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We extend our general framework for semileptonic decay, originally introduced in N. Penalva et al.
[Phys. Rev. D 100, 113007 (2019)], with the addition of new physics (NP) tensor terms. In this way, all
the NP effective Hamiltonians that are considered in lepton flavor universality violation (LFUV) studies
have now been included. Those are left and right vector and scalar NP Hamiltonians and the NP tensor one.
Besides, we now also give general expressions that allow for complex Wilson coefficients. The scheme
developed is totally general and it can be applied to any charged current semileptonic decay, involving any
quark flavors or initial and final hadron states. We show that all the hadronic input, including NP effects,
can be parametrized in terms of 16 Lorentz scalar structure functions, constructed out of the NP complex
Wilson coefficients and the genuine hadronic responses, with the latter determined by the matrix elements
of the involved hadron operators. In the second part of this work, we use this formalism to obtain the
complete NP effects in the Λb → Λcτν̄τ semileptonic decay, where LFUV, if finally confirmed, is also
expected to be seen. We stress the relevance of the center of mass (CM) d2Γ=ðdωd cos θlÞ and laboratory
(LAB) d2Γ=ðdωdElÞ differential decay widths, with ω the product of the hadron four-velocities, θl the
angle made by the three-momenta of the charged lepton and the final hadron in the W− CM frame and El

the charged lepton energy in the decaying hadron rest frame. While models with very different strengths
in the NP terms give the same differential dΓ=dω and total decay widths for this decay, they predict
very different numerical results for some of the cos θl and El coefficient-functions that determine
the above two distributions. Thus, the combined analysis of the CM d2Γ=ðdωd cos θlÞ and LAB
d2Γ=ðdωdElÞ differential decay widths will help clarifying what kind of NP is a better candidate in order to
explain LFUV.

DOI: 10.1103/PhysRevD.101.113004

I. INTRODUCTION

Present discrepancies, between experimental data and
the Standard Model (SM) results, seen in semileptonic B—
meson decays, point at the possible existence of new
physics (NP). Since there is no evidence of similar
discrepancies in transitions involving the two first quark
and lepton families, it is generally assumed that the possible
NP contributions only affect the third quark and lepton
generations, being thus responsible for lepton flavor
universality violation (LFUV). These violations have
been seen in the values of the ΓðB→DÞ and ΓðB → D�Þ
semileptonic decays widths when compared to SM

predictions (see for instance Ref. [1]). These discrepancies

are presented in form of ratios RDð�Þ ¼ ΓðB→Dð�Þτν̄τÞ
ΓðB→Dð�Þlν̄lÞ, with

l ¼ e, μ, for which part of the hadronic uncertainties
should cancel. While very recent preliminary measure-
ments by the Belle Collaboration [2,3] reduce the tension
with the SM to the level of 0.8σ, a combined analysis of
BABAR [4,5], Belle [6–8] and LHCb [9,10] data and SM
predictions [9,11–13] by the Heavy Flavour Averaging
Group (HFLAV) [14] shows a tension with the SM at the
level of 4.4σ. This tension reduces to 3.1σ if the latest Belle
results are taken into account [15]. From the theoretical
point of view, phenomenological approaches follow an
effective field theory model-independent analysis that
includes different b → clνl charged current (CC) effective
operators. They are assumed to be generated by physics
beyond the SM, that would enter at a much higher energy
scale, and their strengths are given by unknown Wilson
coefficients that should be fitted to data. Those analyses
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include the pioneering work of Ref. [16] or the more
recent one in Ref. [17] from which we shall take the values
for the Wilson coefficients that we are going to use in the
numerical part of this work.
The anomaly seen in B decays could be corroborated in

other processes governed by the same b → c transition like
the Λb → Λclν̄l decays. The LHCb Collaboration [18]
has very recently measured the shape of the dΓðΛb →
Λcμ

−ν̄μÞ=dω decay width, and it is expected [19] that the

precision in the RΛc
¼ ΓðΛb→Λcτν̄τÞ

ΓðΛb→Λcμν̄μÞ ratio might reach that

obtained for RD and RD� . Heavy quark spin symmetry
(HQSS) strongly constraints the form factors relevant for
this transition, with no subleading Isgur-Wise (IW) func-
tion occurring at order OðΛQCD=mb;cÞ, and only two
subleading ones entering at next order [20–22]. The RΛc

ratio has been accurately predicted within the SM in
Ref. [22] with the use of leading and subleading HQSS
IW functions that were simultaneously fitted to LQCD
results and LHCb data. Precise results for the vector and
axial form factors were obtained in Ref. [23] using Lattice
QCD (LQCD) with 2þ 1 flavors of dynamical domain-
wall fermions. The additional form factors needed to
include NP tensor terms have been obtained within the
same LQCD scheme in Ref. [24]. The also needed scalar
and pseudoscalar form factors can be directly related to
vector and axial ones (see Eqs. (2.12) and (2.13) of
Ref. [24]). With a lot of theoretical effort involved
[17,21,24–34] in checking the effects of NP scenarios
and with expectations of experimental data in the near
future, this reaction could also play an important role in the
study of b → c LFUV studies.
In this work we introduce a general framework to study

any baryon/meson semileptonic decay for unpolarized
hadrons including NP contributions, although we will refer
explicitly only to those decays induced by a b → c
transition. We consider a general scheme, based in the
so-called Standard Model effective field theory (SMEFT)
scheme [35,36], to analyze any decay driven by a
q → q0lν̄l quark level CC process involving massless
left-handed neutrinos. We allow for CP-violating scalar,
pseudo-scalar and tensor NP terms, as well as corrections to
the SM vector and axial contributions. All the hadronic
input, including NP effects, can be parametrized in terms
of 16 Lorentz scalar structure functions eW0s (SFs), con-
structed out of NP complex Wilson coefficients (C0s) and
the genuine hadronic responses (W0s), which are deter-
mined by the matrix elements of the involved hadron
operators. The W SFs1 depend on the masses of the initial
and final particles and on the invariant mass (q2) of the
outgoing lνl pair, and they can be expressed in terms of the
form factors used to parametrize the transition matrix
elements.

In the case of the SM they reduce to just five real eW SFs
and, provided that massless (e or μ) and τ—mode decays
are simultaneously analyzed, all five eW SFs can be deter-
mined either from the unpolarized d2Γ=ðdωd cos θlÞ decay
width, where ω is the product of the two hadron four
velocities and θl the angle made by the final hadron and
charged lepton three-momenta in the center of mass of the
two final leptons (CM), or from the unpolarized
d2Γ=ðdωdElÞ decay width, where El is the charged lepton
energy measured in the laboratory system (LAB).
The unpolarized CM d2Γ=ðdωd cos θlÞ and LAB

d2Γ=ðdωdEl) decay widths get contributions from both
positive and negative charged lepton helicities, contribu-
tions that have also been explicitly evaluated in this work.
Assuming NP, these new observables are sensitive to new
combinations of the eW SFs, and thus serve to further restrict
the relevance of operators beyond the SM. There are a total
of five new independent linear combination of the eW SFs
needed to describe the case with a polarized final charged
lepton. To determine them, the LAB and CM charged
lepton helicity distributions have to be used simultaneously,
since in this case they provide complementary information.
As mentioned, we have considered five NP Wilson

coefficients. In general they are complex, although one
of them can always be taken to be real. Therefore, nine free
parameters should be determined from data. Even assuming
that the form factors are known, and therefore the genuinely
hadronic part (W) of the eW SFs, all NP parameters are
difficult to be determined from a unique type of decay,
since the experimental measurement of the required polar-
ized decay is an extremely difficult task. It is therefore more
convenient to analyze data from various types of semi-
leptonic decays simultaneously (e.g., B̄ → D, B̄ → D�,
Λb → Λc; B̄c → ηc; B̄c → J=Ψ…), considering both the
e=μ and τ modes. The scheme presented in this work
constitutes a powerful tool to achieve this objective.
Besides, within the present framework, it is not difficult to

consider NP effects induced by light right-handed neutrinos,
without including new SFs, since we give general expres-
sions for all the hadron tensors. The recent analysis of
Ref. [37], using the b → cτν̄τ anomalies data in the meson
sector, does not rule out NP operators which can arise due to
the presence of right-handed neutrinos in the theory, and
therefore points to one natural continuation of this work.
Moreover, we stress that all expressions are general and

they can be applied to any charged current semileptonic
decay, involving any quark flavors or initial and final
hadron states. Thus for instance, the scheme presented here
can also be used to search for NP signatures in nuclear beta
decays, from which jVudj is also determined.
This work is an update of the formalism in Ref. [34],

where NP tensor terms were not considered and the CP-
conserving limit was adopted, assuming that all NP Wilson
coefficients were real. It is organized as follows: In Sec. II1Symbolically, eW ¼ CW.
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we give all the general formulae, including the expres-
sions for the effective NP hamiltonians and the CM
d2Γ=ðdωd cos θlÞ and LAB d2Γ=ðdωdElÞ differential
decay widths both for unpolarized as well as polarized final
charged leptons. Next, in Sec. II B 1, and to illustrate the
general procedure, we explain in detail how Lorentz, parity
and time-reversal transformations constraint the number of
SFs needed to describe the hadronic tensor originating from
vector and axial current interactions terms. Details for the
leptonic tensors and the rest of the hadronic tensors are
compiled, respectively, inAppendixesA andB. InSec. IIIwe
introduce the form factors needed for theΛb → Λcτν̄τ decay
and apply to this transition the general formalism derived in
Sec. II. We show numerical results using the LQCD form
factors of Refs. [23,24] and the best-fit Wilson coefficients
obtained in [17]. Conclusions are presented in Sec. IV. Other
relevant information is compiled in Appendixes C (CM and
LAB kinematics), D (expressions for the cos θl and El
coefficient-functions appearing in the CM and LAB distri-
butions in terms of the eW SFs) and E (form factors for the
Λb → Λcτν̄τ transition and general expressions of the eW SFs
for this decay in terms of the form factors).

II. FORMALISM

A. Effective Hamiltonian

In the context of the SMEFT, we consider the effective
Hamiltonian [17]

Heff ¼
4GFjVcbj2ffiffiffi

2
p ½ð1þ CVL

ÞOVL
þ CVR

OVR
þ CSLOSL

þ CSROSR þ CTOT � þ H:c:; ð1Þ
with fermionic operators given by (ψL;R ¼ 1∓γ5

2
ψ)

OVL;R
¼ ðc̄γμbL;RÞðl̄LγμνlLÞ; OSL;R ¼ ðc̄bL;RÞðl̄RνlLÞ;

OT ¼ ðc̄σμνbLÞðl̄RσμννlLÞ: ð2Þ
The Wilson coefficients Ci, complex in general, para-
metrize possible deviations from the SM, i.e., CSM

i ¼ 0,
and could be in general, lepton and flavor dependent,
though in Ref. [17] they are assumed to be present only in
the third generation of leptons.

