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Hadron and lepton tensors in semileptonic decays including new physics
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We extend our general framework for semileptonic decay, originally introduced in N. Penalva et al.
[Phys. Rev. D 100, 113007 (2019)], with the addition of new physics (NP) tensor terms. In this way, all
the NP effective Hamiltonians that are considered in lepton flavor universality violation (LFUV) studies
have now been included. Those are left and right vector and scalar NP Hamiltonians and the NP tensor one.
Besides, we now also give general expressions that allow for complex Wilson coefficients. The scheme
developed is totally general and it can be applied to any charged current semileptonic decay, involving any
quark flavors or initial and final hadron states. We show that all the hadronic input, including NP effects,
can be parametrized in terms of 16 Lorentz scalar structure functions, constructed out of the NP complex
Wilson coefficients and the genuine hadronic responses, with the latter determined by the matrix elements
of the involved hadron operators. In the second part of this work, we use this formalism to obtain the
complete NP effects in the A, — A .70, semileptonic decay, where LFUYV, if finally confirmed, is also
expected to be seen. We stress the relevance of the center of mass (CM) d°I'/(dwd cos ) and laboratory
(LAB) d*T'/(dwdE,) differential decay widths, with @ the product of the hadron four-velocities, 6, the
angle made by the three-momenta of the charged lepton and the final hadron in the W~ CM frame and E,
the charged lepton energy in the decaying hadron rest frame. While models with very different strengths
in the NP terms give the same differential dI'/dw and total decay widths for this decay, they predict
very different numerical results for some of the cosf, and E, coefficient-functions that determine
the above two distributions. Thus, the combined analysis of the CM d’T"/(dwdcos@,) and LAB
d’T’/(dwdE,) differential decay widths will help clarifying what kind of NP is a better candidate in order to

explain LFUV.

DOI: 10.1103/PhysRevD.101.113004

I. INTRODUCTION

Present discrepancies, between experimental data and
the Standard Model (SM) results, seen in semileptonic B—
meson decays, point at the possible existence of new
physics (NP). Since there is no evidence of similar
discrepancies in transitions involving the two first quark
and lepton families, it is generally assumed that the possible
NP contributions only affect the third quark and lepton
generations, being thus responsible for lepton flavor
universality violation (LFUV). These violations have
been seen in the values of the I'(B— D) and I'(B — D*)
semileptonic decays widths when compared to SM
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predictions (see for instance Ref. [1]). These discrepancies
[(B—D%1D,)
[(B»D"¢o,)
¢ = e, u, for which part of the hadronic uncertainties
should cancel. While very recent preliminary measure-
ments by the Belle Collaboration [2,3] reduce the tension
with the SM to the level of 0.80, a combined analysis of
BABAR [4,5], Belle [6-8] and LHCb [9,10] data and SM
predictions [9,11-13] by the Heavy Flavour Averaging
Group (HFLAV) [14] shows a tension with the SM at the
level of 4.4¢. This tension reduces to 3.1¢ if the latest Belle
results are taken into account [15]. From the theoretical
point of view, phenomenological approaches follow an
effective field theory model-independent analysis that
includes different b — c£v, charged current (CC) effective
operators. They are assumed to be generated by physics
beyond the SM, that would enter at a much higher energy
scale, and their strengths are given by unknown Wilson
coefficients that should be fitted to data. Those analyses

are presented in form of ratios R = with

Published by the American Physical Society


https://orcid.org/0000-0001-5000-4171
https://orcid.org/0000-0003-3468-1513
https://orcid.org/0000-0002-2518-4606
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.113004&domain=pdf&date_stamp=2020-06-29
https://doi.org/10.1103/PhysRevD.100.113007
https://doi.org/10.1103/PhysRevD.101.113004
https://doi.org/10.1103/PhysRevD.101.113004
https://doi.org/10.1103/PhysRevD.101.113004
https://doi.org/10.1103/PhysRevD.101.113004
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

PENALVA, HERNANDEZ, and NIEVES

PHYS. REV. D 101, 113004 (2020)

include the pioneering work of Ref. [16] or the more
recent one in Ref. [17] from which we shall take the values
for the Wilson coefficients that we are going to use in the
numerical part of this work.

The anomaly seen in B decays could be corroborated in
other processes governed by the same b — c¢ transition like
the A, - A.fD, decays. The LHCb Collaboration [18]
has very recently measured the shape of the dI'(A, —
Ap~0,)/dw decay width, and it is expected [19] that the

T(Ay—A 10;)
C(Apy—=Acur,)

obtained for R, and Rp-. Heavy quark spin symmetry
(HQSS) strongly constraints the form factors relevant for
this transition, with no subleading Isgur-Wise (IW) func-
tion occurring at order O(Agcp/myp,.), and only two
subleading ones entering at next order [20-22]. The R,
ratio has been accurately predicted within the SM in
Ref. [22] with the use of leading and subleading HQSS
IW functions that were simultaneously fitted to LQCD
results and LHCb data. Precise results for the vector and
axial form factors were obtained in Ref. [23] using Lattice
QCD (LQCD) with 2 4 1 flavors of dynamical domain-
wall fermions. The additional form factors needed to
include NP tensor terms have been obtained within the
same LQCD scheme in Ref. [24]. The also needed scalar
and pseudoscalar form factors can be directly related to
vector and axial ones (see Eqgs. (2.12) and (2.13) of
Ref. [24]). With a lot of theoretical effort involved
[17,21,24-34] in checking the effects of NP scenarios
and with expectations of experimental data in the near
future, this reaction could also play an important role in the
study of b — ¢ LFUV studies.

In this work we introduce a general framework to study
any baryon/meson semileptonic decay for unpolarized
hadrons including NP contributions, although we will refer
explicitly only to those decays induced by a b — ¢
transition. We consider a general scheme, based in the
so-called Standard Model effective field theory (SMEFT)
scheme [35,36], to analyze any decay driven by a
qg — q'tv, quark level CC process involving massless
left-handed neutrinos. We allow for CP-violating scalar,
pseudo-scalar and tensor NP terms, as well as corrections to
the SM vector and axial contributions. All the hadronic
input, including NP effects, can be parametrized in terms

of 16 Lorentz scalar structure functions W's (SFs), con-
structed out of NP complex Wilson coefficients (C's) and
the genuine hadronic responses (W’s), which are deter-
mined by the matrix elements of the involved hadron
operators. The W SFs' depend on the masses of the initial
and final particles and on the invariant mass (g®) of the
outgoing v, pair, and they can be expressed in terms of the
form factors used to parametrize the transition matrix
elements.

precision in the Ry = ratio might reach that

'Symbolically, W = CW.

In the case of the SM they reduce to just five real W SFs
and, provided that massless (e or y) and z—mode decays
are simultaneously analyzed, all five W SFs can be deter-
mined either from the unpolarized d°I"/ (dwd cos 6,) decay
width, where @ is the product of the two hadron four
velocities and 6, the angle made by the final hadron and
charged lepton three-momenta in the center of mass of the
two final leptons (CM), or from the unpolarized
d*T'/(dwdE,) decay width, where E is the charged lepton
energy measured in the laboratory system (LAB).

The unpolarized CM d’T'/(dwdcos@,) and LAB
d’T'/(dwdE,) decay widths get contributions from both
positive and negative charged lepton helicities, contribu-
tions that have also been explicitly evaluated in this work.
Assuming NP, these new observables are sensitive to new

combinations of the W SFs, and thus serve to further restrict
the relevance of operators beyond the SM. There are a total

of five new independent linear combination of the W SFs
needed to describe the case with a polarized final charged
lepton. To determine them, the LAB and CM charged
lepton helicity distributions have to be used simultaneously,
since in this case they provide complementary information.

As mentioned, we have considered five NP Wilson
coefficients. In general they are complex, although one
of them can always be taken to be real. Therefore, nine free
parameters should be determined from data. Even assuming
that the form factors are known, and therefore the genuinely

hadronic part (W) of the W SFs, all NP parameters are
difficult to be determined from a unique type of decay,
since the experimental measurement of the required polar-
ized decay is an extremely difficult task. It is therefore more
convenient to analyze data from various types of semi-
leptonic decays simultaneously (e.g., B — D, B — D*,
A, = A.,B, = n..,B, — J/¥...), considering both the
e/u and 7 modes. The scheme presented in this work
constitutes a powerful tool to achieve this objective.

Besides, within the present framework, it is not difficult to
consider NP effects induced by light right-handed neutrinos,
without including new SFs, since we give general expres-
sions for all the hadron tensors. The recent analysis of
Ref. [37], using the b — czv, anomalies data in the meson
sector, does not rule out NP operators which can arise due to
the presence of right-handed neutrinos in the theory, and
therefore points to one natural continuation of this work.

Moreover, we stress that all expressions are general and
they can be applied to any charged current semileptonic
decay, involving any quark flavors or initial and final
hadron states. Thus for instance, the scheme presented here
can also be used to search for NP signatures in nuclear beta
decays, from which |V,,| is also determined.

This work is an update of the formalism in Ref. [34],
where NP tensor terms were not considered and the CP-
conserving limit was adopted, assuming that all NP Wilson
coefficients were real. It is organized as follows: In Sec. II
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we give all the general formulae, including the expres-
sions for the effective NP hamiltonians and the CM
d*T/(dwd cos0,) and LAB d°T'/(dwdE,) differential
decay widths both for unpolarized as well as polarized final
charged leptons. Next, in Sec. II B 1, and to illustrate the
general procedure, we explain in detail how Lorentz, parity
and time-reversal transformations constraint the number of
SFs needed to describe the hadronic tensor originating from
vector and axial current interactions terms. Details for the
leptonic tensors and the rest of the hadronic tensors are
compiled, respectively, in Appendixes A and B. In Sec. [Il we
introduce the form factors needed for the A, — A 7D, decay
and apply to this transition the general formalism derived in
Sec. II. We show numerical results using the LQCD form
factors of Refs. [23,24] and the best-fit Wilson coefficients
obtained in [17]. Conclusions are presented in Sec. IV. Other
relevant information is compiled in Appendixes C (CM and
LAB kinematics), D (expressions for the cosf, and E,
coefficient-functions appearing in the CM and LAB distri-

butions in terms of the W SFs) and E (form factors for the

A, — A0, transition and general expressions of the W SFs
for this decay in terms of the form factors).

