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An external Abelian magnetic field excites in the QCD vacuum a tensor supercurrent that represents the
tensor polarization of the chiral condensate. This tensor supercurrent can be deduced from the chiral
Lagrangian in the presence of anomalies; a similar tensor supercurrent emerges in rotating systems at finite
chemical potential. We discuss the microscopic origin of this supercurrent and argue that it screens the
instanton–anti-instanton molecules IĪ in the QCD vacuum, similarly to the vector supercurrent screening
Abrikosov vortices in a superconductor. A number of possible experimental manifestations of the tensor
supercurrent are discussed: (i) spin alignment of axial-vector and vector mesons in heavy ion collisions;
(ii) tensor charge of the nucleon; (iii) transversity of quark distributions in polarized nucleons.
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I. INTRODUCTION

Since the early work of ’t Hooft [1] and Mandelstam [2],
it is widely believed that the QCD vacuum in the confined
phase can be viewed as a dual superconductor. Due to the
dual Meissner effect, the chromoelectric field gets repelled
by the condensate of chromomagnetic degrees of freedom,
and the emerging chromoelectric strings confine the quarks
and bind them into mesons and baryons. While this
qualitative picture is simple and attractive, it is not yet
clear how to realize it microscopically in QCD. In par-
ticular, the nature of the chromomagnetic objects that
condense in the vacuum is still not entirely understood,
in spite of significant advances made over the last decades
(see e.g., [3,4] and references therein). For example, apart
from magnetic monopoles proposed originally, the confine-
ment can also arise from the condensation of closed
chromomagnetic strings [5].
In Londons’ theory of conventional superconductivity,

the flux of magnetic field inside an Abrikosov vortex is
surrounded by the electric supercurrent proportional to
the condensate that screens the magnetic field in the bulk
of a superconductor. In the dual superconductor model of
confinement, it is thus natural to expect that the confining

chromoelectric flux is surrounded by the supercurrent of
chromomagnetic charges that shields the vacuum from the
chromoelectric field. Does this supercurrent exist in QCD?
If so, what are the consequences for the structure of
hadrons? The answers to these questions are still lacking.
Quarks interact with the chromomagnetic degrees of

freedom, and this interaction should affect both the chiral
condensate and the hadrons. Since quarks, in addition to
color charges, possess also the electric charge, they respond
to an external magnetic field that can thus be used as a
probe of nonperturbative QCD dynamics.
Indeed, an external Abelian magnetic field has emerged

as a powerful probe of the QCD vacuum [6–8]. In chiral
theory, one expects that the chiral condensate increases [9]
in an external magnetic field (in accord with the “magnetic
catalysis” scenario [8,10]), and a constant density of
magnetic moment gets generated [11]. At finite chemical
potentials for the chiral and vector charges, the chiral
magnetic effect [12] and chiral separation effect [13] are
induced, see [6,14] for reviews. These effects have been
discussed not only in the deconfined phase, but also in
confined, chirally broken phases, see e.g., [15–17]. It was
argued that in the confined phase the pionic effective strings
could play an important role providing their core for the
propagation of dissipationless chiral currents [18].
In this paper, we focus on a vacuum tensor current that

emerges at zero temperature and zero chemical potential in
an external abelian magnetic field. The nonvanishing v.e.v.
of this tensor current gives rise to both the dipole magnetic
moment of the vacuum and the current circulating in the
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plane perpendicular to the external magnetic field. The
existence of this tensor supercurrent can be implied from
the relations between the magnetic [19] and vortical [20]
susceptibilities of the quark condensate and the quantum
anomalies. Once the term describing the anomalous
response of the quark condensate is added to the effective
chiral Lagrangian [19], it leads to the tensor current

Jμν ¼ χhΨ̄ΨiFμν; ð1Þ

where an external magnetic field is described by the
field strength tensor Fμν, and hΨ̄Ψi is the quark condensate.
The value of magnetic susceptibility of the condensate
was discussed within several approaches; the Vainshtein
relation [21]

χ ¼ −
Nc

4π2f2π
; ð2Þ

was derived from the VVA anomalous triangle diagram
with the use of pion dominance in the axial channel.
In this paper we will address the following two

questions:
(1) What are the microscopic carriers of the tensor

current in confined QCD? Since the current can
be excited by an arbitrarily weak magnetic field, it
has to be carried by very light degrees of freedom.