B. Decay rate including NP terms

The semileptonic differential decay rate of a bottomed
hadron (Hb) of massM into a charmed one (Hc) of massM0
and lν̄l, measured in its rest frame, and after averaging
(summing) over the initial (final) hadron polarizations,
reads2 [38],

d2Γ
dωds13

¼ G2
FjVcbj2M02

ð2πÞ3M
X

jMj2; ð3Þ

where GF ¼ 1.166 × 10−5 GeV−2 is the Fermi coupling
constant and Mðk; k0; p; q; spinsÞ is the transition matrix
element, with p, k0, k ¼ q − k0 and p0 ¼ p − q, the
decaying Hb particle, outgoing charged lepton, neutrino
and final hadron four-momenta, respectively. In addition,
ω is the product of the two hadron four velocities
ω ¼ ðp · p0Þ=ðMM0Þ, which is related to q2 ¼ ðkþ k0Þ2
via q2 ¼ M2 þM02 − 2MM0ω, and s13 ¼ ðp − kÞ2.
Including NP contributions, we have

M ¼ JαHJ
L
α þ JHJL þ JαβH JLαβ; ð4Þ

with the polarized lepton currents given by (u and v
dimensionful Dirac spinors)

JLðαβÞðk; k0; hÞ ¼
1ffiffiffi
8

p ūlðk0ÞPhΓðαβÞð1 − γ5ÞvνlðkÞ;

Ph ¼
1þ hγ5=es

2
;

Γ ¼ 1; Γα ¼ γα; Γαβ ¼ σαβ; ð5Þ

where h ¼ �1 stands for the two charged lepton helicities,
and esα ¼ sα=ml ¼ ðjk⃗0j; k00k̂0Þ=ml with k̂0 ¼ k⃗0=jk⃗0j and
ml the charged lepton mass. The es polarization vector
satisfies the constraints es2 ¼ −1, es · k0 ¼ 0.
The dimensionless hadron currents read (cðxÞ and bðxÞ

are Dirac fields in coordinate space),

JðαβÞHrr0 ðp; p0Þ ¼ hHc;p0; r0jc̄ð0ÞOðαβÞ
H bð0ÞjHb;p; ri;

OH ¼ CS − CPγ5;

Oα
H ¼ γαðCV − CAγ5Þ;

Oαβ
H ¼ CTσ

αβð1 − γ5Þ; ð6Þ

with CV;A ¼ ð1þ CVL
� CVR

Þ and CS;P ¼ ðCSL � CSRÞ.
The hadron states are normalized as hp⃗0; r0jp⃗; ri ¼
ð2πÞ3ðE=MÞδ3ðp⃗ − p⃗0Þδrr0 , with r, r0 spin indexes.
The lepton tensors needed to obtain jMj2 are readily

evaluated and they are collected in Appendix A.

1. Hadron matrix elements

After summing over polarizations, the hadron contribu-
tions can be expressed in terms of Lorentz scalar SFs,
which depend on q2, the hadron masses and the NP Wilson
coefficients. To limit their number, it is useful to apply
relations deduced from Lorentz, parity ðPÞ and time-
reversal ðT Þ transformations of the hadron currents
[Eq. (6)] and states [39]. Finally, we have ended up with
a total of 16 independent SFs.

2We emphasize once again that all equations are valid for any
q → q0lν̄l CC decay, although we only give explicit expressions
for b → c reactions.
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We illustrate the procedure by discussing in detail here the diagonal JαH½JρH�� case. The rest of the hadron tensors are
compiled in Appendix B, where the technically involved tensor-tensor JαβH ½JρλH �� term is also discussed in detail.
The spin-averaged squared of the Oα

H operator matrix element gives rise to a (pseudo-)tensor of two indices

Wαρðp; q; CV; CAÞ ¼
X
r;r0

hHc;p0; r0jðCVVα − CAAαÞjHb;p; rihHc;p0; r0jðCVVρ − CAAρÞjHb;p; ri�; ð7Þ

with ðCVVα − CAAαÞ ¼ c̄ð0ÞγαðCV − CAγ5Þbð0Þ. The sum is done over initial (averaged) and final hadron helicities,
and the above tensor should be contracted with the lepton one Lαρðk; k0; hÞ [Eq. (A5)] to get the contribution to

PjMj2.
From the above definition, it trivially follows Wαρ ¼ Wρα� and therefore splitting Wαρ

Wαρ ¼ 1

2
½Wαρ þWρα� þ 1

2
½Wαρ −Wρα�≡Wαρ

ðsÞ þWαρ
ðaÞ ¼

1

2
½Wαρ þWαρ�� þ 1

2
½Wαρ −Wαρ�� ð8Þ

we show that the symmetric and antisymmetric parts of the tensor are real and purely imaginary, respectively. On the other
hand, using the time-reversal transformation, we have (epμ ¼ ðp0;−p⃗Þ)

Wαρðp; q; CV; CAÞ ¼
X
r;r0

hHc;p0; r0jT †T ðCVVα − CAAαÞT †T jHb;p; rihHc;p0; r0jT †T ðCVVρ − CAAρÞT †T jHb;p; ri�

¼
X
r;r0

hHc; ep0; r0jC�
VVα − C�

AAαjHb; ep; ri�hHc; ep0; r0jC�
VVρ − C�

AAρjHb; ep; ri
¼ W�

αρðep;eq; C�
V; C

�
AÞ: ð9Þ

Introducing the self-explanatory decomposition,

Wαρðp; q; CV; CAÞ ¼ jCV j2Wαρ
VVðp; qÞ þ jCAj2Wαρ

AAðp; qÞ − CVC�
AW

αρ
VAðp; qÞ − CAC�

VW
αρ
AVðp; qÞ; ð10Þ

and using Eq. (9) and the transformation properties under parity, we find

Wαρ�
VV ðp; qÞ¼T WVVαρðep;eqÞ¼PWαρ

VVðp; qÞ; Wαρ�
AA ðp; qÞ¼T WAAαρðep;eqÞ¼PWαρ

AAðp; qÞ; ð11Þ

Wαρ�
VA ðp; qÞ¼T WVAαρðep;eqÞ¼P −Wαρ

VAðp; qÞ; Wαρ�
AV ðp; qÞ¼T WAVαρðep;eqÞ¼P −Wαρ

AVðp; qÞ: ð12Þ

The above results, along with3 Eq (8), allows us to conclude thatWαρ
VV andWαρ

AA (Wαρ
VA andWαρ

AV) are real symmetric tensors
(imaginary antisymmetric pseudotensors proportional to the Levi-Civita symbol), andWαρ

AV ¼ Wαρ
VA. The pseudocharacter of

the imaginary tensor is deduced from the behavior under a parity transformation. Therefore, the most general expression for
Wαρðp; q; CV; CAÞ reads

Wαρðp; q; CV; CAÞ ¼ jCV j2Wαρ
VVðp; qÞ þ jCAj2Wαρ

AAðp; qÞ − 2ReðCVC�
AÞWαρ

VAðp; qÞ

¼ −gαρ eW1 þ
pαpρ

M2
eW2 þ iϵαρδηpδqη

eW3

2M2
þ qαqρ

M2
eW4 þ

pαqρ þ pρqα

2M2
eW5;

eW1;2;4;5ðq2; CV; CAÞ ¼ jCV j2WVV
1;2;4;5ðq2Þ þ jCAj2WAA

1;2;4;5ðq2Þ; eW3ðq2; CV; CAÞ ¼ ReðCVC�
AÞWVA

3 ðq2Þ; ð13Þ

where all eWi SFs are real, and we have used an obvious notation in which WVV
1;2;4;5, W

AA
1;2;4;5, and WVA

3 should be obtained
from the Wαρ

VV , W
αρ
AA, and −2Wαρ

VA (pseudo-)tensors. This result was previously obtained in Ref. [34] for real Wilson
coefficients.

3Note that by construction Wαρ
VV;AA ¼ Wρα�

VV;AA and Wαρ
AV ¼ Wρα�

VA .
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2. CM and LAB differential decay widths for an
unpolarized final charged lepton

We consider first the case of an unpolarized final charged
lepton. From the general structure of the lepton and hadron
tensors considered in this work, which are at most quadratic
in k, k0, and in p, respectively, and using the information on
the scalar products compiled in Appendix C, one can write
the general expression

2
PjMj2
M2

����
unpolarized

¼ AðωÞ þ BðωÞp · k
M2

þ CðωÞ ðp · kÞ2
M4

;

ð14Þ

that is suited to obtain the CM d2Γ=ðdωd cos θlÞ and LAB
d2Γ=ðdωdElÞ distributions. As already pointed out, θl is
the angle made by the three-momenta of the charged lepton
and the final hadron in the W− CM system and El the
charged lepton energy in the decaying hadron rest frame.
The A, B and C functions are linear combinations of the eW
SFs, introduced in Sec. II B 1 and Appendix B, and they
depend on ω as well as on the lepton and hadron masses.
Their expressions in terms of the hadronic eW SFs are given
in Appendix D. As shown in Sec. II B 1 and Appendix B,
the eW SFs depend on the, generally complex, Wilson
coefficients and the real SFs (W0s) that parameterize the
hadron tensors (see an example in Eq. (13)). From Eqs. (3)
and (14), taking into account that

dωds13 ¼ MM0
�
1 −

m2
l

q2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 1

p
dωd cos θl

¼ 2MdωdEl; ð15Þ

and using the relations in Appendix C one gets

d2Γ
dωdcosθl

¼G2
FjVcbj2M03M2

16π3

ffiffiffiffiffiffiffiffiffiffiffiffi
ω2−1

p �
1−

m2
l

q2

�
2

Aðω;θlÞ;

ð16Þ

with

Aðω; θlÞ ¼
2
PjMj2

M2ð1 − m2
l

q2 Þ

����
unpolarized

¼ a0ðωÞ þ a1ðωÞ cos θl þ a2ðωÞcos2θl; ð17Þ

a0ðωÞ ¼
q2

q2 −m2
l
AðωÞ þMω

2M
BðωÞ þ ðq2 −m2

lÞM2
ω

4q2M2
CðωÞ;

a1ðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 1

p M0

M

�
BðωÞ
2

þ ðq2 −m2
lÞMω

2q2M
CðωÞ

�
;

a2ðωÞ ¼ ðω2 − 1ÞM
02

M2

q2 −m2
l

4q2
CðωÞ; ð18Þ

and whereMω ¼ M −M0ω. For the LAB differential decay
with we obtain

d2Γ
dωdEl

¼ G2
FjVcbj2M02M2

8π3
Cðω; ElÞ; ð19Þ

with

Cðω; ElÞ ¼
2
PjMj2
M2

����
unpolarized

¼ c0ðωÞ þ c1ðωÞ
El

M
þ c2ðωÞ

E2
l

M2
; ð20Þ

c0ðωÞ ¼ AðωÞ þMω

M
BðωÞ þM2

ω

M2
CðωÞ;

c1ðωÞ ¼ −BðωÞ − 2Mω

M
CðωÞ; c2ðωÞ ¼ CðωÞ: ð21Þ

The variable ω varies from 1 to ωmax ¼ ðM2 þM02 −m2
lÞ=

ð2MM0Þ and cos θl between −1 and 1, while
El ∈ ½E−

l ; E
þ
l �, where

E�
l ¼ ðM −M0ωÞðq2 þm2

lÞ �M0 ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 1

p
ðq2 −m2

lÞ
2q2

:

ð22Þ

The first result of this work is that the inclusion of NP
contributions does not induce further terms in the cos θl
and El expansions of Aðω; θlÞ and Cðω; ElÞ with respect
to a pure SM calculation. This result was already obtained
in Ref. [34] although, there, the effects of the tensorOT NP
term and of complex Wilson coefficients were neglected.
From Eqs. (18) and (21), which derive directly from the
general expression in Eq. (14), one now clearly understands

that the universal function M2

M02
a2ðωÞ

ð1−m2
l=q

2Þc2ðωÞ ¼ ðω2 − 1Þ=4,
that we discussed in Ref. [34], has in fact a purely
kinematical origin and it should be obtained in any physics
scenario in which the lepton tensors are at most quadratic in
the lepton momenta. We stress here again that, although the
effective Hamiltonian in Eq. (1) refers to b → c transitions,
all expressions are general and apply independently of the
quark flavors involved in the NP four-fermion operators.
Focusing on the LAB distribution, we see that c2ðωÞ

determines CðωÞ, and the latter together with c1ðωÞ fixes
the function BðωÞ. Finally, AðωÞ is obtained from
c0ðωÞ;BðωÞ and CðωÞ. The discussion is totally similar
for the CM angular differential decay width. Indeed, the
unpolarized d2Γ=ðdωd cos θlÞ and d2Γ=ðdωdElÞ distribu-
tions turn out to be equivalent in the sense that both of them
provide the same information on the Hamiltonian which
induces the semileptonic decay: three different linear
combinations of the eW SFs. Additional information can
be obtained by considering the dependence on ml of the
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unpolarized decay distributions and using simultaneously
data for the τ and l ¼ e or μ (massless in good approxi-
mation) decay modes. Indeed, up to a total of five linear
combinations of SFs can be determined, since CðωÞ does
not depend on ml. For instance in the SM, the massless
decay fixes eW1;2;3, while eW4 and eW5 can be obtained from
the tau modeAðωÞ and BðωÞ functions, respectively. Thus,
for q2 ≥ m2

τ , all SFs can be determined from unpolarized
distributions when NP is not present. This implies that for a
final τ lepton the SM CM d2Γ=ðdωd cos θτÞ and LAB
d2Γ=ðdωdEτÞ polarized distributions can be determined

from unpolarized μ, e and τ data alone. In our previous
work in Ref. [34], we wrongly concluded that this was not
possible for the latter distribution.