II. FORMALISM

A. Effective Hamiltonian

In the context of the SMEFT, we consider the effective
Hamiltonian [17]

AGp|V |
H = — A [(1+Cy,)Oy, +Cy, Oy, + Cs, O,
+ Cs, 05, + CrO7] + He., (1)
with fermionic operators given by (g = lq;“ W)
Oy, , = @by r)(Crywer).  Os,, = (€brr)(Crver).
Or = (¢6"by)(€r0,,0 1) (2)

The Wilson coefficients C;, complex in general, para-
metrize possible deviations from the SM, i.e., C?™M =0,
and could be in general, lepton and flavor dependent,
though in Ref. [17] they are assumed to be present only in
the third generation of leptons.

B. Decay rate including NP terms

The semileptonic differential decay rate of a bottomed
hadron (H ) of mass M into a charmed one (H ) of mass M’
and £v,, measured in its rest frame, and after averaging
(summing) over the initial (final) hadron polarizations,
reads” [38],

*We emphasize once again that all equations are valid for any
q = ¢q'¢v, CC decay, although we only give explicit expressions
for b — c reactions.

dr G%|vd,|2M/
d(l)dS13

(3)

where Gy = 1.166 x 107> GeV~2 is the Fermi coupling
constant and M (k, k', p, ¢, spins) is the transition matrix
element, with p, k¥, k=¢g—k and p'=p—gq, the
decaying H, particle, outgoing charged lepton, neutrino
and final hadron four-momenta, respectively. In addition,
® 1is the product of the two hadron four velocities

= (p-p')/(MM'), which is related to ¢*> = (k + k')?

via ¢>=M?>+M"?-2MMw, and s;3=(p—k)>.
Including NP contributions, we have
M = J4JE + Tt + T3, (4)

with the polarized lepton currents given by (u and v
dimensionful Dirac spinors)

1
(lﬂ)(k K'sh) = 7 iy (k') P (gp) (1 = 75)v,,(k),
1+ hysy
P, =
h 2 9
F = 19 Fa = Y(n r‘a/f = Gaﬁ’ (5)

where 4 = 41 stands for the two charged lepton helicities,
and 3% = s%/m, = (|K'|,K°k)/m, with ¥ =K /|| and
m, the charged lepton mass. The § polarization vector
satisfies the constraints 52 = —1, 5- k' = 0.

The dimensionless hadron currents read (c(x) and b(x)
are Dirac fields in coordinate space),

I (p.p) = (H.: pl.[e(0)05 b(0)|Hys p. 1)
Oy = Cg = Cpys,
0% =y*(Cy = Cays).
0y = Cro™(1-7ys). (6)

with Cy 4 = (1 +Cy, £Cy,) and Cgp = (Cs, = Cs,).
The hadron states are normalized as (p/,7|p,r) =
(27)3(E/M)& (p — P')5,,, with r, ¥ spin indexes.

The lepton tensors needed to obtain |M|? are readily
evaluated and they are collected in Appendix A.

1. Hadron matrix elements

After summing over polarizations, the hadron contribu-
tions can be expressed in terms of Lorentz scalar SFs,
which depend on g2, the hadron masses and the NP Wilson
coefficients. To limit their number, it is useful to apply
relations deduced from Lorentz, parity (P) and time-
reversal (7) transformations of the hadron currents
[Eq. (6)] and states [39]. Finally, we have ended up with
a total of 16 independent SFs.

113004-3
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We illustrate the procedure by discussing in detail here the diagonal J¢, [J” |* case. The rest of the hadron tensors are

compiled in Appendix B, where the technically involved tensor-tensor Jj, [Jp |* term is also discussed in detail.
The spin-averaged squared of the O% operator matrix element gives rise to a (pseudo-)tensor of two indices

W (p,q,Cy,Ca) =Y (He; p', |(CyV = CAA%)|Hys p, r)(Hes p', [ (Cy VP — CAAP) [ Hys p, 1), (7)
rr

with (CyV* — C4A%) = ¢(0)y*(Cy — C4y5)b(0). The sum is done over initial (averaged) and final hadron helicities,

and the above tensor should be contracted with the lepton one L,,(k, k'; i) [Eq. (A5)] to get the contribution to SIMP.
From the above definition, it trivially follows W* = W?** and therefore splitting W%

1 1 1 1
W — E [Wa/) + W/)a] + E [Wa/) _ W/)a] = W‘éﬂ) + W((lg) — 5 [Wa/) + W(l/)*} + E [Wa/) _ Wap*} (8)

we show that the symmetric and antisymmetric parts of the tensor are real and purely imaginary, respectively. On the other
hand, using the time-reversal transformation, we have (p* = (p°, —p))

W (p,q,Cy,Ca) = Y (He;p', P |T T (CyV* = CLAT ' T|H,; p, r)(Hes p', P\ T T (Cy VP = CoA?)T T |Hy; p, r)*

— Z(Hc;ﬁ/, F|CyVy = CiAg Hys oy (Hos P 1 |CyV, — CiA, | Hy B r)
= Wi;,,(ﬁ q.Cy. C)). ©)
Introducing the self-explanatory decomposition,

W% (p,q,Cy,Ca) = [CyPWi(p. q) + [CAPWia (P, @) = CyCiWYi(p. q) = CACy WL (P, q), (10)

and using Eq. (9) and the transformation properties under parity, we find

apx ~ P W Q
W (P, @) EWyva (B, DEWT (P @), (P D) EW g (5. DEWH (. q), (11)
apx P ap a * P a
W (P, ) =W yaay (5, D)Z = WL (. q), (P ) EW avey (5, )2 = W (p. q). (12)

The above results, along with® Eq (8), allows us to conclude that W4, and W, (W7, and W%,,) are real symmetric tensors
(imaginary antisymmetric pseudotensors proportional to the Levi-Civita symbol), and W%, = W’,. The pseudocharacter of
the imaginary tensor is deduced from the behavior under a parity transformation. Therefore, the most general expression for
W*(p,q,Cy,C,) reads

W (p.q.Cy,Ca) = [CyPWYL(p. q) + [CalPWii(p. q) — 2Re(CyCWY (. q)

= P~ Wy 405 | P+ e
= —g*W, + TW ,+ ze“”5”p56]q e + M2 W4 + T 55
Wi2a5(g% Cyr Ca) = [CoPWYY L 5() + [CAPWH, (7). W3(q?. Cy. Ca) = Re(CyCy)WYA(g?), (13)

where all W,» SFs are real, and we have used an obvious notation in which W}/g 455 W{‘QA 5, and Wg/ 4 should be obtained

from the Wi/, WY, and —2W{’, (pseudo-)tensors. This result was previously obtained in Ref. [34] for real Wilson
coefficients.

*Note that by construction W%, ,, = Wi ,, and W, = Wi
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2. CM and LAB differential decay widths for an
unpolarized final charged lepton

We consider first the case of an unpolarized final charged
lepton. From the general structure of the lepton and hadron
tensors considered in this work, which are at most quadratic
in k, k', and in p, respectively, and using the information on
the scalar products compiled in Appendix C, one can write
the general expression

2| MP?
MZ

(p-k)?
M*

(14)

Alw) + Blo) 2 o) P

unpolarized

that is suited to obtain the CM d’T"/ (dwd cos 6,) and LAB
d*T'/(dwdE,) distributions. As already pointed out, 6, is
the angle made by the three-momenta of the charged lepton
and the final hadron in the W~ CM system and E, the
charged lepton energy in the decaying hadron rest frame.
The A, B and C functions are linear combinations of the W
SFs, introduced in Sec. II B 1 and Appendix B, and they
depend on w as well as on the lepton and hadron masses.
Their expressions in terms of the hadronic W SFs are given
in Appendix D. As shown in Sec. I[I B 1 and Appendix B,
the W SFs depend on the, generally complex, Wilson
coefficients and the real SFs (W’s) that parameterize the
hadron tensors (see an example in Eq. (13)). From Egs. (3)
and (14), taking into account that

)\/a) — ldwd cos 0,

= 2MdwdE,, (15)

dwds; = MM’<

and using the relations in Appendix C one gets

2

d21—* 2 2M/3M2 2
:GF|Vcb| 1/a)2_]<1 _m_zf) A(w’gf)’
q

dwdcosb, 1673

(16)
with
S A2
Alw.0,) = 22=ME
M 2(1 - ’Z—f) unpolarized
= ayg(®) + a;(w) cos O, + ay(w)cos?0,,  (17)
2 w (q )Mg)
ao(w) = p _mfA(w)JrzM () + WC( ),
M (B(o)  (¢° —mj)M,
_ S %
w)=Vwo 1M< > + 2PM Clw) |,
n 2 _ 2
ax(@) = (@ = 1) T ), (18)

M? 4612

and where M, = M — M’'w. For the LAB differential decay
with we obtain

T GH|V "M M?