(2) The tensor supercurrent is proportional to the chiral
condensate which breaks the global chiral symmetry.
Can we interpret this current in analogy with
superfluidity or superconductivity? Does this current
emerge at the boundary of a domain where the chiral
symmetry is partially or completely restored, similar
to supercurrents around strings and vortices in
superfluidity and superconductivity?

These questions can be addressed both in Euclidean and
Minkowski spaces. The Euclidean QCD vacuum with a
quark condensate, according to the Casher-Banks relation
[22], is characterized by a finite density of quasizero Dirac
operator eigenmodes which are delocalized in 4d Euclidean
space-time. It was shown in [23] that magnetic suscep-
tibility of the quark condensate is saturated by the zero
modes of 4D Dirac operator; therefore the key contribution
to the tensor current should involve the defects supporting
such zero modes. The simplest Euclidean defect supporting
fermionic zero mode is the instanton. The behavior of the
fermion in the background of a single instanton in the
external magnetic field has been considered in [24]. It was
found that a single instanton gives rise to a dipole electric
moment of the quark quasizero modes, in agreement with
the lattice QCD study [25]; see [26] for a related obser-
vation for a polarized nucleon. Since an anti-instanton
develops an electric dipole moment of an opposite ori-
entation, it can be expected that a pair of an instanton and
an anti-instanton develops a tensor electric moment, in

accord with the emergence of the tensor current from the
effective theory. While the microscopic picture can become
quite complicated due to the instanton–anti-instanton
interactions, the effective chiral Lagrangian allows us to
fix the magnitude of the tensor current in terms of the
quark condensate.
We advocate here the following interpretation: in an

external magnetic field, the tensor supercurrent in 4D
Euclidean space-time screens the IĪ molecules in the vacuum
ensemble. Indeed, the IĪ molecule supports the fermion zero
modes [27] that in an external magnetic field develop the
tensor electric moment [24]. Since this tensormoment should
be absent in the empty vacuum surrounding the molecule,
it is screened by the tensor supercurrent. In other words, one
can say that magnetic field probes the instanton molecule
component of the QCD vacuum and induces the tensor
supercurrent surrounding the individual molecules.
The paper is organized as follows. First we describe

how the 2-form supercurrent emerges in confined phase of
QCD within the low-energy effective theory in Sec. II. In
Sec. III we consider the microscopic aspects of tensor
supercurrent and argue its relevance for the screening of the
IĪ molecules. In Sec. IV we describe the possible exper-
imental manifestations of the tensor supercurrent. The
comparison with the screening currents familiar in super-
conductivity and superfluidity, as well as interpretation of
the tensor supercurrent as a conserved 2-form current of
broken 1-form global symmetry in hydrodynamics is
presented in Discussion. Some open questions are formu-
lated in the Conclusion.

II. TENSOR SUPERCURRENT IN THE
CONFINED PHASE OF QCD

A. Tensor currents and dipole moments

In this section we explain how the 2-form currents
emerge from the polarization of the chiral condensate
[19,20]. In hadronic phase of QCD, the chiral condensate
hΨ̄Ψi breaks the SUðNfÞL × SUðNfÞR symmetry of the
Lagrangian to the diagonal SUðNfÞ subgroup. Let us
consider the response of this chiral condensate to an
external electromagnetic field:

h0jΨ̄fσμνΨfj0i ¼ χefhΨ̄ΨiFμν; ð3Þ

and

h0jΨ̄fσμνγ5Ψfj0i ¼ χ̃efhΨ̄ΨiF̃μν; ð4Þ

where ef is the electric charge of the quark with flavor f,
and σμν ¼ 1

2i ½γμ; γν� is the relativistic spin operator. Since in
four dimensions

σμν ¼ iϵμναβσαβγ5; ð5Þ
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the electric and magnetic susceptibilities of the condensate
χ and χ̃ are related. The value of magnetic susceptibility
introduced in [11] has been derived from the anomalous
hVVAi triangle [28] [as given by (2)], in holography via
5d Chern-Simons term [29], in an extended holographic
model [20,30] and in lattice QCD [23].
The physical interpretation of the vacuum tensor currents