3. CM and LAB differential decay widths
for a polarized final charged lepton

For a polarized final charged lepton, in reference
systems, like the CM and the LAB ones considered in
this work, for which ϵδημνkδqηsμpν ¼ 0, and for the con-
tributions we have, one can generally write

2
PjMj2
M2

¼ 1

2

�
AðωÞ þ BðωÞ ðp · kÞ

M2
þ CðωÞ ðp · kÞ2

M4

�

þ h

�ðp · sÞ
Mml

�
AHðωÞ þ CHðωÞ

ðk · pÞ
M2

�
þ ðq · sÞ

Mml

�
BHðωÞ þDHðωÞ

ðk · pÞ
M2

þ EHðωÞ
ðk · pÞ2
M4

��
; ð23Þ

where five new independent functionsAH, BH, CH,DH, and EH are now needed. They can be written in terms of the eW SFs
and the corresponding expressions are given in Appendix D. Note that Eq. (23) does not diverge in the ml → 0 limit.
Since this 1=ml dependence originates from the Ph projector present in the lepton tensor, the easiest way to find the
ml → 0 leading behavior is by looking at the general lepton tensor expression in Eq. (A1) and realizing that the factor
Phð=k0 þmlÞ ¼ ð=k0 þmlÞPh reduces to ð=k0ð1 − hγ5Þ þOðmlÞÞ in that limit. This result, together with Eq. (A1), also tell us
that for a massless charged lepton, the h ¼ þ1 lepton tensors vanish, as expected from conservation of chirality, except for
those corresponding to the diagonal and interferenceOSL;R andOT NP operators. On the other hand, for h ¼ −1, and in the
massless limit, only the lepton tensor originating from the diagonal OVL;R

terms are nonzero.
For this polarized case one finds that

Ahðω; cos θlÞ ¼
2
PjMj2

M2ð1 − m2
l

q2 Þ
¼ a0ðω; hÞ þ a1ðω; hÞ cos θl þ a2ðω; hÞ cos2 θl; ð24Þ

where now

a0ðω; hÞ ¼
1

2

�
a0ðωÞ þ h

�
M
ml

�
Mω

M
AH þ M2

ω

2M2
CH þ q2

M2

�
BH þMω

2M
DH þ M2

ω

4M2
EH

��

−
ml

M
Mω

2M

�
DH þMω

M

�
EH þM2

q2
CH

��
þ m3

lM
2
ω

4M3q2
EH

	�
;

a1ðω; hÞ ¼
1

2

�
a1ðωÞ þ h

M0

M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 1

p �
M
ml

�
m2

l þ q2

m2
l − q2

AH þ q2

2M2

�
DH þMω

M
EH

��

−
ml

M

�
DH

2
þMω

M

�
EH þM2

q2
CH

��
þ m3

lMω

2M2q2
EH

	�
;

a2ðω; hÞ ¼
1

2

�
a2ðωÞ þ h

M02

M2
ðω2 − 1Þ

�
M
4ml

�
q2

M2
EH − 2CH

�
−
ml

2M

�
EH þM2

q2
CH

�
þ m3

l

4Mq2
EH

	�
ð25Þ

For the LAB distribution, the decomposition into h ¼ �1 contributions is more involved and we find4

4Note that the definition of the coefficients ĉ0;1 given in Ref. [34] differ from that adopted here by a factor m2
l=M

2.
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Chðω; ElÞ ¼
2
PjMj2
M2

¼ Cðω; ElÞ
2

−
h
2

M
pl

�
ĉ0 þ ½c0 þ ĉ1�

El

M
þ ½c1 þ ĉ2�

E2
l

M2
þ ½c2 þ ĉ3�

E3
l

M3

�
; ð26Þ

with Cðω; ElÞ the corresponding unpolarized function introduced in Eq. (20), pl ¼ ðE2
l −m2

lÞ
1
2 the charged lepton three-

momentum in the LAB system, and

ĉ0ðωÞ ¼
2ml

M

�
AH þMω

M
ðBH þ CHÞ þ

M2
ω

M2
DH þM3

ω

M3
EH

�
;

ĉ1ðωÞ ¼ −c0 −
M
ml

q2

M2

�
BH þMω

M
DH þM2

ω

M2
EH

�
−
ml

M

�
BH þ 2CH þ 3Mω

M
DH þ 5M2

ω

M2
EH

�
;

ĉ2ðωÞ ¼ −c1 þ
M
ml

�
q2

M2

�
DH þ 2Mω

M
EH

�
− 2AH −

2Mω

M
CH

�
þml

M

�
DH þ 4Mω

M
EH

�
;

ĉ3ðωÞ ¼ −c2 þ
M
ml

�
2CH −

q2

M2
EH

�
−
ml

M
EH: ð27Þ

From the discussion above, we know that the coefficients
of the M=ml terms in Eqs. (25) and (27) should vanish at
least as OðmlÞ in the ml → 0 limit, guaranteeing that the
differential decay widths are finite in that limit.
Unlike the unpolarized case, where A, B, and C could

be determined either from the CM or LAB distributions,
both LAB and CM helicity distributions are now needed
simultaneously to obtain all five AH, BH, CH, DH and EH
additional functions. This is so since in this case only four
of them can be determined from the El dependence of the
polarized d2Γ=ðdωdElÞ distribution, while the use of the
cos θl dependence of the polarized d2Γ=ðdωd cos θlÞ
distribution only gives access to three of them.
In this polarized case, even assuming that the NP terms

affect only to the third lepton family, the strategy to obtain
polarized information for τ decays from nonpolarized
data is spoiled by the presence of the OT NP operators.
This is due to the diagonal Oαβ

H Oρλ�
H and the Oα

HO
ρλ�
H

interference terms. We can, for example, better understand
this by looking at Eqs. (D3) and (D4), where we give
the coefficients a0;1;2ðω; hÞ directly in terms of the eW
SFs. There, we observe that both a0;1;2ðh ¼ þ1Þ and
a0;1;2ðh ¼ −1Þ have contributions proportional to ml.
Therefore the angular coefficients for h ¼ −1 cannot be
measured in the charged lepton massless decays, since such
reactions do not provide information about the eWT

2;3;4 andeWI4;I6;I7 contributions to a0;1;2ðh ¼ −1Þ. This remains true
even if NP existed in the first and second generations.
Therefore, the h ¼ þ1 and h ¼ −1 parts cannot be disen-
tangled from the measurement of the unpolarized d2Γ=
ðdωd cos θl¼e;μ;τÞ distributions alone, although nonpolar-
ized d2Γ=ðdωd cos θl¼e;μÞ data can be used.

We would also note that the OSL;R and OT NP operators

lead to nonvanishing contributions ( eWSP, eWT
2;3;4 and eWI3)

for positive helicity in the massless charge lepton limit.
The discussion is similar for the LAB d2Γ=ðdωdEτÞ

differential decay width.

III. SEMILEPTONIC Λ0
b → Λ+

c l− ν̄l DECAY

We apply here the general formalism derived in the
previous sections to the study of the semileptonic Λb → Λc
decay, paying attention to the NP corrections to the SM
results. We update the theoretical framework and the
numerical results presented previously in Ref. [34], where
NP tensor terms were not considered and the Wilson
coefficients were taken to be real. We have used the
LQCD form factors derived in Refs. [23,24] and the
best-fit Wilson coefficients determined in [17]. We antici-
pate that this new comprehensive analysis confirms most of
the findings of Ref. [34], and shows that the double
differential LAB d2Γ=ðdωdElÞ or CM d2Γ=ðdωd cos θl)
distributions of this decay can be used to distinguish
between different NP fits to b → cτν̄τ anomalies in the
meson sector, that otherwise give the same total and
differential dΓ=dω widths.

A. Form factors and SFs

The relevant hadronic matrix elements can be para-
metrized in terms of one scalar (FS), one pseudoscalar
(FP), three vector (Fi), three axial (Gi), and four tensor (Ti)
form factors, which are real functions of ω and that
are greatly constrained by HQSS near zero recoil (ω ¼ 1)
[20–22]
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hΛc; p⃗0; r0jc̄ð0Þð1 − γ5Þbð0ÞjΛb; p⃗; ri ¼ ūðr
0Þ

Λc
ðp⃗0ÞðFS − γ5FPÞuðrÞΛb

ðp⃗Þ;

hΛc; p⃗0; r0jVα − AαjΛb; p⃗; ri ¼ ūðr
0Þ

Λc
ðp⃗0Þ

�
γαðF1 − γ5G1Þ þ

pα

MΛb

ðF2 − γ5G2Þ þ
p0α

MΛc

ðF3 − γ5G3Þ
	
uðrÞΛb

ðp⃗Þ

hΛc; p⃗0; r0jc̄ð0Þσαβbð0ÞjΛb; p⃗; ri ¼ ūðr
0Þ

Λc
ðp⃗0Þ

�
i
T1

M2
Λb

ðpαp0β − pβp0αÞ þ i
T2

MΛb

ðγαpβ − γβpαÞ

þ i
T3

MΛb

ðγαp0β − γβp0αÞ þ T4σ
αβ

	
uðrÞΛb

ðp⃗Þ; ð28Þ

with uΛb;Λc
dimensionless Dirac spinors (note that for leptons we use spinors with square root mass dimensions instead).

In the heavy quark limit all the above form factors either vanish or equal the leading-order Isgur-Wise function [21] ζðωÞ,
satisfying ζð1Þ ¼ 1

F2 ¼ F3 ¼ G2 ¼ G3 ¼ T1 ¼ T2 ¼ T3 ¼ 0; F1ðωÞ ¼ G1ðωÞ ¼ FSðωÞ ¼ FPðωÞ ¼ T4ðωÞ ¼ ζðωÞ ð29Þ

Moreover, as discussed in [20,21] no additional unknown functions beyond ζðωÞ are needed to parametrize the
OðΛQCD=mb;cÞ corrections. Perturbative corrections to the heavy quark currents can be computed by matching QCD onto
heavy quark effective theory and introduce no new hadronic parameters. The same also holds for the orderOðαΛQCD=mb;cÞ.
The hadron tensors are readily obtained using

X
r;r0

hΛc;p0; r0jc̄ð0ÞΓðαβÞbð0ÞjΛb;p; rihΛc;p0; r0jc̄ð0ÞΓðρλÞbð0ÞjHb;p; ri� ¼
1

2
Tr

�
=p0 þMΛc

2MΛc

FðαβÞ
Γ

=pþMΛb

2MΛb

γ0FðρλÞ†
Γ γ0

�
;

ð30Þ

with the Dirac matrices

FðαβÞ
Γ ¼ 1; γ5;

�
γαF1 þ

pα

MΛb

F2 þ
p0α

MΛc

F3

�
;

�
γαγ5G1 þ

pα

MΛb

γ5G2 þ
p0α

MΛc

γ5G3

�
;

�
i
T1

M2
Λb

ðpαp0β − pβp0αÞ þ i
T2

MΛb

ðγαpβ − γβpαÞ þ i
T3

MΛb

ðγαp0β − γβp0αÞ þ T4σ
αβ

�
;

ϵαβδη
�
T1

pδp0
η

M2
Λb

þ T2γδ
pη

MΛb

þ T3γδ
p0
η

MΛb

þ 1

2
T4γδγη

�
: ð31Þ

The last of the structures in Eq. (31) accounts for the matrix
element of the operator c̄ð0Þσαβγ5bð0Þ between the initial
and final hadrons which, thanks to Eq. (B6), is related to
that of the tensor operator c̄ð0Þσαβbð0Þ.
From Eq. (30) one can obtain the eW SFs, and hence the

LAB d2Γ=ðdωdElÞ and CM d2Γ=ðdωd cos θlÞ distribu-
tions, in terms of the Wilson coefficients and form factors
introduced in Eqs. (1) and (28), respectively. The explicit
expressions are given in Appendix E. As detailed also in
this Appendix, the form factors used in Eq. (28) are easily
related to those computed in the LQCD simulations of
Refs. [23] (vector and axial) and [24] (tensor), which were
given in terms of the Bourrely-Caprini-Lellouch paramet-
rization [40] (see Eq. (79) of [23]). On the other hand, the
scalar (FS) and pseudoscalar (FP) form factors are directly
related (see Eqs. (2.12) and (2.13) of Ref. [24]) to the f0

vector and g0 axial ones obtained in the LQCD calculation
of Ref. [23]. For numerical calculations, we use here for
the vector, axial and tensor form factors, the 11 and 7
parameters given in Table VIII of Ref. [23] and Table 2 of
Ref. [24], respectively. To assess the uncertainties of the
observables that depend of the form factors, we have
included the (cross) correlations between all the parameters
of the ten (vector, axial vector, and tensor) form factors, as
provided in the supplemental files of Ref. [24].