= E 1
dwdE, s @) (19)
with
2> M
e 25
unpolarized
E E>
= co(@) + @)+ er(@) 5. (@0)
M, M,
o) = Aw) + 2 B0) + Mo c(w),
2M{U
/@) = -Blo) - Mecw).  erw)=C@). (@)
The variable o varies from 1 t0 @, = (M? + M —m2)/
(2MM') and cos6@, between —1 and 1, while

E, € [E;,E]], where

(M = M'o)(¢* + m2) £ MVa? — (¢ = m2)

Ef =
4 2q2

(22)

The first result of this work is that the inclusion of NP
contributions does not induce further terms in the cos @,
and E, expansions of A(w,6,) and C(w, E,) with respect
to a pure SM calculation. This result was already obtained
in Ref. [34] although, there, the effects of the tensor O NP
term and of complex Wilson coefficients were neglected.
From Eqgs. (18) and (21), which derive directly from the
general expression in Eq. (14), one now clearly understands

that the universal function %2% = (@ -1)/4,

that we discussed in Ref. [34], has in fact a purely
kinematical origin and it should be obtained in any physics
scenario in which the lepton tensors are at most quadratic in
the lepton momenta. We stress here again that, although the
effective Hamiltonian in Eq. (1) refers to b — c transitions,
all expressions are general and apply independently of the
quark flavors involved in the NP four-fermion operators.

Focusing on the LAB distribution, we see that c,(w)
determines C(w), and the latter together with ¢;(w) fixes
the function B(w). Finally, A(w) is obtained from
co(w), B(w) and C(w). The discussion is totally similar
for the CM angular differential decay width. Indeed, the
unpolarized d°T"/(dwd cos 6,) and d°T'/(dwdE,) distribu-
tions turn out to be equivalent in the sense that both of them
provide the same information on the Hamiltonian which
induces the semileptonic decay: three different linear

combinations of the W SFs. Additional information can
be obtained by considering the dependence on m, of the

113004-5
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unpolarized decay distributions and using simultaneously  from unpolarized y, e and 7 data alone. In our previous
data for the 7 and £ = e or u (massless in good approxi-  work in Ref. [34], we wrongly concluded that this was not
mation) decay modes. Indeed, up to a total of five linear ~ possible for the latter distribution.

combinations of SFs can be determined, since C(w) does

not depend on m,. For instance in the SM, the massless 3. CM and LAB differential decay widths

decay fixes V~V1‘2’3, while V~V4 and V~V5 can be obtained from for a polarized final charged lepton
the tau mode A(w) and B(w) functions, respectively. Thus,
for g> > m2, all SFs can be determined from unpolarized
distributions when NP is not present. This implies that for a
final 7 lepton the SM CM d°T'/(dwd cosd,) and LAB
d’T'/(dwdE,) polarized distributions can be determined

For a polarized final charged lepton, in reference
systems, like the CM and the LAB ones considered in
this work, for which eg,wk‘sq”s” p* =0, and for the con-
tributions we have, one can generally write

EME o)+ 5000 2 ) 247
+h[(]f;,;;) <AH(w)+CH(w> (];'45 )) +(]§ms) (BH( ) + Dy (o) (';'4 P) | (o) (’%’) )] (23)

where five new independent functions Ay, By, Cy, Dy, and Ey are now needed. They can be written in terms of the W SFs
and the corresponding expressions are given in Appendix D. Note that Eq. (23) does not diverge in the m, — O limit.
Since this 1/m, dependence originates from the P, projector present in the lepton tensor, the easiest way to find the
m, — 0 leading behavior is by looking at the general lepton tensor expression in Eq. (A1) and realizing that the factor
P,(¥ +my) = (¥ + m,)P, reduces to (}'(1 — hys) + O(m,)) in that limit. This result, together with Eq. (A1), also tell us
that for a massless charged lepton, the 2 = +1 lepton tensors vanish, as expected from conservation of chirality, except for
those corresponding to the diagonal and interference Og, , and O NP operators. On the other hand, for 2 = —1, and in the
massless limit, only the lepton tensor originating from the diagonal Oy, , terms are nonzero.
For this polarized case one finds that

25 IMP

Ay(w,cos6,) = —
M3(1 —q—f)

= ay(w, h) + a,(w, h) cos 0, + a,(w, h) cos® b, (24)

where now

1 M M M? M M?
ao(a), h) = 5 <a0(a)) + h{— |:ﬁw./4[-] + @ CH + q <BH + (UDH + @ €H>:|

mg 2M? 2M 4M?
o o ) 52
a)(w, h) = % (al(a)) +h% w? — 1{% {mé—'_z Ay —|—2Z/21 <DH+%5H>]

1 M"”? M M? m>
az(u),h) —§<a2(w)+hMZ (wz—l){m <%5H_2CH> _2M <5H+ q2 CH) 4MKZEH}> (25)

For the LAB distribution, the decomposition into 4 = 41 contributions is more involved and we find*

*Note that the definition of the coefficients o1 given in Ref. [34] differ from that adopted here by a factor m%/M>.
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M Clw.E;) hM

Ch(w7 Ef) = M2 - 2 2 Ps

E . E
(C()‘i‘[Co‘f'Cl]A;“r[Cl‘i‘Cﬂﬁi"‘

2

oralig) o)

with C(w, E,) the corresponding unpolarized function introduced in Eq. (20), p, = (E2 — m?)% the charged lepton three-

momentum in the LAB system, and

. 2m M, Pt
o(w) = Mf <~AH —= (By +Cy) +
. M ¢ M, M2
¢1(w) = —co— o p—yel <BH—|——DH—|-

M [ ¢
R _ M D
& (o) c + m [Mz ( u +

M

From the discussion above, we know that the coefficients
of the M /m, terms in Egs. (25) and (27) should vanish at
least as O(m,) in the m, — 0 limit, guaranteeing that the
differential decay widths are finite in that limit.

Unlike the unpolarized case, where .4, B, and C could
be determined either from the CM or LAB distributions,
both LAB and CM helicity distributions are now needed
simultaneously to obtain all five Ay, By, Cy, Dy and Ey
additional functions. This is so since in this case only four
of them can be determined from the £, dependence of the
polarized d’T'/(dwdE,) distribution, while the use of the
cos@, dependence of the polarized d’T'/(dwd cosf,)
distribution only gives access to three of them.

In this polarized case, even assuming that the NP terms
affect only to the third lepton family, the strategy to obtain
polarized information for z decays from nonpolarized
data is spoiled by the presence of the O NP operators.
This is due to the diagonal O O and the O%O04"
interference terms. We can, for example, better understand
this by looking at Eqgs. (D3) and (D4), where we give
the coefficients aq (e, h) directly in terms of the W
SFs. There, we observe that both ag;,(h = +1) and
ap12(h = —1) have contributions proportional to mg.
Therefore the angular coefficients for 7 = —1 cannot be
measured in the charged lepton massless decays, since such
reactions do not provide information about the V~V£3,4 and

V~V14,16,17 contributions to ag;,(h = —1). This remains true
even if NP existed in the first and second generations.
Therefore, the h = 41 and & = —1 parts cannot be disen-
tangled from the measurement of the unpolarized d°T"/
(dwd cos 0y, .) distributions alone, although nonpolar-
ized d’I'/(dwd cos0,_,,) data can be used.

S Du

ng

M3

M M "

2M 4M
“’SH) -2Ay —M("CH} +% (DH + “’SH)

. M 7’ mgy
c3(a)) = —Cy +m7 <2CH —W5H> —7(‘:].].

(27)

We would also note that the Oy, , and O NP operators

lead to nonvanishing contributions (WSP, V~V:£3A and V~V,3)
for positive helicity in the massless charge lepton limit.

The discussion is similar for the LAB d’T'/(dwdE,)
differential decay width.

III. SEMILEPTONIC A) — A} #-9, DECAY

We apply here the general formalism derived in the
previous sections to the study of the semileptonic A, — A,
decay, paying attention to the NP corrections to the SM
results. We update the theoretical framework and the
numerical results presented previously in Ref. [34], where
NP tensor terms were not considered and the Wilson
coefficients were taken to be real. We have used the
LQCD form factors derived in Refs. [23,24] and the
best-fit Wilson coefficients determined in [17]. We antici-
pate that this new comprehensive analysis confirms most of
the findings of Ref. [34], and shows that the double
differential LAB d°T'/(dwdE,) or CM d’T"/(dwd cos 6,)
distributions of this decay can be used to distinguish
between different NP fits to b — czv, anomalies in the
meson sector, that otherwise give the same total and
differential dI"/dw widths.

A. Form factors and SFs

The relevant hadronic matrix elements can be para-
metrized in terms of one scalar (Fg), one pseudoscalar
(Fp), three vector (F;), three axial (G;), and four tensor (7';)
form factors, which are real functions of @ and that
are greatly constrained by HQSS near zero recoil (w = 1)
[20-22]
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)(Fg— sFP)ME\)(m

(1 pa p/a N
{7/ —r5Gi) + i (Fa—15Gy) + M’ (F3 - 75G3)}”5\2(P)

Ay A,

12(0)(1 = 75)b(0)|Ay: i r) = ) (F)

(Ae; plsr| Ve -

(A p'sr

A{I|Ah;[_5’

_[,[A

- —_ a - T o (04
(Ae: P57 |2(0)0b(0)|Ays; pir) = uA { (p*p” — pPp'™*) + lM—(y P’ =y p®)
A/

b Ab

. T o [ e (5
Fiar 0 =) + T bl ). (28)

Ay

with u,, o dimensionless Dirac spinors (note that for leptons we use spinors with square root mass dimensions instead).
In the heavy quark limit all the above form factors either vanish or equal the leading-order Isgur-Wise function [21] {(w),
satisfying {(1) =
Fy=F;=06,=0G; = Fi(0) = Gi(w) = Fg(0) = Fp(w) = Ty(w) ={(w)  (29)
Moreover, as discussed in [20,21] no additional unknown functions beyond {(w) are needed to parametrize the
O(Aqcep/my..) corrections. Perturbative corrections to the heavy quark currents can be computed by matching QCD onto

heavy quark effective theory and introduce no new hadronic parameters. The same also holds for the order O(aAqcp /.. ).

