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We propose a novel approach to compute the cross section of near-threshold J/y and Y production in
electron-proton scattering at large photon virtualities Q% based on an operator product expansion. We show
that the process can be used to extract the gluon part of the D-term gravitational form factor of the proton.
At the subleading level, it is also sensitive to the trace anomaly effect of QCD.
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I. INTRODUCTION

The exclusive photoproduction of J/y near threshold
has a long history [1-3], starting almost immediately after
the discovery of J/y. In the early days, it was one of the
key measurements for reconfirming the existence of J/y,
as well as studying its basic properties such as the coupling
to hadronic matter. Over the past two decades, theoretical
interest in this reaction resurfaced every once in a while
[4—12] with different focuses, but it was not until recently that
the subject draw a lot of attention from the viewpoint of the
nucleon structure. It has been suggested theoretically [4,9]
that the detailed behavior of the cross section near threshold
is sensitive to the trace anomaly of QCD, hence it can shed
light on the origin of the proton mass (see the related works
in [13-15]). This is one of the main motivations for the
ongoing experiments at Jefferson laboratory (JLab) [16,17].
Moreover, the National Academy of Science in the U.S. [18]
has recently identified the proton mass problem as one of the
major scientific goals of the future electron-ion collider (EIC)
[19,20]. The subject is also actively discussed in the context
of the EIC in China [21]. It is then perfectly possible that the
physics of near-threshold production grows into an important
subfield in the EIC era.

The existing theoretical approaches are roughly divided
into two categories. The one that has been used since the
1970s [3.,4,22,23] is to assume vector meson dominance
(VMD) for the incoming photon. In this approach, the
original problem yp — J/wp' is reduced to forward
scattering pJ/w — pJ/w which is more amenable to
various theoretical tools. A heavy quarkonium interacts
with a hadron only via gluon exchanges. In the heavy quark
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mass limit, the interaction effectively becomes local and the
scattering amplitude is described by the moments of the
gluon distribution function. At the subleading level, it also
depends on the gluon condensate in the proton (p|F?|p)
[4,24] which constitutes the major part of the QCD trace
anomaly.

The second approach makes use of ‘two-gluon form
factors’ (p'|FF|p) [5.,6,9]. One of the distinctive features of
near-threshold quarkonium production is that the momen-
tum transfer t = (p’ — p)? is large. However, in the VMD
approach, nonforwardness is trivialized even though the
threshold value /—fy ~ 1.5 GeV is comparable to the
charm quark mass which is treated as the only hard scale
of the problem. In [9], it has been shown via a holographic
method that the amplitude is proportional to the gravita-
tional form factor (p'|T;,| p) where T7, is the gluon part of
the energy momentum tensor. Subsequently, the precise
relation between the trace of T(gl[), and the gluon condensate

operator F? has been understood [25,26]. On the other
hand, (p’ |T(gl/j| p) also contains the so-called D-term which

appears only in nonforward kinematics and which has
attracted a considerable attention lately (see a recent review
[27] and references therein). The results of [9,13,14]
suggest that near-threshold quarkonium production is a
unique process that can directly access not only the gluon
condensate, but also the gluon D-term. The latter aspect is
quite complementary to the ongoing effort to extract the
quark D-term from deeply virtual Compton scattering
(DVCS) [28-30]. Yet, holographic approaches are at best
a model of QCD, and it remains to be seen to what extent
the obtained predictions are borne out in real QCD.
Overall, the current theoretical status just described is not
totally satisfactory. What is missing is a first-principle
approach in QCD which can be systematically improved
and compared to the data. The present work is a step toward
this aim. Instead of photoproduction, we propose to study
leptoproduction with large photon virtualities g*> = —Q2.
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So far, leptoproduction has received remarkably little
attention in the context of threshold production, perhaps
because as Q? gets larger, one is further away from the
forward kinematics. However, the large-Q? region appears
to be the cleanest setup from a perturbative QCD point of
view. We in fact consider the limit Q% > M? where M is
the quarkonium mass.

This paper is organized as follows. In the next section we
briefly review the kinematics of the reaction yp — J/yp’
near threshold. In Sec. III, we lay out our strategy to
compute the scattering amplitude based on operator prod-
uct expansion (OPE). In Sec. IV, we discuss the various
two-gluon form factors involved. Then in Sec. V, we
numerically evaluate the cross section and study the impact
of the D-term as well as the gluon condensate. Section VI is
devoted to conclusions.

II. KINEMATICS

We shall be interested in the near-threshold production of
a heavy quarkonium vector meson H with mass M in
electron-proton scattering ep — e'y*p — ¢’Hp'. We have
in mind H = J/y and Y. The center-of-mass energy W? =

(q + p)?* of the virtual photon-proton subsystem at the
threshold is

Wi, = (my +M)?, (1)
where my = 0.94 GeV is the proton mass. Numerically,

W, = 4.04 GeV for J/y and W, ~ 10.4 GeV for Y. g and
p are the virtual photon and proton momenta, respectively,

with Q? = —¢? being the photon virtuality. Near the
threshold, the Bjorken variable takes the form
0 0
Xg = ~ : (2)

2p-q  Q*+ M?+2myM

Equation (2) shows that, unlike the usual situation in DIS,
Q? and xp are not independent variables. xz approaches
unity as Q” goes to infinity. We also see that, somewhat
counterintuitively, threshold production can occur even
when Q7 is arbitrarily large, though of course the value
of Q? is limited in actual experiments. Using the standard
variables in DIS, S,, = (p + £)%, y = p - q/p - £ where £*
is the incoming electron momentum, we can write

szy(Sep_mle)+m12V_Q2' (3)

Small-W does not necessarily imply small-S,, when 0% is
large. In particular, the process can be studied at the future
EIC [31].

