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Large rapidity gap diffraction processes are considered in multichannel eikonal models. It is shown that
shadow corrections to overfast rising contribution of the input supercritical Pomeron (with αð0Þ > 1),
originating from the Pomeron rescatterings or, equivalently, accounting survival probability factor, do not
solve the Finkelstein-Kajantie problem. Therefore, in our opinion, another method of unitarization of
supercritical Pomeron should be developed.
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I. INTRODUCTION

Nowadays we are once again witnessing as recent
exciting results of the TOTEM experiment on total cross
sections of proton-proton interactions at maximal LHC
energies [1] have inspired the big splash of interest in
reviving several pending problems unresolved in the past
[2–5]. One of those is a notorious problem of unitarizing
the Pomeron input in various amplitudes of hadronic
processes. It has been launched for intensive discussion
by studying the BFKL Pomeron [6] having an intercept
larger than one in perturbative QCD. Another activity in
this scope was waked up by the phenomenological
Donnachie-Landshoff model [7,8] that successfully des-
cribes the data by the simple Pomeron j-pole located at
t ¼ 0 above j ¼ 1 but badly violates the Froissart-Martin
bound [9]. And finally the recent papers devoted to the
multi-Pomeron-odderon vertices ([10] and references
therein) are seriously focused on the Pomeron unitarization
problem. Obviously, the procedure of calculating some
corrections for the input Pomeron should be developed to
restore a unitarity. In practical QCD such a calculation,
unfortunately, is not possible, and therefore more attention
was paid to phenomenological approaches to model a
Pomeron in various physical processes. Recently, for
example, a special role of central exclusive production
(CEP) was intensively investigated because of a possibility
to observe the Higgs boson [11] in such a process, and now

[12] it is investigated to find an experimental confirmation
of odderon contribution and to study its properties [13].
However, there are a lot of problems with unitarity which

are still unresolved even for simpler processes like simple
diffraction dissociation (SDD), central diffraction produc-
tion (CDP) and double diffraction dissociation (DDD) as
well as their generalizations including an additional pro-
duction of high mass showers and large rapidity gaps
(LRG) between them. Possible distributions of the pro-
duced hadrons are illustrated in the Fig. 1.
If the effective masses of produced showers are large

enough, then the cross section of the corresponding pro-
cesses (together with certain simplifying assumptions) may
be presented (due to the generalized optical theorem) by the
diagrams with a triple-Pomeron vertices. The correspond-
ing diagrams are shown in the next sections and the detailed
features of the cross-sections are dependent on specific
model of Pomeron used. It has been shown long time ago
that there is a violation of unitarity bounds for the
diffraction cross sections even for the “standard” simple
(in j-plane) Pomeron pole with intercept αPð0Þ ¼ 1 pro-
vided that the three-Pomeron vertex is a nonzero constant at
zero transfer momentum. It has been formulated as the
Finkelstein-Kajantie problem (FK-problem) [14,15] that

FIG. 1. Distribution of the produced hadrons in the various
diffraction processes at rapidity scale. ND means nondiffraction,
MSDP means multishowers diffraction production, other abbre-
viations are explained in the text.
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the contribution of n hadron showers production to the total
cross section is increasing with energy as nth power of
lnðs=s0Þðs0 ¼ 1 GeV) violating the Froissart-Martin bound
and self-consistency of the Pomeron model with αPð0Þ ¼ 1
where σtotðsÞ → const at s → ∞.
One of the most popular and phenomenological suc-

cessful models at present is the so-called supercritical
Pomeron. In the above mentioned Donnachie-Landshoff
model [7] Pomeron has a trajectory with the intercept
αPð0Þ ¼ 1þ Δ with Δ ≈ 0.08. The contribution of such a
Pomeron to the total cross-section rises with energy as a
power σ ∝ sΔ, being in a contradiction with the Froissart-
Martin bound σtot < Cln2ðs=s0Þ.
The strict and consistent procedure to unitarize Pomeron