The hadron tensors are readily obtained using

- + M aj + ).
5 (s PRI bO) s p )i ' PO b0y ) = 11 [P0 o ZEH o,
o 2 2M 2M,,
(30)
with the Dirac matrices
(ap) pa pla a p/a
F =1,y (y“F—l— Fy+—F ny+ ysGy +——v5G3 |,
5 1 My, 2 My 3 5G M, 5Go My 5G3
|: — (p p/ﬁ — pﬂp/a) 4 T2 (yrlpﬁ _ },/)’pa) 4 T (},ap//)’ — yﬂp/(z) + T46a/}:| i
MAb MAb MAb
pap D, 1
apon |7 =224 T L 4+T T 31
€ [ Ah =+ 275MA + 375MA +2 4YsVn |- (31)

The last of the structures in Eq. (31) accounts for the matrix
element of the operator ¢(0)6*ysb(0) between the initial
and final hadrons which, thanks to Eq. (B6), is related to
that of the tensor operator ¢(0)c*b(0).

From Eq. (30) one can obtain the W SFs, and hence the
LAB d°T'/(dwdE,) and CM d°T'/(dwd cos§,) distribu-
tions, in terms of the Wilson coefficients and form factors
introduced in Eqgs. (1) and (28), respectively. The explicit
expressions are given in Appendix E. As detailed also in
this Appendix, the form factors used in Eq. (28) are easily
related to those computed in the LQCD simulations of
Refs. [23] (vector and axial) and [24] (tensor), which were
given in terms of the Bourrely-Caprini-Lellouch paramet-
rization [40] (see Eq. (79) of [23]). On the other hand, the
scalar (Fg) and pseudoscalar (Fp) form factors are directly
related (see Eqgs. (2.12) and (2.13) of Ref. [24]) to the f

vector and g, axial ones obtained in the LQCD calculation
of Ref. [23]. For numerical calculations, we use here for
the vector, axial and tensor form factors, the 11 and 7
parameters given in Table VIII of Ref. [23] and Table 2 of
Ref. [24], respectively. To assess the uncertainties of the
observables that depend of the form factors, we have
included the (cross) correlations between all the parameters
of the ten (vector, axial vector, and tensor) form factors, as
provided in the supplemental files of Ref. [24].

B. Results: NP effects for Ag — AT, decay

In this section, we will present numerical results using
the Wilson coefficients corresponding to the independent
Fits 6 and 7 of Ref. [17], which are real as corresponds to a
scheme where the CP symmetry is preserved. Details of
four different fits (4, 5, 6, and 7), that include all the NP
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FIG. 1. Left panel: dT'(A, — A.t0,)/dw differential decay width, as a function of @ and in units of 10|V ,|?> ps~'. We show SM
predictions and full NP results obtained including all terms in Eq. (1) and using the Wilson coefficients from Fits 6 and 7 of Ref. [17]. In the
middle and right panels, we show the contributions to the dI'/dw corresponding to 7 leptons with well defined helicities (2 = +1) in the
W~ CM and LAB reference systems, respectively. Uncertainty bands are obtained as detailed in the main text. For the NP results in the CM
distributions, we also show the error bands corresponding to the form factors uncertainties, which can be seen in lighter colors within the
total error bands. In the case of the LAB frame, SM and Fit 6 positive-helicity distributions are practically indistinguishable.

terms given in Eq. (1), are provided in the Table 6 of that
work. We do not consider the scenarios determined by Fits 4
and 5 because they describe an unlikely physical situation in
which the SM coefficient is almost canceled and its effect is
replaced by NP contributions. The exhaustive analysis
carried out in Ref. [17] is a cutting-edge LFUV study in
semileptonic B — D) decays. The data used for the fits
include the Rp and Rp- ratios, the normalized experi-
mental distributions of dI'(B — Dz,)/dg* and dI'(B —
D*ti.)/dg* measured by Belle and BABAR as well as
the longitudinal polarization fraction FY" =T,  _o(B —
D*z1,)/T(B — D*ti,) provided by Belle. The y* merit
function is defined in Eq. (3.1) of Ref. [17], and it is
constructed taking into account the above data inputs and
some prior knowledge of the B - D and B — D* semi-
leptonic form factors. In addition, some upper bounds on the
leptonic decay rate B, — tv, are imposed by allowing only
points in the parameter space that fulfill this bound.
Before discussing the results, we dedicate a few words
about how we estimate the uncertainties that affect our
predictions. We use Monte Carlo error propagation to
maintain, when possible, statistical correlations between
the different parameters involved in our calculations. The
first source of uncertainties is found in the form factors.
This is in fact the theoretical error in the case of the results
obtained within the SM. Thus, SM results will be presented
with an error band that we obtain using the covariance
matrix provided as supplemental material in Ref. [24] and

that accounts for 68% confident level (CL) intervals.
Results including NP contributions are not only affected
by the LQCD form factors errors but also by the uncer-
tainties in the fitted Wilson coefficients. To evaluate the
latter, for each of Fits 6 and 7, we use different sets of
Wilson coefficients provided by the authors of Ref. [17].
They have been obtained through successive small steps in
the multiparameter space, with each step leading to a
moderate y> enhancement. We use lo sets, values of the
Wilson coefficients for which Ay? < 1 with respect to its
minimum value, to generate the distribution of each
observable, taking into account in this way statistical
correlations. From this derived distributions, we determine
the maximum deviation above and below its central value,
the latter obtained with the values of the Wilson coefficients
corresponding to the minimum of y?. These deviations
define the, asymmetric in general, uncertainty associated
with the NP Wilson coefficients. The latter uncertainty is
then added in quadratures with the one corresponding to the
form factors determination to define an error (asymmetric)
band. Thus, results obtained including NP will always be
provided with such an error band. To get an idea of the
relative relevance of both sources of theoretical error, in
many cases, the smallest-in-size bands associated only with
the uncertainties in the form factors will also be shown.
We start by showing in Fig. 1 results for the dI'(A, —
A, 10,)/dw differential decay width. As we see in the left
panel, Fits 6 and 7 give very similar results for dI"/dw and

TABLE 1. Total widths and R, values associated to the distributions shown in the left panel of Fig. I.

SM Fit 6 [17] Fit 7 [17]
(A, = Ace(/;)z'/ew)/(lo x|V ? ps™h) 2.15+£0.08 e e
(A, = A1)/ (10 x [V, |2 ps™) 0.715 9014 0.872 + 0.047 0.892 + 0.051
Ra, 0.332 +£0.007 0.404 £ 0.022 0.414 £+ 0.024
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FIG. 2. Top: CM angular expansion coefficients ay, a; and a, for the unpolarized d’I'[A;, — A 17,/ (dwd cos 8,) differential decay
width [Egs. (17) and (18)], as a function of w. Bottom: forward-backward asymmetry, Apz = a,/(2ag + 2a,/3). We show SM and full
results, the latter evaluated including all NP terms in Eq. (1) and using the Wilson coefficients from Fits 6 and 7 of Ref. [17]. Uncertainty
bands are obtained as explained in the main text. For NP results we also show the error bands corresponding to the form factors

uncertainties, which can be seen in lighter colors within the total error bands.

they become indistinguishable once the full uncertainty
band is taken into account. Thus, by looking at the dI"/dw
differential decay width (or the integrated decay width
for that matter, as can be seen in Table I) one could not
decide which fit, and thus what NP terms, would be
preferable to explain the data. As compared to our partial
results of Ref. [34], we find a quite significant reduction of
the error bands of the NP distributions thanks to having
considered here the statistical correlations between the
Wilson coefficients.

In Fig. 1, we also show the separate contributions to
dl'/dw corresponding to 7 leptons with well defined
helicity (h = 1) measured either in the CM (middle
panel) or the LAB (right panel) reference systems. In the
latter case there is no clear distinction (once the full error
band is taken into account) between the predictions
corresponding to Fits 6 and 7. The situation clearly
improves for the case of well defined helicities in the
CM system where the predictions from the two fits can be
told apart in most of the @ range. However, polarized
distributions are very challenging measurements because of
the presence of undetected neutrinos, so next we examine
other possibilities.

Fortunately, things improve considerably when one
looks at the observables related to the CM d°T'/
(dwd cos 6,) and LAB unpolarized d*T"/(dwdE,) double
differential distributions. In Figs. 2 and 3 we show,
respectively, the results for the a,_g;, and c;_o>

dimensionless coefficients that determine those distribu-
tions [Egs. (18) and (21)]. With the exception of a, the
rest of these functions allow a clear distinction between
NP Fits 6 and 7 that otherwise predict the same dI'/dw
differential and total decay widths. We also display
predictions, in the bottom panel of Fig. 2, for the commonly
used forward-backward asymmetry Agg, which features
and w—behavior are strongly determined by a;. If LFUV
were experimentally established for the A, — A, semi-
leptonic decays, the analysis of these observables would
clearly help in establishing what kind of NP was needed to
reproduce experimental data. Another way of presenting
the results in Figs. 2 and 3 is by showing the ratios of the
quantities obtained including NP over their SM values.
This is done for a; and ¢, in Fig. 4. We observe that the
(¢c2)np/ (€¢2) sy ratio, depicted in the left-top panel of Fig. 4,
is almost constant having a very mild @ dependence.
However, it clearly distinguishes NP Fit 6 from Fit 7
and the two of them from the SM value of 1. We reached
the same conclusions in our previous analysis of Ref. [34],
but as it was the case with dI"/dw, the proper consideration
of the Wilson’s coefficient statistical correlations drastically
reduces the errors in the predictions for this ratio,” which
sharpens the NP discriminating power of this observable.