(3) and (4) is as follows: the Ψ̄fσ0iΨf component of (3) that
is a tensor charge corresponds to the electric dipole moment
in the external electric field Ei ¼ F0i. Similarly, the
Ψ̄fσ0iγ5Ψf component of (4) corresponds to the magnetic
dipole moment in the external magnetic field Bi ¼ F̃oi.
Due to the kinematic relation (5), the nonvanishing dipole
magnetic moment implies the “electric” spatial tensor
current ∼Ψ̄fσjiΨf in the plane transverse to the applied
magnetic field Bi while similarly the electric dipole
moment implies the “magnetic” spatial tensor current
∼Ψ̄fσjiγ5Ψf in the plane transverse to the applied electric
field Ei.
Since there is no CP violation in QCD, there are no

CP-odd terms in (3) and (4)—for instance, there is no
induced electric dipole moment in a magnetic field.
However the electric dipole moment squared does not
vanish due to fluctuations, as was demonstrated in the
lattice study [25]. The fluctuations of the electric dipole
moment emerge for example from an ensemble of instan-
tons and anti-instantons that have opposite electric dipole
moments in an external magnetic field [24]. While the total
electric dipole moment vanishes upon the averaging over
the instanton–anti-instanton ensemble, the correlator of the
electric dipole moments does not vanish due to the non-
vanishing correlator of topological charges. The emergence
of the spatial electric tensor current in the plane transverse
to an external magnetic field in the presence of an
instanton-anti-instanton pair is illustrated in Fig. 1.
The duality between electric and magnetic dipole

moments is similar to the familiar duality between the
vector and axial currents in the Schwinger model, the
(1þ 1)-dimensional QED. In this model there exist
the vector and axial vacuum currents in the external gauge
field that at one-loop level are given by

h0jΨ̄fγνΨfj0i ∼ Aν; ð6Þ

h0jΨ̄fγνγ5Ψfj0i ∼ ϵμνAμ; ð7Þ

which are related kinematically due to the identity

γν ¼ iϵμνγμγ5: ð8Þ

This means that a non-vanishing vector charge in the
external field implies the nonvanishing axial current and
vice versa. This is similar to our four-dimensional case,
where the nonvanishing dipole magnetic moment in an

external magnetic field implies the spatial electric tensor
current.

B. Tensor current from magnetic susceptibility

It is useful to introduce the antisymmetric rank two
external field tensor Bμν as a source for the microscopic
quark tensor current (3)

h0jΨ̄σμνΨj0i ¼
δLanom

δBμν
ð9Þ

and similarly external field pseudotensor B̃μν as the source
for the pseudotensor quark current (4). Implementing (9)
amounts to the additional terms in the effective chiral
Lagrangian which can be derived at the quark level from the
triangle diagram involving the vector, tensor and scalar
currents. Taking into account nonvanishing magnetic sus-
ceptibility, the resulting anomalous term in the chiral
Lagrangian in the external Bμν field is [19]

Lanom ¼ χhΨ̄ΨiFμνBμν TrBQðU þ U−1Þ
þ χ̃hΨ̄ΨiF̃μνB̃μν TrBQðU þU−1Þ; ð10Þ

here B is the flavor matrix and Q is the charge matrix;
U ¼ expðiπatafπ

Þ.
The usual treatment of currents in standard chiral

perturbation theory includes the external scalar S, pseudo-
scalar P, vector V, and axial-vector A sources, without
coupling to an external tensor source that is present in (10).
Nevertheless, to describe within the chiral perturbation
theory the relations (3) and (4) that follow from the hVVAi

B

+

-
-

+

FIG. 1. Tensor supercurrent in the QCD vacuum. The external
magnetic field induces electric dipole moments of opposite
orientation in the instanton and anti-instanton, creating a tensor
polarization of the quark zero modes. This tensor polarization is
absent in the “empty” vacuum surrounding the instanton-anti-
instanton pair, and is thus screened by the tensor supercurrent
proportional to the quark condensate.
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triangle anomaly we have to add to the usual chiral
Lagrangian the term (10) describing the coupling to an
external tensor Bμν source. The anomalous term (10) yields
in particular an effective mass of the pion in external fields
in the chiral limit

m2
π;eff ¼ χhΨ̄ΨiFμνBμνf−2π ð11Þ

that arises from the tensor polarization of the quark
condensate.
The chiral Lagrangian can be derived in the holographic

framework from the 5d gauge theory with SUðNfÞ ×
SUðNfÞ gauge group. The stringy currents in the holo-
graphic picture appear if we take into account the specific
mixed CS-like term in the 5d bulk Lagrangian for the
extended hard-wall model [19,30,31]