with an intercept larger than one is unknown until now, but
there are some simple phenomenological ways to eliminate
the rough contradictions with the unitarity. For example,
the eikonal, U-matrix methods and their generalizations
[8,16,17] are used to input elastic scattering amplitude.
It is quite obvious that any three-Pomeron diagram also

needs unitarity corrections, which should remove a too fast-
growing contribution of supercritical Pomeron to corre-
sponding diffraction cross-section. The input SDD cross
section is proportional to s2Δ up to the ln s-factors). The
3P-diagram seemed to be unitarized by the most simple
way, taking into account multiple Pomeron exchanges
between the incoming hadrons (initial state interaction).
This approach was considered in many old and recent
papers Refs. [18–26]. However, we would like to remind
the reader here the result of Ref. [27]: the asymptotic
estimation of M2dσSDD=dtdM2 in [19] is not accurate and
has to be corrected.
We will not discuss here other possible approaches to the

problem, we concentrate here on the eikonal approach and
its modifications. We present here some explicit calcula-
tions and high energy estimates within multichannel
eikonal models to check whether the FK-problem is really
fixed or not.
To make our arguments more clear we recall in the Sec. II

some generalities about one-eikonal model and account of
rescatterings. We are interested only in an asymptotic cross
section behavior, therefore a contribution of f-Reggeon is
omitted in all expressions. The explicit estimations of
corrections to input diffraction cross sections in one-channel
eikonal are given in the Sec. III. SDD process within a
multieikonal model is considered in Sec. IV.

II. ELASTIC SCATTERING

Following Ref. [19] we will work in the impact param-
eter representation. Normalization of elastic scattering
amplitude is

dσ
dt

¼ πjFðs; tÞj2; σtot ¼ 4πImFðs; 0Þ ð1Þ

An amplitude in b-representation is defined by the trans-
formation

Aðs; bÞ ¼ 1

2π

Z
d2q⃗e−iq⃗ b⃗Fðs; tÞ; t ¼ −q2 ð2Þ

and satisfies the unitarity equation

2ImAðs; bÞ ¼ jAðs; bÞj2 þ Ginelðs; bÞ ð3Þ

where Ginelðs; bÞ is a contribution of inelastic processes.
One can conclude from Eq. (3) that 0 < ImAðs; bÞ < 2.
Eikonal summation of the high energy elastic Pomeron

rescatterings can be realized with the input amplitude
aðs; bÞ

Aðs; bÞ ¼ ið1 − e−Ωðs;bÞÞ; ð4Þ

Ωðs; bÞ ¼ −iaðs; bÞ ¼ −
i
2π

Z
d2q⃗e−iq⃗ b⃗fðs; tÞ ð5Þ

where fðs; tÞ is an input elastic amplitude. Starting from a
simplified model of supercritical Pomeron

fðs; tÞ ¼ ig2ðtÞ
�
−is
s0

�
αðtÞ−1

≈ ig2ð0ÞeΔξeð2B0þα0ξÞt ð6Þ

where

ξ ¼ lnðs=s0Þ; αðtÞ ¼ 1þ Δþ α0t ð7Þ

and

gðtÞ ¼ gð0Þ expðB0tÞ ð8Þ

describes the vertex of Pomeron-proton interaction.
One can obtain

Ωðs; bÞ ¼ νðξÞe−b2=R2ðξÞ; ð9Þ

νðξÞ ¼ 2g2ð0Þ
R2ðξÞ

�
s
s0

�
Δ
¼ 2g2ð0Þ

R2ðξÞ e
Δξ; ð10Þ

R2ðξÞ ¼ 4ð2B0 þ α0 lnðs=s0ÞÞ ¼ 4ð2B0 þ α0ξÞ: ð11Þ

In this model if0ðs; tÞ and Ωðs; bÞ are the real functions.
Analyticity and crossing-symmetry are restored by the
substitution s → s expð−iπ=2Þ.
It is easy to obtain from the above expressions that at

s → ∞

σtotðsÞ ¼ 2

Z
∞

0

d2b⃗ð1 − e−Ωðs;bÞÞ

≈ 2πΔξR2ðξÞ → 8πα0Δξ2: ð12Þ
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Thus, in a supercritical Pomeron model the eikonal
corrections to one-Pomeron exchange remove the explicit
violation of the unitarity condition for input elastic scatter-
ing amplitude (6).