In fact, the reduction of uncertainties in this work compared to
those given in [34] is very significant for all functions depicted in
Figs. 2 and 3.
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FIG. 3. LAB charged lepton energy expansion coefficients ¢,, ¢; and ¢, [Eq. (21)] for the unpolarized d’T'[A, — A 10,/ (dwdE,)

differential decay width. Details as in Fig. 2.
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FIG. 4. Top: (cy)np/(c2)sm (eft) and (ay)yp/(ay)sy (right) ratios for A, — A.zb,, as a function of w. Bottom:
(@) (w)/(a;)$M, (w) and R(Apg) ratios defined in Egs. (32) and (33), respectively. In the inserts to these latter plots, we

T C=epu

amplify the @ region close to zero recoil. In all cases, we show results for the Fits 6 and 7 of Ref. [17], and details of the

uncertainties are as in Fig. 2.

Similar results would be obtained for other ratios with the
one for a;, seen in the right-top panel of Fig. 4, showing the
stronger @ dependence. As seen in Figs. 2 and 3, a;(w) is
the only function, of those shown in these two figures, that
presents a change of sign for the SM and the two NP

scenarios analyzed in this work. This behavior of a;
explains the singularities in the NP ratios since, for each
model, the zeros of a; occur at different positions within the
physical interval [1, @,,,]. This strong w—dependence of
the (a;)np/(a;)gu ratio provides an additional NP-testing
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tool, which could be used when future accurate measure-
ments are available.

An alternative to this latter ratio that can be obtained just
from pure experimental data is the following. Assuming

that NP affects only the third generation of leptons, a; for
|

£ = e, u (that can be considered as massless to a high
degree of approximation) is a pure SM result, and the ratio
(a))Y/(ar)?Y,, can be measured from the asymmetry
between the number of events observed for 6, € [0, z/2]
and for 0, € [n/2, x],

I PT[A, = A1) 0 &T[A, = A,
/) dcos GK[ dodcos0, (w,@)] —/_ dcos 9,;[ (@, Hf)}

1 dwdcos 8,

@) [, _m)>
(@), (@) 7 1
=e. deos6, |
A o8t dwdcos 0,

This ratio is shown in the left-bottom panel of Fig. 4.
Since (a; )3, , (@) does not vanish for @ > 1 (see Fig. 1 of
Ref. [34]), no divergence appears in this case. In the insert
to this latter panel we amplify the w € [1, 1.2] region to
better show the discriminating power of this observable
close to zero recoil. To minimize experimental and theo-
retical uncertainties, both the numerator and the denomi-
nator of the right-hand side of Eq. (32) can be normalized
by dI'/dw for each decay mode. In this way, the ratio
R(Agg), defined as

(A )NP [2(1721/3}1\1P

-_h ap+2a, T

R(AFB) = (A )SM - a sM (33)
FB)/=e [W} b=y

can be measured by subtracting the number of events seen
for 6, € [0, z/2] and for 6, € [z/2, z] and dividing by the

TNy = Ace(u)T, ) (w,af)] ~ /_?dcosef [dzr[/\b = Ace(u)Ve() (o 9/)}

dwdcos 0,
(32)

|

total sum of observed events, in each of the A, — A 7D,
and A, — Ace(u)v,(, reactions. We expect this strategy
should remove a good part of experimental normalization
errors. We show the theoretical predictions for R(Agg) in
the bottom-right panel of Fig. 4, where we see a significant
reduction of uncertainties, and the potential of this ratio to
establish the validity of the NP scenarios associated to Fit 7.
To avoid confusion, we must warn the reader that R (Agg)
introduced here is not related with a ratio of hadronic
forward-backward asymmetries defined in Eq. (2.46) of
Ref. [29], and which is discussed in Fig. 1 of that work. The
angles used in [29] are different to those employed in the
present analysis.

To complete the analysis, we display in Figs. 5
and 6 additional predictions for the polarized CM
d*T'/(dwdcos0,) and LAB d°T'/(dwdE,) distributions.
As in the previous figures, we separate in all the

e e T e e

+1)
ay (h = +1)

aop (h

0.4 — ; .
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---Fit 6
~ 03 ---Fit 7
—
T
Il 0.2
= O
=
o
IS
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0 == I I I

——SM |
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-~ Fit 7

FIG. 5.
as a function of w. Details as in Fig. 2.

CM angular coefficients for positive and negative helicities (a;_q ;»(h = £1)) for the 7—mode A, — A, semileptonic decay,
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FIG. 6. LAB charged lepton energy expansion coefficients ¢;_ 1 » 3 [Egs. (26) and (27)] for the polarized d’T'[A, — A 70,/ (dwdE,)
differential decay width. We also show the (¢y + ¢), (¢; + &) and (¢, + &3) sums in the third top, second, and fourth bottom panels,

respectively. Details as in Fig. 2.

observables the errors produced by the uncertainties in
the LQCD determination of the form factors, which for
the NP results are not negligible at all, and become
even dominant in certain cases. In Fig. 5, we show the
CM angular coefficients for positive and negative helicities,
a;—o.12(h = 1), which explicit expressions in terms of the
W SFs were compiled in Eq. (25). Even taking uncertainties
into account, Fits 6 and 7 provide distinctive predictions
that also differ from the SM results. We see that (h = +1)
and (h = —1) coefficients are comparable in size, and we
systematically find

T T = =1)| > @) = =)
> |ag,(h = =1)] (34)
except for ag(h = —1) in a narrow region, @ = 1-1.03,

where the NP Fit 6 and 7 predictions agree within errors. In
the case of ag(h = +1) and a; (h = +1), roughly, NP Fit 6
values are greater than the Fit 7 ones, with SM results in the
middle. Note that the partial integrated rates, dI"/dw shown
in Fig. 1, are not sensitive to the a;—contributions, and
therefore having access to the detailed angular dependence
provides very valuable additional information. We also see
large cancellations in a, = a,(h = +1) + a,(h = —1),
which become total, both at zero recoil and at the end
of the phase space, where the sum a, vanishes. Actually
for @ = @y, |a(h = £1)| are as big as ag(h = £1).
In Fig. 6 we show the ¢,_;,3 coefficients, given in
Eq. (27), that appear in the expression for the polarized
LAB d°I'/(dwdE,) double differential decay width.

Taking into account the uncertainty bands, dominated by
the errors of the Wilson coefficients, only ¢, and ¢; can be
used to distinguish between NP Fits 6 and 7, while only Fit
7 predicts a result in clear disagreement with SM expect-
ations. We see NP Fits 6 and 7 predictions for these two
coefficients have even opposite signs, and the differences
are enhanced in the sum (cq + ¢;), which is the coefficient
of the linear E, term in Eq. (26).

The other two observables ¢, and &5 are of little use for
the current analysis, because the results of Fits 6 and 7
overlap and, furthermore, these coefficients are around two
orders of magnitude lower than c; and ¢,, respectively. One
should note that ¢, and ¢; are proportional to the tensor-
diagonal ﬁ/§ 4 and tensor-interference VNV,L 151, SFs, and
therefore both are zero in the SM. Moreover, for the NP
scenarios associated to Fit 6 and 7 of Ref. [17], these two
coefficients of the unpolarized distribution are negligible,
since for both fits |Cy| is already of the order of 1072,
and compatible with zero, C; = 0.0lfg"g? and —0.027:(())"(());g ,
respectively.

However, it is important to stress that ¢, and ¢; are
optimal observables to restrict the validity of NP schemes
with high tensor contributions. As a matter of example,

e3(w)  32WE 32W5 N
CZ(a)) Wz - 16W§ Wz
= =32x + O(Aqcep/ My )
2|C?
x = % (35)
ICy|* +[Cal
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FIG.7. Left/middle panel: NP Fits 6 and 7 results for R and R~ as a function of R, for different y>—weighted samples of Wilson
coefficients. Black solid and dashed curves, labeled as MPJP, stand for the results of Ref. [17] provided by the authors of that work [41].
The blue and orange dashed lines (indistinguishable from the MPJP predictions) correspond to the current numerical evaluation of R 5,
for Fits 6 and 7, respectively, with the shaded bands showing the 68% CL uncertainties inherited from the LQCD determination of the
form factors [23,24]. Right panel: Chi-square values [17,41] for each set of Wilson coefficients (sSWC) used in the left and middle panels,
and represented in this plot by AR, = Rj\wc - RK;“, with RK‘“ = 0.405 and 0.415 for Fits 6 and 7, respectively.

where we have made used that VNVg / ﬁ/z = —x+
O(Aqep/mp.), as deduced from Eq. (29).

On the other hand, the small NP tensor contribution
for Fits 6 and 7, together with the heavy quark limit
relations of Eq. (29), explains the flat w—behavior of the
(¢2)np/(c2)gy ratio seen in Fig. 4. If one neglects W3,
the coefficient ¢, is proportional to W,. The linear Cy,
terms, that could induce a nonzero @ dependence in
(W2)np/ (Wa)su, cancel to order O(Aqep/my,..).

Finally, in Fig. 7, we present R, as a function of R
obtained using NP Fit 6 (left) and 7 (middle) y>—weighted
samples of Wilson coefficients provided by the authors
of Ref. [17]. In Fig. 7, we include sets beyond the 1o ones.
For illustration purposes, we also show the results of
Ref. [17] for the ratio Rp-, which allows us to highlight
the clear correlation between these three LFUV observ-
ables. Note that SM predictions for the R3M = 0.300 &
0.05 and R3M = 0.251 + 0.004 ratios are below the ranges
considered, while RRM = 0.332 4+ 0.008. In the right panel
of Fig. 7, we show, for each of the Wilson coefficient sets
used in the left and middle panels, the y’—variations
against the corresponding changes induced in the R,
ratio.’ Both, Fit 6 and Fit 7 x? functions grow from their
minimum values, and the Ay? =1, Ay? =2.71, Ay* =
6.63, ... increments can be used to determine the 68% (10),
90% (20), 99%(306), - - - CL intervals of the NP predictions
for Rp, Rp+, and Ry .

