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top-row unitarity deficit
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Recently, the first ever lattice computation of the γW-box radiative correction to the rate of the
semileptonic pion decay allowed for a reduction of the theory uncertainty of that rate by a factor of ∼3.
A recent dispersion evaluation of the γW-box correction on the neutron also led to a significant reduction of
the theory uncertainty, but shifted the value of Vud extracted from the neutron and superallowed nuclear β
decay, resulting in a deficit of the Cabibbo-Kobayashi-Maskawa (CKM) unitarity in the top row. A direct
lattice computation of the γW-box correction for the neutron decay would provide an independent cross-
check for this result but is very challenging. Before those challenges are overcome, we propose a hybrid
analysis, converting the lattice calculation on the pion to that on the neutron by a combination of dispersion
theory and phenomenological input. The new prediction for the universal radiative correction to free and
bound neutron β-decay reads ΔV

R ¼ 0.02477ð24Þ, in excellent agreement with the dispersion theory result
ΔV

R ¼ 0.02467ð22Þ. Combining with other relevant information, the top-row CKM unitarity deficit persists.

DOI: 10.1103/PhysRevD.101.111301

Universality of the weak interaction, conservation of
vector current and completeness of the Standard Model
(SM) finds its exact mathematical expression in the require-
ment of unitarity of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix. Of various combinations of the CKMmatrix
elements constrained by unitarity, the top-row constraint is
the best known both experimentally and theoretically.
The 2018 value, Δu

CKM ≡ jVudj2 þ jVusj2 þ jVubj2 − 1 ¼
−0.0006ð5Þ [1,2] is in good agreement with zero required
in the SM, putting severe constraints on beyond Standard
Model (BSM) physics.
Notably, the main source of the uncertainty in the Δu

CKM
constraint is theoretical: the γW-box radiative correction
(RC), prone to effects of the strong interaction described by

quantum chromodynamics (QCD), affects the value of
jVudj extracted from the free neutron and superallowed
nuclear β decays. In a series of recent papers, this RC was
reevaluated within the dispersion relation technique [3–5].
In particular, Ref. [3] observed that the universal, free-
neutron correction received a significant shift, later con-
firmed qualitatively by Ref. [6]. This shift is the main cause
of the current apparent unitarity deficit, Δu

CKM ¼
−0.0016ð6Þ (using an average of Vus from Kl2 and Kl3
decays [2]). The slight increase in the uncertainty is due to
nuclear structure effects [4,5].
Since in superallowed β decays one aims for a 10−4

precision, it is highly desirable to assess the uncertainty and
possible, unaccounted for, systematic effects in the non-
perturbative regime of QCD in a model-independent way.
A common limitation of the studies above is the lack of
experimental data to directly constrain the hadronic matrix
element relevant to the RC. By means of isospin symmetry,
Ref. [3] relates the input to the dispersion integral at low
photon virtuality Q2 to a very limited and imprecise set of
data on neutrino scattering on light nuclei from the 1980s
[7,8]. The analysis of Ref. [6] consists of puremodel studies.
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A complete change of landscape is expected following
the first direct application of the lattice QCD to RC in
leptonic meson decays, K → μνμ and π → μνμ [9]. Very
recently, the first ever direct lattice calculation of the RC in
semileptonic β decay was presented, where the relevant
hadronic matrix element responsible for the γW-box dia-
gram in the pion is calculated to high precision as a function
of Q2 [10]. As a result, the theory uncertainty of the
πe3ðπ− → π0eν̄eÞ decay rate is reduced by a factor of 3.
While theoretically very clean, πe3 is not the easiest avenue
to extract Vud due to its tiny branching ratio ∼10−8.
Nonetheless, it provides useful information about the
involved nonperturbative dynamics, especially its low-Q2

behavior and its smooth transition to the perturbative
regime. Using the same method or other approaches such
as Feynman-Hellmann theorem [11,12], a first-principle
calculation of the RC to the free neutron β decay, while very
challenging, is expected to be performed in the near future.
In this paper, we perform a combined lattice QCD—

phenomenological analysis. Making use of a body of
hadron-hadron scattering data, known meson decay widths
and the guidance of Regge theory and vector dominance,
along with constraints from isospin symmetry, analyticity,
and unitarity, we are able to unambiguously relate the input
into the dispersion integral for the γW-box RC on the pion
and on the neutron. Fixing the strength of the pion matrix
element from the lattice, we thus obtain an estimate of an
analogous matrix element on the neutron, in accord with all
the aforementioned physics constraints.
We start by writing down the dispersive representation of

the contribution of the γW box diagram (see Fig. 1) to the
rate of the Fermi part of a semileptonic β decay process of
Hi → Hfeν̄e [3,4]:

δVAγW;H ¼ 3α

π

Z
∞

0

dQ2

Q2

M2
W

M2
W þQ2

Mð0Þ
3Hð1; Q2Þ; ð1Þ

where α is the fine-structure constant. The above definition
of the γW-box correction corresponds to a shift jVudj2 →
jVudj2ð1þ δVAγW;HÞ, affecting the apparent value of Vud

extracted from an experiment. The function

Mð0Þ
3Hð1; Q2Þ ¼ 4

3

Z
1

0

dx
1þ 2rH
ð1þ rHÞ2

Fð0Þ
3Hðx;Q2Þ
FHþ

ð2Þ

stands for the first Nachtmann moment of the (spin-

independent) parity-odd structure function Fð0Þ
3Hðx;Q2Þ,

resulting from the product between the axial charged weak
current and the isoscalar electromagnetic current:

iϵμναβpαqβ
2p · q

Fð0Þ
3Hðx;Q2Þ

¼ 1

8π

X
X

ð2πÞ4δð4Þðpþ q − pXÞ

× hHfðpÞjJð0Þμem jXihXjðJνWÞAjHiðpÞi: ð3Þ
Above, MH is the average mass of Hi, Hf, Q2 ¼ −q2,
x ¼ Q2=2p · q, and rH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2

Hx
2=Q2

p
, and the fac-

tor FHþ defines the normalization of the tree-level hadronic
matrix element of the vector charged weak current:

hHfðpÞjðJμWÞV jHiðpÞi ¼ VudFHþ2pμ: ð4Þ

By isospin symmetry, Fnþ ¼ 1 and Fπ−þ ¼ ffiffiffi
2

p
.

The quantity δVAγW;H is the source of the largest theory
uncertainty of the RC in the πe3, free neutron β decay, and
the universal RC in superallowed nuclear β decays, and has
long been the limiting factor for the precise determination
of Vud. To obtain δVAγW;H we need to know the Nachtmann

moment Mð0Þ
3Hð1; Q2Þ as a function of Q2. At large Q2, the

product of currents in Eq. (3) is given by the leading-order
(LO) operator product expansion (OPE) and the perturba-
tive QCD (pQCD) corrections. The LO OPEþ pQCD
result is independent of the external state H and is known
up to order Oðα4sÞ [13,14], with αs the strong coupling
constant. However, at low Q2 the structure function

Fð0Þ
3Hðx;Q2Þ depends on details of different on-shell inter-

mediate states jXi that dominate different regions of
fx;Q2g (see Fig. 2 of Ref. [3] for the explanation).
Also, the transition point between perturbative and non-
perturbative regime is a priori unknown, or uncertain.
The first calculation of Mð0Þ

3π ð1; Q2Þ on the lattice in
Ref. [10] serves as an important step in addressing the
questions above. Its result is presented in Fig. 2 as a
function ofQ2. At low Q2 where the integral (1) is strongly
weighted, lattice provides an extremely precise description

ofMð0Þ
3π ð1; Q2Þ, but its uncertainty increases at largeQ2 due

to the discretization error. Fortunately, at Q2 > 2 GeV2

there exists very precise data for the first Nachtmann
moment of the parity-odd structure function Fνpþν̄p

3 mea-
sured in the ν=ν̄ scattering on light nuclei by the CCFR
Collaboration [15,16]. Their good agreement with pQCD
prediction indicates a smooth transition to the perturbative
regime atQ2 > 2 GeV2, which also implies that these data,

upon simple rescaling, can be converted to Mð0Þ
3π ð1; Q2Þ.1

FIG. 1. The γW box diagram in free neutron decay.

1Strictly speaking, the pQCD correction to Fνpþν̄p
3 differs from

that of Fð0Þ
3H at Oðα3sÞ, but such a difference is numerically

insignificant at Q2 > 2 GeV2.
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On the other hand, below 2 GeV2 effects of generic
higher-twist terms start to show up, and the LO OPEþ
pQCD prediction disagrees significantly with the lattice
result.
We shall describe how the lattice result for δVAγW on the

pion can be used to improve our understanding of δVAγW on
the neutron. First, for the neutron we parametrized the

structure function Fð0Þ
3N (hence, also Mð0Þ

3N) as [3,4]:

Fð0Þ
3N ¼ Fð0Þ

3N;el þ
(
Fð0Þ
3N;res þ Fð0Þ

3N;πN þ Fð0Þ
3N;R; Q2 ≤ Q2

0;