δS ¼
Z

d5x
ffiffiffiffiffiffi
−g

p
TrðXþFLB þ BFRXÞ ð12Þ

where X is scalar in bifundamental representation, B is
self-dual antisymmetric rank 2 field in the bifundamental
representation and FL;R are the field strengths for the left
and right gauge groups. At the boundary of the holographic
5d space it yields the corresponding term (10) in the chiral
Lagrangian.
The tensor B field is sourced by stringy degrees of

freedom due to the term
R
BμνdΣμν in the string worldsheet

action. Therefore we could introduce the stringy current as

Jμν ¼
∂Lanom

∂Bμν
: ð13Þ

From the anomalous term (10) in the chiral Lagrangian we
then immediately get the conserved stringy supercurrent in
an external magnetic field:

Jμν ¼ χhΨ̄ΨiFμν: ð14Þ

The mixed anomalous term also yields the vector current
proportional to the chiral condensate if the external rank-
two pseudotensor field has nonvanishing curvature:

Jν ¼ χhΨ̄Ψiϵνμαβ∂μB̃αβ: ð15Þ

Since this current is proportional to the condensate, it can
be considered as analog of vector supercurrent. Similarly
there is an axial current proportional to the curvature of the
tensor field and the chiral condensate.

III. TOWARD A MICROSCOPIC PICTURE

A. Dual Lagrangians and examples of tensor currents

Let us present two examples in which the tensor stringy
currents in an external magnetic field can be constructed

explicitly. The stringy currents are usually hidden in the
original formulation of the theory but emerge clearly in
the dual formulation. The first example concerns the
Polyakov’s (2þ 1)-dimensional compact QED [32]. In
that theory there is a natural 2-form current

Jμν ¼ ϵμνα∂αϕ; ð16Þ

where ϕ is the pseudoscalar that is dual to the photon:

ϵμνα∂αϕ ¼ Fμν: ð17Þ

This current is conserved perturbatively, apart from the
points where the vortices-monopoles are localized, and it
counts the number of strings. The natural microscopic
carrier of this 2-form current is the string of finite length
with monopole and antimonopole at its ends. It is the string
that provides confinement in the theory, and we thus see
clearly the two roles played by the tensor current. The
monopole-antimonopole pair at the ends of the string
amounts to the magnetic dipole structure described by
the tensor current. On the other hand, this tensor current is
carried by the confining string—this suggests a stringy
interpretation for it.
The second example concerns the Abelian Higgs model

in (3þ 1)-dimensional space-time. The Lagrangian reads

L ¼ −
1

4
F2 − j∂μ − igAμϕj2 − ðgjϕj2 − v2Þ2; ð18Þ

where the potential supports the v.e.v. of the scalar
field. There are effective strings in this theory, and the
v.e.v. of the scalar field vanishes at their cores. It is useful to
introduce the following parametrization for the complex
scalar

ϕ ¼ ρeiθ; ð19Þ

the scalar field ϕ can then be dualized into the 2-form gauge
field Bμν, and the dual Lagrangian reads as

Ldual ¼
1

2ρ2
ðdBÞ2 − 1

4
FαβFαβ − gϵμναβBμνFαβ

−
1

2
ϵμναβBμν∂α∂βθ; ð20Þ

where the last term corresponds to the interaction of
the 2-form field with the effective strings; dB ¼
1
2

P
αβγ ∂αBβγdxα ∧ dxβ ∧ dxγ is the usual exterior

derivative.
Now we can define the stringy current in the standard

manner in terms of this Lagrangian. If we consider the
vacuum currents we can put ρ ¼ v (v is the v.e.v. of the ρ
field), and, to keep the analogy with QCD more close,
rescale the 2-form field as
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B0
μν ¼ vBμν ð21Þ

The stringy dimension-3 pseudotensor current in the
external magnetic field now reads as

Jμν ¼ gvF̃μν; ð22Þ

which can be seen as the analog of the tensor current (1) in
low-energy QCD that we discussed above.
The microscopic interpretation of this current is subtle.

However one can view the scalar condensate in the vacuum
in the Abelian Higgs model as a condensate of small closed
loops of magnetic flux. In such a vacuum it is natural to
assume that it is these small closed strings that get excited
by magnetic field and provide a 2-form current.