®There exist one-to-one relations between each set of
Wilson coefficients (sWC) used in the left (Fit 6) and middle
(Fit 7) panels of Fig. 7 and the chi-square values or the variations
AR, (ZRYWYE = RY™) shown in the right plot of the figure.
At some point for AR, < —0.02, the local Fit 7 collapses into
Fit 6.

IV. CONCLUSIONS

We have included the NP tensor term, and all the
interference contributions associated with it, in our general
formalism for semileptonic decays initially introduced in
Ref. [34]. In this way, all the NP effective Hamiltonians that
are considered in LFUV studies with massless left-handed
neutrinos have now been taken into account, including the
possibility of violation of CP-symmetry due to the pres-
ence of complex Wilson coefficients. The scheme devel-
oped is totally general and it can be applied to any charged
current semileptonic decay, involving any quark flavors or
initial and final hadron states.

We have shown that a total of sixteen SFs (V~V’s) are
needed to fully describe the hadronic tensor. They are
constructed out of the complex Wilson coefficients, that
characterize the strength of the different NP terms, and
the form factors needed to describe the genuine hadronic
matrix elements. We have also derived general expres-
sions for unpolarized and charged-lepton polarized CM
d*T/(dwdcos6,) and LAB d°T'/(dwdE,) differential

decay widths in terms of the W—SFs. Unlike the unpo-
larized case, where all the accessible observables could be
determined either from the CM or LAB distributions, we
have pointed out that LAB and CM charged lepton helicity
distributions should be used simultaneously, since in the
polarized case, they provide complementary information.
We have also shown that, even assuming that the NP terms
affect only to the third lepton family, the strategy to obtain
full polarized information for tau-mode decays from non-
polarized e/u and 7 data is spoiled by the presence of NP
tensor operators.

As aresult of this general discussion, we have concluded
that determining all NP parameters, with their complex
phases, from a single type of decay is tough, even assuming
that the hadronic form factors are known. This is because
the experimental measurements of the required polarized
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decays are very challenging due to the presence of
undetected neutrinos. We have argued it is therefore
essential to simultaneously analyze data from various types
of semileptonic decays (f.e. B — D,B — D*,A, — A,,
B, = n.,B, — J/W¥...), considering both the e/u and 7
modes, and that the scheme presented in this work is a
powerful tool to achieve this goal.

The general formalism developed has then been applied
to update the analysis of the A, — Az, decay carried out
in Ref. [34]. We have found small numerical differences for
central results, because of the little strength of the tensor
terms in the NP scenarios originally considered in our
previous work. However, the proper consideration of the
Wilson’s coefficient statistical correlations has drastically
reduced the errors in the new predictions, which have
significantly improved the NP discriminating power of the
present study. In addition, we have obtained full results for
both CM and LAB charged lepton polarized distributions.

As in Ref. [34], we have shown the potential of the CM
d*T'/(dwd cos 6,) and LAB d°T"/(dwdE,) distributions to
distinguish between models, fitted to b — ct, anomalies
in the meson sector, that differ in the strengths of the
NP terms but that otherwise give the same differential
dl'/dw and integrated decay widths. In particular, the a,
and a,, and all three c,, ¢, and ¢, functions, associated
with the nonpolarized CM d’T'/(dwd cos6,) and LAB
d*T'/(dwdE,) distributions, respectively, are very well

suited for that purpose, at least for the A, — A, semi-
leptonic decay specifically studied in this work. For this
baryon transition, we have also shown the great interest of
the ratios (ay)y"/(a1)?Y,, and R(Agg) (Egs. (32) and
(33), respectively) which can be directly measured from
the (6,, 7 — 0,) asymmetry of the experimental distribu-
tions. If LFUV is experimentally established for this
decay, the analysis of all these observables can help in
understanding what kind of NP is needed to explain the
data. Finally, we have identified two coefficient functions,
in the LAB polarized distribution, which theoretically
should be very efficient in restricting the validity of NP
schemes with a sizable tensor contribution, although we
are aware of the difficulty of their measurement at present
and in the near future.
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APPENDIX A: LEPTON TENSORS

From Eq. (5), in the limit of massless neutrinos, we obtain

JL

1
(o) (kRS TE (K K )] = ZTY[(k/ + me)l(ap) (1 = 75) KU (i) Pl

f(pl) = yOFgﬂ)yo. (Al)

The different I, and I'(,;) operators give rise to the following lepton tensors [we use the convention €y153 = +1 and

g'uy - (+7 BEREE] _)]
L(k.K3h) = (k- K + hk - 5)/2. (A2)
/. my h / r 1811 <0
Ly(k,K;h) = Tka + Z—W (ki - s = 5ok - k' + i€ 45,k °K"s7), (A3)
j h
L;A (k,k';h) = %(kﬂkﬁ - k,lk;, + iep,{(;ﬂk"sk”) + iE (k/,sﬂ — ks, + ie,,,qu(sk"), (A4)
/ 1 ! / / . 1810 h : SN
Lo, (k. k'sh) = 3 (kok, + koky — gopk - k' + €45,k °KT) = 3 (Saky 4 kyS ) = Gapk = 8 4 i€4)5,5°K"), (AS)
/ imy : 5 ih / / / / /
Lap/l(kv k ;h) = T (ga/lkp - gapk/l + leap/lék ) - 2—W [ka(spk/l - s/lkp) + ka(spkﬂ - slkp) + Sa<kpkﬂ - kzlkp)
+ (k : k/)(ga/)sﬂ - gmls/)) + (S ' k) (g(lik;) - gu/)kﬁ)]
h
- TW [(k : k,)ea/)/lés(s + sleapénkwk" - spealléqk/(skn + k(le/llér/s(skm + kétepl&ns&k"]v (A6)
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1 h
La[}’p/1<k’ k/; h) = ELa/}pﬂ (k’ kl) + ELa[}’NL(k’ S), (A7)

which correspond to the (I, T',2)) = (1, 1), (Ya 1), (1,6,2), (Ya ¥p)> (Ya» 62)> and (6,44, 6,,,) combinations, respectively,
and in Eq. (A7)

L(x[ip/l(k’ k/) = g/fp(kock;L + klkix) - gﬁl(kak;) + kpkix) - gocp(kﬁk;L + klk;i) + ga/1<kﬁk/p + kpk;})
+ (k- &) (Gap9pr = 9aadpp) + i(ka€pipsk® — Ky€anpsk® + Kp€apisk’® = kz€appsk”). (A8)

APPENDIX B: HADRON TENSORS

We collect here the hadron tensors that should be contracted with the corresponding lepton ones, compiled in the previous
Appendix, to obtain Y |M|?. In Sec. Il B 1, we have addressed the diagonal J%[J%,]* case. In this Appendix, we begin with

the diagonal J ”,E,ﬂ [J’F’f]* tensor term, which it is also discussed in detail. The decomposition of the rest of the hadron tensors as
linear combination of independent Lorentz (pseudo-)tensor structures’ is listed after, and it is obtained similarly to those in

the two previous examples. The coefficients multiplying the (pseudo-)tensors are the W's SFs, which depend on ¢? and the

hadron masses. As mentioned in the Introduction, there appear 16 W's SFs, which are constructed out of NP complex
Wilson coefficients and the genuine hadronic responses (W's). The latter ones are determined by the matrix elements of the
involved hadron operators, which for each particular decay are parametrized in terms of form factors.

(i) The diagonal contribution of the tensor operator O’,’,ﬂ gives rise to a (pseudo-)tensor of four indices

Wh(p. q. Cr) = [Cr[?Y_(Hes por'[E(0)0™ (1 = y5)b(0)|Hys p. ) (Hes pl. 7 [2(0)0 (1 = 75)b(0) | Hys p. 1)’

(B1)

which contracted with the lepton tensor L4, (k, k'; k) in Eq. (A7) provides the contribution to the differential decay
rate. Note that by construction W**(p, q, Cy) = WP (p, g, C;), and hence, if

1 1
WabrA — 3 [Waﬁﬂl + Wp/laﬁ] + 3 [Waﬁpl - Wpiaﬁ]

1 1 « «
— E [Waﬂp/l + Waﬂpi*] 4 5 [Waﬂpﬂ _ Waﬂp/l*] = W(gﬂl + W(‘/j)pi’ (Bz)

the symmetric and antisymmetric, under the (af) <> (pA) exchange, parts become real and purely imaginary,
respectively. Now introducing the decomposition (7' = o, pT = oys)

a, o A afpi appi afipi
Wh(p.q.Cr) = [CrPWE (p. q) + Wi (p. q) = Wi (p.q) = Wi (p. q)]. (B3)

and using parity and time-reversal, as in Egs. (11) and (12), we conclude that W2?* and WZ’;”;T (W?[;”Tﬁ and W;ﬂ#)
are real tensors (imaginary pseudotensors). Indeed, we can identify

afipl afipd afip
W = CrPWTT (P, q) + Wiityr(p. @), (B4)

afpi % 2
Wt — —|CrPIWE (. q) + Wit (P, q)). (B5)
and conclude that the tensors/pseudotensors should be (aff) <> (pA) symmetric/antisymmetric. In addition, both of
them should be obviously antisymmetric under @ <> 8 and p <> A exchanges. There is still a large freedom, and
a priori 5 (8) different four-index tensor (pseudotensor) structures, meeting all the above requirements, can be used

to construct W?gp 4 (W'(Zf f *). An important simplification is found recalling that

"They are constructed out the vectors p*, ¢*, the metric ¢ and the Levi-Civita pseudotensor e““o1.
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yso® =~ % €aﬂ§'705m (B6)

which can be used to relate W?gp * and W?f )p * We find

Wark — Wt L ents, W (B7)

77 am(s)

which implies that the total tensor can be expressed using only the five real SFs that appear in the Lorentz

decomposition® of W‘(’/j)” 4

WT
Wbt = |Cy \Z{WT[ (79" = 9" — i+ 5 (g P p* = ¢ p" = ¢ p"p* + ¢ p*p")