B. Results: NP effects for Λ0
b → Λ+

c τ − ν̄τ decay

In this section, we will present numerical results using
the Wilson coefficients corresponding to the independent
Fits 6 and 7 of Ref. [17], which are real as corresponds to a
scheme where the CP symmetry is preserved. Details of
four different fits (4, 5, 6, and 7), that include all the NP
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terms given in Eq. (1), are provided in the Table 6 of that
work. We do not consider the scenarios determined by Fits 4
and 5 because they describe an unlikely physical situation in
which the SM coefficient is almost canceled and its effect is
replaced by NP contributions. The exhaustive analysis
carried out in Ref. [17] is a cutting-edge LFUV study in
semileptonic B → Dð�Þ decays. The data used for the fits
include the RD and RD� ratios, the normalized experi-
mental distributions of dΓðB → Dτν̄τÞ=dq2 and dΓðB →
D�τν̄τÞ=dq2 measured by Belle and BABAR as well as
the longitudinal polarization fraction FD�

L ¼ ΓλD�¼0ðB →
D�τν̄τÞ=ΓðB → D�τν̄τÞ provided by Belle. The χ2 merit
function is defined in Eq. (3.1) of Ref. [17], and it is
constructed taking into account the above data inputs and
some prior knowledge of the B → D and B → D� semi-
leptonic form factors. In addition, some upper bounds on the
leptonic decay rate Bc → τντ are imposed by allowing only
points in the parameter space that fulfill this bound.
Before discussing the results, we dedicate a few words

about how we estimate the uncertainties that affect our
predictions. We use Monte Carlo error propagation to
maintain, when possible, statistical correlations between
the different parameters involved in our calculations. The
first source of uncertainties is found in the form factors.
This is in fact the theoretical error in the case of the results
obtained within the SM. Thus, SM results will be presented
with an error band that we obtain using the covariance
matrix provided as supplemental material in Ref. [24] and

that accounts for 68% confident level (CL) intervals.
Results including NP contributions are not only affected
by the LQCD form factors errors but also by the uncer-
tainties in the fitted Wilson coefficients. To evaluate the
latter, for each of Fits 6 and 7, we use different sets of
Wilson coefficients provided by the authors of Ref. [17].
They have been obtained through successive small steps in
the multiparameter space, with each step leading to a
moderate χ2 enhancement. We use 1σ sets, values of the
Wilson coefficients for which Δχ2 ≤ 1 with respect to its
minimum value, to generate the distribution of each
observable, taking into account in this way statistical
correlations. From this derived distributions, we determine
the maximum deviation above and below its central value,
the latter obtained with the values of theWilson coefficients
corresponding to the minimum of χ2. These deviations
define the, asymmetric in general, uncertainty associated
with the NP Wilson coefficients. The latter uncertainty is
then added in quadratures with the one corresponding to the
form factors determination to define an error (asymmetric)
band. Thus, results obtained including NP will always be
provided with such an error band. To get an idea of the
relative relevance of both sources of theoretical error, in
many cases, the smallest-in-size bands associated only with
the uncertainties in the form factors will also be shown.
We start by showing in Fig. 1 results for the dΓðΛb →
Λcτν̄τÞ=dω differential decay width. As we see in the left
panel, Fits 6 and 7 give very similar results for dΓ=dω and

FIG. 1. Left panel: dΓðΛb → Λcτν̄τÞ=dω differential decay width, as a function of ω and in units of 10jVcbj2 ps−1. We show SM
predictions and full NP results obtained including all terms in Eq. (1) and using theWilson coefficients from Fits 6 and 7 of Ref. [17]. In the
middle and right panels, we show the contributions to the dΓ=dω corresponding to τ leptons with well defined helicities (h ¼ �1) in the
W− CM and LAB reference systems, respectively. Uncertainty bands are obtained as detailed in the main text. For the NP results in the CM
distributions, we also show the error bands corresponding to the form factors uncertainties, which can be seen in lighter colors within the
total error bands. In the case of the LAB frame, SM and Fit 6 positive-helicity distributions are practically indistinguishable.

TABLE I. Total widths and RΛc
values associated to the distributions shown in the left panel of Fig. 1.

SM Fit 6 [17] Fit 7 [17]

ΓðΛb → ΛceðμÞν̄eðμÞÞ=ð10 × jVcbj2 ps−1Þ 2.15� 0.08 � � � � � �
ΓðΛb → Λcτν̄τÞ=ð10 × jVcbj2 ps−1Þ 0.715þ0.014

−0.016 0.872� 0.047 0.892� 0.051
RΛc

0.332� 0.007 0.404� 0.022 0.414� 0.024
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they become indistinguishable once the full uncertainty
band is taken into account. Thus, by looking at the dΓ=dω
differential decay width (or the integrated decay width
for that matter, as can be seen in Table I) one could not
decide which fit, and thus what NP terms, would be
preferable to explain the data. As compared to our partial
results of Ref. [34], we find a quite significant reduction of
the error bands of the NP distributions thanks to having
considered here the statistical correlations between the
Wilson coefficients.
In Fig. 1, we also show the separate contributions to

dΓ=dω corresponding to τ leptons with well defined
helicity (h ¼ �1) measured either in the CM (middle
panel) or the LAB (right panel) reference systems. In the
latter case there is no clear distinction (once the full error
band is taken into account) between the predictions
corresponding to Fits 6 and 7. The situation clearly
improves for the case of well defined helicities in the
CM system where the predictions from the two fits can be
told apart in most of the ω range. However, polarized
distributions are very challenging measurements because of
the presence of undetected neutrinos, so next we examine
other possibilities.
Fortunately, things improve considerably when one

looks at the observables related to the CM d2Γ=
ðdωd cos θlÞ and LAB unpolarized d2Γ=ðdωdElÞ double
differential distributions. In Figs. 2 and 3 we show,
respectively, the results for the ai¼0;1;2 and ci¼0;1;2

dimensionless coefficients that determine those distribu-
tions [Eqs. (18) and (21)]. With the exception of a0, the
rest of these functions allow a clear distinction between
NP Fits 6 and 7 that otherwise predict the same dΓ=dω
differential and total decay widths. We also display
predictions, in the bottom panel of Fig. 2, for the commonly
used forward-backward asymmetry AFB, which features
and ω—behavior are strongly determined by a1. If LFUV
were experimentally established for the Λb → Λc semi-
leptonic decays, the analysis of these observables would
clearly help in establishing what kind of NP was needed to
reproduce experimental data. Another way of presenting
the results in Figs. 2 and 3 is by showing the ratios of the
quantities obtained including NP over their SM values.
This is done for a1 and c2 in Fig. 4. We observe that the
ðc2ÞNP=ðc2ÞSM ratio, depicted in the left-top panel of Fig. 4,
is almost constant having a very mild ω dependence.
However, it clearly distinguishes NP Fit 6 from Fit 7
and the two of them from the SM value of 1. We reached
the same conclusions in our previous analysis of Ref. [34],
but as it was the case with dΓ=dω, the proper consideration
of theWilson’s coefficient statistical correlations drastically
reduces the errors in the predictions for this ratio,5 which
sharpens the NP discriminating power of this observable.

FIG. 2. Top: CM angular expansion coefficients a0, a1 and a2 for the unpolarized d2Γ½Λb → Λcτν̄τ�=ðdωd cos θlÞ differential decay
width [Eqs. (17) and (18)], as a function of ω. Bottom: forward-backward asymmetry,AFB ¼ a1=ð2a0 þ 2a2=3Þ. We show SM and full
results, the latter evaluated including all NP terms in Eq. (1) and using the Wilson coefficients from Fits 6 and 7 of Ref. [17]. Uncertainty
bands are obtained as explained in the main text. For NP results we also show the error bands corresponding to the form factors
uncertainties, which can be seen in lighter colors within the total error bands.

5In fact, the reduction of uncertainties in this work compared to
those given in [34] is very significant for all functions depicted in
Figs. 2 and 3.

PENALVA, HERNÁNDEZ, and NIEVES PHYS. REV. D 101, 113004 (2020)

113004-10



Similar results would be obtained for other ratios with the
one for a1, seen in the right-top panel of Fig. 4, showing the
stronger ω dependence. As seen in Figs. 2 and 3, a1ðωÞ is
the only function, of those shown in these two figures, that
presents a change of sign for the SM and the two NP

scenarios analyzed in this work. This behavior of a1
explains the singularities in the NP ratios since, for each
model, the zeros of a1 occur at different positions within the
physical interval ½1;ωmax�. This strong ω—dependence of
the ða1ÞNP=ða1ÞSM ratio provides an additional NP-testing

FIG. 3. LAB charged lepton energy expansion coefficients c0, c1 and c2 [Eq. (21)] for the unpolarized d2Γ½Λb → Λcτν̄τ�=ðdωdElÞ
differential decay width. Details as in Fig. 2.

FIG. 4. Top: ðc2ÞNP=ðc2ÞSM (left) and ða1ÞNP=ða1ÞSM (right) ratios for Λb → Λcτν̄τ, as a function of ω. Bottom:
ða1ÞNPτ ðωÞ=ða1ÞSMl¼e;μðωÞ and RðAFBÞ ratios defined in Eqs. (32) and (33), respectively. In the inserts to these latter plots, we
amplify the ω region close to zero recoil. In all cases, we show results for the Fits 6 and 7 of Ref. [17], and details of the
uncertainties are as in Fig. 2.
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tool, which could be used when future accurate measure-
ments are available.
An alternative to this latter ratio that can be obtained just

from pure experimental data is the following. Assuming
that NP affects only the third generation of leptons, a1 for

l ¼ e, μ (that can be considered as massless to a high
degree of approximation) is a pure SM result, and the ratio
ða1ÞNPτ =ða1ÞSMl¼e;μ can be measured from the asymmetry
between the number of events observed for θl ∈ ½0; π=2�
and for θl ∈ ½π=2; π�,

ða1ÞNPτ ðωÞ
ða1ÞSMl¼e;μðωÞ

¼
�
1−

m2
τ

q2

�−2

Z
1

0

d cos θl
hd2Γ½Λb → Λcτν̄τ�

dωd cos θl
ðω; θlÞ

i
−
Z

0

−1
d cos θl

hd2Γ½Λb → Λcτν̄τ�
dωd cos θl

ðω; θlÞ
i

Z
1

0

d cos θl
hd2Γ½Λb → ΛceðμÞν̄eðμÞ�

dωd cos θl
ðω; θlÞ

i
−
Z

0

−1
d cos θl

hd2Γ½Λb → ΛceðμÞν̄eðμÞ�
dωd cos θl

ðω; θlÞ
i

ð32Þ

This ratio is shown in the left-bottom panel of Fig. 4.
Since ða1ÞSMl¼e;μðωÞ does not vanish for ω > 1 (see Fig. 1 of
Ref. [34]), no divergence appears in this case. In the insert
to this latter panel we amplify the ω ∈ ½1; 1.2� region to
better show the discriminating power of this observable
close to zero recoil. To minimize experimental and theo-
retical uncertainties, both the numerator and the denomi-
nator of the right-hand side of Eq. (32) can be normalized
by dΓ=dω for each decay mode. In this way, the ratio
RðAFBÞ, defined as