Let p,,, and I_c'cm be the 3-momentum of the incoming
proton and outgoing quarkonium, respectively, in the center
of mass frame of the y*p subsystem.

s WA-2WA(m}, — Q%) + (m}, + 0%)?
Pem = 4W2 ’
2 _ 2 2 _ _ 2
e (W (M+mN)42)‘(/ZV (M = my ) ”

The momentum transfer is

\/pcm+mN \/k +mN

At the threshold, k,,, = O so that

\/ p%m+mjzv) = -

We see that |#,| is minimal in photoproduction Q? = 0 and
monotonously increases with increasing Q7. In the heavy-
quark mass limit, O > |ty|. Away from the threshold, ¢
takes a value in the range |, | > || > |fmin| depending on

(ﬁC”’l + ]_C)Cm)z' (5)

my(M? + Q%)

ty = 2my(my — e LM
N

(6)

the angle between p., and l:cm. The differential cross
section is given by

r'p
dGT/ L Ao

. 8(W2 -

—Z| (P'kled/" - T, (0)| )],

spin
(7)

where J%, = > rerdsr'qy is the electromagnetic current
(e being the charge in units of |e|) and T/L refers to the
transversely (7') or longitudinally (L) polarized virtual
photon. The factor 1/2 is for averaging over proton
helicities. The nontrivial dynamics of QCD is contained
in the hadronic matrix element

/ et p kL% (3) )
= (2n)*s(k + p' = q — p)(p'k|J%, (0)|p).  (8)

Computing (8) from first principles in QCD is a challeng-
ing task. Most of the previous theoretical works have
focused on the photoproduction limit. In contrast, in this
paper we shall investigate leptoproduction in the large
Q? > M? region.

III. OPE AT LARGE Q?

In this section, we formulate our strategy to calculate the
hadronic matrix element (p’k|J,,,| p) near threshold at large
Q% > M?. We have chosen to work in the high Q? region
for reasons to become clear shortly. For definiteness, we
consider J/y production, but the case with T is completely
analogous. In fact, our approach is better justified when
M > my. Thus, T production is more preferred from a
theoretical point of view, though of course experimentally it
is more challenging.

114004-2



QCD ANALYSIS OF NEAR-THRESHOLD QUARKONIUM ...

PHYS. REV. D 101, 114004 (2020)

Let us first mention that, if the center of mass energy is
sufficiently high s = W? > M? ||, the process is com-
monly called deeply virtual meson production (DVMP).
The cross section is known to factorize in perturbative QCD
in terms of the generalized parton distribution (GPD) and
the meson distribution amplitude (DA) [32]. Near the
threshold, s = O(M?), and |f| is comparable to, or even
exceeds s depending on the value of Q2, see (6). Note,
however, that s is small because of the cancellation s =
2p-q— Q%+ ---and x5 = Q%/2p - q stays close to unity.
Moreover, 2p - ¢ ~ Q% > || at least parametrically when
M > my [see (6)]. This gives us some hope that a
perturbative approach is possible, see [33,34] for an
approach potentially related to the following discussion.

Our basic argument is that near the threshold, the
amplitude (8) is related to the following current-current
correlator

s (k)i / dhxdye o3 (p [T{epe(n) ()} D). (9)

where ¢, (k) is the J/y polarization vector. This matrix
element is similar to the one that appears in doubly virtual
Compton scattering (DDVCS) y*(q)p — y*(k)p’, or time-
like Compton scattering (TCS) in the special case g> = 0
(see, e.g., [35]). However, there is a crucial difference. The
DDVCS amplitude is given by the correlator (J,,,J ),
and is dominated by the light quark degrees of freedom
(light quark GPDs) except in the very small-xz region
where it is dominated by gluons. In (9), on the other hand,
one of the electromagnetic currents has been replaced by
the charm quark current operator (bottom quark, in the case

J

eefM2
iy

€*

/ dyem i (k| T (3)|P) = B

where f is a c-number of order unity which is not under
control. It is understood that the right-hand side is evaluated
close to, but not too close to the J/w mass shell
|k> — M?| > MT. Our key observation is that in this off-
mass-shell region, one can perform an operator product
expansion (OPE) when Q7 is large.

Before doing so, a few additional remarks are in order.
(i) On general grounds, one expects corrections to (10)
from higher resonances which the operator ¢y*c can excite.
However, this effect will be suppressed near threshold
because, at fixed values of s and ¢, only the resonances with
mass smaller than /s — my can be produced. There may
also be contributions from the deep Euclidean region
k?> < 0 if one considers a dispersion relation for the current
correlator in k?> similarly to [33,34,36,37].l Such an

'"We thank K. Tanaka for pointing this out.

of T production). As a result, only the charm component of
the other J,,, is relevant, and the matrix element becomes
primarily sensitive to the gluonic content of the proton.