) wl
—i(e s = ppy) + S0 ) - g - et + )

s ( pAad . f PAPS a WZ; ap (f A AP A ( B AP ] D (O QA A0
—i(e"*qlqs — e qq,s)HW[[g PPq* + p*d’) — " (PPq" + p"qP) — &7 (p°q* + P*q")
+ P p"q” + pq%)] — i(e”°(pPqs + ¢’ ps) — 7% (p*qs5 + q°ps)))]

T

W
+ ﬁi [(p*q" — PPq*)(p*q" — p*q”) —i(p“qd” — PPq*)e" psq ]} (B9)

Requiring now that the pseudotensor part of W%?* should be (@) <> (pA) antisymmetric, we find further constrains
for the W1, 5, 5 since they should satisfy

MW [V + €] + WI[(e' pP ps — e pps) + (€7 p ps — € pP py)]
+ Wi[(e"qP g5 — P2 q%q;5) + (€°q g5 — € qP q5)]
+ Wil(e(pPas + @’ ps) — € (p*qs + 4 ps)) + (€’ (p*qs + ¢*ps) — € (P’ g5 + ' Ps))]
+ WIl(p*q” — pPq*)e” psq, + (p"q" — p*q”)e* psq,] = 0. (B10)

The above equation can be rewritten as
ePPARM*WT + P WE + g*WE +2(p - ) Wi] + ¢*pPe® psWE =0, (B11)
where we have used that
€PPagh* — ePPagh? + e Pashl — P asb* = (a - b)e?rr. (B12)
Taking into account that the two tensors that appear in Eq. (B11) are independent, we deduce

¥t is to say, they are defined from

afpi
(s) (zﬂpﬂ appl
TeE =Wy + WprT

WT
= Wi(g* " — g*g") + (9“”pﬂp — g pPpr — g pPp* + P pop’) + VZ 9*d 4" - 4" " — " q°4* + 4" q’)

wr wT
+ VZ (rd” = PP q*)(p"q" — p*q’) + ﬁi (g (P’q* + p*a’) — (PP q" + p* ") — ¢ (p*4* + P*q®) + P (p*q” + PPq%))
(B8)
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(ii)

(iii)

(iv)

2MPWT + p*WT + @?WE +2(p - q)WT =0, wl=o. (B13)

The first of the above equations can be used to rewrite W{ in terms of W75 ,. Nevertheless, the contraction of
the tensor that multiplies W1 in the decomposition of Eq. (B9) with the lepton tensor Ly (k. K's h) defined in
Eq. (A7) vanishes identically. Hence, the contribution of W% to S"| M|? is given just in terms of three (W3, W1,
W}) real SFs.

Finally, we absorb the common factor |C7|%, by redefining Wi 3,4 = |Cr[>W7, 5 .,.
The diagonal contribution of the operator Oy gives rise to the scalar

W(p.q) = Wsp(q?) = [CsD> [(He: p'. #[2(0)b(0)|Hy: p. )2 + |CpPD |[(Hes p'. ' 12(0)ysb(0) | Hys p. 7).
rr rr

(B14)

which should be multiplied by the scalar lepton term of Eq. (A2). Note that the C¢Cy and CpCy interference terms
would give rise to purely imaginary pseudoscalars, which necessarily vanish because they cannot be constructed out
of the p and ¢ four-vectors alone.

The O% and Oy interference contribute to the decay width as 2Re[W*(p,q,Cy.as.p)Ly(k.K';h)], with the
L,(k,k'; h) lepton tensor defined in Eq. (A3) and

W(p.q,Cyasp) = Y (He p', ¥ |(CyV = CoA®)|Hy; p, r)(He; p, ' |2(0)(Cs — Cpys)b(0)|[Hys p,r)*, (BIS)

rr

and its treatment is similar to that discussed for J%[J5]* in Sec. IIB 1, with the equivalence (VV) < (VS),
(AA) < (AP), (VA) <> (VP) and (AV) <> (AS). Thus, we find

1 ~ .
We(p.q.Cyasp) = M (Wi p* + Wpnq”), (B16)
"NVn,Iz(C]z» CV.A,S,P) = CVC’§W1V15,12(612) + CACTDW?{,)U(QZX (B17)

with all four W;*/5” SFs being real, and where we have used an obvious notation in which W}, and W4/, should
be obtained from the V'S and AP matrix elements. Note that the odd parity VP and AS terms would give rise to purely
imaginary pseudovectors, which necessarily vanish because they cannot be constructed out of p and ¢ alone. Thus,

the total contribution to S| M|? of these pieces is given by

Wn . Wn
Re||——p*+—-q“|L "Wh)|. Bl
el (G p+ SR Lathonin) (B13)

For real Wilson coefficients, the W“‘ 1» SFs are real, and taking the real part in Eq. (B18) amounts to remove the Levi-

Civita term of L,(k, k’; h), recovering in this way the result of Ref. [34] identifying VNV,L 1» with Wy, introduced in
the latter reference.

The Oy and O’I’j interference contribute to the decay width as 2Re[W"*(p, q,C s.pr)L, (k. k' h)], with the
L, (k, k' 1) lepton tensor defined in Eq. (A4) and

W (p,q,Cspr) = Cry_(He p', r'[2(0)(Cs = Cpys)b(0)|Hys p. r)(Hes pl, r'[6(0)0 (1 = y5)b(0) | H,y: p, 1)
(B19)

We use Lorentz, parity and time-reversal transformations, as explained in Eqs. (11) and (12), to deduce that

the ST and PpT (SpT and PT) tensors are purely imaginary (real) antisymmetric tensors (pseudotensors).

In addition, the SpT and PT pseudotensors can be related to the ST and PpT tensors thanks to Eq. (B6). We finally
find
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)

W, ,
W (p.q,Cspr) = 2—1‘/’12 [ psqy + i(p"q" = p*q’)],

VNVB(QZ’ Cspr) = Ci(CsWil (%) + CpW PFT(‘IZ)) (B20)

and the real W37 and WI” SFs, obviously, deduced from the decompositions

PpT

Wi (p Z He; p', r|e(0)ysb(0)[Hy; p, r)(He; p', 72(0)6,75b(0) | Hys p. r)* = i(Pya: = P4,)-

3
2M?

E— ST

WiT(p,q) = Y (He; p',7'|e(0)b(0)|Hy; p, r)(Hes p', 7|€(0)6,,b(0) | Hy; p, r)* = =

r,r

i(ppq; — pag,)- (B21)

Its total contribution to S| M|? is given by

Re{ R 610, + (7 = P Kt | (822)

The 0% and O/ interference contribute to the decay width as 2Re[W™*(p. q. Cvar)Lopi(k. K's h)], with the
L, (k, ks h) lepton tensor defined in Eq. (A6) and

Wk (p,q,Cyar) = TZ He; p',7'|CyV* = C4A%|Hys p, r)(Hes ', 1 [2(0)0”* (1 = y5)b(0)[Hy; p, 7). (B23)

rr

The analysis runs in parallel to the previous one for Jy [injI J*, identifying V and A here with S and P that appeared
previously. The only difficulty is that now there are four, instead of one, independent Lorentz structures. We use
parity and time-reversal transformations to deduce that the VT and ApT (V pT and AT) tensors are purely imaginary
(real) tensors (pseudotensors), and obviously antisymmetric under the p <> 1 exchange. Here again, the VpT and AT
pseudotensors can be related to the VT and ApT tensors thanks to Eq. (B6), and we finally find

PWi +q*"Wis

W4 (p,q,Cyar) = [ psq, + i(pPq" — p'q’)]

2M3
w W
A g - o, s
WI4,15,16,I7<q27 CV,A.T) Cr(CyW 14 15,16, 17( ) + C4W 14 15 16, 17(‘12)) (B25)

and the real W},//s ¢ ,; SFs are deduced from

WYL (p.q) = (Hep' P Vol Hys p.r)(Hs p'. r'[2(0)0,,b(0)|Hy; p. 7)*
r,r
_ PV + a WIS
207

PWYT + o WYT
2M

i(Ppds = Pagy) + i(9ap 926 = Gar9ps)» (B26)
while W’?f IT5,16.17 are obtained from a imilar decomposition replacing V* by A* and [¢(0)s,,b(0)] by
[¢(0)6,,75b(0)]. The total contribution to ) |M|* of is given by

P5V~V16 + (15‘7‘/17

PO’VNV 4+ CIO'VNV 5 .
Re{ [; e psq, +i(p’q* — p*q’)] + i

o 649 4 (7 = )] | Lo o)

(B27)
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APPENDIX C: CM AND LAB KINEMATICS

To compute the contractions of the lepton and hadron tensors, we use

(C1)

with M, = M — M'w. In addition, the scalar products that depend explicitly on the charged lepton variables used in the
differential decay widths read
i CM

2 2

M 2 2_ 2
p-kzj( —%)(Mw—&-M’\/wz—lcosQf), k-s:%, p-s=MM, - pki]] j:f. (C2)
¢

(i) LAB

E/(q* + m3) —2m2M,, 1
p-k=MM,-E,), k-s= i Z(Ezf)mz)% o p-s=M(E%—m2). (C3)
¢~ e

Note that both in the CM and LAB frames, €5nﬂyk5q”s” p* =0, which trivially follows from s* = ‘kk/ OI kK" — Wn/‘ with

n* = (1,0), ¢ = k + k' and the fact that Piap and gfy, are proportional to n¥.

APPENDIX D: COEFFICIENTS OF THE CM A (w.0,) AND LAB C(w.E,) DISTRIBUTIONS
IN TERMS OF THE W SFs

In this Appendix we collect the expressions of the A, 3, and C functions as well as the Ay, By, Cy, Dy, and E functions
that together determine the expansion coefficients of the CM A, (w, 6,) and LAB C,,(w, E,) distributions [Egs. (25)-(27)].