Fð0Þ
3N;pQCD; Q2 ≥ Q2

0;

ð5Þ

where Q2
0 ≈ 2 GeV2 is the scale above which the LO

OPEþ pQCD description is valid. Above, we isolated
the contributions from the elastic intermediate state (el)
fixed by the nucleon magnetic [17,18] and axial elastic
form factor [19], from the nonresonance πN continuum
(πN) in the low-energy region, from the N� resonances
(res),2 and the Regge contribution (R) that allow to
economically describe the multihadron continuum.
In a similar way, we parametrize the pion structure

function as

Fð0Þ
3π ¼

(
Fð0Þ
3π;res þ Fð0Þ

3π;R; Q2 ≤ Q2
0;

Fð0Þ
3π;pQCD; Q2 ≥ Q2

0:
ð6Þ

We note the absence of the elastic and the low-energy
continuum contributions. The former is identically zero
because the axial current does not couple to the spin-0 pion
ground state. The latter would correspond to the

nonresonant part of the ππ continuum in the p-wave;
however, this partial wave is known to be entirely domi-
nated by the ρ0 resonance up to the KK̄ threshold.
Comparing the parametrizations of Eqs. (5), (6), we

make an important observation. Among the various con-
tributions there are the process-specific ones that reside in
the lower part of the spectrum (elastic, resonance and low-
energy continuum). They have to be explicitly calculated
for the pion and for the nucleon and cannot be related to
each other. On the other hand, the asymptotic contributions
(Regge and pQCD) are universal. This is the central point
of our analysis.
Universality of the OPE is straightforward. The

only difference between Fð0Þ
3N;pQCD and Fð0Þ

3π;pQCD is in the

normalization of the isospin states, thus Fð0Þ
3π;pQCD ¼

ðFπ−þ =FnþÞFð0Þ
3N;pQCD.

Universality is among the central predictions of Regge
theory. It dictates that the upper and lower vertices in the
Regge ρ-exchange amplitudes TρðWþ þ π− → γ þ π0Þ and
TρðWþ þ n → γ þ pÞ in Fig. 3 factorize, so that, e.g.,

Rπ=N ¼
Tρ
Wþþπ−→γþπ0

Tρ
Wþþn→γþp

¼ Tρ
ππ→ππ

Tρ
πN→πN

¼ Tρ
πN→πN

Tρ
NN→NN

; ð7Þ

where Tρ
ππ→ππ; T

ρ
πN→πN; T

ρ
NN→NN stand for the amplitudes

in elastic ππ; πN;NN scattering in the channel that corre-
sponds to an exchange of the quantum numbers of the ρ
meson in the t-channel. Regge factorization has been tested
on global data sets for elastic pion, pion-nucleon, and
nucleon-nucleon scattering.
This leads to a prediction based on Regge universality,

Fð0Þ
3N;Rðx;Q2Þ ¼ R−1

π=NF
nþAðQ2ÞfNthðW2Þ

�
Q2

x

�
αρ
0

Fð0Þ
3π;Rðx;Q2Þ ¼ Fπ−þ AðQ2ÞfπthðW2Þ

�
Q2

x

�
αρ
0

; ð8Þ

with αρ0 ¼ 0.477 [20]. Here we define the threshold
function fHth ¼ΘðW2−W2

th;HÞð1− exp½ðW2
th;H−W2Þ=Λ2�Þ,

where W2 ¼ M2
H þQ2ð1x − 1Þ and Λ ¼ 1 GeV2 [21]. The

threshold parameter Wth;H characterizes the threshold for
the multihadron contributions. In Ref. [3] we fixed

0 1 2 3 4 5
0.00

0.02

0.04

0.06

0.08

FIG. 2. Comparison between the lattice calculation of

Mð0Þ
3π ð1; Q2Þ (blue band), the prediction from LO OPE with

Oðα4sÞ pQCD corrections (red curve) and the low-Q2 CCFR data
[15,16] (green points).

FIG. 3. The Regge-exchange contribution to Fð0Þ
3 for neutron

and pion. The vertical propagator represents the exchange of the
ρ-trajectory.