RðAFBÞ ¼
ðAFBÞNPτ
ðAFBÞSMl¼e;μ

¼
h

a1
2a0þ2a2=3

i
NP

τh
a1

2a0þ2a2=3

i
SM

l¼e;μ

ð33Þ

can be measured by subtracting the number of events seen
for θl ∈ ½0; π=2� and for θl ∈ ½π=2; π� and dividing by the

total sum of observed events, in each of the Λb → Λcτν̄τ
and Λb → ΛceðμÞν̄eðμÞ reactions. We expect this strategy
should remove a good part of experimental normalization
errors. We show the theoretical predictions for RðAFBÞ in
the bottom-right panel of Fig. 4, where we see a significant
reduction of uncertainties, and the potential of this ratio to
establish the validity of the NP scenarios associated to Fit 7.
To avoid confusion, we must warn the reader that RðAFBÞ
introduced here is not related with a ratio of hadronic
forward-backward asymmetries defined in Eq. (2.46) of
Ref. [29], and which is discussed in Fig. 1 of that work. The
angles used in [29] are different to those employed in the
present analysis.
To complete the analysis, we display in Figs. 5

and 6 additional predictions for the polarized CM
d2Γ=ðdωd cos θlÞ and LAB d2Γ=ðdωdElÞ distributions.
As in the previous figures, we separate in all the

FIG. 5. CM angular coefficients for positive and negative helicities ðai¼0;1;2ðh ¼ �1ÞÞ for the τ—mode Λb → Λc semileptonic decay,
as a function of ω. Details as in Fig. 2.
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observables the errors produced by the uncertainties in
the LQCD determination of the form factors, which for
the NP results are not negligible at all, and become
even dominant in certain cases. In Fig. 5, we show the
CM angular coefficients for positive and negative helicities,
ai¼0;1;2ðh ¼ �1Þ, which explicit expressions in terms of theeW SFs were compiled in Eq. (25). Even taking uncertainties
into account, Fits 6 and 7 provide distinctive predictions
that also differ from the SM results. We see that ðh ¼ þ1Þ
and ðh ¼ −1Þ coefficients are comparable in size, and we
systematically find

jaNP–Fit 70;1;2 ðh ¼ −1Þj ≥ jaNP–Fit 60;1;2 ðh ¼ −1Þj
≥ jaSM0;1;2ðh ¼ −1Þj ð34Þ

except for a0ðh ¼ −1Þ in a narrow region, ω ¼ 1–1.03,
where the NP Fit 6 and 7 predictions agree within errors. In
the case of a0ðh ¼ þ1Þ and a1ðh ¼ þ1Þ, roughly, NP Fit 6
values are greater than the Fit 7 ones, with SM results in the
middle. Note that the partial integrated rates, dΓ=dω shown
in Fig. 1, are not sensitive to the a1—contributions, and
therefore having access to the detailed angular dependence
provides very valuable additional information. We also see
large cancellations in a2 ¼ a2ðh ¼ þ1Þ þ a2ðh ¼ −1Þ,
which become total, both at zero recoil and at the end
of the phase space, where the sum a2 vanishes. Actually
for ω ¼ ωmax, ja2ðh ¼ �1Þj are as big as a0ðh ¼ �1Þ.
In Fig. 6 we show the ĉi¼0;1;2;3 coefficients, given in

Eq. (27), that appear in the expression for the polarized
LAB d2Γ=ðdωdElÞ double differential decay width.

Taking into account the uncertainty bands, dominated by
the errors of the Wilson coefficients, only ĉ0 and ĉ1 can be
used to distinguish between NP Fits 6 and 7, while only Fit
7 predicts a result in clear disagreement with SM expect-
ations. We see NP Fits 6 and 7 predictions for these two
coefficients have even opposite signs, and the differences
are enhanced in the sum ðc0 þ ĉ1Þ, which is the coefficient
of the linear El term in Eq. (26).
The other two observables ĉ2 and ĉ3 are of little use for

the current analysis, because the results of Fits 6 and 7
overlap and, furthermore, these coefficients are around two
orders of magnitude lower than c1 and c2, respectively. One
should note that ĉ2 and ĉ3 are proportional to the tensor-
diagonal eWT

2;4 and tensor-interference eWI3;I5;I6 SFs, and
therefore both are zero in the SM. Moreover, for the NP
scenarios associated to Fit 6 and 7 of Ref. [17], these two
coefficients of the unpolarized distribution are negligible,
since for both fits jCT j is already of the order of 10−2,
and compatible with zero, CT ¼ 0.01þ0.09

−0.07 and −0.02þ0.08
−0.07 ,

respectively.
However, it is important to stress that ĉ2 and ĉ3 are

optimal observables to restrict the validity of NP schemes
with high tensor contributions. As a matter of example,

ĉ3ðωÞ
c2ðωÞ

¼ 32 eWT
2eW2 − 16 eWT

2

¼ 32 eWT
2eW2

þ � � �

¼ −32xþOðΛQCD=mb;cÞ;

x ¼ 2jCT j2
jCV j2 þ jCAj2

ð35Þ

FIG. 6. LAB charged lepton energy expansion coefficients ĉi¼0;1;2;3 [Eqs. (26) and (27)] for the polarized d2Γ½Λb → Λcτν̄τ�=ðdωdElÞ
differential decay width. We also show the ðc0 þ ĉ1Þ, ðc1 þ ĉ2Þ and ðc2 þ ĉ3Þ sums in the third top, second, and fourth bottom panels,
respectively. Details as in Fig. 2.
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where we have made used that eWT
2= eW2 ¼ −x þ

OðΛQCD=mb;cÞ, as deduced from Eq. (29).
On the other hand, the small NP tensor contribution

for Fits 6 and 7, together with the heavy quark limit
relations of Eq. (29), explains the flat ω—behavior of the
ðc2ÞNP=ðc2ÞSM ratio seen in Fig. 4. If one neglects eWT

2 ,
the coefficient c2 is proportional to eW2. The linear CVR

terms, that could induce a nonzero ω dependence in
ð eW2ÞNP=ð eW2ÞSM, cancel to order OðΛQCD=mb;cÞ.
Finally, in Fig. 7, we present RΛc

as a function of RD

obtained using NP Fit 6 (left) and 7 (middle) χ2—weighted
samples of Wilson coefficients provided by the authors
of Ref. [17]. In Fig. 7, we include sets beyond the 1σ ones.
For illustration purposes, we also show the results of
Ref. [17] for the ratio RD� , which allows us to highlight
the clear correlation between these three LFUV observ-
ables. Note that SM predictions for the RSM

D ¼ 0.300�
0.05 andRSM

D� ¼ 0.251� 0.004 ratios are below the ranges
considered, whileRSM

Λc
¼ 0.332� 0.008. In the right panel

of Fig. 7, we show, for each of the Wilson coefficient sets
used in the left and middle panels, the χ2—variations
against the corresponding changes induced in the RΛc

ratio.6 Both, Fit 6 and Fit 7 χ2 functions grow from their
minimum values, and the Δχ2 ¼ 1, Δχ2 ¼ 2.71, Δχ2 ¼
6.63;… increments can be used to determine the 68% (1σ),
90% (2σ), 99%(3σ), � � � CL intervals of the NP predictions
for RD, RD� , and RΛc

.

IV. CONCLUSIONS

We have included the NP tensor term, and all the
interference contributions associated with it, in our general
formalism for semileptonic decays initially introduced in
Ref. [34]. In this way, all the NP effective Hamiltonians that
are considered in LFUV studies with massless left-handed
neutrinos have now been taken into account, including the
possibility of violation of CP-symmetry due to the pres-
ence of complex Wilson coefficients. The scheme devel-
oped is totally general and it can be applied to any charged
current semileptonic decay, involving any quark flavors or
initial and final hadron states.
We have shown that a total of sixteen SFs ( eW’s) are

needed to fully describe the hadronic tensor. They are
constructed out of the complex Wilson coefficients, that
characterize the strength of the different NP terms, and
the form factors needed to describe the genuine hadronic
matrix elements. We have also derived general expres-
sions for unpolarized and charged-lepton polarized CM
d2Γ=ðdωd cos θlÞ and LAB d2Γ=ðdωdElÞ differential
decay widths in terms of the eW—SFs. Unlike the unpo-
larized case, where all the accessible observables could be
determined either from the CM or LAB distributions, we
have pointed out that LAB and CM charged lepton helicity
distributions should be used simultaneously, since in the
polarized case, they provide complementary information.
We have also shown that, even assuming that the NP terms
affect only to the third lepton family, the strategy to obtain
full polarized information for tau-mode decays from non-
polarized e=μ and τ data is spoiled by the presence of NP
tensor operators.
As a result of this general discussion, we have concluded

that determining all NP parameters, with their complex
phases, from a single type of decay is tough, even assuming
that the hadronic form factors are known. This is because
the experimental measurements of the required polarized

FIG. 7. Left/middle panel: NP Fits 6 and 7 results forRΛc
andRD� as a function ofRD for different χ2—weighted samples of Wilson

coefficients. Black solid and dashed curves, labeled as MPJP, stand for the results of Ref. [17] provided by the authors of that work [41].
The blue and orange dashed lines (indistinguishable from the MPJP predictions) correspond to the current numerical evaluation ofRΛc

for Fits 6 and 7, respectively, with the shaded bands showing the 68% CL uncertainties inherited from the LQCD determination of the
form factors [23,24]. Right panel: Chi-square values [17,41] for each set of Wilson coefficients (sWC) used in the left and middle panels,
and represented in this plot by ΔRΛc

¼ RsWC
Λc

−Rmin
Λc

, with Rmin
Λc

¼ 0.405 and 0.415 for Fits 6 and 7, respectively.

6There exist one-to-one relations between each set of
Wilson coefficients (sWC) used in the left (Fit 6) and middle
(Fit 7) panels of Fig. 7 and the chi-square values or the variations
ΔRΛc

ð¼RsWC
Λc

−Rmin
Λc

Þ shown in the right plot of the figure.
At some point for ΔRΛc

< −0.02, the local Fit 7 collapses into
Fit 6.
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decays are very challenging due to the presence of
undetected neutrinos. We have argued it is therefore
essential to simultaneously analyze data from various types
of semileptonic decays (f.e. B̄ → D; B̄ → D�;Λb → Λc;
B̄c → ηc; B̄c → J=Ψ…), considering both the e=μ and τ
modes, and that the scheme presented in this work is a
powerful tool to achieve this goal.
The general formalism developed has then been applied

to update the analysis of the Λb → Λcτν̄τ decay carried out
in Ref. [34]. We have found small numerical differences for
central results, because of the little strength of the tensor
terms in the NP scenarios originally considered in our
previous work. However, the proper consideration of the
Wilson’s coefficient statistical correlations has drastically
reduced the errors in the new predictions, which have
significantly improved the NP discriminating power of the
present study. In addition, we have obtained full results for
both CM and LAB charged lepton polarized distributions.
As in Ref. [34], we have shown the potential of the CM

d2Γ=ðdωd cos θlÞ and LAB d2Γ=ðdωdElÞ distributions to
distinguish between models, fitted to b → cτν̄τ anomalies
in the meson sector, that differ in the strengths of the
NP terms but that otherwise give the same differential
dΓ=dω and integrated decay widths. In particular, the a1
and a2, and all three c0, c1, and c2 functions, associated
with the nonpolarized CM d2Γ=ðdωd cos θlÞ and LAB
d2Γ=ðdωdElÞ distributions, respectively, are very well

suited for that purpose, at least for the Λb → Λc semi-
leptonic decay specifically studied in this work. For this
baryon transition, we have also shown the great interest of
the ratios ða1ÞNPτ =ða1ÞSMl¼e;μ and RðAFBÞ (Eqs. (32) and
(33), respectively) which can be directly measured from
the ðθl; π − θlÞ asymmetry of the experimental distribu-
tions. If LFUV is experimentally established for this
decay, the analysis of all these observables can help in
understanding what kind of NP is needed to explain the
data. Finally, we have identified two coefficient functions,
in the LAB polarized distribution, which theoretically
should be very efficient in restricting the validity of NP
schemes with a sizable tensor contribution, although we
are aware of the difficulty of their measurement at present
and in the near future.