That the J/y production amplitude is related to a
DDVCS-like (photon production) amplitude is intuitively
reasonable, in view of the fact that in actual experiments, a
J/w and a timelike photon with virtuality exactly at the
J/w mass are practically indistinguishable as they are
probed via leptonic final states (eTe~ pairs). However,
in DDVCS or TCS, the resonance region k> ~ M? is usually
avoided because the nonperturbative final state effect to
produce the vector meson comes into play. As a function of
k?, (9) has a sharp resonance peak near the J/y mass shell.
Using the LSZ reduction formula, we can write

cese(b)i / dhxdye™ =9 (/[T c(x) 1o ()} )

gyj/y/ 4. —ig- /
N——— d gy p'k|Jv , 10
kz_M2+iMF/ ye X (p'klJem()lp),  (10)
where e; = 2/3 for the charm quark and I' is the total width

of J/w. The decay constant is related to the electromagnetic
width as

2
(04 gj
Cpio- = ";”MJ/B/V/ . (11)

Away from the very narrow peak (note that
I'=93 keV« M = 3.1 GeV), the current correlator is
expected to behave smoothly. We thus arrive at the relation

(k)i / dxdtye o3 (p [T{ephe ()15 ()} ). (12)

[
analysis may lead to a more precise evaluation of the
quarkonium matrix element and help to constrain the value
of . We leave this to future work. (ii) Our argument is
similar in spirit to the vector meson dominance (VMD)
hypothesis. Note that this is different from the VMD
assumption used in many literature works on J/y photo-
production mentioned in the introduction [3,4,22,23]. In
these works, VMD has been applied to the incoming
massless photon y — J /. In photoproduction, this results
in a significant mismatch between the initial and final
virtualities 0 — M?. Here, in a sense, we apply VMD in a
reverse way to the outgoing J/y — y* (cf. [8,36,38]).
While the difference in virtualities partly remains, this has
little impact on the overall kinematics of the reaction
because |k* — M?| < Q2 |t|. (iii) On the other hand, our
approach is different from the nonrelativistic (NR)QCD
framework [39] which is commonly used for quarkonium
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production in hadronic collisions. In NRQCD, the charm
and anticharm quarks in the perturbative amplitude which
couple to an external J /i are both on-shell to leading order
in the velocity expansion. However, in (12), ¢ and ¢ are far
off-shell with virtuality of the order of Q? (see below).
Moreover, (9) assumes that J/y is produced only in a

|

color-singlet state. This is reasonable because near the
threshold, all the energy has to be used to create a J/y, and
there is little phase space for extra gluon emissions.

Let us now discuss the OPE. The current correlator on
the right-hand side of (12) can be written as

i/d4xd4ye"k‘x_"q'y(p/|T{57”C(X)JZm(Y)}|P>

~ep(2n)*6W (k4 p' — g — p)i / d*rei™ S (p/ [T{ep e(r/2)er e(=r/2)} ), (13)

where r = x — y. The product of currents can be expanded if the relative distance |r#| is small, which is the case when the

momentum ]"LT‘I is deeply spacelike. From (6), near the threshold,

t=(k—q)P =M +q*=2k-qgr -

Therefore,

(k+q)> =M*+ ¢* +2k-qm2M* - 20 +

This can be made arbitrarily negative by choosing
Q? > M?. We need to also make sure that the large
momentum Q does not “leak” into the proton vertex which
in practice means Q2 >> ||. Very close to the threshold, this
is satisfied if M > my. As one goes away (but not too far
away) from the threshold, the condition Q? > || is well

|

my(M? + Q%)

14

my(M?* + 0?)

15

I
satisfied when ¢ ~ tmin.z As we shall seein Sec. V, £ ~ 1,,;,, 1S
the most interesting region.

However, for technical reasons the “symmetric” form
(13) is not very convenient. Being a nonforward matrix
element, it can be expressed in several different “frames”

[ aversiwndare(§)ere(=5) i =i [ drerstmiercomre-nin
=i [ et (T e(rer )} ). (16)

The meaning of the OPE is different in different frames. The final result must be the same, but this equivalence is often
difficult to see. We shall return to this issue later. For the moment we find it most convenient to start with the middle
expression of (16). We evaluate it as

i/d4reir'q6y”c(0)5y”c(—r) = i/d“re”'%&(O)y”S(O, —r)yYc(=r) + c(=r)y*S(=r,0)y*c(0))
- i/d4rei"qTr[y"S(O, =r)y*S(=r,0)] + -, (17)

where S is the charm quark propagator in the presence of background gluon fields. Since we work in the regime Q? > M?,
|r#| is typically much smaller than 1/M and the heavy quark mass m,. ~ M /2 can be neglected to first approximation. An
important point of our approach is that we shall expand (17) in terms of local operators [40,41], instead of nonlocal light-
cone correlators as is usually done in high energy scattering. Near the threshold, the role of light-cone directions appears to

*For example, if we set W = 4.4 GeV and Q% = 100 GeV?2, we find |f,,| & 52 GeV?2 and || ~ 10 GeV2.
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be less conspicuous as the scattering is not necessarily in
the forward direction. More importantly, the OPE with
local operators is well suited for our purpose of establishing
a connection to the D-term which is the matrix element of
the (local) energy momentum tensor operator.

Consider the first line on the right-hand side of (17). The
lowest contribution comes from the operator cyysc,
followed by higher dimensional operators such as
er*Dc, ty" FPc and ¢F*Pyysc. The (nonforward) matrix
elements of these operators measure the intrinsic charm
contents of the proton which are in general believed to be
tiny (see however, [5]). In this paper we simply neglect all
of them, although they can be straightforwardly restored if
need arises (see however, footnote 5 in Sec. V).