B. Euclidean picture. Stringy current
and the Dirac operator spectrum

In Euclidean space, it is useful to interpret magnetic
susceptibility in terms of the spectrum of 4D Euclidean
Dirac operator [23]:

D̂ðAÞψn ¼ iλnψn ð23Þ

which coincides with Dirac equation with an imaginary
fermion mass m ¼ iλ. The spectral density is defined as

ρðλÞ ¼
�X

n

δðλ − λnÞ
�

QCD
; ð24Þ

in the confined phase, according to the Casher-Banks
relation, it is related to the quark condensate [22]:

hΨ̄Ψi ¼ Σ ¼ πρð0Þ
V

: ð25Þ

It was found in [23] that magnetic susceptibility of the
condensate has the following representation in terms of the
Dirac operator spectrum

�
0jΨ̄fσμνΨfj0i ¼ limλ→0hρðλÞ

Z
d4xΨ̄λσμνΨλ

�
QCD

; ð26Þ

which involves the tensor current of zero modes of the
Dirac operator. Assuming factorization (which has been
checked numerically in [23]) on the rhs of (26), we arrive at
the conclusion that the tensor current is saturated by the
zero modes of the Dirac operator in the external magnetic
field in the background of IĪ molecule. We have already
advocated for this interpretation above, see also Fig. 1.

C. Minkowski space. Light degrees of freedom?

We have discussed above the nature of the stringy tensor
current in Euclidean space-time. However it is important

to identify the carriers of tensor current in the QCD ground
state in Minkowski space. Because the tensor current
appears as a response to even very weak magnetic field
eB ≪ Λ2

QCD, the carriers of the current have to be very
light. On the other hand, the Euclidean analysis suggests
the dominant role of some kind of topological objects, since
the spectral Dirac operator representation of the tensor
current is saturated by the quark zero modes.
Two possibilities that come to mind are
(i) The loop corrections to the ground state energy get

deformed by the magnetic field and provide the
magnetic moment and the tensor current;

(ii) There are specific stable light extended semiclassical
configurations which can be excited in a weak
magnetic field and serve as the carriers or the stringy
tensor current. The example of rearrangement of the
ground state at very weak magnetic field has been
discussed in [33] where the stabilization of the
pionic domain walls has been demonstrated.

The scenario based on the virtual correction generalizes
the evaluation of the condensate in a magnetic field [9].
In [9], the loop of charged pions was found to generate the
leading correction to the condensate in magnetic field. In
our case, we have to analyze the dependence of the vacuum
energy on the external Bμν field through the one-loop
correction to the chiral lagrangian. The anomalous term in
the Lagrangian yields the effective pion mass (11); there-
fore, one contribution of the desired type can be found by
substituting this mass into the Heisenberg-Euler lagrangian
in the external magnetic field.
The contribution of the pion loop to the vacuum energy

density in an external magnetic field is given by the
Heisenberg-Euler theory as

ϵvac ¼ −
1

16π2

Z
∞

0

ds
s3

exp½−m2
π;effs�

�
eBs

sinhðeBsÞ − 1

�
; ð27Þ

where the integral is over the Schwinger’s proper time s.
Substituting into this expression the effective mass of the
pion in an external magnetic field (11) and taking derivative
with respect to the external Bμν field (not to be confused
with magnetic field B), we get the tensor current up to the
second power of the magnetic field:

Jμν ¼ χhΨ̄ΨiFμν

�
1þ eB ln 2

16π2f2π

�
: ð28Þ

The physical interpretation of this formula is the follow-
ing. The first term, which is already familiar to us, describes
the virtual charged pions that rotate in magnetic field on
Landau levels and give rise to the magnetic moment of
the vacuum. The second term describes the correction that
arises from the polarization of the pion, which is a
composite particle of size Rπ ≃ ð4πfπÞ−1 ≃ 0.2 fm, by
the magnetic field. It is clear from (28) that this expression
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represents an expansion in powers of the ratio Rπ=RB of the
pion size to the magnetic length RB ¼ ðeBÞ−1=2.
The quarks inside the pion are confined, so the second

term in (28) can also be seen as originating from a tensor
current carried by a string with quark and antiquark at its
ends. It has been argued [34] that the chiral condensate gets
suppressed by the confining string—therefore it is not
surprising to find a correction to the condensate response
that originates from the composite nature of the pion.
In addition to the polarization of the charged pion, there