III. DIFFRACTION PRODUCTION WITH LRG,
ONE-CHANNEL EIKONAL MODEL

We use for all diffraction cross sections normalization of
the Ref. [28]. The difference in the normalization of elastic
scattering amplitude here and in [28] is taken into account
by replacing gð0Þ → gð0Þ= ffiffiffi

2
p

; G3P → G3P=
ffiffiffi
2

p
in expres-

sions for diffraction cross sections.

A. Single diffraction dissociation

The input differential SDD cross section pictured in
Fig. 2 is written as (let us notice that factorization in
ðs; tÞ−; ðs; bÞ− representations is valid for simple j-pole)

M2
dσSDD

dtdM2
¼ g2ðtÞgð0ÞG3Pð0; t; tÞ

×

�
s
M2

�
2αPðtÞ−2�M2

s0

�
αPð0Þ−1 ð13Þ

where

G3Pðt0; t1; t2Þ ¼ G3P expðr2ðt0 þ t1 þ t2Þ ð14Þ

is the triple Pomeron vertex.
The expression for an integrated over t cross-section of

SDD with shadow corrections (or identically, with survival
factor) is written in [19]. With our normalization and
notations it is

dσSDD

dξ1
¼ 2g3ð0ÞG3P

2

R̃2ðξ1Þ
�

2

R̃2ðξ2Þ
�
2

eΔξ1þ2Δξ2

×
Z

d2b
2π

d2b0

2π
expð−2νðξÞe−b2=R2ðξÞÞ

× exp

�
−
ðb⃗ − b⃗0Þ2
R̃2ðξ1Þ

− 2
b02

R̃2ðξ2Þ
�

ð15Þ

where ν; R2 are defined by the Eqs. (10), (11), ξ1 ¼
lnðM2=s0Þ, ξ2 ¼ lnðs=M2Þ, ξ1 þ ξ2 ¼ ξ ¼ lnðs=s0Þ,

R̃2ðξiÞ ¼ 4ðB0 þ r2 þ α0ξiÞ: ð16Þ
The eikonal corrections due to Pomeron rescatterings in
initial state [Fig. 2(b)] were accounted by the insertion of
the factor

expð−2Ωðs; bÞÞ ¼ expð−2νðξÞe−b2=R2ðξÞÞ ð17Þ
in the integrand of Eq. (15).
It was obtained in [19] that after integration over b and b0

the differential diffraction dissociation cross-section
becomes the following

dσSDD

dξ1
¼ 2g3ð0ÞG3P

eΔξ1þ2Δξ2

R̃2ðξ2Þ
a1

γ½a1; 2νðξÞ�
½2νðξÞ�a1 ð18Þ

where

a1 ¼
2R2ðξÞ

2R̃2ðξ1Þ þ R̃2ðξ2Þ
ð19Þ

and γða1; 2νðξÞÞ is incomplete gamma function,

γða1; 2νðξÞÞ ¼
Z

2νðξÞ

0

dx xa1−1e−x:

In the limit under consideration, s ≫ s0, M2=s0;
s=M2 ≫ 1, the ratio a1 tends to 2 and γ½a1; 2νðξÞ� tends
to Γð2Þ. Substituting these limits to the expression (18),
authors of [19] had obtained

dσSD

dξ1
≈

G3PR4ðξÞ
4gð0ÞR̃2ðξ − ξ1Þ

e−Δξ1 : ð20Þ

However, this result is wrong. The difference between a1
and 2 is very significant when evaluating the factor
½2νðξÞ�−a1 in the Eq. (18) in the kinematic region under
consideration. Indeed, one can see using the definitions (6),
(9), (11), and (16) that at s;M2; s=M2 → ∞ (here and in
what follows it is sufficient to consider the region where
α0ξ ≫ 2B0, α0ξi ≫ B0 þ r2)

a1 ≈
2ξ

2ξ1 þ ξ2
¼ 2

ξ

ξþ ξ1
¼ 2

�
1 −

ξ1
ξ
þ ξ21
ξ2

þ o

�
ξ21
ξ2

��
:

ð21Þ
Therefore the factor in the expression (18) that violates the
unitarity is transformed as following (we recall here that
ξ2 ¼ ξ − ξ1)

eΔ½ξ1þ2ξ2�

½νðξÞ�a1 ∝ ξa1 expfΔ½ξ1 þ 2ξ2 − a1ξ�g

≈ ξ2 exp

�
Δ
�
ξ1 þ 2ξ2 − 2

�
1 −

ξ1
ξ
þ ξ21
ξ2

�
ξ

��

¼ ξ2 exp fΔξ1½1þOðξ1=ξÞ�g ≈ ξ2 expðΔξ1Þ;
ð22Þ

(a) (b) (c)

FIG. 2. Single diffraction dissociation, (a) SDD process, (b) 3P
diagram for SDD without survival factor, (c) 3P diagram with
survival factor.
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conserving the fast growth of the SDD cross section (18)
at ξ1 ¼ lnðM2=s0Þ → ∞.

1. Another definition of survival probability
in one-channel eikonal model

This subsection reproduces the part of Ref. [20] concern-
ing the usage of alternative definition of the survival
probability (averaged in b) for SDD process. We have
changed only some notations for some variables in Eq. (27).
The input cross section for diffraction dissociation in the

region of large M2 can be viewed as a Mueller diagram
[Fig. 3(a)] which has been written in Eq. (13). We denote
the corresponding survival probability at given M2

as S3PðM2Þ.
The diagram in Fig. 3(a) does not take into account a

possibility of additional rescatterings of the interacting
particles shown in Fig. 3(b) Contribution of the diagram
Fig. 3(a) to differential SDD cross section without shadow
corrections is given by Eq. (13). While the SDD cross
section corresponding to Fig. 3(b) can be written [20] as

M2
dσ3p

dtdM2
½Fig:3ðbÞ� ¼ S23PðM2Þg2ðtÞgð0ÞG3Pð0; t; tÞ

×

�
s
M2

�
2αPðtÞ−2�M2

s0

�
αPð0Þ−1

ð23Þ

where the survival probability factor S23PðM2Þ averaged
over b is defined as

S23PðM2Þ ¼
R
d2kM2 dσ3P

d2kdM2 ½Fig: 3ðbÞ�R
d2kM2 dσ3P

d2kdM2 ½Fig: 3ðaÞ�
; t ¼ −k2: ð24Þ

The easiest way to calculate the diagram of Fig. 3(b) is at
first to transform the diagram of Fig. 3(a) to impact
parameter space. This is done by introducing the momen-
tum q along the lowest Pomeron in Fig. 3(a). In this case

Tðs;M2; qÞ ¼
Z

d2k
dσ3P

d2kdξ1
½Fig: 3ðaÞ� ¼ g3ð0ÞG3P

× expððξ1 þ 2ξ2ÞΔÞ exp ð−q2R̃2ðξ1Þ=4Þ

×
Z

d2k exp ð−½k2 þ ðq⃗ − k⃗Þ2�R̃2ðξ2Þ=4Þ:

ð25Þ

Similarly to transformation (2) we find the form of this
amplitude in the impact parameter space

Fðs;M2; bÞ ¼
Z

d2q
2π

e−iq⃗ b⃗Aðs:M2; qÞ: ð26Þ

Using a linear approximation for the Pomeron trajectory (7)
and a Gaussian form for all vertices (8), (14) we obtain

Fðs;M2; bÞ ¼ 2g3ð0ÞG3P
ν0ðξ1Þν20ðξ2Þ

dðξ1Þ þ 2dðξ2Þ

× exp

�
−2

dðξ1Þ½dðξ2Þ�
dðξ1Þ þ 2dðξ2Þ

b2
�
; ð27Þ

where

ν0ðyÞ ¼
2eΔy

R̃2ðyÞ ; dðyÞ≡ 1

R̄2ðyÞ : ð28Þ

Making use of the Eq. (27) the expression for the
survival probability (24) in a simple eikonal model with
the rescattering corrections can be written as