We thus focus on the second line of (17). Basically, we
only keep dimension-4 purely gluonic operators. This in
particular includes the gluon part of the QCD energy
momentum tensor

g%

TY = —F*F) + .

(18)

whose proton matrix element (p'|T%|p) is what we are
ultimately interested in. However, certain higher dimension
operators are a priori not suppressed. As in usual DIS or
DVCS, the contribution of the leading twist operator with
Lorentz spin-j is proportional to (2q - p/Q*)/ ~ (1/x)’
and xp ~ 1 for our problem. The difficulty to sum over
these higher spin operators with j > 2 is the reason why the
|

local version of the OPE is not commonly used in DVCS.
Here, however, we do not attempt to perform this summa-
tion. Among the twist-two operators, the energy momen-
tum tensor T° Zﬁ with j = 2 dominates in the sum when Q? is
sufficiently large. The contributions from the other twist-2
operators with spin j > 2 are relatively suppressed because
their anomalous dimensions are nonvanishing. Admittedly,
the rate of this suppression is slow, only logarithmic in Q2,
so a large leverage in Q” is needed to isolate the spin-2
component. While this may seem a difficult task, we point
out that a very similar problem exists in the current strategy
to extract the quark D-term from the DVCS data [28-30].
The subtraction constant in the dispersion relation between
the real and imaginary parts of the Compton form factor,
commonly denoted by A(z) [27], is given by the sum
of infinitely many Gegenbauer coefficients A(z, Q%) =
d,(t, Q%) + ds(t, Q%) + - --. In order to isolate the quark
D-term o d; () which has the same anomalous dimension
as the energy momentum tensor, one needs a large leverage
in Q? to disentangle different moments. Assuming that
such an analysis is feasible at the future EIC, we expect that
the same can be done for the gluon D-term.

We shall work in Fock-Schwinger gauge r,A*(r) = 0 for
actual calculations. In this gauge, in the small-r limit, the
massless quark propagator in the background gluon
field is given by, in d =4 —2¢ dimensions (see for
example, [42,43])

ird/) ¢ igh(1 —€) rF,(0), . oo GT(=e) (=)
S(r,0) = e (—r2)d/2 - 55472 (—rg)l_g (y*o" + oy®) + 1—25”‘1/2N r FapFZﬁ(O)}/ﬂ
2 2\¢e
Fr(=e) (=) [, . oy 2 261
— i e 7 FoyF5(0)rF + r®F o, F? 5(0)y” — fF 1 F*(0) + 7raFapFﬂﬂ(0)rﬂ +-, (19)

where F = F?1 with Tr(1"*) = 6%’ /2 and our con-
vention for the covariant derivative is D* = O* + igA*. In
the denominators, r? is short for 7> — ie. In (19), we have
kept only the terms which contribute to dimension-4
gluonic operators FF. At first sight, the dimension-3
operators of the form D,Fpy, are irrelevant because they
are matrices in color space so when inserted in (17), they
either vanish after tracing over color indices or lead to
operators with dimension-5 or larger. However, for the
present problem, it turns out that they cannot be neglected.
|

Trcolor[s(r’ 0)] ~i 3. 05,42

gT(=e) (=)

|
We shall discuss this later. Note that, since the Fock-
Schwinger gauge breaks translational invariance, in general
S(r,0) # S(0, —r). However, for the terms listed in (19),
the relation S(r,0) = S(0, —r) actually holds.

In the second line of (17), the unit operator can be
neglected because we are computing the nonforward
amplitude (p’|1|p) = 0. Consider then the O(¢*FF) terms
in (19) which lead to a logarithmically enhanced contri-
bution as implied by the prefactor I'(—¢). Taking the trace
of the ¢?FF terms in (19) in color space, we find

A & A
(12,000 oa Tt ). (20)
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where

i

T = —FYF), + 2 F“Fa (21)

d e

is the traceless part of the gluon part of the QCD energy momentum tensor. (20) explicitly shows that the logarithmic part is
insensitive to the trace anomaly. Inserting the first term of (20) into the second line of (17), we find

I'(—e)'(d/2 ) a
_ i92 ( 83 52/2)/ddrezr~q > r ’.’/1
3. 2374/ (—=r* +ie)

a 1 g(l
= 2 | Z—1n(=g?/u? 1+ )22 =
12”(8 n(g /) 1+ )(q

= =2 n(-gp) - ) (% -2

(¢%)?

Note that in the last step we have dropped the divergent
piece 1/¢. It can be absorbed into the renormalization of the
twist-two operator 7% ~ ¢y* D¥)¢ contained in the first line
of (17). The coefficient 2’—” can be identified with the
anomalous dimension y .., of this operator. As we already

AW = i/d4rei"q6y"c(0)5y”c(—r)

q°q;
q*)?

27 ‘”)(g'“g”ﬁ PGP+ ) T9,(0) -

(1+e¢)

a7 Tl r v P 1T,(0)

)TT[Y”}’ yrP1T4,(0)

a5 q°q,
67 (£2)?

Tely'r'y 1 T9,(0).  (22)

[
mentioned, we neglect the matrix element of (renormal-
ized) 7% so in practice the 1/¢ simply disappear.