They are combinations of the hadronic W SFs and are given by

> 2
qg —m u) aM w CI ~g 2M(u -~
.A(Cl)) = e 4 {2W1 Wz + W3 + WSP + RG[WB] +8 <W2 Ve W3 i W4)
+—Re +m—%(ﬁ/ —16WT)
M2 4 3 ’
2¢° = ~ 4Mw _ _
B(w) = =35 (W3 + 4Re[Wp]) + =& (W, — 16W3)
2mbp ~ 4M 4q 2 2 ~ -
“CRe|W o Wi+ 12Wyg | + 22 (Ws = 32W)).
+ M e[ n- 15+ 16:| + e £ (Ws 4)
Cw) = —4(W, — 16W3), (D1)
q* —m> aMm,, my ~ o~ ~ o AmE
Ap(w) = - >— 4 Re Wy +—2 W14 —AWs| +—5 (W5 + W5 — 4Re[W 3] + 32W)) — —-Re[Ws] ¢,
2M M M
Mo peli M, = 8q 16M,, ~
BH(C()) = VRG[ 4W16:| — ﬁ <2W1 W2 — VWS — WSP 8W2 + M 4)

+ WRG[WIZ - 4W]4 — 4W[7] + W (W4 + 16W3),
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447 ~ 2my  ~ ~ 4m? ~
Cr(@) =z ReWp] == (Ws + 16W]) + L Re[Wy].
2

12M ~ ~ m ~ ~ ~ ~ 4m ~
Wi — 4W16] + ﬁf (W3 — Ws — 32W} — 4Re[W3]) — V;RC[WISL

Dy(w) = —Re {ﬁ/,l +—=
Ey(w) = 8Re[Wyy). (D2)

Using the above relations and Eqs. (25) and (27) one can obtain explicit expressions in terms of the W SFs for the
ajp3(w, h) and &, 1,3 expansion coefficients. They are given by

8q= (Wgp @ ~r 2M, ~ 16M2, ~
ag(h = +1) = M2<8 + Wl - 2W3— MW4 v ——owt
my M q° 4M,, 4 L. mfa M2 q2 ~ M, ~
M/ 2 4m w M(u ~ q2 ~ ~ 2 ZMM ~
((h=41)=Va? - { [W,3]+7R [T”—WWM—WWB—FW,G]+W<TW2+W5>},
M/2 ? -
Clz(h = +1) ((l) - 1) M 16W2 - 4—RC[W]4] q2 W2 N (D3)
Zq 0 q2 B M%} i~ 4dm ‘] M(%) 2M 0] 2q2
ag(h =—1) =—W, —TWQ + MfR e Wi+ W16 e W17
_16my (Mg, 2. 2MM,
e ( Wl q—2W3T + W4>
M Smf ~ 32mf MM(H
aj(h=-1)= M Re[We] +—>~ e\ W3 + Wi
M ~ 16m>2 ~
ar(h=~1) = (o’ = 1) V<W2 W14}+7fwg>v (D4)
. 4> m w M, m2 ( ¢* P ~
¢o() = WﬁR { TH + —W14 + Wm} - Mf {M2 W + Ws — 4Re[W 3] + I+ 32w
2M, .~ ~ ~ 8M?2, ~
+—7 W, + W, — Wgp +24W7) — SV ( 2 — Re[W3] - 4W£)}
2m Wy M, 2q% —4M?
+ #R [T“ T 2 (W +2Wy —4Wp) + ————2 W5 — 2Wm]
mb [~ 2M,, -~ ~ ~ ~ ~ 4m3 ~
+ Mﬁ < M (W4 + 16W3) + Ws — 4Re[W 3] + 32W£> - F;"Re[W,s],
. 8q2 W M ~ 2q2 ~
8m W M, aM,, ~
—WKR {Mz < 412+WI4_VW15 +WI7> M :|
m: o ~ ~ _ . 16M, (W; _~ ~ 2¢% ~
+ ﬁ‘; {4W1 +2W, + 64W3 — - (f —8Wj — Re[WB]) ~ W4}

16m> _ [M, ~ ~ 32m4 ~
M3KRC[M(U Wis + W17} - M4f w3,
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~ 2 a) = 16m 612 ~ ~ 1281’)’!2 ~
&(w) = _128<8M [W13] WzT) - MKRC{WWm _2W16:| Ve £ 45

&5(w) = —128W5. (D5)

APPENDIX E: HADRON TENSOR SFs AND FORM FACTORS FOR THE A) - A} ¢~ 7, DECAY
The form factors used in Eq. (28) are related to those computed in Refs. [23,24] by

Syt Ay _
Fi=fl1, Gy =91, Fg= *— fo, Fp=—-""—g, Ty=hy,
my, —m, my, +m,
My, ou My, Ay
Fy=—"—fo+ sb M1 =6lf. =6, f1.
+
M on My Ay
F3:_ L2 Af0+ A[1+5]f+_5s+fia
q S+
My, Ay My, 0y
Gy=—-—"5"gy———[1=0dlg; =& g..
q S_
My Ay M, oy
G3: qu Ago— SC A[1+5}g+ +5s,gJ_»
2 2
:_2M2 hi_mhl_hi+ 5M/\ hJ_
sy q*sy s_ s

A 2M Su, (1= 8) ~
TzzM{ a2 MA( )hL},
q N

N (E1)

T, - M{—AA;A h _2MA;;;; +5MA(1 +6)Z4,
q S_ S_

with 6 = (M3 — M3 )/q% s+ = (Mn, £ My)* = G2, 8y, = My, — My, Ay, = My, + My and 8, = 2My My /5.

Note that Fg and Fp have not been computed in LQCD, and both form factors are obtained from the vector f(, and axial g,

form factors using the equations of motion. In the numerical calculations, we use m;, = 4.18 £0.04 GeV and

m, = 1.27 £0.03 GeV as in Ref. [24]. For completeness, these two latter form factors are related to those introduced

in Eq. (28) by

Fy(My, — oM, ) + F3(oMy, — M, ) _G Gy(Mp, — oMy ) + G3(oM), — M, )
=G, -

fo=Fi My, — M, 0 My, + My,

(E2)

and in the heavy quark limit f, = gy = { + O(a,. Agep/Mcp)-
On the other hand, from Egs. (30) and the results of Appendix B, we find for the W SFs related to the SM currents

~ ]
Wi =2 [(@=1DICyPFT + (0 + 1)|C4 PG,

2
7, c : 2M M2
W, = 2vI {2F1F2+(w+1)F%+ 7 L(F1+ Fa)(Fy + F3) + @FoF3) + e 2F, Fg—l—(a)—l—l)F%]}
A A,
9 66 2 20, M3,
2 2+ (0 —1)G3 + R (©G2Gs + (G1 = Gy) (G + G3)l + 15+ [(0 = 1)G3 = 2G1Gs] ¢
c AC
~ 2M
Wi = . Re[CyCi]F Gy,
A,
» 2
Wa= 2M2 ICyP(2F F3 + (0 + 1)F3) = [Cal?(2G\ G5 + (1 — @) G3)],
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~ M,
Ws = _MAb |Cy|? [(Fl + Fy)(Fy + F3) + oF,F-

Y 2F Fs + (+ 1)F§]]

c

M M
=GR (G = (G +Ga) + 063Gy~ 261Gy + (1 - )G (E3)
My, My,
The rest of NP W SFs for this baryon decay are

~ 1
Wsp =5 [(@+ DICSPF + (@ = DICoPF3),

7 « MAb MAb
Wi =CyCs|FsFi( 1+ + (I +o)Fs| Fy+ F
My, My,

. My My
e (1-25) - o 0, )|

A A

¢ c

~ M
Wi = 32 CAChDG + (1= )il = CyCEESlFy + 1+ )Py . (54)
Ac
which were already obtained in Ref. [34], but for real Wilson coefficients, and

~ M, M
W13 = C;CSFS |:T1(1 + (l)) + T3 _— (Tz + T4):| Cx CP FPT4,

My,
) ( STy +Ty) =T,(1 + o) - T3)]

My,

c

. i My My, M,
W[4:CTCV FlT] 1+MA(. +MA[F](T3—T2)— F2+F3M

—CiCy M, G\(T,+T3)+ T G, 4+ Ma, Gs |,
My, My,
My, My, M, M,
W, = —CiCy | Fi(Ty 4 T3) + Fa Ti(1+ @) + Ty = 22 (T £ T9) ) | + CTCA— G\T; +—G3T4
A

c c c

_ MA,, M M .
Wie = —CrCyF (1 —w)(T, +T3) + (1 - = CrCAG |- (Ty + T4) + Ty + (T3 = T,) ——<T53|,
MAC AL MA;;

7 7A MAb % MAb
Wi = CrCyvF, T3(1—w)—M Ty| + CrCAG, M—(T2+T4)+wT3 ;

A, A,

_ Cr?
WT ‘ T
)

+ (14 @)T3 = 20(T5 + T3) + 2T12w(Ty + Ty) + T3) + 2(Ty + T3) (T2 + T3 + 2T,),

M
2 o(@ + 1)T3 + Ty (T, + 2075 + Ty) + ToT]

2
{MZ (1 -+ )73 + 21,7, -0

8 [T (Ty + Ty) + To(Ts +2T4) + 2T4(T; + T4)]}

A,
~ C|?
| 2T| {(1 +@)T} 427\ T3 +2(1 - )73 - Mo Ty (Ty 4 Ty) + T5(T, + 2T4)]}
A,
T |CT|2 MA 2 T2
Ah
2MA1» 2
+ i [T4(T1+ Ty +2T5)+To(T, +T5) + T3] . (E5)
A

¢

In addition, as discussed in Appendix B, V~V5T = 0 and, if necessary, W can be obtained from V~V§ 34 using Eq. (B13).
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