ACKNOWLEDGMENTS

Wewarmly thank C. Murgui, A. Peñuelas and A. Pich for
useful discussions. N. P. and J. N. want to acknowledge the
hospitality and financial support of the Nuclear Physics
Group of the University of Salamanca. This research has
been supported by the Spanish Ministerio de Economía y
Competitividad (MINECO) and the European Regional
Development Fund (ERDF) under Contracts No. FIS2017-
84038-C2-1-P, No. FPA2016-77177-C2-2-P, and by the
EU Horizon 2020 research and innovation programme,
STRONG-2020project, underGrantAgreementNo. 824093.

APPENDIX A: LEPTON TENSORS

From Eq. (5), in the limit of massless neutrinos, we obtain

JLðαβÞðk; k0; hÞ½JLðρλÞðk; k0; hÞ�� ¼
1

4
Tr½ð=k0 þmlÞΓðαβÞð1 − γ5Þ=keΓðρλÞPh�; eΓðρλÞ ¼ γ0Γ†

ðρλÞγ
0: ðA1Þ

The different ΓðαβÞ and ΓðρλÞ operators give rise to the following lepton tensors [we use the convention ϵ0123 ¼ þ1 and
gμν ¼ ðþ;−;−;−Þ]

Lðk; k0; hÞ ¼ ðk · k0 þ hk · sÞ=2; ðA2Þ

Lαðk; k0; hÞ ¼
ml

2
kα þ

h
2ml

ðk0αk · s − sαk · k0 þ iϵαδησk0δkηsσÞ; ðA3Þ

L0
ρλðk; k0; hÞ ¼

i
2
ðkρk0λ − kλk0ρ þ iϵρλδηk0δkηÞ þ i

h
2
ðkρsλ − kλsρ þ iϵρλδηsδkηÞ; ðA4Þ

Lαρðk; k0; hÞ ¼
1

2
ðk0αkρ þ kαk0ρ − gαρk · k0 þ iϵαρδηk0δkηÞ −

h
2
ðsαkρ þ kαsρ − gαρk · sþ iϵαρδηsδkηÞ; ðA5Þ

Lαρλðk; k0; hÞ ¼
iml

2
ðgαλkρ − gαρkλ þ iϵαρλδkδÞ −

ih
2ml

½k0αðsρkλ − sλkρÞ þ kαðsρk0λ − sλk0ρÞ þ sαðkρk0λ − kλk0ρÞ

þ ðk · k0Þðgαρsλ − gαλsρÞ þ ðs · kÞðgαλk0ρ − gαρk0λÞ�

−
h

2ml
½ðk · k0Þϵαρλδsδ þ sλϵαρδηk0δkη − sρϵαλδηk0δkη þ kαϵρλδηsδk0η þ k0αϵρλδηsδkη�; ðA6Þ
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Lαβρλðk; k0; hÞ ¼
1

2
Lαβρλðk; k0Þ þ

h
2
Lαβρλðk; sÞ; ðA7Þ

which correspond to the ðΓðαβÞ;ΓðρλÞÞ ¼ ð1; 1Þ; ðγα; 1Þ; ð1; σρλÞ; ðγα; γρÞ, ðγα; σρλÞ, and ðσαβ; σρλÞ combinations, respectively,
and in Eq. (A7)

Lαβρλðk; k0Þ ¼ gβρðkαk0λ þ kλk0αÞ − gβλðkαk0ρ þ kρk0αÞ − gαρðkβk0λ þ kλk0βÞ þ gαλðkβk0ρ þ kρk0βÞ
þ ðk · k0Þðgαρgβλ − gαλgβρÞ þ iðk0αϵβλρδkδ − k0βϵαλρδk

δ þ kρϵαβλδk0δ − kλϵαβρδk0δÞ: ðA8Þ

APPENDIX B: HADRON TENSORS

We collect here the hadron tensors that should be contracted with the corresponding lepton ones, compiled in the previous
Appendix, to obtain

PjMj2. In Sec. II B 1, we have addressed the diagonal JαH½JρH�� case. In this Appendix, we begin with
the diagonal JαβH ½JρλH �� tensor term, which it is also discussed in detail. The decomposition of the rest of the hadron tensors as
linear combination of independent Lorentz (pseudo-)tensor structures7 is listed after, and it is obtained similarly to those in
the two previous examples. The coefficients multiplying the (pseudo-)tensors are the eW0s SFs, which depend on q2 and the
hadron masses. As mentioned in the Introduction, there appear 16 eW0s SFs, which are constructed out of NP complex
Wilson coefficients and the genuine hadronic responses (W0s). The latter ones are determined by the matrix elements of the
involved hadron operators, which for each particular decay are parametrized in terms of form factors.

(i) The diagonal contribution of the tensor operator Oαβ
H gives rise to a (pseudo-)tensor of four indices

Wαβρλðp; q; CTÞ ¼ jCT j2
X
r;r0

hHc;p0; r0jc̄ð0Þσσβð1 − γ5Þbð0ÞjHb;p; rihHc;p0; r0jc̄ð0Þσρλð1 − γ5Þbð0ÞjHb;p; ri�;

ðB1Þ

which contracted with the lepton tensor Lαβρλðk; k0; hÞ in Eq. (A7) provides the contribution to the differential decay
rate. Note that by construction Wαβρλðp; q; CTÞ ¼ Wρλαβ�ðp; q; CTÞ, and hence, if

Wαβρλ ¼ 1

2
½Wαβρλ þWρλαβ� þ 1

2
½Wαβρλ −Wρλαβ�

¼ 1

2
½Wαβρλ þWαβρλ�� þ 1

2
½Wαβρλ −Wαβρλ��≡Wαβρλ

ðsÞ þWαβρλ
ðaÞ ; ðB2Þ

the symmetric and antisymmetric, under the ðαβÞ ↔ ðρλÞ exchange, parts become real and purely imaginary,
respectively. Now introducing the decomposition (T ¼ σ, pT ¼ σγ5)

Wαβρλðp; q; CTÞ ¼ jCT j2½Wαβρλ
TT ðp; qÞ þWαβρλ

pTpTðp; qÞ −Wαβρλ
TpT ðp; qÞ −Wαβρλ

pTT ðp; qÞ�; ðB3Þ

and using parity and time-reversal, as in Eqs. (11) and (12), we conclude that Wαβρλ
TT and Wαβρλ

pTpT (Wαβρλ
TpT and Wαβρλ

pTT )
are real tensors (imaginary pseudotensors). Indeed, we can identify

Wαβρλ
ðsÞ ¼ jCT j2½Wαβρλ

TT ðp; qÞ þWαβρλ
pTpTðp; qÞ�; ðB4Þ

Wαβρλ
ðaÞ ¼ −jCT j2½Wαβρλ

TpT ðp; qÞ þWαβρλ
pTT ðp; qÞ�; ðB5Þ

and conclude that the tensors/pseudotensors should be ðαβÞ ↔ ðρλÞ symmetric/antisymmetric. In addition, both of
them should be obviously antisymmetric under α ↔ β and ρ ↔ λ exchanges. There is still a large freedom, and
a priori 5 (8) different four-index tensor (pseudotensor) structures, meeting all the above requirements, can be used
to construct Wαβρλ

ðsÞ (Wαβρλ
ðaÞ ). An important simplification is found recalling that

7They are constructed out the vectors pμ, qμ, the metric gμν and the Levi-Civita pseudotensor ϵμνδη.
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γ5σ
αβ ¼ −

i
2
ϵαβδησδη; ðB6Þ

which can be used to relate Wαβρλ
ðsÞ and Wαβρλ

ðaÞ . We find

Wαβρλ ¼ Wαβρλ
ðsÞ −

i
2
ϵρλδηW

αβδη
ðsÞ ; ðB7Þ

which implies that the total tensor can be expressed using only the five real SFs that appear in the Lorentz
decomposition8 of Wαβρλ

ðsÞ .

Wαβρλ ¼ jCT j2
�
WT

1 ½ðgαρgβλ − gαλgβρÞ − iϵρλαβ� þWT
2

M2
½ðgαρpβpλ − gαλpβpρ − gβρpαpλ þ gβλpαpρÞ

− iðϵρλαδpβpδ − ϵρλβδpαpδÞ� þ
WT

3

M2
½ðgαρqβqλ − gαλqβqρ − gβρqαqλ þ gβλqαqρÞ

− iðϵρλαδqβqδ − ϵρλβδqαqδÞ� þ
WT

4

M2
½½gαρðpβqλ þ pλqβÞ − gαλðpβqρ þ pρqβÞ − gβρðpαqλ þ pλqαÞ

þ gβλðpαqρ þ pρqαÞ� − iðϵρλαδðpβqδ þ qβpδÞ − ϵρλβδðpαqδ þ qαpδÞÞ�

þWT
5

M4
½ðpαqβ − pβqαÞðpρqλ − pλqρÞ − iðpαqβ − pβqαÞϵρλδηpδqη�

	
: ðB9Þ

Requiring now that the pseudotensor part ofWαβρλ should be ðαβÞ ↔ ðρλÞ antisymmetric, we find further constrains
for the WT

1;2;3;4;5 since they should satisfy

M2WT
1 ½ϵρλαβ þ ϵαβρλ� þWT

2 ½ðϵρλαδpβpδ − ϵρλβδpαpδÞ þ ðϵαβρδpλpδ − ϵαβλδpρpδÞ�
þWT

3 ½ðϵρλαδqβqδ − ϵρλβδqαqδÞ þ ðϵαβρδqλqδ − ϵαβλδqρqδÞ�
þWT

4 ½ðϵρλαδðpβqδ þ qβpδÞ − ϵρλβδðpαqδ þ qαpδÞÞ þ ðϵαβρδðpλqδ þ qλpδÞ − ϵαβλδðpρqδ þ qρpδÞÞ�
þWT

5 ½ðpαqβ − pβqαÞϵρλδηpδqη þ ðpρqλ − pλqρÞϵαβδηpδqη� ¼ 0: ðB10Þ

The above equation can be rewritten as

ϵαβρλ½2M2WT
1 þ p2WT

2 þ q2WT
3 þ 2ðp · qÞWT

4 � þ q2pρϵαβδλpδWT
5 ¼ 0; ðB11Þ

where we have used that

ϵαβρδaδbλ − ϵαβλδaδbρ þ ϵρλαδaδbβ − ϵρλβδaδbα ¼ ða · bÞϵαβρλ: ðB12Þ

Taking into account that the two tensors that appear in Eq. (B11) are independent, we deduce

8It is to say, they are defined from

Wαβρλ
ðsÞ

jCT j2
¼ Wαβρλ

TT þWαβρλ
pTpT

¼ WT
1 ðgαρgβλ − gαλgβρÞ þWT

2

M2
ðgαρpβpλ − gαλpβpρ − gβρpαpλ þ gβλpαpρÞ þWT

3

M2
ðgαρqβqλ − gαλqβqρ − gβρqαqλ þ gβλqαqρÞ

þWT
5

M4
ðpαqβ − pβqαÞðpρqλ − pλqρÞ þWT

4

M2
ðgαρðpβqλ þ pλqβÞ − gαλðpβqρ þ pρqβÞ − gβρðpαqλ þ pλqαÞ þ gβλðpαqρ þ pρqαÞÞ

ðB8Þ
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2M2WT
1 þ p2WT

2 þ q2WT
3 þ 2ðp · qÞWT

4 ¼ 0; WT
5 ¼ 0: ðB13Þ

The first of the above equations can be used to rewrite WT
1 in terms of WT

2;3;4. Nevertheless, the contraction of
the tensor that multiplies WT

1 in the decomposition of Eq. (B9) with the lepton tensor Lαβρλðk; k0; hÞ defined in

Eq. (A7) vanishes identically. Hence, the contribution of Wαβρλ to
PjMj2 is given just in terms of three (WT

2 , W
T
3 ,

WT
4 ) real SFs.
Finally, we absorb the common factor jCT j2, by redefining eWT

1;2;3;4 ¼ jCT j2WT
1;2;3;4.