also exists a contribution to the tensor current that is
induced by the π0-photon mixing in the magnetic field.
Iterating this vertex, we will get the loop involving the
photon and pion propagators. This opens an interesting
possibility to describe the tensor current in terms of neutral
pions. Indeed, it was shown in [33] that low-energy QCD in
an external magnetic field is unstable with respect to
formation of the π0 domain walls. In the limit of the
massless quarks, the ground state is always unstable, the
domain walls carry the baryon charge and are more
energetically favorable than the ordinary nuclear matter.
Moreover, the domain wall with the disc topology is
enclosed with the π-mesonic string which completely
screens the induced baryonic charge of the wall [18].
Very recently such pancake configurations were sug-

gested as the candidates for high spin baryons [35]. The
stabilization of the disc size occurs due to the edge chiral
currents at its boundary. We speculate that the polarization
of the edge chiral currents at the boundary by magnetic
field can also give rise to the tensor current, similarly to the
case of charged pions considered above. It will be interest-
ing to investigate this scenario further.

IV. EXPERIMENTAL MANIFESTATIONS

A. Vector meson spin alignment in heavy ion collisions

Heavy ion collisions produce QCD matter subjected to
strong magnetic field and large vorticity. In both cases,
we expect the emergence of the tensor supercurrent. One
manifestation of this tensor current is the polarization of Λ
hyperons that was estimated in [20] for the case of finite
vorticity. It was found that the resulting polarization is
consistent with the experimental results of STAR
Collaboration at RHIC.
There exists another, potentially even more prominent,

signature of the tensor supercurrent in heavy ion collisions.
Indeed, consider a state jΩi of QCD matter with a nonzero
tensor charge (4), i.e., the state with a finite magnetic dipole
moment hΩjΨ̄fσ0iγ5ΨfjΩi. The quantum numbers of this
state suggest that it should hadronize with a copious
emission of spin-polarized axial vector JPC ¼ 1þ− mesons
V, such as a1ð1260Þ, h1ð1170Þ, b1ð1235Þ and so on; the
corresponding meson emission amplitude is

hΩjΨ̄fσμνγ5ΨfjAi ¼ ifAðϵμkν − ϵνkμÞ; ð29Þ

where fA is the meson decay constant, ϵμ is the meson
polarization vector, and kν is the meson’s four-momentum.
Let us consider this amplitude in the rest frame of matter

characterized by a dipole magnetic moment along the
direction of the magnetic field (axis i). Assuming that
the produced meson in this reference frame is slow, with
three-momentum much smaller than the meson mass MA,
ki ≪ MA, we find

hΩjΨ̄fσ0iγ5ΨfjAi ≃ −ifAMAϵi; ð30Þ

i.e., the axial-vector mesons are produced with polarization
along the direction of the magnetic field. It may be hard to
measure the polarization of the axial-vector mesons directly
in heavy ion experiments, where only the polarization of
vector mesons has been measured so far. Fortunately, for
the mesons listed above the dominant decay mode is
A → V þ π, i.e., a vector meson and a pion (or kaon,
for strange axial-vector mesons). Since this is an s-wave
decay, and pion has a zero spin, the produced vector
mesons should inherit the polarization of the parent axial-
vector mesons, and should thus be characterized by a spin
alignment along the magnetic field. A remarkably strong
spin alignment of vector mesons has been observed
recently by STAR Collaboration at RHIC. It significantly
exceeds the predictions based on both the statistical hadron
model and the recombination of polarized quarks.
To get a rough estimate of the resulting from (30) spin

alignment of the produced axial vector mesons, let us
estimate the spin polarization of the quark condensate in
an external magnetic field Bz ¼ F̃0z from the definition of
magnetic susceptibility (4) and its value predicted by (2):

hσzi ¼
h0jΨ̄σozγ5Ψj0i

hΨ̄Ψi ¼ −
Nc

4π2f2π
eBz: ð31Þ

The predicted value of magnetic field at freeze-out in
Au-Au collisions at RHIC energy of

ffiffiffi
s

p ¼ 200 GeV per
nucleon pair within the relativistic magnetohydrodynamics
approach [36] is about eB ≃ 2f2π . Using this value in (31)
yields the spin alignment of about ∼7%. Assuming that all
of this alignment gets transferred to the axial-vector, and
then, via A → V þ π decays, to vector mesons, we expect
that tensor supercurrent should be a significant source of
the observed vector meson alignment. The prediction of our
approach is a spin alignment of axial vector mesons, such
as a1, that should be even larger than that observed for the
vector mesons.
It is hard to estimate the axial-vector and vector meson

polarization resulting from the tensor supercurrent in a
model-independent way, but it should greatly exceed the
predictions of a statistical model where the polarization
originates from the coupling of vector meson’s spin to
vorticity. Indeed, in the statistical model the vector mesons
are excited states of the system, whereas the tensor current
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and the resulting polarization characterize its ground state,
even at zero temperature.