S23PðM2Þ ¼
R
d2bFðs;M2; bÞ expð−Ωðξ; bÞÞR

d2bFðs;M2; bÞ ð29Þ

where

Ωðξ;bÞ ¼ 2νðξÞ exp
�
−

b2

R2ðξÞ
�
; νðξÞ ¼ 2g2ð0Þ

R2ðξÞ e
Δξ:

ð30Þ

Calculation of S23PðM2Þ and M2 dσ3p

dtdM2

The above defined averaged survival probablityt is
presented (with some nonprincipal modifications) in many
papers as the unitarization method (or the compensation of
the too fast increasing with energy cross section) for the

(a)

(b)

FIG. 3. The general Mueller diagrams for SDD process in h − h
collisions at high energy, (a): without rescatterings and (b): with
rescatterings. The spiral lines denote input Pomerons.
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Pomeron with αPðð0Þ − 1 ¼ Δ > 0. Let us check if this
procedure indeed compensates too fast growth and really
solves the Finkelstein-Kajantie problem.
The averaged survival probability S23PðM2Þ (29) is easily

calculated and estimated in the limit under interest.

S23PðM2Þ ≈ eΔξ1þ2Δξ2

R̃2ðξ2Þ
a1

γ½a1; 2νðξÞ�
½2νðξÞ�a1

. eΔξ1e2Δξ2

R̃2ðξ1Þ½R̃2ðξ2Þ�2
ð31Þ

where a1 and its asymptotic are determined by Eqs. (19)
and (21). Omitting the constant and logarithmic factors we
obtain

S23PðM2Þ ∝ ðνðξÞÞa1 ≈ expð−2ð1 − ξ1=ξÞΔξÞ
¼ expð−2Δξ2Þ: ð32Þ

Then, it follows from (23) that

dσ3p

dξ1
∝ expðΔðξ1 þ 2ξ2ÞÞ expð−2Δξ2Þ ¼ expðΔξ1Þ ð33Þ

Conclusion from the Sec. III A. An over unitarity growth of
the input SDD cross section is not compensated by survival
probability factor.

B. Central diffraction production, CDP

Let us consider a process of the central diffraction
production shown in Fig. 4.

dσCDP

dt1dt2dξ2
¼ 1

4π
g4ð0ÞG2

3Pe
Δð2ξ1þξ2þ2ξ3Þ

× expð−q21R̃2ðξ1Þ=2Þ expð−q22R̃2ðξ3Þ=2Þ:
ð34Þ

The differential CDP cross section integrated over t1 and
t2 is written in terms of the impact parameters as follows

dσCDP

dξ1dξ2
¼ 4πg4ð0ÞG2

3P

�
2eΔξ1

R̃2ðξ1Þ
�
2 eΔξ2

R̃2ðξ2Þ
�
2eΔξ3

R̃2ðξ3Þ
�
2

×
Z

d2b
2π

d2b1
2π

d2b
2π

expð−2νðξÞe−b2=R2ðξÞÞ

× exp

�
−2

b⃗1
2

R̃2ðξ1Þ
−

b⃗2
2

R̃2ðξ2Þ
− 2

b⃗3
2

R̃2ðξ3Þ
�

ð35Þ

where ξ2 ¼ ξ − ξ1 − ξ3, b⃗2 ¼ b⃗ − b⃗1 − b⃗3.
Performing the integration in the Eq. (35) one can obtain

dσCDP

dξ1dξ2
¼ 16πg4ð0ÞG2

3P
R2ðξÞ

R̃2ðξ1ÞR̃2ðξ3Þ
a2

× ½2νðξÞ�−a2γða2; 2νðξÞÞe2Δξ1eΔξ2e2Δξ3 ð36Þ

where

a2 ¼
2R2ðξÞ

R̃2ðξ1Þ þ 2R̃2ðξ2Þ þ R̃2ðξ3Þ
: ð37Þ

Like to SDD case a2 → 2 at ξ → ∞, however taking into
account that R2ðξiÞ ≈ α0ξi at ξ ≫ 1 we have