(ii) The diagonal contribution of the operator OH gives rise to the scalar

Wðp; qÞ ¼ eWSPðq2Þ ¼ jCSj2
X
r;r0

jhHc;p0; r0jc̄ð0Þbð0ÞjHb;p; rij2 þ jCPj2
X
r;r0

jhHc;p0; r0jc̄ð0Þγ5bð0ÞjHb;p; rij2;

ðB14Þ

which should be multiplied by the scalar lepton term of Eq. (A2). Note that the CSC�
P and CPC�

S interference terms
would give rise to purely imaginary pseudoscalars, which necessarily vanish because they cannot be constructed out
of the p and q four-vectors alone.

(iii) The Oα
H and OH interference contribute to the decay width as 2Re½Wαðp; q; CV;A;S;PÞLαðk; k0; hÞ�, with the

Lαðk; k0; hÞ lepton tensor defined in Eq. (A3) and

Wαðp; q; CV;A;S;PÞ ¼
X
r;r0

hHc;p0; r0jðCVVα − CAAαÞjHb;p; rihHc;p0; r0jc̄ð0ÞðCS − CPγ5Þbð0ÞjHb;p; ri�; ðB15Þ

and its treatment is similar to that discussed for JαH½JρH�� in Sec. II B 1, with the equivalence ðVVÞ ↔ ðVSÞ,
ðAAÞ ↔ ðAPÞ, ðVAÞ ↔ ðVPÞ and ðAVÞ ↔ ðASÞ. Thus, we find

Wαðp; q; CV;A;S;PÞ ¼
1

2M
ð eWI1pα þ eWI2qαÞ; ðB16Þ

eWI1;I2ðq2; CV;A;S;PÞ ¼ CVC�
SW

VS
I1;I2ðq2Þ þ CAC�

PW
AP
I1;I2ðq2Þ; ðB17Þ

with all fourWVS;AP
I1;I2 SFs being real, and where we have used an obvious notation in whichWVS

I1;I2, andW
AP
I1;I2 should

be obtained from the VS and APmatrix elements. Note that the odd parity VP and AS terms would give rise to purely
imaginary pseudovectors, which necessarily vanish because they cannot be constructed out of p and q alone. Thus,
the total contribution to

PjMj2 of these pieces is given by

Re

��eWI1

M
pα þ

eWI2

M
qα
�
Lαðk; k0; hÞ

�
: ðB18Þ

For real Wilson coefficients, the eWI1;I2 SFs are real, and taking the real part in Eq. (B18) amounts to remove the Levi-
Civita term of Lαðk; k0; hÞ, recovering in this way the result of Ref. [34] identifying eWI1;I2 withWI1;I2 introduced in
the latter reference.

(iv) The OH and Oρλ
H interference contribute to the decay width as 2Re½W0ρλðp; q; CS;P;TÞL0

ρλðk; k0;hÞ�, with the
L0
ρλðk; k0; hÞ lepton tensor defined in Eq. (A4) and

W0ρλðp; q; CS;P;TÞ ¼ C�
T

X
r;r0

hHc;p0; r0jc̄ð0ÞðCS − CPγ5Þbð0ÞjHb;p; rihHc;p0; r0jc̄ð0Þσρλð1 − γ5Þbð0ÞjHb;p; ri�:

ðB19Þ

We use Lorentz, parity and time-reversal transformations, as explained in Eqs. (11) and (12), to deduce that
the ST and PpT (SpT and PT) tensors are purely imaginary (real) antisymmetric tensors (pseudotensors).
In addition, the SpT and PT pseudotensors can be related to the ST and PpT tensors thanks to Eq. (B6). We finally
find
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W0ρλðp; q; CS;P;TÞ ¼
eWI3

2M2
½ϵρλδηpδqη þ iðpρqλ − pλqρÞ�;

eWI3ðq2; CS;P;TÞ ¼ C�
TðCSWST

I3 ðq2Þ þ CPW
PpT
I3 ðq2ÞÞ; ðB20Þ

and the real WST
I3 and WPpT

I3 SFs, obviously, deduced from the decompositions

W0PpT
ρλ ðp; qÞ ¼

X
r;r0

hHc;p0; r0jc̄ð0Þγ5bð0ÞjHb;p; rihHc;p0; r0jc̄ð0Þσρλγ5bð0ÞjHb;p; ri� ¼
WPpT

I3

2M2
iðpρqλ − pλqρÞ;

W0ST
ρλ ðp; qÞ ¼

X
r;r0

hHc;p0; r0jc̄ð0Þbð0ÞjHb;p; rihHc;p0; r0jc̄ð0Þσρλbð0ÞjHb;p; ri� ¼
WST

I3

2M2
iðpρqλ − pλqρÞ: ðB21Þ

Its total contribution to
PjMj2 is given by

Re

�eWI3

M2
½ϵρλδηpδqη þ iðpρqλ − pλqρÞ�L0

ρλðk; k0; hÞ
	

ðB22Þ

(v) The Oα
H and Oρλ

H interference contribute to the decay width as 2Re½Wαρλðp; q; CV;A;TÞLαρλðk; k0; hÞ�, with the
Lαρλðk; k0; hÞ lepton tensor defined in Eq. (A6) and

Wαρλðp; q; CV;A;TÞ ¼ C�
T

X
r;r0

hHc;p0; r0jCVVα − CAAαjHb;p; rihHc;p0; r0jc̄ð0Þσρλð1 − γ5Þbð0ÞjHb;p; ri�: ðB23Þ

The analysis runs in parallel to the previous one for JH½JρλH ��, identifying V and A here with S and P that appeared
previously. The only difficulty is that now there are four, instead of one, independent Lorentz structures. We use
parity and time-reversal transformations to deduce that the VT and ApT (VpT and AT) tensors are purely imaginary
(real) tensors (pseudotensors), and obviously antisymmetric under the ρ ↔ λ exchange. Here again, the VpT and AT
pseudotensors can be related to the VT and ApT tensors thanks to Eq. (B6), and we finally find

Wαρλðp; q; CV;A;TÞ ¼
pα eWI4 þ qα eWI5

2M3
½ϵρλδηpδqη þ iðpρqλ − pλqρÞ�

þ pδ
eWI6 þ qδ eWI7

2M
½ϵρλαδ þ iðgαρgλδ − gαλgρδÞ�; ðB24Þ

eWI4;I5;I6;I7ðq2; CV;A;TÞ ¼ C�
TðCVWVT

I4;I5;I6;I7ðq2Þ þ CAW
ApT
I4;I5;I6;I7ðq2ÞÞ; ðB25Þ

and the real WVT
I4;I5;I6;I7 SFs are deduced from

WVT
αρλðp; qÞ ¼

X
r;r0

hHc;p0; r0jVαjHb;p; rihHc;p0; r0jc̄ð0Þσρλbð0ÞjHb;p; ri�

¼ pαWVT
I4 þ qαWVT

I5

2M3
iðpρqλ − pλqρÞ þ

pδWVT
I6 þ qδWVT

I7

2M
iðgαρgλδ − gαλgρδÞ; ðB26Þ

while WApT
I4;I5;I6;I7 are obtained from a similar decomposition replacing Vα by Aα and ½c̄ð0Þσρλbð0Þ� by

½c̄ð0Þσρλγ5bð0Þ�. The total contribution to
PjMj2 of is given by

Re

��
pα eWI4 þ qα eWI5

M3
½ϵρλδηpδqη þ iðpρqλ − pλqρÞ� þ pδ

eWI6 þ qδ eWI7

M
½ϵρλαδ þ iðgαρgλδ − gαλgρδÞ�

�
Lαρλðk; k0; hÞ

	
:

ðB27Þ
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APPENDIX C: CM AND LAB KINEMATICS

To compute the contractions of the lepton and hadron tensors, we use

p2 ¼ M2; k2 ¼ 0; k02 ¼ m2
l; p · q ¼ MMω; s2 ¼ −m2

l; k0 · s ¼ 0;

k · k0 ¼ q · k ¼ q2 −m2
l

2
; q · k0 ¼ q2 þm2

l

2
; ðC1Þ

with Mω ¼ M −M0ω. In addition, the scalar products that depend explicitly on the charged lepton variables used in the
differential decay widths read

(i) CM

p · k ¼ M
2

�
1 −

m2
l

q2

�

Mω þM0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 1

p
cos θl

�
; k · s ¼ q2 −m2

l

2
; p · s ¼ MMω − p · k

q2 þm2
l

q2 −m2
l
: ðC2Þ

(ii) LAB

p · k ¼ MðMω − ElÞ; k · s ¼ Elðq2 þm2
lÞ − 2m2

lMω

2ðE2
l −m2

lÞ
1
2

; p · s ¼ MðE2
l −m2

lÞ
1
2: ðC3Þ

Note that both in the CM and LAB frames, ϵδημνkδqηsμpν ¼ 0, which trivially follows from sμ ¼ k00

jk⃗0j k
0μ − m2

l

jk⃗0j n
μ with

nμ ¼ ð1; 0⃗Þ, q ¼ kþ k0 and the fact that pμ
LAB and qμCM are proportional to nμ.

APPENDIX D: COEFFICIENTS OF THE CM A(ω;θl) AND LAB C(ω;El) DISTRIBUTIONS
IN TERMS OF THE eW SFs

In this Appendix we collect the expressions of theA, B, and C functions as well as theAH, BH, CH,DH, and EH functions
that together determine the expansion coefficients of the CM Ahðω; θlÞ and LAB Chðω; ElÞ distributions [Eqs. (25)–(27)].
They are combinations of the hadronic eW SFs and are given by

AðωÞ ¼ q2 −m2
l

M2

�
2 eW1 − eW2 þ

Mω

M
eW3 þ eWSP þ 4Mω

M
Re½ eWI3� þ 8

�eWT
2 −

q2

M2
eWT

3 −
2Mω

M
eWT

4

�

þml

M
Re

� eWI2 þ 4 eWI4 þ
4Mω

M
eWI5 þ 12 eWI7

�
þ m2

l

M2
ð eW4 − 16 eWT

3 Þ
	
;

BðωÞ ¼ −
2q2

M2
ð eW3 þ 4Re½ eWI3�Þ þ

4Mω

M
ð eW2 − 16 eWT

2 Þ

þ 2ml

M
Re

� eWI1 −
4Mω

M
eWI4 −

4q2

M2
eWI5 þ 12 eWI6

�
þ 2m2

l

M2
ð eW5 − 32 eWT

4 Þ;

CðωÞ ¼ −4ð eW2 − 16 eWT
2 Þ; ðD1Þ

AHðωÞ ¼ −
q2 −m2

l

2M2

�
Re

� eWI1 þ
4Mω

M
eWI4 − 4 eWI6

�
þml

M
ð eW3 þ eW5 − 4Re½ eWI3� þ 32 eWT

4 Þ −
4m2

l

M2
Re½ eWI5�

	
;

BHðωÞ ¼
Mω

M
Re

� eWI1 þ
4Mω

M
eWI4 − 4 eWI6

�
−
ml

M

�
2 eW1 − eW2 −

Mω

M
eW5 − eWSP − 8 eWT

2 þ 8q2

M2
eWT

3 −
16Mω

M
eWT

4

�

þ m2
l

M2
Re½ eWI2 − 4 eWI4 − 4 eWI7� þ

m3
l

M3
ð eW4 þ 16 eWT

3 Þ;
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CHðωÞ ¼
4q2

M2
Re½ eWI4� −

2ml

M
ð eW2 þ 16 eWT

2 Þ þ
4m2

l

M2
Re½ eWI4�;

DHðωÞ ¼ −Re
� eWI1 þ

12Mω

M
eWI4 − 4 eWI6

�
þml

M
ð eW3 − eW5 − 32 eWT

4 − 4Re½ eWI3�Þ −
4m2

l

M2
Re½ eWI5�;