B. Tensor charge of the nucleon and transversity

The forward matrix element of the tensor current
operator Ĵμν ¼ Ψ̄fσμνγ5Ψf over the transversely polarized
nucleon defines the tensor charge of the nucleon:

hST jΨ̄fσμνγ5ΨfjSTi ¼ 2δqfðPμSTν − PνSTμ Þ; ð32Þ

where Pμ is the four-momentum of the nucleon, ST

describes the nucleon’s transverse polarization, and δqf
is quark transversity given by the integral over the differ-
ence of quark δqfðxÞ and antiquark δq̄fðxÞ transversity
distribution functions:

δqf ¼
Z

1

0

dxðδqfðxÞ − δq̄fðxÞÞ; ð33Þ

where x is Bjorken x.
In this case the role of magnetic field or vorticity is

played by the spin of the nucleon. Nevertheless, just as the
magnetic dipole moment of the vacuum is greatly
enhanced by nonperturbative effects (tensor polarization
of the quark condensate), we expect that a similar
enhancement should occur for the tensor charge of the
nucleon. Because this enhancement results microscopi-
cally from extended topological objects, transversity has
to be a higher twist effect, in accord with perturbative
analysis. Nevertheless, at moderate momentum transfers
Q2 ∼ 4πf2π ≃ 1 GeV, basing on the analysis in Sec. II B,
we expect that transversity should be very large—in
accord with experimental observations.
Moreover, in analogy with our discussion of the axial

vector meson production in the decay of QCD matter, one
can expect a strong coupling of axial vector mesons to the
nucleons. The value of the corresponding coupling constant
has been extracted from the data for the a1 meson and is
indeed large [37]:

ga1NN ¼ 9.3� 1: ð34Þ

We can compare this to the vector ρ meson coupling to the
nucleon, which is known to be significantly smaller [38]:

gρNN ¼ 2.52� 0.06: ð35Þ

To summarize this section, it appears that transversity
and the tensor charge of the nucleon are enhanced by the
quantum chiral anomaly.

V. DISCUSSION AND FUTURE DIRECTIONS

A. Role of instanton molecules

In a conventional superconductor, the persistent electric
current can be expressed in terms of the phase of charged
condensate

Jμ ¼ nsð∂μΦ − AμÞ ð36Þ

where ns is proportional to the condensate of the Cooper
pairs hΨΨi and Φ is the phase of the order parameter. The
charge current turns to be proportional to the gauge field
in the London limit, the photon gets massive and magnetic
field cannot penetrate the superconductor due to the
screening by electric supercurrent. The supercurrent also
screens the magnetic field inside the Abrikosov vortex
where the condensate vanishes in its core. The supercurrent
arises due to the Abelian gauge symmetry in this case.
The example of the supercurrent arising from the global
symmetry is provided by the superfluid where the super-
fluid velocity is proportional to the neutral condensate. The
superfluid supercurrent is proportional to the superfluid
density and the gradient of the neutral condensate phase ϕ:

Jν ∝ ρs∂νϕ: ð37Þ

This supercurrent screens the angular velocity (which can
be treated as an external gravimagnetic field) resulting
in the emergence of vortices. Note that the superfluid
density ρs is the analog of the topological susceptibility of
the QCD vacuum.
The chiral symmetry is broken locally inside the instan-

ton molecule [27]; therefore necessarily there are gradients
of the pion field which is the phase of the chiral condensate
at the boundary of the 4D region occupied by the molecule.
The pions are pseudoscalar Goldstone bosons related to the
spontaneous breaking of the global chiral symmetry. The
tensor supercurrent we are interested in would arise if there
were vector (photonlike) Goldstone bosons associated with
a broken 1-form symmetry. The possible mechanism for
the emergence of these vector excitations is provided by the
π0-photon mixing in the external magnetic field due to
the chiral anomaly. Hence the pseudoscalar and vector
Goldstone modes are coupled in a magnetic field. Within
this interpretation our tensor current acquires the “stan-
dard” interpretation (37), becoming a 2-form current of the
vector Goldstone mode.
The tensor supercurrent (which screens the instanton

molecules in the Euclidean version) amounts to the align-
ment of the instanton molecules in the external magnetic
field. A potentially related phenomenon in the language of
the chiral effective theory is the emergence of a pancakelike
configuration of pionic domain walls and antiwalls in
Minkowski space in weak magnetic field [33]. Another
related phenomenon discussed previously within the chiral
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effective theory is the anomaly-induced quadrupole
moment of the neutron in an external magnetic field [39].