2Δ resonances do not contribute due to the isoscalar nature of
the photon.
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Wth;N ¼ mN þ 2Mπ , such that the threshold function
fNth ≈ 1 for W ≳ 2.5 GeV. In the pion sector, one expects
Wth;π to lie betweenMρ and 1.2 GeV, the scale above which
Regge description is valid [22]. In this work we choose
Wth;π ≈ 1 GeV, and account for the uncertainty due to its
variation between the two boundaries.
The function AðQ2Þ describes the interaction at the upper

half of Fig. 3 and is, within the Regge framework, common
for neutron and pion. It is generally unknown but is now
completely fixed by the lattice result plotted in Fig. 2—
upon subtracting the resonance contribution. With these
ingredients, the ratio of the first Nachtmann moments of the
Regge contributions reads,

Mð0Þ
3N;Rð1; Q2Þ

Mð0Þ
3π;Rð1; Q2Þ

¼ 1

Rπ=N

R
1
0 dx

1þ2rN
ð1þrNÞ2 f

N
thðW2Þx−αρ0R

1
0 dx

1þ2rπ
ð1þrπÞ2 f

π
thðW2Þx−αρ0 : ð9Þ

To fully specify the parametrization of Fð0Þ
3π we turn

now to the resonance contribution depicted in Fig. 4. Its
strength is derived from the following effective Lagrangian
densities [23],

Lργπ ¼
egργπ
2Mρ

FωðQ2ÞðFa
ρÞμνF̃μνπ

a

La1ρπ ¼
ga1ρπ
2Ma1

εabcðFa
ρÞμνðFb

a1Þμνπc

LWa1 ¼
gM2

a1

2gρ
wa1Fa1ðQ2ÞVudW−

μa
þμ
1 þ H:c:; ð10Þ

where we explicitly include the vector dominance form
factors Fω;a1ðQ2Þ ¼ ½1þQ2=M2

ω;a1 �−1. The couplings are
obtained as follows: jgργπj ¼ 0.645ð43Þ from the ρ → γπ
decay width, jga1ρπj is allowed to vary from 0 all the way to
5.7(1.3) which saturates the full a1 decay width [2], and
jwa1=gρj ¼ 0.133 from the τ− → a−1 ντ decay width [24].

Finally, the overall sign of Mð0Þ
3π;res is fixed by requiring that

it matches the sign of the ππ contribution calculated in
chiral perturbation theory at smallQ2. Numerically, the size

ofMð0Þ
3π;res is rather small, ≤ 10% of the total, as can be seen

in the bottom-right subview of Fig. 5 where the resonance
estimate (red dashed curves and band) is plotted along with

the full lattice calculation (blue curves and band). This
smallness guarantees that the removal of the nonuniversal
resonance contribution does not introduce an uncontrolled
systematic uncertainty in our analysis.
With Eq. (9), Mð0Þ

3N;Rð1; Q2Þ could now be directly
obtained from the lattice results and the rescaling factor
Rπ=N . A recent analysis of ππ scattering [22] made the
factorization test with respect to πN analysis and found
(omitting the isospin factor Fπ−þ =Fnþ),

Tρ
ππ→ππ

Tρ
πN→πN

¼ 1.35þ0.21
−0.26 : ð11Þ

On the other hand, the OPE suggests that Rπ=N ¼ 1 in the
perturbative regime (note also the ρ coupling universality
hypothesis in the hidden local symmetry [25]). Therefore,
to ensure a continuous matching at all Q2 values we allow
Rπ=N to slightly depend on Q2,

Rπ=NðQ2Þ ¼ Rπ=Nð0Þ þ bQ2; ð12Þ

where Rπ=Nð0Þ is fixed by Eq. (11), and b is fixed by

requiring Mð0Þ
3N;R to reproduce the CCFR datum at the

matching point Q2
0 ¼ 2 GeV2,

Mð0Þ
3N;Rð1; Q2

0Þ ¼ 0.0667ð35Þ: ð13Þ

The result reads b ¼ −0.076þ0.100
−0.072 GeV−2.

With the prescription above we fully fixMð0Þ
3N;Rð1; Q2Þ at

low Q2 using the lattice curve of Mð0Þ
3π ð1; Q2Þ. The result is

shown in Fig. 5, with the uncertainties from Rπ=NðQ2Þ and
Wth;π added in quadrature. Integrating over Q2 gives an
updated estimate of the Regge contribution to δVAγW;N :

FIG. 5. The new determination of Mð0Þ
3N;Rð1; Q2Þ (blue band

with solid boundaries) is compared to the result of Ref. [3]
(orange band with dashed boundaries), the pQCD prediction (red
curve), and the CCFR data [15,16] (green points). In the bottom-

right subview, the resonance contribution to Mð0Þ
3π;res (red dashed

curves and band) is shown along with the full lattice calculation

Mð0Þ
3π (blue solid curves and band).