The nonlogarithmic terms in (22) combine with those
from the second term of (20) and the square of the O(gF)
term in (19). After a tedious but straightforward calculation,
we arrive at the total o F'F contribution

ay(pg) [ q"q” 94"\ q°¢’ "¢\ \ 5
~— 2In(- 2/ﬂz){ (9"“ -— ¢’ - + gv - T7,(0)
3 q R qz q2 qz qz p

'

where the operators are defined at the scale pg. This is
manifestly transverse with respect to ¢, ie., g, A" =
A*q, =0, as a consequence of the Ward-Takahashi
(WT) identity. In Appendix A, we show that the forward
matrix element of (23) reproduces the 1-loop coefficient
functions of the DIS structure functions. However, (23) has
an obvious problem. The tensor A* is transverse with
respect to g and ¢*, but this is because we have started with
the middle expression in (13). In the present problem,
gauge invariance rather implies k*A,, = A, q¢" = 0.
Actually, problems of this kind typically arise in off-
forward kinematics. It is known that ensuring the electro-
magnetic gauge invariance of DVCS amplitudes is a highly
nontrivial issue [44,45]. The leading order (leading twist)
result does not fully satisfy the WT identity, and one has to
include higher twist corrections to restore it. In the context
of OPE, this amounts to including operators with total
derivatives [46]. In Appendix B, we demonstrate that the
dimension-3 operators D, F3, which were neglected in (17)
indeed give rise to total derivative operators. This calcu-
lation suggests that a complete treatment of the problem

,4 q/’ ( o _q_) 79.(0) + 3% FﬂaFvﬁ(())}’ (23)

requires the inclusion of dimension-5 and even dimension-
6 operators in the expansion (17), which is beyond the
scope of this work. Here instead, we suggest an ad hoc
solution of the problem. In (23), we set > = —u% to elimi-
nate the logarithmic terms. In the remainder terms we im-
plement the following minimal modifications® to make A*
transverse with respect to k# and ¢*, and symmetric in
q and k

o gk A
A;w _ ) akﬁ v__ Tg
” 3ﬂ(q-k)2[ K (gﬂ q-k> “

+3kaq/;F”“F”ﬂ] , (24)

There is an ambiguity when replacing ¢> with ¢ -k =
q* —q- A, since ¢* — () = > —q - A+ A?/4 seems to be
an equally good choice [cf. (13)]. However, the difference is
subleading because g> ~2¢q - k > A? in the present kinematics,
see (14). This ambiguity can only be resolved by including the
dimension-6 operator 82Ta/,.
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where the coupling and the operators are evaluated at the
scale O(Q?). In the “leading-twist” approximation, one can
further simplify [see (A2)]

1 A A A A
PR s (T = T = g ). (25)

Actually, since we are neglecting the twist-2 operators with
spin j > 2, it is not entirely consistent to include anything
beyond (25) as it corresponds to twist-4 effects. Still, for

|

Pljg A,

phenomenological purpose it may be interesting to include

at least the trace part of Tf,;ﬂ in order to assess the impact of
the trace anomaly.

IV. TWO-GLUON FORM FACTORS

In order to compute the actual cross section, we need to
parametrize the nonforward matrix element of two-gluon
operators in (24) in terms of form factors. First we have the
gravitational form factors at our disposal [47]

AHAY — g’“’A2

(p'|T%|p) = a(p') |A,y»P") + B,

ZmN

+ Dg 4mN + CgmNg/w ”(p)’ (26)

where A# = p# — p, Pt =22P" and AWBY) = (A*B* 4 A*B*)/2. All four form factors are functions of 7 = A% and the
renormalization scale yg in the MS scheme. D, is the gluon part of the D-term form factor which we are mainly interested
in. (In the literature often the notation C, = D, /4 is often used.) The C , form factor is related to the trace anomaly [25]. The

traceless part reads

(P'|T|p) = a(p') |Ay“P + B,

PWigYeA, D
L2

2mN

Next consider the two gluon operator with four open indices

4mN

(A/‘A” —ﬁy) _ Mg (Ag —l—A—ng)]u(p). (27)

d d

2
4my,

(p'| - FLF|p). (28)

Its most general parametrization consistent with parity, Hermiticity and time-reversal symmetry is*

(p'| = Fi*F|p) =S

+

4mN

+ 8mN

A
i(p') (g7 PP — gPylepy) — gy ph) + g7y P u(p)
a(p)(g"ic A, PP) — ¢Pic A, PY) — g icW A, PP) + g?PicW A, PY)Yu(p)

D
a(p') (" AN — gV AN + P NN — P AT AV u(p)

w
+ gmNﬁ(Pl)(g’”gaﬁ — ¢’ g™ )u(p)

b U (87 = ) (P80 — PPAY) + (PO = PAR) (A = ) up)

2my,
Y
+—u(p')(P*A" — P*A*)(PYAP — PPAY)u(p)
My
Z
+ il P)(ic"*(PYAP — PPAY) + ic"P (PHA* — P*AF))u(p). (30)
my

The seven form factors can be partly constrained by requiring consistency with (26). Contracting the indices af in (30),

we get

“Terms which contain the antisymmetric tensor €% are not independent. For example, the following identity holds

- 1
iﬁ/e"“f”lyspriu = myit'ic"u + Eﬁ/(A"y" — A%")u. (29)
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(P'| = Fa"Flp) =

| >

+

3

N

><

mN

N

Y
— a(p') (P A2 + myAFAV)u(p) + 3

B
a(p')(myg" + 2r“PO)u(p) + ——a(p') (¢ i0™ APy + 216V A, P u(p)

my

a(p') (g A% + 28" AY)u(p) + Wmyg*“u(p')u(p)

a(p')(P*P*A? + P2AMAY)u(p)
N

+-———u(p")(2ic P A, + A*A*)u(p)

4mN

where in the second equality we used the following
relations which can easily be obtained by term-by-term
comparison:

AZ
A+—(X+7Y) =4, (32)
N
AZ
B+Z-—Y=8, (33)
my
A2
D+4X+4Y+(Z—2Y>:Dg. (34)
my

We see that only two linear combinations of X, Y, Z enter
these relations.

