of the Ricci tensor which represents the matter content and
Cμανβ is an analog of the Weyl tensor which represents the gravity
degrees of freedom.
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and extract the energy momentum tensor component Tαβ
g ∼ −FαλFβ

λ. The remainder tensor Cμανβ has the same symmetry as
FμαFνβ except that it is traceless with respect to any pair of indices. Its forward matrix element vanishes. We thus have

hpj − FμαFνβjpi ≈ Agðgμνpαpβ − gμβpαpν − gανpμpβ þ gαβpμpνÞ: ðA3Þ

This gives

i
Z

d4reir·qhpjc̄γμcð0Þc̄γνcð−rÞjpi

≈ 2Ag
αs

πðq2Þ2
�
2

3
ðp · qÞ2

�
gμν −

qμqν

q2

�
−
�
2

3
ln
−q2

μ2R
−
1

2

�
qαqβðgμνpαpβ − gμβpαpν − gναpμpβ þ gαβpμpνÞ

�
: ðA4Þ

From this one can read off the known one-loop coefficient
functions for the DIS structure functions

CG
2;2 ¼

�
2

3
ln
−q2

μ2R
−
1

2

�
αs
4π

; CG
L;2 ¼

2

3

αs
4π

; ðA5Þ

in the notation of [54].

APPENDIX B: TOTAL DERIVATIVE
OPERATORS

In this appendix, we give an example of how operators
with total derivatives enter the calculation. We return to
(19) and include dimension-3 operators DαFβγ which have
been previously neglected

Sðr; 0Þ ∼ 4g

3 · 26πd=2
ð−r2Þε

�
Γð−εÞDρFρλγ

λ þ 1

r2
ð=rrλDρFρλ þ rαrβDβFαλγ

λ þ 3irαrβDαF̃βλγ
λγ5Þ

�
; ðB1Þ

Sð0;−rÞ ∼ 4g

3 · 26πd=2
ð−r2Þε

�
Γð−εÞDρFρλγ

λ þ 1

r2
ð=rrλDρFρλ þ rαrβDβFαλγ

λ − 3irαrβDαF̃βλγ
λγ5Þ

�
: ðB2Þ

This can be derived following [42,43]. Note that the last term proportional to γ5 breaks the naive relation Sðr; 0Þ ¼ Sð0;−rÞ.
Let us focus only on the singular term ∝ Γð−εÞ which is sufficient to demonstrate our point. Its contribution to the current
correlator is

αsΓ½1 − ε�
3 · 25πd−1

Z
ddre−ir·q

rα
ð−r2Þ1−2ε Γð−εÞF̃

αλDσFσρTr½γμγλγ5γνγρ�

¼ i
αsð4πÞε

3π

Γð2þ εÞΓ½1 − ε�
Γð1 − 2εÞ

qαð−q2Þ−ε
ðq2Þ2 ϵμλνρF̃α

λD
σFσρΓð−εÞ

¼ −i
αs

3πðl2Þ2
�
1

ε
þ 1 − ln

ð−q2Þ
μ2R

�
ðqμ∂ρT

ρν
g − qν∂ρT

ρμ
g − FμνqρDσFσρÞ; ðB3Þ

where we used the identity ∂νT
μν
g ¼ Fμ

νDαFαν. Note that
this is antisymmetric in μ and ν. The 1=ε divergence in (B3)
is absorbed into the renormalization of the operator

c̄γμgF̃α
λγλγ5γ

νc − ðμ ↔ νÞ ∼ ϵμλνρc̄γρgF̃α
λc; ðB4Þ

which comes from the first line of (17). The remaining
terms contain total derivative operators. In the nonforward
matrix element, the derivative operator is replaced by the
momentum transfer hp0j∂ρT

ρν
g jpi ¼ iΔρhp0jTρν

g jpi where

Δρ ¼ qρ − kρ. This is how, in principle, total derivative
operators from higher dimensional terms can restore the
WT identity through the addition of Δ corrections. How-
ever, (B3) is not sufficient to make the logarithmic terms in
(23) transverse with respect to kμ. For that, we would need
operators like ∂νTμβ

g and gμν∂αT
αβ
g . We presume that the

missing terms come from the dimension-5 and dimension-6
operators in the expansion of Sðr; 0Þ. We leave this to a
future work.
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