FIG. 4. The ρ-exchange contribution to Fð0Þ
3π . The propagators

of ω and a1 mesons indicate the vector-meson-dominance form
factors.
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ðδVAγW;NÞR ¼ 1.12ð16Það9Þbð3Þc × 10−3; ð14Þ

where the uncertainties are from (a) the pion-nucleon
matching, including the rescale factor Rπ=N and the lattice
uncertainty, (b) the Regge parameterization and (c) the
resonance subtraction. Our result is in excellent agreement
with the previous determination ðδVAγW;NÞR¼1.02ð16Þ×10−3
[3]. One can also study the effect of varying the perturbative
matching point by evaluating the Q2-integral in Eq. (1)
between 2 GeV2 and 3 GeV2 using the CCFR data instead
of the pQCD expression. That gives an insignificant extra
uncertainty of 1 × 10−5, confirming the robustness of our
error analysis.
We next discuss the impact of this result on the extraction

of Vud. From superallowed nuclear β decay, we have [26]:

jVudj2 ¼
2984.43 s
F tð1þ ΔV

RÞ
; ðsuperallowedÞ ð15Þ

whereF t is the ft-value corrected by nuclear effects,ΔV
R ¼

δVAγW;N þ… is the nucleus-independent RC that contains the
largest theoretical error. In this paper we update the Regge
contribution to δVAγW;N according to Eq. (14). Meanwhile, we
also update the pQCD contribution above 2 GeV2 from
Oðα3sÞ to Oðα4sÞ [13,14], which reduces ΔV

R by mere
1 × 10−5. As a result we obtain a slight shift upward with
respect to the result of Ref. [3]:

ΔV
R ¼ 0.02467ð22Þ → 0.02477ð24Þ: ð16Þ

The recent Ref. [6] estimated a lower value, ΔV
R ¼

0.02426ð32Þ, based on the assumption that the full
Nachtmann moment should follow the perturbative curve
down to as far as Q2 ¼ 1 GeV2, and only afterwards
higher-twist effects (estimated in a holographic QCD
model) become important. The lattice calculation on the
pion [10] suggests that already at Q2 ≤ 2 GeV2 the higher
twist contributions are non-negligible.
The implication of Eq. (16) on Vud is as follows. First, if

we take F t¼3072.07ð63Þ s [27], then jVudj¼0.97365ð15Þ.
However, recent studies in Ref. [4,5] unveil two mutually
competing new nuclear corrections (NNC) whose net effect
is to enhance the uncertainty, F t ¼ 3072ð2Þ s. Taking that
into account gives jVudj ¼ 0.97366ð33Þ. For completeness,
we also quote the impact of our result to neutron beta decay,
where Vud is determined by [28]:

jVudj2 ¼
5099.34 s

τnð1þ 3λ2Þð1þ ΔRÞ
: ðneutronÞ ð17Þ

Our new analysis implies ΔR ¼ 0.04002ð24Þ (ΔR is the
sum of ΔV

R and the Sirlin’s function [29]), which leads to
jVudj ¼ 0.97297ð58Þ given the neutron lifetime τn ¼
879.7ð8Þ s [30–32] and the axial-vector ratio λ ¼
−1.27641ð56Þ [33,34]. The result is consistent with that
from the superallowed nuclear β decays.
Finally, we discuss the current situation of the top-row

CKM unitarity. There are two different measurements of
Vus, using Kl2 [2] and Kl3 [35] decay separately:

jVusjKl2
¼ 0.2253ð7Þ; jVusjKl3

¼ 0.2233ð6Þ: ð18Þ

They disagree with each other at 2σ level, Kl3 giving a
smaller jVusj which leads to a larger unitarity violation.
This, however, depends critically on the existing lattice
calculation of the Kπ vector form factor fK

0π−þ ð0Þ which is
recently questioned by theory [36] and a new lattice paper
[37]. Another possible issue is the electromagnetic RC in
Kl3, which may be reanalyzed in a dispersive approach
[38]. We summarize the resulting Δu

CKM from different
combinations in Table I. In short, we observe a ð3 − 5Þσ
unitarity violation excluding the NNC, and ð1.7 − 3Þσ
violation with the NNC. Our results can be tested with a
future, direct lattice calculation of the γW-box on the
neutron. After that, the emphasis should be shifted to a
reassessment of the nuclear structure corrections that enter
the analysis of superallowed nuclear decay.
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TABLE I. Summary of Δu
CKM for different cases.

jVudj Δu
CKM with Kl2 Δu

CKM with Kl3

w/o NNC 0.97365(15) −0.0012ð4Þ −0.0021ð4Þ
w=NNC 0.97366(33) −0.0012ð7Þ −0.0021ð7Þ
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