a2 ≈ 2
ξ

ξ1 þ 2ξ2 þ ξ3
¼ 2

1

1þ ξ2=ξ
≈ 2ð1 − ξ2=ξÞ: ð38Þ

As a result we see that the corrected CPD cross section

dσCDP

dξ1dξ2
∝ ðνðξÞÞ−a2e2Δξ1eΔξ2e2Δξ3

≈ e½Δð2ξ−ξ2−2ðξ−ξ2ÞÞ� ¼ expðΔξ2Þ ð39Þ

rises faster than it is allowed by unitarity.
Conclusion from Sec. III B: An over unitarity growth of

the input CDP cross section is not compensated by survival
probability factor.

C. Double diffraction dissociation, DDD

DDD cross section without rescatterings is calculated by
the following expression

dσDDD

dξ1dξ3dt
¼ g2ð0ÞG2

3Pe
Δðξ1þ2ξ2þξ3Þ expð−2q2R̃2ðξ2ÞÞ:

ð40Þ

The integrated over t DDD cross section with rescatterings
(Fig. 5) has the form The integrated over t DDD cross
section with rescatterings has the formFIG. 4. Central diffraction production.
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dσDDD

dξ1dξ2
¼ g2G2

3P
2eΔξ1

R̃2ðξ1Þ
�
2eΔξ2

R̃2ðξ2Þ
�
2 2eΔξ3

R̃2ðξ3Þ

×
Z

d2b
2π

d2b1
2π

d2b2
2π

expð−2νðξÞe−b2=R2ðξÞÞ

× exp

�
−

b⃗1
2

R̃2ðξ1Þ
− 2

b⃗2
2

R̃2ðξ2Þ
−

b⃗3
2

R̃2ðξ3Þ
�
: ð41Þ

Similarly to the previous calculations we obtain

dσDDD

dξ1dξ2
¼ 2g2G2

3P
R2ðξÞ
R̃2ðξ2Þ

a3

× ½2νðξÞ�−a2γða3; 2νðξÞÞeΔðξ1þ2ξ2þξ3Þ ð42Þ

a3 ¼
2R2ðξÞ

2R̃2ðξ1Þ þ R̃2ðξ2Þ þ 2R̃2ðξ3Þ
≈

2

2ξ1=ξþ ξ2=ξþ 2ξ3=ξ
¼ 2

1þ ξ1=ξþ ξ3=ξ

≈ 2ð1 − ξ1=ξ − ξ3=ξÞ

dσDDD

dξ1dξ3
∝ ðνðξÞÞ−a3eΔðξ1þξ2þξ3Þ

≈ eΔ½−2ðξ−ξ1−ξ3Þþ2ξþξ1þ2ξ2þξ3�

¼ expðΔðξ1 þ ξ3ÞÞ:

Again we have a violation of unitarity. There is no
compensation of too fast rising input contribution of the
Pomeron with intercept αð0Þ ¼ 1þ Δ > 1.
Conclusion from the Sec. III C. An over unitarity growth

of the input DDD cross section is not compensated by
survival probability factor.

1. Double diffraction dissociation, with
additional many LRG showers

We write differential DDDn cross section (Fig. 6) as
follows

dσDDDn

dξ1 � � � dξ2ndt1 � � � dtn
¼ 4πg2ð0Þ

�
G2

3P

4π

�
n

× exp

�
Δ
Xn
i¼0

ξ2iþ1 þ 2Δ
Xn
i¼1

ξ2i

�

×
Yn
i¼1

exp ð−q2i R̃2ðξ2iÞ=2Þ: ð43Þ

This cross section integrated over ti in b-representation:

dσDDDn

dξ1dξ2 � � �dξ2n
¼ 4πg2ð0Þ

�
G2

3P

4π

�
n

×
Ynþ1

i¼1

2eΔξ2i−1

R̃2ðξ2i−1Þ
Yn
i¼1

�
2eΔξ2i

½R̃2ðξ2iÞ
�
2

×
Z

d2b
2π

d2b1
2π

� � �d
2b2nþ1

2π
δ

�
b⃗−

X2nþ1

i¼1

b⃗i

�

× ð2πÞ2 expð−2νðξÞe−b2=R2ðξÞÞ

× exp

�
−
Xnþ1

i¼1

b⃗22i−1
R̃2ðξ2i−1Þ

− 2
Xn
i¼1

b⃗22i
R̃2ðξ2iÞ

�
:

ð44Þ
After integration over all b⃗-s we have

dσDDDn

dξ1dξ2 � � �dξ2n
¼ 8πg2ð0Þ

�
G2

3P

2π

�
n

×R2ðξÞ exp
�
Δ
�Xn

i¼0

ξ2iþ1 þ 2
Xn
i¼1

ξ2i

��

×
e2Δξ2i

R̃2ðξ2iÞ
an½2νðξÞ�−anγðan;2νðξÞÞ

ð45Þ

an ≈ 2
1

2
Pnþ1

i¼1 ξ2i−1=ξþ
P

n
i¼1 ξ2i=ξ

≈ 2

�
1 −

Xnþ1

i¼1

ξ2i−1=ξ

�

ð46Þ

FIG. 5. Double diffraction dissociation.

FIG. 6. Process of diffraction n-showers production.
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dσDDDn

dξ1dξ2 � � � dξ2n
∝ ðνðξÞÞ−an

× exp

�
Δ
�Xnþ1

i¼1

ξ2i−1 þ 2
Xn
i¼1

ξ2i

��

≈ exp

�
Δ
Xnþ1

i¼1

ξ2i−1

�
: ð47Þ

So, the one-eikonal “survival probability method” of
unitarity restoration does not work for multishower gen-
eralization of DDD process. The similar conclusion can be
obtained for SDDn and CDPn processes.
The general conclusion of the Sec. III. We have argued

that the FK problem for the main diffraction processes is
not fixed by one-channel eikonal survival probability
unitarization.

IV. DIFFRACTION PRODUCTION WITH LRG IN
TWO-CHANNEL EIKONAL MODEL

In this section we consider an unitarization of the SDD
cross section in the framework of two-channel eikonal
model following the paper [21] (similar model is consid-
ered in [20]).
Let us briefly recall the main idea of the method

following to the Ref. [21].
Authors have used a two-channel eikonal (see also [18])

in which, besides the elastic proton channel proton exci-
tation N�, a possible intermediate state in pp elastic
scattering, is allowed. This effective N� channel describes
the sum of low mass diffractive proton excitations. For the
various p and N� couplings to the Pomeron a common
dependence on t is taken

βp →

�
βðp→ pÞ βðp→ N�Þ
βðN� → pÞ βðN� → N�Þ

�
≃ βðp→ pÞ

�
1 γ

γ 1

�

ð48Þ

where

γ ≡ Vðp → N�Þ
Vðp → pÞ : ð49Þ

Here for asymptotic estimates the simplest choice for the
vertex can be used βðtÞ ¼ βp expðB0tÞ and Pomeron
trajectory αðtÞ ¼ 1þ Δþ α0t.
Now each amplitude has two vertices and so, for the

amplitudes under consideration we have

ImAelðbÞ ¼ 1 −
1

4
½e−ð1þγÞ2Ω þ 2e−ð1−γ2ÞΩ

þ e−ð1−γÞ2Ω�;

ImAðpp → N�pÞ ¼ 1

4
½e−ð1−γÞ2Ω − e−ð1þγÞ2Ω�;

ImAðpp → N�N�Þ ¼ 1

4
½e−ð1−γÞ2Ω − 2 e−ð1−γ2ÞΩ

þ e−ð1þγÞ2Ω�: ð50Þ

Ω≡Ωðs; bÞ is defined by Eqs. (9), (10), (11).