By comparing the coefficients of ", one should be able
to obtain another relation between W and C ,~ However, this
is nontrivial due to the presence of the QCD trace anomaly.
|

D
a(pl) (A

2D, +D ., BA?

2 2
8my 8my

— 9" A%)u(p), (31)

)gﬂvmmp')u(p)

my

|
If one naively contracts the indices uv in (31) and computes
the matrix element of 7%" by forming the linear combina-
tion (18), one ends up with a wrong relation Cg =-A,/4
(in the forward limit) and W is undetermined. The problem
is intimately tied to operator renormalization. In dimen-
sional regularization, the following innocent-looking rela-
tion does not hold

G (FFFY) # F2. (35)

Namely, operator renormalization and trace operation do
not commute. The correct way to proceed is to write

~FiE, =T - TR, (36)

on the left-hand side of (31) and sum over the indices uv
using (26) and (31). This gives

_ 3D, B A? A?

2

my N

On the other hand, the matrix element (p’|F2|p) has to be carefully evaluated in a chosen regularization scheme [25,26] (see
also [48]). In dimensional regularization, it is given by a linear combination of the gravitational form factors, see Eq. (13) of

Ref. [13]

(p'|F?|p) = {Kg(Ag +4C,) + K, (A, +4C,) +

where the quark gravitational form factors A,, B

D,,C, are defined analogously to (26) for the quark
part of the energy momentum tensor. The coeffi-
cients K, are defined in [13] and can be evaluated,
in principle, to arbitrary order in perturbation theory.
At the moment, the three-loop results are available [25,26].

(K,B, + K,B, —3K,D,—3K,D,)

o o), 39)

They depend on the number of flavors and the
renormalization scale via the QCD coupling a,(ug).
(37) and (38) give a complicated relation between X, Y,
Z, W and the quark and gluon gravitational form factors.
In the forward limit = 0 it somewhat simplifies and
we find
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4W(0) = 4C,(0)(1 - K, + K,) —

2+ K, = Kg)A,(0) - K (39)

q

where we used A, (0) + A,(0) = 1 and C,() + C,(r) = 0. The relation to the parameter b often used in the literature [49] is

b= (PI(X+7m) Dmsgrqslp) |—p—
= 5 N —_ =
2my,

where y,, is the mass anomalous dimension. b is the
partition of the trace anomaly into the quark and gluon
condensates. It is scheme and scale dependent.

V. NUMERICAL RESULTS

In this section we show numerical results for the
differential cross section based on the formula (24). We
do not intend to perform a complete calculation which is
anyway not possible at the moment as it requires the
detailed knowledge of all seven form factors A(7), B(7), ....
On the other hand, some information about the gravita-
tional form factors A , B, D, Cg is already available in
the literature. Based on this, we consider two interesting
cases which allow us to make a quantitative prediction.
Case 1: We use the “leading-twist” approximation (25)
and keep only the traceless part of the energy momentum
tensor (27). As explained in Sec. I1l, in doing so we assume
that the contributions from the twist-2 operators with
spin j > 2 can be either neglected or separated out by
using a large leverage in Q?. Case 2: We evaluate the full
two-gluon operators (24) including the trace part of the
energy momentum tensor. While this is not a consistent

|

ny
A = A ~
q(0> 4CF + nf ’ g(o>

with Cp = W and n ny = = 3 represents the number of light
flavors in the proton.” The value D ,(0) is our main interest
and should be determined by future experiments. Here, for
the sake of demonstration, we use the results of a recent
lattice simulation D/ (0) = -7.2 (C,(0) = —~1.8) with
my = 1.13 GeV and mc=0.76 GeV at pupr =2 GeV
[53]. (We neglect the scale dependence of these parame-
ters.) On the other hand C'g at zero momentum transfer is
related to the QCD trace anomaly [25]. Asymptotically
W — .

°As we commented in Sec. III, we neglect the charm quark
operators in the expansion (17). Let us nevertheless give a rough
estimate of its impact. The charm quark contribution to the proton
momentum is A, ~ 0.02 in the relevant Q” range (see for example
[52]). Comparing this to a,A, = 0.64a,, we see that the correc-
tion due to intrinsic charm is less than 20%. Still, this may have to
be included in more precise calculations in future.

5Pl p
2m3, 2

4C;
4CF + I’lf ’

= g((Ag(o)+4Cg(0))(1<g—1<q)+1<q), (40)

|
approximation (because we keep the twist-4 effect and
neglect the twist-2, spin-j > 2 contributions), it is an
instructive exercise to assess the impact of the trace
anomaly. In both cases, we set B, =0 following the
suggestion from lattice QCD (see, e.g., [50]) that this form
factor is numerically small. In Case 2, we also set X =
Y = Z = 0 as we know nothing about these form factors.
On the other hand, the W form factor is related to the trace
anomaly and will be given full consideration.