B. Tensor supercurrent and magnetohydrodynamics

Recently hydrodynamics involving electromagnetism
has been reformulated in an interesting way [40–42] which
is based on the 1-form global symmetry [43] and the
corresponding conserved 2-form stringy current. The
1-form symmetry is responsible for the conservation of
the number of strings and the Bianchi identity yields the
conservation of 2-form current (in the absence of magnetic
monopoles). Two-form charge density is identified as the
density of magnetic dipole charge which counts the number
of magnetic field lines through an arbitrary surface.
The fate of the global 1-form symmetry determines three

different regimes of the theory:
(1) The 1-form symmetry is unbroken;
(2) The 1-form symmetry is partially broken;
(3) The 1-form symmetry is completely broken.

In these different symmetry breaking patterns one can
obtain, respectively, magneto-hydrodynamics (MHD),
stringy fluid, and bound-charge plasma (see [42] for the
classification of regimes and the connections between
them). The vector Goldstone for the 1-form symmetry
was identified with the photon.
Which situation gets realized in QCD? The quark tensor

current in general is not conserved hence in the quark sector
the symmetry is broken. However it is conserved in the
vacuum sector in the external magnetic field, since we do
not assume the presence of magnetic monopoles—indeed,
the current (1) is conserved due to the Bianchi identity.
Hence we have the main ingredient of the 1-form hydro-
dynamics in the vacuum sector and may hypothesize that
the QCD vacuum in magnetic field can be described as a
kind of stringy superfluid. Within this regime of 1-form
hydrodynamics the magnetic susceptibility of the conden-
sate defines the density of the instanton molecules. We
postpone discussion of the 1-form symmetry in the hydro-
dynamic approach to low-energy QCD in magnetic field
for a separate study.

VI. CONCLUSION

In this paper we have addressed the microscopic origin
of the tensor supercurrent that arises in low-energy QCD in
an external magnetic field or in a rotating frame and that is
proportional to the chiral condensate. We have suggested
the following microscopic picture. There is a finite density
of instanton–anti-instanton IĪ molecules in the QCD
vacuum. As it was argued long time ago [27], the instanton

and anti-instanton host the pair of fermionic zero-modes.
When the external magnetic field is switched on, the
fermion zero modes become polarized and develop a
quadrupole moment that gets screened by the tensor
supercurrent. All of the vacuum IĪ molecules become
aligned in the external magnetic field. Hence the external
magnetic field probes the molecule component of the QCD
vacuum via the tensor supercurrent.
We have also argued that the tensor supercurrent

manifests itself in experiment through the polarization of
axial-vector and vector mesons in heavy ion collisions, and
through the tensor charge of the nucleon and transversity in
deep-inelastic scattering. All of these phenomena appear
strongly affected by the chiral anomaly. The tensor super-
current may play an important role in the stringy inter-
pretation of magnetic hydrodynamics; we will discuss this
interesting issue elsewhere.
The localization of zero modes of Dirac operator on

extended defects has been investigated in lattice QCD.
There were evidences that the Euclidean 4-dimensional
zero modes “live” on 2d surfaces and 3d volumes [44,45]
corresponding to the worldsheets of effective strings and
effective domain walls, correspondingly. In this study we
considered the tensor supercurrents screening the instanton
molecules but similar tensor current could exist on a pair of
extended objects in the Euclidean space with the opposite
topological charges.
The stringy current considered here has a counterpart in

condensed matter physics. The chiral condensate in QCD is
an analog of the neutral exciton condensate and the current
we have considered corresponds to the polarization of the
exciton condensate in magnetic field. Such currents have
been indeed discussed [46,47], so it would be interesting to
pursue this analogy further. One more question concerns
the possible role of the charged tensor current discussed in
the holographic framework in [48].
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