dσSDD
E

dξ1
¼ 16g3pð0ÞG3P

e2Δξ2eΔξ1

R̃2ðξ1Þ½R̃2ðξ2Þ�2
Z

d2b
2π

d2b0

2π

× EðΩÞ exp
�
−
ðb⃗ − b⃗0Þ2
R̃2ðξ1Þ

− 2
b02

R̃2ðξ2Þ
�

ð51Þ

In the considered two-channel eikonal model [21]

EðΩÞ ¼ 1

8
fð1þ γÞ½ð1þ γÞe−ð1þγÞ2Ω=2

þ ð1 − γÞe−ð1−γ2ÞΩ=2�2
þ ð1 − γÞ½ð1 − γÞe−ð1−γÞ2Ω=2
þ ð1þ γÞe−ð1−γ2ÞΩ=2�2g: ð52Þ

Obviously, EðΩ) is the sum of similar type terms, that can
be written in the form Pγe−2pγΩ. Now we can calculate and
estimate asymptotic behavior of any term in the differential
cross section of SDD (51).

dσSDD
part

dξ1
¼ 16g3pð0ÞG3P

e2Δξ1eΔξ2

R̃2ðξ1Þ½R̃2ðξ2Þ�2
Pγ

×
Z

d2b
2π

d2b0

2π
e−2pγνðξÞe−b2=R2ðξÞ

× exp

�
−
ðb⃗ − b⃗0Þ2
R̃1ðξ1Þ

− 2
b02

R̃2ðξ2Þ
�
: ð53Þ

Let us note that the Eq. (53) almost coincides with Eq. (15).
Therefore, we have in the two-channel eikonal model for
any term of SDD cross section

dσSDD
part

dξ1
¼ 2g3pð0ÞG3PPγ

eΔξ1þ2Δξ2

R̃2ðξ2Þ
a1

×
γ½a1; 2pγνðξÞ�
½2pγνðξÞ�a1

∝ ξ2eΔξ1 ð54Þ

where a1 is determined by Eq. (19). SDD cross section (54)
rises as ðM2=s0ÞΔ and violates the unitarity bound at
asymptotic energy. This result confirms the conclusions
made in the previous section.
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V. CONCLUSION

It has been declared in the papers [19,22–24] that the too
fast (like power of energy, if αð0Þ > 1) growth of multigap
diffraction production cross section can be compensated
within the eikonal approach by including shadow correc-
tions to the amplitude (or the Pomeron rescatterings in
initial state), in other words, due to survival probability
factor. It is important that the considered eikonal models
realize the BDL when ImAðs; b ≈ 0Þ → 1 at s → ∞.
If it is so, then well-known Finkelstein-Kajantie problem

(multigap diffraction cross sections rise with energy beyond
the unitarity bound) is resolved. We would like to note,
that in all eikonal models considered in the cited papers,
the final dependence of diffraction cross sections on the
effective mass of produced showers actually was not
calculated except perhaps the Ref. [19] where SDD cross
section was estimated, however, far from sufficient accu-
racy as we demonstrated in the Sec. III.
In fact, we have argued here more accurate estimates of

corrections show the opposite trend for the FK compensa-
tion. Not only the main eikonalized diffraction cross
sections (SDD, CDP, DDD) violate unitarity bounds.
The eikonalized cross sections of generalized processes
with additional production of any number of hadron heavy
showers with LRG between them are running into the same

failure. Moreover, we have considered two approaches
for survival probability factor and neither one-channel
eikonal model, nor two-channel model have showed
the same, negative, answer as to the FK problem for
diffraction cross sections. One can see that too fast growth
of the cross sections is retained in three-channel eikonal
approach [25] ].
Thus, we conclude that the Finkelstein-Kajantie problem

is not solved due to survival probability factor within the
BDL eikonal approach.
In our opinion another approach should be developed

for unitarization of input supercritical Pomeron in multi-
gap diffraction processes. Moreover, probably, alternative
approach, beyond the eikonal one, should be considered in
order to describe multigap diffraction processes in case of
rising total cross section. This approach will be presented in
our forthcoming paper.
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