We use the following parametrization of the gravitational
form factors

_ A0 _ =40
A=y A=y my

_ PO eyl GO
PO =y OO g @

The tripole form of the D-term is motivated by the quark
counting rule [51]. Since the form factors are evaluated at a
large scale y% = Q2, to first approximation we can use the
asymptotic results

D,(0) % 32D, (0), (42)

_ ne 2n, 1 /2n b
ot )4 )
' 4\4Cr +ny 3Py 3p L+,

(43)

[a——

where b is introduced in (40). To one-loop, fy = 11N_./3 —

3CF"‘ . A more precise expression can be

2ny/3 and y,, =
found in [25,26].
Under these assumptions, (37) and (38) reduce to a

simple formula

AW (1) =4C, (1) (1=K 1+ K,,) - (2+Kg+%(g()()())Kq)Ag(t)
+3D,() (K +FK —2) ﬁ; (44)

For simplicity, we use the one-loop result K, ,
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(a) Total cross section (in fb) as a function of W (in GeV).

10 15 20 25

(b) Differential cross section (in fb/GeV?) at W = 4.4 GeV as

a function of |t| (in GeV?).

J/w total and differential cross sections at Q> = 64 GeV2. The upper and lower dashed curves correspond to Case 1 with

D, =0 and D, = 7.2, respectively. The upper and lower solid curves correspond to Case 2, D, = =7.2, with b =1 and b =0,

FIG. 1.
respectively.
C m -1 C m
K, = <ch - CLCqF) , K, = —CLKQ, (45)
qm qm
where [a; = a,(0?)]
Cr ¥
Cqm =1 +§as, CqF = Eas, (46)
TCp 1IN,
gm — Hasv CgF = - 24n As- (47)

See [26] for the three-loop result. Finally, the square of
the prefactor in (9) is evaluated as [including the factor e/
from (13)]

ete?M*
2
iy

~24.6, (48)

where we set e, =2/3, M = 3.1 GeV, I',+,- = 5.55 keV
and a,,, = e*/4r = 1/137. The corresponding value for
T is

4 2M4
¢ T 194, (49)
G

where ¢, = —1/3, M =9.46 GeV and T',+,- = 1.34 keV.
The parameter f should be determined by fitting the data
(for example the total cross section at some value of W) for
each quarkonium species. In the numerical results below
we set || = 1.

In Fig. 1, we show the total and differential cross sections
for J/y at Q = 8 GeV, a,(Q) = 0.2. The latter is evalu-
ated at W = 4.4 GeV. In both plots, the upper and lower
dashed curves correspond to Case 1 with D, =0 and
D, = 7.2, respectively. We see a dramatic impact of the

gluon D-term.® A negative (positive) D-term tends to shrink
(enhance) the differential cross section. The same tendency
has been observed in [9] in the case of photoproduction
Q? = 0. The upper and lower solid curves correspond to
Case 2 with b = 1 (zero gluon condensate) and b = 0 (zero
quark condensate), respectively. We see that the depend-
ence on the parameter b is significant. We also see that the
gluon condensate tends to reduce the cross section, which is
actually opposite to what was found in [9]. It is not clear to
us whether this is due to the fact that different processes
were considered (photoproduction vs leptoproduction), or
perhaps due to the deficiency of the model used in [9].

Next, in Fig. 2 we show the result for T at Q = 18 GeV,
a,(Q) = 0.16. Near the threshold (W, = 10.4 GeV), the
cross section becomes very small. In the right panel we
selected a somewhat large value W = 12.5 GeV consider-
ing the realistic luminosity of EIC. Again we see a large
effect of the D-term. However, the impact of the trace
anomaly and the split between b = 1 and b = 0 are barely
visible. This suggests that, at least theoretically, T pro-
duction is better suited for the purpose of extracting the
D-term.

In photoproduction, the J/y total cross section is about
1 nbat W = 4.5 GeV [16]. In leptoproduction, we see that
the cross section is several orders of magnitude smaller. For
T production, there is another 2 orders of magnitude
suppression. Besides, what is computed here is the cross
section in the y*p subsystem. Thus, near-threshold lep-
toproduction is a luminosity-hungry observable. Moreover,
as explained in Sec. I, one needs a large leverage in Q? to
extract the D-term. Given these requirements, we think that

Remember that we neglected the RG evolution of D, from
ug =2 GeVto Q = 8 GeV. The value | D,(0)] at the scale Q will
be smaller than 7.2 so the actual difference between the two
dashed curves is expected to be smaller.
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(b) Differential cross section (in fb/GeV?) at W = 12.5 GeV as

a function of |¢| (in GeV?).

FIG. 2. 7Y total and differential cross sections at Q> = 18> GeV?. See the caption of Fig. 1 for the explanation of each curve.

the best place to test our proposal is J/y (and possibly
also T) production in the high luminosity mode of EIC.