EHðωÞ ¼ 8Re½ eWI4�: ðD2Þ

Using the above relations and Eqs. (25) and (27) one can obtain explicit expressions in terms of the eW SFs for the
a1;2;3ðω; hÞ and ĉ0;1;2;3 expansion coefficients. They are given by

a0ðh ¼ þ1Þ ¼ 8q2

M2

�eWSP

8
þ eWT

2 −
q2

M2
eWT

3 −
2Mω

M
eWT

4

�
−
16M2

ω

M2
eWT

2

þml

M
Re

�
Mω

M
eWI1 þ

q2

M2
eWI2 þ

4Mω

M
eWI6 þ

4q2

M2
eWI7

�
þ m2

l

M2

�
M2

ω

q2
eW2 þ

q2

M2
eW4 þ

Mω

M
eW5

�
;

a1ðh ¼ þ1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 1

p M0

M

�
−4

q2

M2
Re½ eWI3� þ

4ml

M
Re

� eWI1

4
−
Mω

M
eWI4 −

q2

M2
eWI5 þ eWI6

�
þ m2

l

M2

�
2MMω

q2
eW2 þ eW5

�	
;

a2ðh ¼ þ1Þ ¼ ðω2 − 1ÞM
02

M2

�
16 eWT

2 − 4
ml

M
Re½ eWI4� þ

m2
l

q2
eW2

�
; ðD3Þ

a0ðh ¼ −1Þ ¼ 2q2

M2
eW1 −

q2 −M2
ω

M2
eW2 þ

4ml

M
Re

�
q2 −M2

ω

M2
eWI4 þ

2Mω

M
eWI6 þ

2q2

M2
eWI7

�

−
16m2

l

M2

�
M2

ω

q2
eWT

2 þ q2

M2
eWT

3 þ 2MMω

M2
eWT

4

�
;

a1ðh ¼ −1Þ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 1

p M0

M

�
q2

M2
eW3 −

8ml

M
Re½ eWI6� þ

32m2
l

M2

�
MMω

q2
eWT

2 þ eWT
4

�	
;

a2ðh ¼ −1Þ ¼ −ðω2 − 1ÞM
02

M2

�eW2 −
4ml

M
Re½ eWI4� þ

16m2
l

q2
eWT

2

�
; ðD4Þ

ĉ0ðωÞ ¼
4q2

M2

ml

M
Re

�
−

eWI1

4
þMω

M
eWI4 þ eWI6

�
−
m2

l

M2

�
q2

M2

�eW3 þ eW5 − 4Re½ eWI3� þ
16Mω

M
eWT

3 þ 32 eWT
4

�

þ 2Mω

M
ð2 eW1 þ eW2 − eWSP þ 24 eWT

2 Þ −
8M2

ω

M2

�eW3

4
− Re½ eWI3� − 4 eWT

4

�	

þ 2m3
l

M3
Re

� eWI1

2
þMω

M
ð eWI2 þ 2 eWI4 − 4 eWI7Þ þ

2q2 − 4M2
ω

M2
eWI5 − 2 eWI6

�

þ m4
l

M4

�eW3 þ
2Mω

M
ð eW4 þ 16 eWT

3 Þ þ eW5 − 4Re½ eWI3� þ 32 eWT
4

�
−
4m5

l

M5
Re½ eWI5�;

ĉ1ðωÞ ¼
8q2

M2

�
−

eWSP

4
þMω

M
ðRe½ eWI3� þ 4 eWT

4 Þ − 2 eWT
2 þ 2q2

M2
eWT

3

�

−
8ml

M
Re½ q

2

M2

�eWI2

4
þ eWI4 −

Mω

M
eWI5 þ eWI7

�
þ 4Mω

M
eWI6

�

þ m2
l

M2

�
4 eW1 þ 2 eW2 þ 64 eWT

2 −
16Mω

M

�eW3

8
− 8 eWT

4 − Re½ eWI3�
�
−
2q2

M2
eW4

	

þ 16m3
l

M3
Re

�
Mω

M
eWI5 þ eWI7

�
−
32m4

l

M4
eWT

3 ;
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ĉ2ðωÞ ¼ −128
�

q2

8M2
Re½ eWI3� −

Mω

M
eWT

2

�
−
16ml

M
Re

�
q2

M2
eWI5 − 2 eWI6

�
−
128m2

l

M2
eWT

4 ;

ĉ3ðωÞ ¼ −128 eWT
2 : ðD5Þ

APPENDIX E: HADRON TENSOR SFs AND FORM FACTORS FOR THE Λ0
b → Λ +

c l− ν̄l DECAY

The form factors used in Eq. (28) are related to those computed in Refs. [23,24] by

F1 ¼ f⊥; G1 ¼ g⊥; FS ¼
δMΛ

mb −mc
f0; FP ¼ ΔMΛ

mb þmc
g0; T4 ¼ ehþ;

F2 ¼
MΛb

δMΛ

q2
f0 þ

MΛb
ΔMΛ

sþ
½1 − δ�fþ − δsþf⊥;

F3 ¼ −
MΛc

δMΛ

q2
f0 þ

MΛc
ΔMΛ

sþ
½1þ δ�fþ − δsþf⊥;

G2 ¼ −
MΛb

ΔMΛ

q2
g0 −

MΛb
δMΛ

s−
½1 − δ�gþ − δs−g⊥;

G3 ¼
MΛc

ΔMΛ

q2
g0 −

MΛc
δMΛ

s−
½1þ δ�gþ þ δs−g⊥;

T1 ¼ −2M2

�
hþ
sþ

−
Δ2

MΛ

q2sþ
h⊥ −

ehþ
s−

þ δ2MΛ

q2s−
eh⊥

�
;

T2 ¼ M
�
ΔMΛ

q2
h⊥ þ 2MΛc

s−
ehþ þ δMΛ

ð1 − δÞ
s−

eh⊥
�
;

T3 ¼ M

�
−
ΔMΛ

q2
h⊥ −

2MΛb

s−
ehþ þ δMΛ

ð1þ δÞ
s−

eh⊥
�
; ðE1Þ

with δ ¼ ðM2
Λb

−M2
Λc
Þ=q2, s� ¼ ðMΛb

�MΛc
Þ2 − q2, δMΛ

¼ MΛb
−MΛc

, ΔMΛ
¼ MΛb

þMΛc
and δs� ¼ 2MΛb

MΛc
=s�.

Note that FS and FP have not been computed in LQCD, and both form factors are obtained from the vector f0 and axial g0
form factors using the equations of motion. In the numerical calculations, we use mb ¼ 4.18� 0.04 GeV and
mc ¼ 1.27� 0.03 GeV as in Ref. [24]. For completeness, these two latter form factors are related to those introduced
in Eq. (28) by

f0 ¼ F1 þ
F2ðMΛb

− ωMΛc
Þ þ F3ðωMΛb

−MΛc
Þ

MΛb
−MΛc

g0 ¼ G1 −
G2ðMΛb

− ωMΛc
Þ þG3ðωMΛb

−MΛc
Þ

MΛb
þMΛc

ðE2Þ

and in the heavy quark limit f0 ¼ g0 ¼ ζ þOðαs;ΛQCD=mc;bÞ.
On the other hand, from Eqs. (30) and the results of Appendix B, we find for the eW SFs related to the SM currents

eW1 ¼
1

2
½ðω − 1ÞjCV j2F2

1 þ ðωþ 1ÞjCAj2G2
1�;

eW2 ¼
jCV j2
2

�
2F1F2 þ ðωþ 1ÞF2

2 þ
2MΛb

MΛc

½ðF1 þ F2ÞðF1 þ F3Þ þ ωF2F3� þ
M2

Λb

M2
Λc

½2F1F3 þ ðωþ 1ÞF2
3�
	

þ jCAj2
2

�
2G1G2 þ ðω − 1ÞG2

2 þ
2MΛb

MΛc

½ωG2G3 þ ðG1 −G2ÞðG1 þ G3Þ� þ
M2

Λb

M2
Λc

½ðω − 1ÞG2
3 − 2G1G3�

	
;

eW3 ¼
2MΛb

MΛc

Re½CVC�
A�F1G1;

eW4 ¼
M2

Λb

2M2
Λc

½jCV j2ð2F1F3 þ ðωþ 1ÞF2
3Þ − jCAj2ð2G1G3 þ ð1 − ωÞG2

3Þ�;
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eW5 ¼ −
MΛb

MΛc

jCV j2
�
ðF1 þ F2ÞðF1 þ F3Þ þ ωF2F3 þ

MΛb

MΛc

½2F1F3 þ ðωþ 1ÞF2
3�
�

−
MΛb

MΛc

jCAj2
�
ðG1 −G2ÞðG1 þ G3Þ þ ωG2G3 −

MΛb

MΛc

½2G1G3 þ ð1 − ωÞG2
3�
�

ðE3Þ

The rest of NP eW SFs for this baryon decay are

eWSP ¼ 1

2
½ðωþ 1ÞjCSj2F2

S þ ðω − 1ÞjCPj2F2
P�;

eWI1 ¼ CVC�
S

�
FSF1

�
1þMΛb

MΛc

�
þ ð1þ ωÞFS

�
F2 þ

MΛb

MΛc

F3

��

þ CAC�
P

�
FPG1

�
1 −

MΛb

MΛc

�
− ð1 − ωÞFP

�
G2 þ

MΛb

MΛc

G3

��
;

eWI2 ¼
MΛb

MΛc

�
CAC�

PFP½G1 þ ð1 − ωÞG3� − CVC�
SFS½F1 þ ð1þ ωÞF3�

	
; ðE4Þ

which were already obtained in Ref. [34], but for real Wilson coefficients, and

eWI3 ¼ C�
TCSFS

�
T1ð1þ ωÞ þ T3 −

MΛb

MΛc

ðT2 þ T4Þ
�
− C�

TCP
MΛb

MΛc

FPT4;

eWI4 ¼ C�
TCV

�
F1T1

�
1þMΛb

MΛc

�
þMΛb

MΛc

F1ðT3 − T2Þ −
�
F2 þ F3

MΛb

MΛc

��
MΛb

MΛc

ðT2 þ T4Þ − T1ð1þ ωÞ − T3

��

− C�
TCA

MΛb

MΛc

�
G1ðT2 þ T3Þ þ T4

�
G2 þ

MΛb

MΛc

G3

��
;

eWI5 ¼ −C�
TCV

MΛb

MΛc

�
F1ðT1 þ T3Þ þ F3

�
T1ð1þ ωÞ þ T3 −

MΛb

MΛc

ðT2 þ T4Þ
��

þ C�
TCA

MΛb

MΛc

�
G1T3 þ

MΛb

MΛc

G3T4

�
;

eWI6 ¼ −C�
TCVF1

�
ð1 − ωÞðT2 þ T3Þ þ

�
1 −

MΛb

MΛc

�
T4

�
− C�

TCAG1

�
MΛb

MΛc

ðT2 þ T4Þ þ T4 þ ωðT3 − T2Þ −
MΛc

MΛb

T3

�
;

eWI7 ¼ C�
TCVF1

�
T3ð1 − ωÞ −MΛb

MΛc

T4

�
þ C�

TCAG1

�
MΛb

MΛc

ðT2 þ T4Þ þ ωT3

�
;

eWT
2 ¼ jCT j2

2

�
M2

Λc

M2
Λb

½ð1þ ωÞT2
1 þ 2T1T3� −

2MΛc

MΛb

½ωðωþ 1ÞT2
1 þ T1ðT2 þ 2ωT3 þ T4Þ þ T2T3�

þ ð1þ ωÞT2
1 − 2ωðT2

2 þ T2
3Þ þ 2T1ð2ωðT2 þ T4Þ þ T3Þ þ 2ðT2 þ T3ÞðT2 þ T3 þ 2T4Þ;

−
2MΛb

MΛc

½T1ðT2 þ T4Þ þ T2ðT3 þ 2T4Þ þ 2T4ðT3 þ T4Þ�
	

eWT
3 ¼ jCT j2

2

�
ð1þ ωÞT2

1 þ 2T1T3 þ 2ð1 − ωÞT2
3 −

2MΛb

MΛc

½T1ðT2 þ T4Þ þ T3ðT2 þ 2T4Þ�
	
;

eWT
4 ¼ jCT j2

2

�
MΛc

MΛb

½ωð1þ ωÞT2
1 þ 2ωT1T3� − T2

1ð1þ ωÞ − 2ωðT2 þ T4ÞT1 − 2T3½T1 þ T2 þ ð1 − ωÞT3 þ T4�

þ 2MΛb

MΛc

½T4ðT1 þ T2 þ 2T3Þ þ T2ðT1 þ T3Þ þ T2
4�
	
: ðE5Þ

In addition, as discussed in Appendix B, eWT
5 ¼ 0 and, if necessary, eWT

1 can be obtained from eWT
2;3;4 using Eq. (B13).
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