VI. CONCLUSION

In this paper we have proposed a novel strategy to
compute the cross section of near-threshold quarkonium
production at large momentum transfer. Compared to
photoproduction, near-threshold leptoproduction has so
far attracted much less attention due to the lack of strong
phenomenological motivations. We have demonstrated that
the process is useful for probing the gluon D-term, quite
complementary to the ongoing effort to extract the quark
D-term in DVCS. The possible impact of the D-term on the
differential cross section do/dt has been already pointed
out in the case of photoproduction using holography [9,14].
In leptoproduction at large Q2 > M?, the problem can be
studied within the perturbative framework. Moreover, at
the subleading level the cross section is also sensitive to
the value of the parameter b defined in Eq. (40) which
characterizes the structure of the QCD trace anomaly. The
proposed measurements require high luminosity and a large
leverage in Q. The only machine that can deliver these
requirements is the future EIC.

Our analysis in this paper is only the first step and there
are a number of directions for future research. In particular,
it is interesting to see if a similar approach can be applied to
photoproduction using the heavy quark mass as a hard
scale. On the phenomenological side, the contribution from
the Bethe-Heitler process e~ — e~y* needs to be inves-
tigated as J/y and Y are reconstructed from lepton pairs in
actual experiments, and this should be implemented in
realistic simulations to study experimental feasibility and
detector requirements at the EIC. The seven form factors
introduced in (30) can be calculated in lattice QCD. The
values of ¢ considered in this paper are rather large, and the
extrapolation to the forward limit is a serious challenge.
Lattice calculations of these form factors will be very
valuable in this respect.
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APPENDIX A: DIS COEFFICIENT FUNCTIONS

As a consistency check, let us compute the forward
matrix element of (23) in a single proton state and keep
only the twist-2 contribution. In this approximation, we can
write

(p|T¢p) = 24,p7p? (A1)
p g p gp P,
where A, is the fraction of the proton momentum

carried by gluons. We then decompose the operator
Frapeb ag’

PPt = —— : 5 (G FEl — g Py

_ gauF/luFlﬁ + gaﬁFinlu)
1
- - p o U 0 FpAFﬂ
+(d_2)(d_1)(gﬂgb gﬂg )g/m’ A
+ Crad, (A2)

"This decomposition is mathematically identical to that of the
Riemann tensor in general relativity. The trace part T,; is an
analog of the Ricci tensor which represents the matter content and
CH¥ is an analog of the Weyl tensor which represents the gravity
degrees of freedom.
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and extract the energy momentum tensor component Tgﬂ ~—Fo P ;- The remainder tensor C**F has the same symmetry as
FreFYP except that it is traceless with respect to any pair of indices. Its forward matrix element vanishes. We thus have

(p| = FrF|p) ~

This gives

i/d4rei"q<p|5‘}’”0(0)(_37yc(_”)|P>

a 2 q"q" 2. —q°
224, -5 |2 q? g - Y el
Y 7(q?)? {3 -9 (gﬂ 7 > (3 "

From this one can read off the known one-loop coefficient
functions for the DIS structure functions

2. —¢*> N\a 2a
g, = (L)% g, 2%
22 <3nﬂ§ 2> 4n 127 34

in the notation of [54].

(AS)

A (g ppP — ¢ pop* — g™ p* pP + ¢ p*pY).

(A3)

1
2) 42959 PP’ = 9P = g PP + g7 pY) | (Ad)

APPENDIX B: TOTAL DERIVATIVE
OPERATORS

In this appendix, we give an example of how operators
with total derivatives enter the calculation. We return to
(19) and include dimension-3 operators D, F, which have
been previously neglected

49
S(r,0) ~W(—r2) [F( e)D’F ,;p" + (/MDPF i+ 1P DgF oy + 3ir* P D F gy )/5)} (B1)
4q - -
S0, =r) ~ W(—"2>S [F(_f?)DpF e + (/MDPF yian ”a”ﬁDﬂFaAVﬁ = 3ir rﬁDaFﬂ27/175):|' (B2)
This can be derived following [42,43]. Note that the last term proportional to y5 breaks the naive relation S(r,0) = S(0, —r).

Let us focus only on the singular term o I'(—
correlator is

LF[I —el dlre—ira e I'(—e
(=2

3_25ﬂd—l
a;(4m)* T2 + e)l'[1 — €] gu(—q

)1—28

€) which is sufficient to demonstrate our point. Its contribution to the current

VEADF ,  Tr[y*y 757" 7"

.o 1 —-q*
= —]—
3n(?)* \e ﬂ?a

where we used the identity 0,74 = FyD,F®. Note that
this is antisymmetric in # and v. The 1/& divergence in (B3)
is absorbed into the renormalization of the operator

eyt gF %y ysrc — (u < v) ~ gy ,gF%c,  (B4)

which comes from the first line of (17). The remaining
terms contain total derivative operators. In the nonforward
matrix element, the derivative operator is replaced by the
momentum transfer (p'|0,T¢"|p) = iA,(p'|T§ |p) where

) qﬂa T/)D _ quapTgﬂ _ Fﬂyq/)Do—ng),

)_8 JAvp Tra 1yo
. 0 _28) @ )2 P FID F,,pF(—s)

(B3)

|
A, =g, —k,. This is how, in principle, total derivative
operators from higher dimensional terms can restore the
WT identity through the addition of A corrections. How-
ever, (B3) is not sufficient to make the logarithmic terms in
(23) transverse with respect to k#. For that, we would need
operators like T4 and ¢*9,T%. We presume that the
missing terms come from the dimension-5 and dimension-6
operators in the expansion of S(r,0). We leave this to a
future work.
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